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We investigate the phenomenon of producing vibration-induced rotational motion in a cylinder filled with
achiral rods and being vibrated by an external drive. The arrangement of the rods develops chirality as a result
of the interaction of gravity and steric hindrance, which is responsible for the induced motion. A two-rod
arrangement is sufficient to generate a persistent motion. The average angular velocity 〈ω〉 of the rods at long
times varies nonmonotonically with the packing fraction φ for a given drive strength �. Though the precise
nature of the variation of 〈ω〉 with φ depends on the details of the interaction between individual rods, its
general characteristics hold true for rods of various materials and geometries. A stochastic model based on
the asymmetric simple exclusion process helps in understanding the key features of our experiments.
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It is common knowledge that when a system is subjected to
an external field that causes a current to flow in it, it behaves
differently from when it is not. The presence of current in the
system implies that the underlying dynamics no longer satis-
fies time-reversal symmetry. The external field induces biased
transitions between configurations by effectively rendering a
subset of configurations in the energy landscape to be higher
in energy than the others. The scenario described above is
best visualized in a system of interacting particles, which in
the thermodynamic limit develops an effective single-particle
potential energy landscape that is tilted due to the application
of an external field to have two minima separated by an energy
barrier. An alternative method of generating current would
be to use extended objects that break structural symmetry, so
that when a field is applied, these objects move in a preferred
direction. Chiral objects are an example of the aforementioned
type. These objects convert linear momentum to angular mo-
mentum and thus twist and turn as they attempt to move
under the influence of an external field [1–14]. A question of
pertinent interest is then: Can an external field drive current
in a system of achiral particles interacting only through steric
hindrance, and that too not in the thermodynamic limit but for
a system of a few particles?

The aforesaid question is answered in the affirmative in
this work: In a system of rods confined to a cylindrical
container, we show that vertical shaking of the cylinder can
spontaneously generate a chirality in the system, leading to a
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rotational current whose direction is determined by the hand-
edness of the developed chirality. The experimental setup is
depicted in Fig. 1. The radius of the cylinder is R, while its
height is H . This cylinder is filled with N identical rods of
length h and width 2r that are achiral. To impart regulated
vibrations to the rods, we employ an electromagnetic shaker
that vibrates the cylinder in the vertical (i.e., in the z) di-
rection with frequency �s and amplitude A. The parameter
� ≡ A�2

s /g sets the strength of this external drive. We find
that a rotational current is generated in the system so long
as we have r < R, h > 2R, and the parameter � is less than
a critical value. We performed experiments with objects of
varying h and found that experimental results varied weakly. If
h � H , the object can topple over the container when shaken.
When subject to the drive, and when one has a few rods in the
cylinder, the system settles into a chiral arrangement with the
ends of the rods resting on the top and the bottom rim of
the cylindrical container. Despite the fact that the Euclidean
geometry of the rods is nonchiral, the presence of gravity
lowers the symmetry group associated with the geometry of
the rods. Chirality arises from the fact that the reduced group
has fewer connected components.

We now discuss the coordinate description of the problem,
for the representative two-rod case where the rods are in
contact. We label the rod on top at the point of contact as a
and the one below as b. In terms of cylindrical polar coordi-
nates, the end points of rod a are [(R, ϑ(a,L), 0), (R, ϑ(a,U ), H )]
and the end points of rod b are [(R, ϑ(b,L), 0), (R, ϑ(b,U ), H )].
Here, the L and U indices in the subscript of ϑ describe the
lower and upper end points of the rods. The lower end of the
rods rests on the bottom rim of the container, while the upper
end of the rods rests on the upper rim. If rod a needs to be
turned in a clockwise (respectively, anticlockwise) direction
so as to make it parallel to rod b, we identify the structure
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FIG. 1. (a) A typical experimental scenario in which two pencils
are placed in a container. These pencils can be made to move in one
direction by tapping the container. The relative arrangement of the
pencils determines the direction. (b) A schematic representation of
the experiment, including all relevant coordinates. (c) A cylinder of
earbuds generates a doubly ruled hyperbolic surface. Take note of the
profile of the earbuds’ top ends; the rods on the inside are straighter
than the ones on the outside. (d) A typical snapshot of the system
of rods being driven. From the top view, we can track the top of
the tagged particle, colored red. The unit vector êa lies along the
rod, with the tangential vector being eH θ̂ . (e) A schematic showing
the mapping of the x-y coordinates at time t of the tagged particle
top in panel (d) onto a disk geometry, with relevant coordinates
S(t ) and θ (t ). (f) The component eH can be measured by the angle
made by a rod with the wall of the container. A single toothpick and
corresponding eH are highlighted.

with negative (respectively, positive) chirality. Zero chirality
represents configurations where the rods are parallel to each
other.

In the following, we discuss in turn our experimental ob-
servations made with one, two, and more than two rods in our
setup. To study the dynamics of the rods in time, we track the
motion of a single tagged rod. From the top view, the motion
of the top of this tagged rod appears to correspond to the
movement of a point on a disk whose center lies along the axis
of the container. It is thus natural to characterize the motion of
this rod in terms of polar coordinates S (t ), θ (t ). The angular
coordinate θ (t ) describes the instantaneous angular position
of this tagged rod on this disk [see Fig. 1, panels (d) and (e)].
From the time series θ (t ), we construct the cumulative angular
distance �(t ), where θ (t ) = mod|�(t ), 2π |. The tangential
component eH of the axial vector in the direction of θ̂ changes
as the container fills up with more rods, and is correlated with
the angular velocity of the rods; this is discussed in detail
later in the paper. The tangential component can be easily
computed from images such as Fig. 1, panels (d) and (f).

Observations for N = 1. Chirality is an emergent property
that arises from the arrangement of two or more rods. The
rods used here are not by themselves chiral. On being driven,
a single rod does not exhibit any persistent angular motion
[see Fig. 2(a), N = 1].

Observations for N = 2. In terms of �(t ), the trajectory
of a tagged rod for various values of � is shown in Fig. 2(a).

FIG. 2. (a) Time trace of the angular distance �(t ) of a tagged
rod in a system of N rods, for N = 2 and various values of �. The
case N = 1 is also shown. (b) Long-time average of the angular
velocity, denoted by 〈ω〉, increases with � until �c, after which con-
tinuous chirality toggling causes 〈ω〉 to plummet. Inset: The variation
of �c vs r/A for different materials of varying thickness. The red
line represents �c = r/A. (c) The toothpicks move noisily, with the
amount of noise decreasing as N increases. This is seen in the time
trace of the angular velocity ω. (d) The variation of 〈ω〉 with packing
fraction φ for toothpicks (r = 2.2 mm, h = 60 mm, R = 45 mm,
H = 75 mm). Note that the error bars reduce with increase in φ.
The panels (e) and (f) show the variation of MSD vs lag time 
t for
� < �c and � � �c, respectively.

The occurrence of a persistent rotational current necessitates
the use of at least two rods. The direction of rotation of
two rods is determined by the instantaneous chirality in the
system. Constant toggling between states with two different
signs of chirality results in a continuous current reversal and
a concomitant change in sign of the slope of �(t ) vs t . The
rate of toggling increases as � increases, and there exists a
�c beyond which the long-time average 〈ω〉 of the angular
velocity starts to drop, as seen in Fig. 2(b). By measuring the
mean square displacement (MSD) as a function of the lag time

t , we see that for � < �c, the motion is completely ballistic
[MSD ∝ (
t )2], as seen in Fig. 2(e). For � � �c, the motion
is ballistic at shorter timescales, and makes a crossover into
diffusive motion (MSD ∝ 
t) for longer timescales, as seen
in Fig. 2(f).

Observations for N > 2. As the number of rods in the
container increases beyond two, the arrangement of the rods
evolves from equidistant regular structures [see the case N =
2 in Fig. 3(a)] to a single shell that resembles a doubly ruled
hyperbolic surface [see the case N = 30 in Fig. 3(a) and
Fig. 1(c)]. When the number is further increased, multiple
concentric shells are formed. For low values of the packing
fraction φ ≡ N (r/R)2, the rods move from one shell to the
next as these shells shear against each other. The presence
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FIG. 3. (a) Snapshots of rod packing with increase in number
N of rods. As we load more rods, the tendency to form clusters
rather than equidistant structures increases. Well-defined shells of
rods are observed beyond a certain number of rods. (b) Variation of
long-time average 〈ω〉 of the angular velocity with radial distance
S, measured along the radius of the container, for various packing
fractions φ, highlighting the presence of a velocity gradient as one
travels from the container’s center to the edge. This gradient de-
creases with increasing φ. (c) The variation of the autocorrelation
function C(R,
t ) for various φ and respective exponential fits
g(t ) = exp(−t/τ ). Inset: Variation of τ with φ. (d) Variation of eH/R
and 〈ω〉 with φ. All experiments were performed using toothpicks
(r = 2.2 mm, h = 60 mm, H = 75 mm, R = 37 mm).

of shearing between shells is demonstrated by a gradient in
〈ω〉 as a function of the radial distance S measured along the
radius of the container [Fig. 3(b)]. As the packing fraction φ

increases, 〈ω〉 becomes increasingly independent of S . The
motion of the rods appears to become more coherent with in-
crease in φ; φrigid refers to the value of φ at which the shearing
between layers completely disappears. In order to quantify the
onset of coherence in the motion, one may consider studying
an appropriate autocorrelation function. To this end, we map
the top of two tagged rods onto two points on a disk whose
coordinates are (S1(t ), θ1(t )) and (S2(t ), θ2(t )) and measure
the Pythagorean distance between the points. Denoting this
distance at time t by R(t ), we have R2(t ) = S2

1 (t ) + S2
2 (t ) −

2S1S2 cos[θ1(t ) − θ2(t )]. The autocorrelation function is de-
fined as C(R,
t ) ≡ 〈R(t )R(t + 
t )〉 for time lag 
t . For
various values of φ, the behavior of the correlation function
is presented in Fig. 3(c). Because the two tagged rods are
rotating within the cylinder, the distance between them is an
oscillating function. As a result, the correlation function as a
function of 
t shows a decay with superimposed small oscil-
lations. Fitting the decaying profile to an exponential yields
the correlation time τ . The exponential fits g(t ) = exp(−t/τ )
to the different correlation functions are represented by the
dashed-dotted lines in Fig. 3(c). As φ → φrigid, the system
makes a transition from being floppy, where the rods can move
freely with respect to one another, to being rigid, where all the
rods move coherently, and correspondingly, the timescale τ

becomes large as seen in the Fig. 3(c) inset. Similar rigidity
transitions have been observed in other experimental systems
[15,16].

Apart from the linear drift in �(t ), there exist oscillations
about the linear function, corresponding to the rattling motion
of the rods observed in experiments. For low densities, each
rod can access a large section of the configuration space. On
being driven by the shaker, the injected energy does not fully
contribute to the global motion of the rods, but is used by
individual rods to explore nearby configurations in its allowed
configuration space. This leads to a noisy, rattling motion of
the rods at low densities, making the motion of the individual
rods to be essentially random on short timescales [Fig. 2(c)].
The rattling of the rods decreases as the number of rods in
the container increases since the available configuration space
for each rod decreases; the system eventually becomes rigid
[Figs. 2(c) and 2(d)].

Each rod is tilted at an angle with respect to the vertical
along the wall of the container. We quantify this tilt as the
tangential component eH of the axial vector lying along θ̂ ,
where θ̂ is the normal vector to the radial vector from the
center of the container. eH of the rods changes as the container
fills up with more rods. For the rod a shown in Fig. 1(b)
eH = R sin(ϑ(a,U ) − ϑ(a,L) ). The quantities 〈ω〉 and eH of a
tagged rod are depicted as a function of φ in Fig. 3(d). Since
the rods travel with different speeds in different layers, we
measure the 〈ω〉 of a tagged rod placed in the outermost shell
for all experiments. Both eH and 〈ω〉 have similar nonmono-
tonic trends as a function of packing fraction φ. It is tempting
to attribute the increase in 〈ω〉 to the corresponding increase in
eH . The rods in the inner shell, on the other hand, are inclined
at a lower angle than those at the edge [Fig. 1(c)]. As one
advances radially inward, eH drops, whereas investigations
show that inner shells move faster [Fig. 3(b)]. As a result, eH

cannot be the only element influencing particle speed.
The frictional dissipation in the system increases with φ.

In the inset of Fig. 4(a), we present a schematic representation
of our experimental setup that measures the force of friction
between the rods and the wall of the cylinder. The probe, a
toothpick attached to the load cell, is lowered vertically into
the container that already has requisite number of toothpicks
to make the packing fraction φ. To measure the force of
friction between the rods, we insert the probe in the middle
of the container, while to measure the frictional force between
the rods and the wall, we ensure that the probe continuously
brushes against the wall of the container. The process of low-
ering of the probe is continued till the lower end of the probe
comes within 2 mm of the base of the container. The highest
frictional force recorded between the probe and the rods is
Ff ,b, and the force between the rods and the wall is Ff ,w. Both
these measurements are made at the deepest point of insertion,
which is 2 mm from the base of the container. The experiment
was repeated with different φ values; for φ > 0.66 it becomes
increasingly difficult to insert rods into the container, and the
values of both Ff ,b and Ff ,w rise steeply [Fig. 4(a)]. The rise
in both Ff ,b and Ff ,w and the drop in 〈ω〉 occur at values of
φ close to each other. It is to be noted the these two values
〈ω〉 and the forces of friction are measured from different
experiments. As discussed above, while measuring the force
of friction, the system was static. These observations indicate
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FIG. 4. (a) Variation of the long-time average 〈ω〉 of the angular
velocity (� = 2) and the frictional force Ff with packing fraction φ

for toothpicks (r = 2.2 mm, h = 60 mm, H = 75 mm, R = 37 mm).
Inset shows a schematic of the setup used to measure Ff , where a
probe attached to a load cell is inserted into the container full of N
rods. (b) On plotting 〈ω〉/ωmax vs φ/φc, a good scaling relationship
for the rise is observed. (c), (d) ωmax is dependent on both the material
and the diameter, whereas φc is not affected by the material but by
only the diameter.

that there are two roles of the frictional force in the system.
The interparticle friction provides constraints and hence is
closely associated with the rigidity transition of the system
[Fig. 3(c)]. On the other hand the friction between the rod and
the wall provides resistance to the particle current. At high
packing fraction φ, the friction between wall and the rods
exceeds the driving force associated with the current; hence
the current goes to zero [Fig. 3(d)].

Experiments with different materials of varying sizes and
shapes reveal that the nature of the 〈ω〉 vs φ relationship
is always the same. The following materials were used in
our setup: steel rods (SR, 2r = 6 mm), toothpicks (TP, 2r =
2.2 mm), bamboo skewers with tips (ST, 2r = 2.5 mm),
bamboo skewers without tips (S/T, 2r = 2.5 mm), wood
blocks (WB, 2r = 6 mm), and glass rods (GR, 2r = 3.5, 6,
8 mm). The ordinate is scaled as 〈ω〉/ωmax and the abscissa is
scaled as φ/φc to compare results from different experiments
[Fig. 4(b)]. For the region φ/φc < 1, the figure exhibits good
scaling collapse of the data. It may be seen from Fig. 4(b) that
ωmax is controlled by both the material and the diameter, but
φc is only influenced by the diameter and not by the material.

Energetics for the case N = 2. The energy of each rod is
characterized in terms of the tilt angle, and the coordinates of
the two ends of a rods are used as its geometrical descriptor.
The coordinate description of the problem is depicted in detail
in Fig. 1(b). In these coordinates, the potential energy E of
two rods a and b with tilt angles ψ1 and ψ2 respectively
is (mgh/2)[sin(ψ1) + sin(ψ2)]. The sine function of the tilt
angle ψ1 is sin(ψ1) = [1 + ( 2R

H )2 sin2( ϑ(a,U )−ϑ(a,L)

2 )]−
1
2 .

In this case, the tilt angles can be expressed in terms of the
coordinates of the end points of the rod. When the angular gap
between the top and the bottom end of a rod is maximized, the
energy for one rod is at its minimum. When a second rod is
introduced, the overall energy must be minimized while also

FIG. 5. The graph depicts the energy E of two rods in a cylinder
as a function of ϑ(b,L) − ϑ(a,L) and ϑ(b,U ) − ϑ(a,U ) for all possible al-
lowed configurations. The red (negative chirality) and black (positive
chirality) markers indicate configurations that satisfy the condition
d = 2r, with d and r being the shortest distance at point of con-
tact of two rods, and the radius of the rods, respectively. Refer to
Fig. 1(b) for the definition of the ϑi’s.

considering the steric repulsion of the two rods in contact.
This restriction is written as d � 2r, where d is the shortest
distance at the point of contact between two rods. The scatter
plots in Fig. 5 illustrate the possible configuration for R = 1,
H = 2, and r = 0.05, with the restriction d � 2r.

The color code represents the total energy E of the two
rods. The black and red dots in the figure show the configura-
tions where the rods come into contact with d = 2r. The black
and red dots represent positive and negative chirality, respec-
tively. (i) There are two global minima to be found. Each one
has a chirality of its own. As a result, the configuration space
corresponding to distinct chiralities is divided by an energy
barrier. (ii) Permissible configuration pathways connect these
minima. (iii) Because of the energy introduced by the shaker,
the rods can explore neighboring configurations.

The configurations of the rods are constrained in the energy
diagram for smaller values of � to a specific chirality. As a
result, the rods continue to move in the same direction. The
energy supplied by the shaker, on the other hand, is suffi-
cient to toggle the chirality of the arrangement for � > �c,
and crossing this energy barrier results in current reversal.
The quantity 〈ω〉 would consequently be zero. The relevant
energy barrier 
E that divides the chiral states and the energy
2mgA�c imparted by the shaker may be used to calculate �c.
The motion of one rod ascending over the other describes
a simple route in the configuration space that permits the
chirality to toggle. This corresponds to the situation where
we have 
E = 2mgr and �c = 
E

2Amg = r
A . For A = 0.4 mm,

r = 1.1 mm, we have �c = 2.75, which is consistent with ex-
perimental findings for the data plotted in Fig. 2(b). We have
seen that this relation holds for various objects of different
materials and diameters as seen in the inset of Fig. 2(b), as
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FIG. 6. Panels (a)–(e) show the schematic for the simulation
rules. Here the particle marked white is chosen to move, while black
particles remain stationary. Slow sites are marked gray, while fast
sites are marked in light blue. For this proposed theoretical model
of hard-core disks hopping between the sites of a two-dimensional
lattice, (f) shows the average particle velocity 〈ω〉 vs packing fraction
φ for different values of the parameter f characterizing the hop
rate distribution, with hop rate parameter q = 2φ; see text. (g) By
changing the parameter k in q = kφ, we can change the position and
the height of peaks in the 〈ω〉 vs φ curve.

long as the height of the object is not so high that it topples
out of the container on being shaken.

Simulations for N > 2. The geometric model discussed in
the foregoing is of use mainly in the two-rod scenario, and
its extension to analyze the case of multiple rods is not easy.
To proceed, we note that the motion of individual rods on the
timescale of our experiments appears stochastic, as mentioned
earlier while discussing the rattling motion of rods. This war-
rants a stochastic dynamical model to explain qualitatively
our experimental findings. A few reasonable simplifications
are in order, all of which are motivated by experimental
observations. When viewed from above, the rods appear as
disks moving preferentially in one direction on circular tracks.
There are several concentric tracks available for the rods to
move in, and when allowed, the rods can move from one track
to another. Moreover, manufacturing defects in the cylindrical
container lead to the rods speeding up and slowing down
at different random regions of the container, leading to a
quenched disorder in the system. Steric hindrance forbids two
disks from being on top of one another. All these aspects may
be accounted for by considering a lattice model of hard-core
disks, wherein the separation between neighboring lattice sites
is given by the diameter of a disk and the hard-core constraint
allows only one disk to be placed centered on a lattice site.

The lattice constituting our model consists of multiple
lanes placed adjacent to one another, and with periodic
boundary conditions only in the longitudinal direction. Thus,
referring to Figs. 6(a)–6(e), the periodic boundary condition
applies as one moves from left to right along the lattice, while
no periodic condition applies as one wraps around the lattice
from top to bottom. We specifically consider N hard-core
disks on a two-dimensional lattice of L1 rows and L2 columns,
with filling fraction φ = N/L and L = L1L2. The dynamics
of our model involve stochastic hopping of disks to vacant
nearest-neighbor sites, either in the same or in the adjacent
lane, with the preferential motion of rods accounted for by

considering the hopping to be biased along one of the two
longitudinal directions. We will here consider the extreme
case of biased hopping in which hopping is possible only
to the right; see Figs. 6(a)–6(e). The results are expected to
remain qualitatively unaffected on considering the motion to
be possible both to the right and to the left, with a bias,
say, to the right. A schematic diagram showing the rules
of the simulation is shown in Figs. 6(a)–6(e). The model
has spatially distributed disorder in that every site has an
associated hopping rate α for a disk that occupies the site,
which we consider to be a random variable sampled from a
bimodal distribution: P(α = q) = f , P(α = 1) = 1 − f , with
0 < f < 1. The lattice is generated with a fixed probability
f of having slow sites, and 1 − f for fast sites. Slow sites
are marked in gray in Figs. 6(a) and 6(e). Referring to Fig. 6,
panels (a) and (b), the particle marked white and occupying
a site with associated hopping rate 1, panel (a), or, q, panel
(b), is shown to move to the right neighboring site. Note
that the particle move is allowed in the two cases since the
destination site was empty before the move. If however the
destination site happens to be occupied, as is the case in
panel (c), then the white particle has the possibility to change
lanes. A situation may arise when the destination sites in
the two adjacent lanes are empty, in which case, the particle
moves to either of the two sites with equal probability q/2
(respectively, 1/2) if the particle before the move was on a
slow site (respectively, a fast site). The former case is shown
in Fig. 6(c). Another situation may arise when only one of the
two possible destination sites in the adjacent lanes is empty; in
this case, the particle moves to this empty site with probability
1 or q, depending respectively on whether the particle before
making the move was on a fast or a slow site; see Fig. 6(d).
Figure 6(e) represents the case when all possible destination
sites are occupied, and hence the white particle cannot make
any move whatsoever. In our experiments, we have observed
that a rod makes a move provided another rod in its vicinity
collides with it and pushes it forward. The probability to find
another rod in the neighborhood grows linearly with the filling
fraction of rods. This aspect is taken care of in our stochastic
model by stipulating that the parameter q is a linear function
of φ. The stochastic model proposed here is a nontrivial gen-
eralization of the paradigmatic asymmetric simple exclusion
process [17]. The lattice is periodic in the x direction, and the
average current 〈ω〉 is measured in this direction.

We studied our proposed model by performing Monte
Carlo simulations of the dynamics, whereby evolution in dis-
crete time steps involves sampling a particle at random and
attempting to move it to a nearest-neighbor vacant site accord-
ing to the rules mentioned in the preceding paragraph. These
simulations were carried out for L = 100, 200, 500, and dif-
ferent values of φ. There were no appreciable differences on
changing lattice size. The system was allowed to settle into a
stationary state, after which measurements of average velocity
〈ω〉 of individual disks were made (because of periodic bound-
ary conditions, the velocity that one measures is actually the
angular velocity). Our obtained results for 〈ω〉 vs φ show the
same characteristic rise and fall as in our experimental data;
the position and the height of the peak depend on both f and q
[Fig. 6, panels (f) and (g)]. We have also performed alternative
simulations where particles were demarcated with probability
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f to be slow with slow speed q, obtaining similar numerical
results. This simulation scheme mirrors the experimental fea-
ture of imperfections between particles.

The different translational and rotational degrees of free-
dom of a Euclidean object may get coupled in an external
field, resulting in a dynamics that violates time-reversal sym-
metry. Toys such as the rattleback or the tippe top are
single-particle examples of this phenomenon. The present
study extends in a nontrivial and hitherto unexplored manner
this domain of work to a multiparticle setup of interacting

achiral objects, wherein chirality that drives a current in the
system is an emergent property.
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