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Higher rank symmetry and higher moment conservation have been drawn considerable attention from, e.g.,
subdiffusive transport to fracton topological order. In this paper, we perform a one-loop renormalization group
(RG) analysis and show how these phenomena emerge at low energies. We consider a d-dimensional model of
interacting bosons of d components. At higher rank-symmetric points with conserved angular moments, the ath
bosons have kinetic energy only along the x̂a direction. Therefore, the symmetric points look highly anisotropic
and fine-tuned. By studying RG in a wide vicinity of the symmetric points, we find that symmetry-disallowed
kinetic terms tend to be irrelevant within the perturbative regime, which potentially leads to emergent higher rank
symmetry and higher moment conservation at the deep infrared limit. While nonperturbative analysis is called
for in the future, by regarding higher rank symmetry as an emergent phenomenon, the RG analysis presented
in this paper holds alternative promise for realizing higher rank symmetry and higher moment conservation in
experimentally achievable systems.
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I. INTRODUCTION

The celebrated Noether theorem relates a conservation
law to an underlying continuous symmetry. For example, in
a U(1)-symmetric Hamiltonian of bosons, bosonic operator
�̂(x) is changed to eiθ �̂(x) under symmetry transformations
where the real parameter θ does not depend on coordinate
x = (x1, x2, . . . , xd ) in d-dimensional space. By means of
Noether’s theorem, one can show that the total boson number,
i.e.,

∫
dd xρ(x), is a conserved quantity, where particle number

density ρ(x) = �̂†(x)�̂(x). Apparently, ρ(x) is just the zeroth
order of conventional multipole expansions

ρ, ρ x, ρxaxb, . . . (1)

in a standard electromagnetism textbook [1]. In a particle-
number-conserving system, higher moment conservation, e.g.,
conservation of dipoles and quadrupoles, is in principle al-
lowed. Furthermore, if the density is vectorlike with multiple
components, denoted as ρ = (ρ1, ρ2, . . . , ρd ), then we can
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define another set of multipole expansions:

ρ, ρ · x,

d∑
e, f =1

εab···e f ρex f , . . . , (2)

where the third one is angular moment. εab··· is the Levi-Civita
symbol. If d = 2, 3, it can be rewritten in a compact form:
ρ × x. In d = 2, ρ × x = ρ1x2 − ρ2x1.

Indeed, recently we have been witnesses to ongoing re-
search progress on higher moment conservation and the
associated higher rank version of global symmetry [2–8], es-
pecially in the field of fracton physics [2–66]. Some typical
examples of research include subdiffusive transport at late
times, nonergodicity, Hilbert space fragmentation, and spon-
taneous symmetry breaking [29,31,38,65–70]. In a simple
scalar theory, the associated higher rank symmetry trans-
formations are parametrized by θ (x) that is a polynomial
function of x [7]. Inspired by the conventional correspondence
between global symmetry and gauge symmetry, upon “gaug-
ing” higher rank symmetry, higher rank gauge fields can be
obtained [4]. Here, the gauge fields are usually higher rank
symmetric tensor fields, which leads to generalized Maxwell
equations [5] and exotic theory of spin systems in Yb-based
breathing pyrochlores [71].

As a nontrivial consequence of higher moment conserva-
tion, the mobility of particles is inevitably restricted, either
partially or completely. For example, it is quite intuitive
that dipole conservation strictly forbids a single particle mo-
tion along all spatial directions. Such particles are called
“fractons” or 0-dimensional particles [2,3]. Similarly, one
can define lineons (1-dimensional particle) that are mov-
able within a stack of parallel straight lines and planons
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(2-dimensional particle) that are movable within a stack of
parallel planes. Regarding these strange particles as bosons,
we can consider their Bose-Einstein condensation, such that
the spontaneous breaking of higher rank symmetry occurs. As
a result, a class of exotic quantum phases of matter dubbed
fractonic superfluids [65,66] is formed. In Ref. [66], a conve-
nient notation dSFi was introduced to denote d-dimensional
fractonic superfluids with i-dimensional particle condensa-
tion, e.g., dSF0 with condensed fractons and dSF1 with
condensed lineons. The conventional superfluid phase corre-
sponds to dSFd where bosons can freely move.

Higher-rank symmetric microscopic models often look
quite unrealistic, highly anisotropic, and fine-tuned [4]. For
example, Hamiltonian does not has the usual kinetic energy
term [65]. And interaction is delicately designed [66]. How-
ever, as we have known, in many condensed matter systems,
symmetry has been found to be significantly enhanced at
low energies. For example, Lorentz symmetry emerges in
graphene which is microscopically built by nonrelativistic
electrons. Thus, one may wonder whether it is possible that
the long-wavelength low-energy limit will conserve higher
moments and respect higher rank symmetry as an emergent
phenomenon.

For this purpose, we may apply the traditional theoreti-
cal approach: renormalization group (RG). If there exists a
phase region such that all models in the region can flow to
symmetric points, we can regard higher rank symmetry as
an emergent symmetry. Theoretically, one advantage of such
an emergent higher rank symmetry is its robustness against
symmetry-breaking perturbation. Practically, we expect that
such a scenario holds promise for more flexible realization of
exotic higher rank symmetry and higher moment conservation
in both theoretical and experimental studies.

In this paper, we identify such a wide phase region that
supports emergent higher rank symmetry and conservation
of angular moments, i.e.,

∫
d2xρ × x = ∫

d2x(ρ1x2 − ρ2x1)
for a two-component boson field in two dimensions. We start
with a two-dimensional many-boson system in the normal
state (i.e., without lineon condensation) of fractonic super-
fluids (denoted as 2SF1). The Hamiltonian is a symmetric
point in the parameter space where the ath (a = 1, 2) com-
ponent bosons only have kinetic terms along ath axis (dubbed
“diagonal” kinetic terms). There also exists a weak intercom-
ponent scattering term allowed by higher rank symmetry. We
shall perform a RG analysis in the vicinity of the symmetric
point by adding symmetry-disallowed kinetic terms (dubbed
“off-diagonal” kinetic terms) as a perturbation. The one-loop
calculation of the β function shows that there exists a finite
phase region (Fig. 4) where off-diagonal kinetic terms tend
to be irrelevant under RG iteration. In other words, the high-
energy model, which is not symmetric but more realistic and
less fine-tuned, has a tendency to flow to the symmetric point.
As a result, higher rank symmetry as well as conservation of
angular moments emerges.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the d-component bosonic systems and
their higher rank symmetry. In Sec. III, we discuss the scal-
ing and Feynamn rules of the d-component bosonic systems.
Further, we figure out the β functions of parameters in the
systems with renormalization group (RG) analysis and depict

the global phase diagram. In Sec. IV, we summarize and
provide our prediction on conditions of possible realization
of systems with higher rank symmetry.

II. MODEL AND SYMMETRY

The symmetric point Hamiltonian for d-component
bosonic systems in real space [66] is given by H = H0 + H1

with

H0 =
d∑

a=1

[
ta
2

(∂a�̂
†
a)(∂a�̂a) − μ�̂†

a�̂a

]
, (3)

H1 = 1

2

∑
a �=b

Kab(�̂†
a∂a�̂

†
b+�̂

†
b∂b�̂

†
a)(�̂a∂a�̂b+�̂b∂b�̂a). (4)

Here ta = m−1
a stands for the inverse of mass along the ath

direction. �†
a(x) and �a(x) are respectively creation and

annihilation operators, and satisfy the bosonic commutation
relations. The interaction strength Kab is a symmetric matrix
with vanishing diagonal elements, i.e., Kaa = 0, Kab = Kba.
Each term in H is invariant under both the conventional global
symmetry transformations (�̂a → eiθa�̂a, θa ∈ R) and higher
rank symmetry transformations:

(�̂a, �̂b) −→ (�̂aeiλabxb
, �̂beiλbaxa

) (5)

for each pair (φa, φb) with λab = −λba ∈ R. According to
Noether’s theorem, the conventional global U(1) symmetry
and the higher rank symmetry correspond to conserved total
charge (particle number) Qa and conserved total angular mo-
ments Qab (Qab = −Qba) [4,66]:

Qa =
∫

dd xρa, Qab =
∫

dd x(ρaxb − ρbxa). (6)

Here ρa = �̂†
a�̂a. Intuitively, the conserved quantities Qab

enforce that a single ath component boson can only move
along the ath direction. More explanation on the classical
mechanical consequence of the conservation is available in
Appendix A and Ref. [66].

In the coherent-state path-integral formulation with
imaginary time, the Lagrangian density L can be
written as L = φ∗

a∂τφa + H with action S = ∫
dτ dd xL.

Here the bosonic fields φa = φa(x, τ ) ∈ C are the
eigenvales of coherent-state operators �̂a(x, τ ). The
Fourier transformation of the coherent state is φa(τ, r) =

1√
β

∑
n

∫
dd k

(2π )d eik·r−iωnτ φa(iωn, k) and its complex conjugate

is φ∗
a (τ, r) = 1√

β

∑
n

∫
dd k

(2π )d e−ik·r+iωnτ φ∗
a (iωn, k) for

a = 1, 2, . . . , d . In the frequency-momentum space,

S =
∑
a;k

(−iωn + ξa)φ∗
aφa +

∑
1,2,3,4

a �=b

Kab

2β

(
ka

2 + kb
1

)(
ka

3 + kb
4

)

× φ∗
1aφ

∗
2bφ3bφ4aδ(1 + 2 − 3 − 4). (7)

In the first term on the right-hand side, the simplified notation
φa stands for φa(iωn, k), which is the frequency-momentum
image of the field φa(x, τ ). ωn is a bosonic Matsubara fre-
quency and k is a momentum vector: k = (k1, k2, . . . , kd ).
We use ka to denote the ath spatial component of momentum
vector k.

∑
k stands for

∑
ωn

∫
dd k

(2π )d . In the second term, since
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there are four pairs of frequency and momentum, we intro-
duce a new notation φia to compactly represent φa(iωni , ki )
where the label i = 1, 2, . . . , 4. ka

i stands for the ath spatial
component of momentum vector ki. The sum

∑
1,2,3,4 de-

notes
∑4

i=1

∑
ωni

∫ dd ki
(2π )d . Other notations like

∑
1,2,

∑
2, . . .

in the forthcoming text are defined in the similar way. Be-
sides, the kinetic energy with momentum k is anisotropic:
ξa = 1

2

∑2
a′=1 taa′ (ka′

)2 − μ. For momentum ki, the associ-

ated kinetic energy is ξia = 1
2

∑d
b=1 tab(kb

i )2 − μ. Last, we
use δ(1 + 2 − 3 − 4) to represent δ(n1+n2 ),(n3+n4 )(2π )dδ(k1 +
k2 − k3 − k4). δ(n1+n2 ),(n3+n4 ) is a dimensionless Kronecker
symbol.

Before moving forward, we perturb the Lagrangian density
by adding small “off-diagonal” kinetic terms that break higher
rank symmetry. As such, kinetic terms of both directions are
present, which can be written as

∑d
a,b=1[ tab

2 (∂bφ
∗
a )(∂bφa)] =∑d

a=1[ taa
2 (∂aφ

∗
a )(∂aφa)] + ∑d

a �=b[ tab
2 (∂bφ

∗
a )(∂bφa)]. The kinetic

parameter ta is rewritten as taa for notational convenience.
Those off-diagonal kinetic terms with nonzero tab (a �= b)
manifestly break higher rank symmetry. Similarly, we can
also understand these parameters as inverse of mass of field
configuration φa along directions other than the ath one:
tab = 1/mab.

III. RENORMALIZATION GROUP ANALYSIS

A. Scaling and Feynman rules

We consider d = 2. We set the restriction of field con-
figuration φa as

∑2
b=1

tab
ta

(kb)2 � �2 since our total kinetic

energy is given by
∑

b
tab
2 (kb)2 with surfaces of equal en-

ergy,
∑

b
tab
taa

(kb)2 = κ2. Here κ is an arbitrary constant with
the momentum dimension. The high-energy part corresponds
to

√∑2
b=1

tab
ta

(kb)2 ∈ [�/s,�], where the scaling parameter
s > 1 and sends k to k/s. We also define s = el with l > 0.
We consider the free part of the action

∑
n

∫
d2k

(2π )2 φ
∗
a(−iωn +∑2

b=1
tab(kb)2

2 )φa. It is noticed that we do not take into account
the part related to chemical potential since it must be rele-
vant if we choose the kinetic part to be marginal. Suppose
the scaling dimension of φ is �φ , and we can assume the
change of temperature and frequencies are described as T →
s−zT and ωn → s−zωn, n ∈ Z respectively. So the free part
is scaled to

∑
n

∫
d2k

(2π )2 φ
∗
a(−iωns−z+∑2

b=1
tab(kb)2

2 s−2)φas2�φ−2.

To fix the momentum dependence, we need �φ = d
2 + 1 =

2 and z = 2. In the d = 2 case considered here, the inter-
action matrix is simply determined by a single parameter,
i.e., K12 = K21 := K. To further simplify the calculation for
d = 2, we assume t1 := t11 = t2 := t22 := T0, t12 = t21 := T1.
There are two small parameters compared to T0. The first one
is the symmetry-disallowed off-diagonal kinetic parameter T1,
which is marginal. It can also been seen as a perturbation
relative to the interaction parameter K�2. The second one
is the irrelevant interaction parameter K�2 considered as
an infinitesimal quantity compared with the diagonal kinetic
parameter T0. Hence, the following calculation will proceed

FIG. 1. The left diagram shows the bare interaction vertex of
d-component bosons. Here the solid lines are Feynman propagators
and the vertex is the coefficient: 1

2β
Kab(ka

2 + kb
1 )(ka

3 + kb
4 )δ(1 + 2 −

3 − 4). The right one represents the Feynman loop diagram of the
correction for the parameter T1.

in the perturbative regime: T0 � K�2 � T1, where � is the
momentum cutoff.

Next, we write Feynman rules. The bare Feynman propa-
gators are given by 〈φ∗

iaφ jb〉 = (iωni − ξia)−1δabδi j . Here ξia =∑d
a′=1 taa′ (ka′

i )2

2 − μ stands for the kinetic energy of φia [see
definition below Eq. (7)]. In addition, the interaction vertex
is drawn in Fig. 1. This diagram represents the interaction
term, i.e., the second term in Eq. (7), where solid lines
represent the bosonic fields and vertex stands for the in-
teraction coefficient. In the RG procedure to be performed,
we apply the standard cumulant expansion and relate the
mean of the exponential to the exponential of the means
[72,73]: 〈e−Sint 〉> = e−〈Sint〉>+ 1

2 (〈S2
int〉>−〈Sint〉2

> )+···. Here φ> and
φ< respectively correspond to the fast modes and slow modes
of bosonic fields. In this case, the notation 〈 〉> is to take the
average over the fast modes. Therefore, after calculating the
average on fast modes, we have the form of the effective ac-
tion: Seff [φ<] = S0[φ<] + S′

int[φ<] = S0[φ<] + 〈Sint〉>[φ<] −
1
2 (〈S2

int〉> − 〈Sint〉2
>)[φ<]. The form of 〈Sint〉> contributes to

the β functions of kinetic parameters, also named first-order
correction. Further, 1

2 (〈S2
int〉> − 〈Sint〉2

>)[φ<] leads to the β

functions of the elements in the K matrix.

B. One-loop correction to T1

The interaction term reads

Sint = 1

2β

∑
1,2,3,4

∑
a �=b

Kab
(
ka

2 + kb
1

)(
ka

3 + kb
4

)
φ∗

1aφ
∗
2bφ3bφ4a

× δ(1 + 2 − 3 − 4). (8)

Below we determine the scaling of the K matrix. To
be specific, we define the new momentum and frequency
as k′ = sk, ω′

n = szωn, or T ′ = szT with z = 2. We de-
fine the rescaled field φ′

a(iω′
n, k′) = s−�φ φa(iω′

ns−z, k′
s ) with

�φ = d
2 + 1. Then the scaling of parameters Kab can

be determined. With the form of interacting action (8),
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we obtain

S′
int = 1

2β ′ s
−z

4∑
i=1

∑
ω′

ni

∫
dd k′

i

(2π )d
s−4d Kab[(k′

2)a + (k′
1)b][(k′

3)a + (k′
4)b]s−2

× φ′∗
a

(
iω′

n1
, k′

1

)
φ′∗

b

(
iω′

n2
, k′

2

)
φ′

b

(
iω′

n3
, k′

3

)
φ′

a

(
iω′

n4
, k′

4

)
s4�φ δ(n′

1+n′
2 ),(n′

3+n′
4 )(2π )dδ(k′

1 + k′
2 − k′

3 − k′
4)sd

= 1

2β ′ s
2−z−d

4∑
i=1

∑
ω′

ni

∫
dd k′

i

(2π )d

∑
a �=b

Kab[(k′
2)a + (k′

1)b][(k′
3)a + (k′

4)b]

× φ′∗
a

(
iω′

n1
, k′

1

)
φ′∗

b

(
iω′

n2
, k′

2

)
φ′

b

(
iω′

n3
, k′

3

)
φ′

a

(
iω′

n4
, k′

4

)
δ(n′

1+n′
2 ),(n′

3+n′
4 )(2π )dδ(k′

1 + k′
2 − k′

3 − k′
4). (9)

Here the dimensionful δ function of momenta is also scaled
[δ(k′) = s−dδ(k)] but the Kronecker symbol of Matsub-
ara frequencies is dimensionless and invariant upon scaling.
Therefore, the scaling of Kab is given by K ′

ab = Kabs−d . It
illustrates that the K matrix at tree level is irrelevant in per-
turbative RG.

Then, let us consider the first-order correction to T1,
〈Sint〉>, contributing to the correction of kinetic parameters:

〈Sint〉> =
〈

1

2β

∑
1,2,3,4

∑
a �=b

Kab
(
ka

2 + kb
1

)(
ka

3 + kb
4

)

× φ∗
1aφ

∗
2bφ3bφ4aδ(1 + 2 − 3 − 4)

〉
>

. (10)

To proceed further, we should split each momentum integra-
tion into a slow part (<) and a fast part (>). In this way,
the integration of four momenta (k1, k2, k3, k4) is split into
24 = 16 combinations. According to Wick’s theorem, for for-
mulas of bare propagators, we conclude that either φ∗

1a and
φ4a must be paired or φ∗

2b and φ3b must be paired. Other
contractions vanish due to Kab = 0 when a = b. Therefore,
of 16 combinations, only the following two are nonvanishing:

Case 1: The momenta carried by φ∗
1a and φ4a, i.e., k1 and

k4, are fast momenta.1 k1 = k4 and ωn1 = ωn4 are required by
the formula of the bare propagator;

Case II: The momenta carried by φ∗
2b and φ3b, i.e., k2 and

k3, are fast momenta. k2 = k3 and ωn2 = ωn3 are required by
the formula of the bare propagator.

By further considering δ(1 + 2 − 3 − 4), we have
Case I: The momenta carried by φ∗

1a and φ4a, i.e., k1 and
k4, are fast momenta. k1 = k4 and ωn1 = ωn4 ; k2 = k3 and
ωn2 = ωn3 .

Case II: The momenta carried by φ∗
2b and φ3b, i.e., k2 and

k3, are fast momenta. k2 = k3 and ωn2 = ωn3 ; k1 = k4 and
ωn1 = ωn4 .

These two contractions correspond to the Feynman dia-
gram in Fig. 1. We first focus on case I. When 1,4 are fast
modes, the momentum conservation and Feynman rules will
tell us k2 = k3, k1 = k4; ωn2 = ωn3 , ωn1 = ωn4 . Since we

1By fast (slow) momentum, we mean that the kinetic energy corre-
sponding to the momentum is large (small).

focus on the two-dimensional case (d = 2), we set all off-
diagonal K-matrix elements as K12 = K21 := K. To further
simplify the calculation, we assume t1 := t11 = t2 := t22 :=
T0 and t12 = t21 := T1. In this way, 〈Sint〉I

> is given by

〈Sint〉I
> = 1

2β

∑
a �=b

∑
1,2

K
(
ka

2 + kb
1

)2〈φ∗
1aφ1a〉>φ∗

2bφ2b

= 1

2β

∑
a �=b

∑
1,2

K
(
ka

2 + kb
1

)2 1

iωn1 − ξ1a
φ∗

2bφ2b

= −1

2

∑
a �=b

∑
2

∫
>

d2k1

(2π )2
K

(
ka

2 + kb
1

)2
fB(ξ1a)φ∗

2bφ2b

= −1

2

∑
a �=b

∑
2

∫
>

d2k1

(2π )2
K

[(
ka

2

)2 + 2ka
2kb

1 + (
kb

1

)2]
× fB(ξ1a)φ∗

2bφ2b, (11)

where k1 and k2 correspond to fast and slow momenta re-
spectively. The bosonic Matsubara summation is applied:
1
β

∑
ωn

1
iωn−ξ1a

= − fB(ξ1a) = − 1
eβξ1a −1 . And the propagator

〈φ∗
1aφ1a〉> is given by 〈φ∗

1aφ1a〉> = 1
iωn1 −ξ1a

with ξ1a (a =
1, b = 2 or a = 2, b = 1):

ξ1a := T0
(
ka

1

)2 + T1
(
kb

1

)2

2
− μ. (12)

In the same way, we can give the form of case II:

〈Sint〉II
> = 1

2β

∑
a �=b

∑
1,2

K
(
ka

2 + kb
1

)2〈φ∗
2bφ2b〉>φ∗

1aφ1a

= 1

2β

∑
a �=b

∑
1,2

K
(
ka

2 + kb
1

)2 1

iωn2 − ξ2b
φ∗

1aφ1a

= −1

2

∑
a �=b

∑
1

∫
>

d2k2

(2π )2
K

(
ka

2 + kb
1

)2
fB(ξ2b)φ∗

1aφ1a

= −1

2

∑
a �=b

∑
1

∫
>

d2k2

(2π )2
K

[(
ka

2

)2 + 2ka
2kb

1 + (
kb

1

)2]
× fB(ξ2b)φ∗

1aφ1a.

By observing these two actions, we find they are completely
equivalent to each other by exchanging the indices (a ↔
b, 1 ↔ 2). Then we focus on case I and multiply it by 2,
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namely,

〈Sint〉> = 〈Sint〉I
> + 〈Sint〉II

> = 2〈Sint〉I
>

= −
∑
a �=b

∑
2

∫
>

d2k1

(2π )2
K

[(
ka

2

)2 + 2ka
2kb

1 + (
kb

1

)2]
× fB(ξ1a)φ∗

2bφ2b = 〈Sint〉(1)
> + 〈Sint〉(2)

> + 〈Sint〉(3)
> ,

where we arrange all terms into three parts:

〈Sint〉(1)
> := −

∑
a �=b

∑
2

K
(
ka

2

)2
∫

>

d2k1

(2π )2
fB(ξ1a)φ∗

2bφ2b, (13)

〈Sint〉(2)
> := − 2

∑
a �=b

∑
2

Kka
2

∫
>

d2k1

(2π )2
kb

1 fB(ξ1a)φ∗
2bφ2b, (14)

〈Sint〉(3)
> := −

∑
a �=b

∑
2

K
∫

>

d2k1

(2π )2
fB(ξ1a)

(
kb

1

)2
φ∗

2bφ2b. (15)

The fast momentum k1 = (k1
1, k2

1 ) takes values in the el-
liptic shell (� is the momentum cutoff and the RG flow
parameter s = el with s → 1 and l → 0):(

�

s

)2

<
(
ka

1

)2 + T1

T0

(
kb

1

)2
< �2, (16)

which defines the domain of integral
∫
>

. Here we should
focus on the integrated domain of fast momenta. It is only
determined by the fields carrying those fast momenta. To be
specific, we consider the fast momentum ki carried by the fast
mode φia or φ∗

ia with the label i = 1, 2, . . . , 4 defined above.
Its integrated domain is given by (�/s)2 < (ka

i )2 + T1
T0

(kb
i )2 <

�2 for b �= a. This conclusion will be used in the follow-
ing text. To compute 〈Sint〉(1)

> in Eq. (13), we may introduce

a new momentum k̃: k̃a = ka
1 , k̃b =

√
T1
T0

kb
1. Then, Eq. (16)

is changed to ( �
s )2 < (k̃a)2 + (k̃b)2 < �2, i.e., ( �

s )2 < k̃2 <

�2. And Eq. (12) is changed to

ξ1a = T0[(k̃a)2 + (k̃b)2]

2
− μ = T0k̃2

2
− μ. (17)

Using the new momentum variables, we can work out the
integral

∫
>

in 〈Sint〉(1)
> in Eq. (13) (s − 1 is small enough):∫

>

d2k1

(2π )2
fB(ξ1a)

=
√
T0

T1

∫
>

d2k̃

(2π )2
fB(ξ1a)

=
√
T0

T1

1

(2π )2

∫ �

�/s
2π |k̃|d|k̃| 1

eβξ1a − 1

=
√
T0

T1

1

(2π )2

∫ �2

(�/s)2

2π

2
d (|k̃|2)

1

eβξ1a − 1

≈
√
T0

T1

1

(2π )2

2π

2

1

eβξ0� − 1

[
�2 −

(
�

s

)2]

≈
√
T0

T1

1

(2π )2

2π

2

1

eβξ0� − 1
2�2l =

√
T0

T1

1

2π

1

eβξ0� − 1
�2l,

where we have considered infinitesimal s − 1 and the defini-
tion of s = el . And, ξ0� := T0

2 �2 − μ. As a result,

〈Sint〉(1)
> = −S2 fB(ξ0�)

�2

(2π )2

∑
a �=b

∑
2

K(ka
2 )2φ∗

2bφ2bl, (18)

where S2 := 2π

√
T0
T1

and fB(ξo�) := 1
eβξ0�−1 . Below, we will

use dl to replace l since it is infinitesimal.
The second part, 〈Sint〉(2)

> in Eq. (14), vanishes since it is an
odd function of the integrated momentum k1. The third term
in Eq. (15) is directly connected to correction of the chemical
potential. We just briefly give our results here because it is not
our focus:

〈Sint〉(3)
> = −1

2

∑
a �=b

∑
2

�4 S2

(2π )2
fB(ξa�)Kφ∗

2bφ2b

(
1 − 1

s

)
.

Therefore, the only term that can renormalize T1 is 〈Sint〉(1)
>

in Eq. (18). The bare off-diagonal kinetic term is given by∑
a �=b

∑
k
T1
2 (ka

2 )2φ∗
2bφ2b in the frequency-momentum space.

Hence, we have the β function of the parameter T1 by refer-
encing the effective action Seff [φ<] = S0[φ<] + 〈Sint〉>[φ<] −
1
2 (〈S2

int〉> − 〈Sint〉2
>)[φ<]:

dT1

dl
= −S2K fB(ξa�)

�2

(2π )2
= −

√
T0

T1
K fB(ξa�)

�2

2π
. (19)

This corresponds to Fig. 1. Besides, by referencing the term
containing the chemical potential, we have the β function
of the chemical potential μ: dμ

dl = 2μ − 1
2�4 S2

(2π )2 fB(ξa�)K,
with the term 2μ originating from the contribution from the
tree-level diagrams.

C. Vertex correction to K
We then turn to the vertex correction with all the contrac-

tions contained in 〈S2
int〉>:

〈
S2

int

〉
>

= 1

4β2

∑
a �=b

∑
a′ �=b′

∑
1,2,3,4

∑
1′,2′,3′,4′

× KabKa′b′ 〈φ∗
1aφ

∗
2bφ3bφ4aφ

∗
1′a′φ

∗
2′b′φ3′b′φ4′a′ 〉>

× (
ka

2 + kb
1

)(
ka

3 + kb
4

)(
ka′

2′ + kb′
1′
)(

ka′
3′ + kb′

4′
)

× δ(1 + 2 − 3 − 4)δ(1′ + 2′ − 3′ − 4′)

= 〈
S2

int

〉(1)

>
+ 〈

S2
int

〉(2)

>
. (20)

Since we only consider the loop-diagram contribution, only
two kinds of contractions will not vanish under calculation.
The first term 〈S2

int〉(1)
> can be considered in four cases:

Case 1: The momenta k1, k2, k3′ , and k4′ are fast momenta.
k1 = k3′ and ωn1 = ωn3′ ; k2 = k4′ and ωn2 = ωn4′ .

Case 2: The momenta k1, k2, k3′ , and k4′ are fast momenta.
k1 = k4′ and ωn1 = ωn4′ ; k2 = k3′ and ωn2 = ωn3′ .

Case 3: The momenta k1′ , k2′ , k3, and k4 are fast momenta.
k1′ = k3 and ωn1′ = ωn3 ; k2′ = k4 and ωn2′ = ωn4 .

Case 4: The momenta k1′ , k2′ , k3, and k4 are fast momenta.
k1′ = k4 and ωn1′ = ωn4 ; k2′ = k3 and ωn2′ = ωn3 .

These four cases correspond to the Feynman diagram
in Fig. 2. Similarly, it can also be proved that these
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four cases are equal to one another by exchanging the
indices. We directly take the case 1 as an example
and multiply it by 4 for simplicity. By further con-
sidering the delta functions in the vertex correction,
the relationships between momenta and frequencies

are given by k1 = k3′ , k2 = k4′ , k1 + k2 = k3 + k4 =
k1′ + k2′ = k3′ + k4′ ; ωn1 = ωn3′ , ωn2 = ωn4′ , ωn1 + ωn2 =
ωn3 + ωn4 = ωn1′ + ωn2′ = ωn3′ + ωn4′ . Hence, with the
formula (20), we obtain that

〈
S2

int

〉(1)

>
= 1

β2

∑
a �=b

∑
1,2,3,4

∑
1′,2′

K2
(
ka

2 + kb
1

)2(
ka

3 + kb
4

)(
ka′

2′ + kb′
1′
) 1

iωn1 − ξ1a

1

iωn2 − ξ2b
φ∗

1′aφ
∗
2′bφ3bφ4a

× δ(1′ + 2′ − 3 − 4)δ(1′ + 2′ − 2 − 1)

= 1

β2

∑
a �=b

∑
2,3,4

∑
1′,2′

K2
(
ka

2 − kb
2 + kb

1′ + kb
2′
)2(

ka
3 + kb

4

)(
ka′

2′ + kb′
1′
)

× 1

iωn1′ + iωn2′ − iωn2 − ξ1′+2′−2,a

1

iωn2 − ξ2b
φ∗

1′aφ
∗
2′bφ3bφ4aδ(1′ + 2′ − 3 − 4)

= − 1

β2

∑
a �=b

∫
d2k2

(2π )2

∑
3,4

∑
1′,2′

K2
(
ka

2 − kb
2 + kb

1′ + kb
2′
)2(

ka
3 + kb

4

)(
ka′

2′ + kb′
1′
)

×
∑

n2

1

iωn2 − iωn1′ − iωn2′ + ξ1′+2′−2,a

1

iωn2 − ξ2b
φ∗

1′aφ
∗
2′bφ3bφ4aδ(1′ + 2′ − 3 − 4), (21)

where we introduce the notation ξ1′+2′−2,a =∑2
a′=1 taa′ (ka′

1′ +ka′
2′ −ka′

2 )2

2 − μ. This expression contains a sum of
Matsubara frequencies n2:

∑
n2

1
iωn2 −iωn1′ −iωn2′ +ξ1′+2′−2,a

1
iωn2 −ξ2b

.

By applying the formula 1
β

∑
n

1
iωn−ξ1

1
iωn−ξ2

= − fB (ξ1 )− fB (ξ2 )
ξ1−ξ2

for Matsubara frequencies for bosons, ωn = 2πn
β

, we can
obtain the result with substitutions: ξ1 = iωn1′ + iωn2′ −
ξ1′+2′−2,a and ξ2 = ξ2b. The sum of n2 can be rewritten as

1

β

∑
n2

1

iωn2 − iωn1′ − iωn2′ + ξ1′+2′−2,a

1

iωn2 − ξ2b

FIG. 2. The Feynman diagram of the first type of contraction in
the vertex correction contributes to the correction of the parameter K.
It corresponds to cases 1–4. For simplicity, we here show one of the
related Feynman diagrams. By exchanging the symmetric indices,
we can obtain the other three possible diagrams.

= − fB(ξ2b) − fB(−ξ1′+2′−2,a)

ξ1′+2′−2,a + ξ2b − iωn1′ − iωn2′

= − fB(ξ2b) + fB(ξ1′+2′−2,a) + 1

ξ1′+2′−2,a + ξ2b − iωn1′ − iωn2′
, (22)

where we apply fB(iωn1 + iωn2 − ξ ) = 1
exp[2π i(n1+n2 )−βξ ]−1 =

1
exp[−βξ ]−1 = fB(−ξ ) = 1

e−βξ −1 = −1 − 1
eβξ −1 = −1 − fB(ξ ).

Replacing the sum in (21) with (22), 〈S2
int〉(1)

> can be rewritten
as

〈
S2

int

〉(1)

>
= 1

β

∑
a �=b

∑
3,4

∑
1′,2′

K2
(
ka

3 + kb
4

)(
ka

2′ + kb
1′
)

×φ∗
1′aφ

∗
2′bφ3bφ4aδ(1′ + 2′ − 3 − 4)

×
∫

d2k2

(2π )2

fB(ξ2b) + fB(ξ1′+2′−2,a) + 1

ξ1′+2′−2,a + ξ2b − iωn1′ − iωn2′

× (
ka

2 − kb
2 + kb

1′ + kb
2′
)2

≈ 1

β

∑
a �=b

∑
3,4

∑
1′,2′

K2
(
ka

3 + kb
4

)(
ka′

2′ + kb′
1′
)

×φ∗
1′aφ

∗
2′bφ3bφ4aδ(1′ + 2′ − 3 − 4)

×
∫

d2k2

(2π )2

fB(ξ2b) + fB(ξ2a) + 1

ξ2a + ξ2b − iωn1′ − iωn2′

(
ka

2 − kb
2

)2
,

where the momenta k1′ and k2′ can be ignored in the expres-
sion since φ1′a and φ2′b are both slow modes. The integrated
region of the momentum k2 in 〈S2

int〉(1)
> is given by (�/s)2 �∑

a(a �=b)(k
b
2 )2 + T1

T0
(ka

2 )2 � �2 since the momentum k2 is car-

ried by the field φ∗
2b. With substitutions k̃b = kb

2, k̃a =
√

T1
T0

ka
2 ,

we limit our integrated region to (�/s)2 � k̃2 � �2. There-
fore, the contribution from the first type of contraction is given
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by

〈
S2

int

〉(1)

>
= A

β

∑
a �=b

∑
1′2′34

K2(ka
3 + kb

4

)(
ka

2′ + kb
1′
)

× φ∗
1′aφ

∗
2′bφ3bφ4aδ(1′ + 2′ − 3 − 4)dl, (23)

where the parameter A takes the form of

A = 1

dl

∫
>

d2k2

(2π )2

fB(ξ2a) + fB(ξ2b) + 1

ξ2a + ξ2b − ω1′ − ω2′ − i0+
(
ka

2 − kb
2

)2

≈ 1

dl

∫
>

d2k2

(2π )2

fB(ξ2a) + fB(ξ2b) + 1

ξ2a + ξ2b

(
ka

2 − kb
2

)2
, (24)

where we use analytic continuation here and replace the imag-
inary frequencies with ω1′ and ω2′ . It is necessarily assumed
that the frequencies and momenta on the external lines can
be ignored compared with ξ0� and �. It is obvious that the
expression (24) is positive. In other words, A > 0. More cal-
culations on A are shown in Appendix B. By comparing the
form of (23) with the bare interaction vertex,we find that it will
correct the interaction parameter K effectively. According to
the effective action Seff = S0 + 〈Sint〉 − 1

2 (〈S2
int〉 − 〈Sint〉2), we

have the form of the β function of parameter K:

dK
dl

= −K2 × A − 2K, (25)

where the term −2K originates from the rescaling of slow
momenta carried by the slow modes in (9) above. We have
the general forms of K(l ) and T1(l ):

K(l ) = 2/A
K(0)+2/A

K(0) e2l − 1
, (26)

T1(l ) =
[
T1(0)3/2 +

√
T0

3�2

4Aπ
fB(ξ0�)

× ln

(
2

−K(0)Ae−2l + [2 + K(0)A]

)]2/3

, (27)

with the separatrix

T1(0) =
[

fB(ξ0�)
√
T0

3�2

4Aπ
ln

(
2 + K(0)A

2

)]2/3

. (28)

The second type of contraction 〈S2
int〉(2)

> contains overall
eight cases presented below.

Case 5: The momenta k1, k3, k2′ , and k4′ are fast momenta.
k1 = k4′ and ωn1 = ωn4′ ; k3 = k2′ and ωn3 = ωn2′ .

Case 6: The momenta k1, k4, k1′ , and k4′ are fast momenta.
k1 = k4′ and ωn1 = ωn4′ ; k4 = k1′ and ωn4 = ωn1′ .

Case 7: The momenta k1, k3, k1′ , and k3′ are fast momenta.
k1 = k3′ and ωn1 = ωn3′ ; k3 = k1′ and ωn3 = ωn1′ .

Case 8: The momenta k1, k4, k2′ , and k3′ are fast momenta.
k1 = k3′ and ωn1 = ωn3′ ; k4 = k2′ and ωn4 = ωn2′ .

Case 9: The momenta k2, k3, k2′ , and k3′ are fast momenta.
k2 = k3′ and ωn2 = ωn3′ ; k3 = k2′ and ωn3 = ωn2′ .

Case 10: The momenta k2, k4, k1′ , and k3′ are fast mo-
menta. k2 = k3′ and ωn2 = ωn3′ ; k4 = k1′ and ωn4 = ωn1′ .

Case 11: The momenta k2, k3, k1′ , and k4′ are fast mo-
menta. k2 = k4′ and ωn2 = ωn4′ ; k3 = k1′ and ωn3 = ωn1′ .

Case 12: The momenta k2, k4, k2′ , and k3′ are fast mo-
menta. k2 = k3′ and ωn2 = ωn3′ ; k4 = k2′ and ωn4 = ωn2′ .

FIG. 3. The Feynman diagrams of the second type of contraction
in the vertex correction contribute to the correction of other terms
like g|φa|4. They correspond to cases 5–12. For simplicity, we here
show two of them. By exchanging the symmetric indices, we can
have the other six possible diagrams.

The Feynman diagrams related are presented in Fig. 3.
After integrating the fast momenta, all of these terms will
be turned into terms with constant coefficients. Therefore,
integration from the two connected diagrams will be explained
as corrections of other possible terms such as g|φa|4. We do
not care about this parameter because it does not contribute
to the parameters K and T1. For simplicity, we do not present
more details here.

D. Global phase diagram

In summary, we can see tha the first-order corrections only
correct the kinetic terms in directions other than the ath one
of field configurations φa [see the definition below Eq. (7)].
In this way, the kinetic energy along the ath axis will not
be influenced by the contraction. We can directly prove that
the higher order correction will still contribute nothing to the
parameter T0. Hence, we have the β function for parameter
T1 corresponding to Fig. 1, given by Eq. (19). We can safely
come to the conclusion that if K > 0, the parameter t1 will
reduce in the RG flow. This requires the parameter K to be
positive. Only with positive K can parameter T1 flow to zero
in the RG analysis. Nevertheless, at this step, it is insufficient
to tell whether the parameter T1 is irrelevant here since the
elements in the matrix K will also flow to zero. What we need
is further calculation on the vertex correction, which has been
given in Eq. (25).

A numerical result of β functions (19) and (25) is shown
in Fig. 4, where the red line is the separatrix (28). In the
region below the line, all T1(0) will flow to zero in RG flow,
indicating the emergence of higher rank symmetry in low-
energy physics since those terms violating the higher rank
symmetry will vanish in the low-energy physics. In addition,
after comparing the parameters T1(0) and K(0)�2 near the
separatrix, we have T1(0)  K(0)�2  T0 with the approxi-
mation ξ0�

2kBT � 1, which can be realized in cold-atom systems.
This tells us our calculation is consistent with our initial
assumption above.

From the phase diagram, we can safely come to the con-
clusion that the higher rank symmetry will emerge after
integrating the high-energy modes since off-diagonal kinetic
parameters are just perturbations to the system. However, it
should be noted that our RG analysis is only valid near the
initial point l = 0. We here also do not take higher order terms
into account. Therefore, our calculation and results may be
invalidated when l → ∞. The reason we do not just finish our
RG analysis on the axis T1(0) = 0 is that we only consider the

043176-7



HONGCHAO LI AND PENG YE PHYSICAL REVIEW RESEARCH 3, 043176 (2021)

FIG. 4. RG flow for T ′
1 (l ) = T1(l )( fB(ξ0�)

√
T0

3�2

4Aπ
)−2/3 and

K′(l ) = AK(l )/2. Here the red line is a separatrix below which
higher rank symmetry emerges. The parameters (T ′

1 (0),K′(0)) of
these lines are (from top to bottom) (2.57 × 10−3, 10−4), (2.43 ×
10−3, 10−4), (2.30 × 10−3, 10−4), (2.16 × 10−3, 10−4), (2.01 ×
10−3, 10−4), (1.86 × 10−3, 10−4), and (1.70 × 10−3, 10−4).

lower-order corrections. If we start with an initial point on the
horizontal axis, T1(0) = 0, we have S2 → ∞ in dT1

dl , which
requires more higher order terms since they contain expres-
sions with higher order of S2. We have to take all of them
into account for accuracy, which is beyond the current pertur-
bation calculations. Although our calculation cannot take all
the higher order corrections into account, it also exhibits the
tendency of RG flow to give an accurate prediction near the
region with l = 0. Alternatively, the exact flat “band” along
one direction for a boson, in analogy to bosonic Landau level,
leads to strong correlation effect even though interaction is not
large. We also comment that the perturbation calculations fail
completely if we instead study models [65] with conserved
dipole moments, where bosons are fractons that are immobile
in all directions. In such models, the Hamiltonian is intrinsi-
cally non-Gaussian with no kinetic terms at all. But analytic
difficulty becomes much smaller when fracton condensation
is considered, as in Ref. [65].

The above discussion is all about the β functions of pa-
rameters of two-component bosons in two-dimensional space.
Similarly, we can extend the case to the d-dimensional space
with d > 2. We here give the forms of β functions of d-
component bosonic systems for reference. The β functions of
tab(a �= b) and Kab(a �= b) are given by

dtab

dl
= −Sd Kab fB(ξ0�)

�d

(2π )d
,

dKab

dl
= −Ad K2

ab − dKab,

where Sd represents the volume of a d-dimensional ellipsoid,

d∑
b=1

tab

ta
(kb)2 = 1,

and

Ad = 1

2βl

∫
Pd

dd k

(2π )d

fB(ξka) + fB(ξkb) + 1

ξka + ξkb
(ka − kb)2

with integrated domain Pd : (�e−l )2 � ∑d
b=1

tab
ta

(kb)2 � �2.
They give the same type of RG flow phase diagram as Fig. 4.

IV. SUMMARY AND OUTLOOK

In this paper, we study how higher rank symmetry (5)
and angular moment conservation (6) emerge at low energies
through a RG analysis. In other words, we identify them
as emergent phenomena rather than strict properties of mi-
croscopic models. A phase diagram is given in Fig. 4, in
which a wide parameter region is found to support emergent
phenomena. Despite the limitation of one-loop perturbation
techniques, we argue that emergence occurs in the deep in-
frared regime. On the other hand, by regarding higher rank
symmetry as emergent symmetry, our work opens a door to
a new way of thinking on realization of such unconventional
symmetry and higher moment conservation in more realistic
models, e.g., in simple frustrated spin models near symmetric
points. Recently, some higher moment conserving 1D spin
systems have been found to support anomalously slow, sub-
diffusive late-time transport [70,74]. Thus, it is interesting to
ask how emergent conservation of angular moments affects
the late-time transport. Besides, the Hamiltonian can be refor-
mulated on a square lattice. In an optical lattice of cold-atom
experiments, one may choose lattice constant l = 700 nm,
� ∼ 1

l = 1.43 × 107 m−1, m0 = 1
t0

= 8.22 × 10−34 kg, T =
10 K. The condition t0�2−2μ

2kBT ∼ 103, where the chemical po-
tential is negative indicates the possibility of simulating the
two-component bosons on the optical lattice. For accuracy
and extension, it will be interesting to further consider the
correction from higher order terms with more loops in the
Feynman diagram. Finally, it will be interesting to study
symmetry-protected topological phases (SPTs) with such
emergent higher rank symmetry.

ACKNOWLEDGMENTS

Discussions with Ruizhi Liu and Yixin Xu are acknowl-
edged. This work of both authors was done in Guangzhou
South Campus of Sun Yat-sen University (SYSU) with full
financial support from the SYSU talent plan, Guangdong Ba-
sic and Applied Basic Research Foundation under Grant No.
2020B1515120100 and National Natural Science Foundation
of China Grants No. 11847608 and No. 12074438.

APPENDIX A: HOW THE ANGULAR MOMENT
CONSERVATION AFFECTS SINGLE-PARTICLE MOTION

In the main text, we introduced the following conserved
quantities (a, b = 1, 2, . . . , d ; a < b) in d-dimensional space:

Qa =
∫

dd xρa, Qab =
∫

dd x(ρaxb − ρbxa). (A1)

For each a, the conservation of Qa requires that all ath com-
ponent bosons are always in the d-dimensional space. The
conserved quantities Qab leads to the mobility restriction that
a single ath component boson is only allowed to move along
ath directions. To be more specific, we consider d = 2 and the
following three quantities are conserved:

Q1 =
∫

dd xρ1, Q2 =
∫

dd xρ2,

Q12 =
∫

dd x(ρ1x2 − ρ2x1). (A2)

043176-8



RENORMALIZATION GROUP ANALYSIS ON EMERGENCE … PHYSICAL REVIEW RESEARCH 3, 043176 (2021)

Q1 and Q2 are the usual conserved charge (particle number) of
bosons of the first and second components, respectively. The
conserved quantity Q12 is the total angular moment formed
by bosons. Suppose Q1 = N1 and Q2 = N2. We can use Dirac
function to express ρ1 and ρ2:

ρ1(x) =
N1∑
i

δ(x − xi ), ρ2(x) =
N2∑
j

δ(x − x j ). (A3)

It means that bosons of the first (second) component are lo-
cated in xi (x j) with i = 1, 2, 3, . . . , N1 ( j = 1, 2, 3, . . . , N2).
Then, Q12 is reduced to

Q12 =
N1∑
i

x2
i −

N2∑
j

x1
j . (A4)

From this expression, one can conclude that, if we move a
first-component boson, in order to keep Q12 invariant, the
boson is only allowed to be movable in the first direction such
that its coordinate x2 is unchanged. Of course, we can collec-
tively move bosons of both components, such that the change
in

∑N1
i x2

i can be canceled out by the change in
∑N2

j x1
j and so

Q12 is unaltered. This scenario is beyond the single-particle

movement and gives nontrivial effects when intercomponent
interaction (K term) is involved.

APPENDIX B: DETAILS OF THE PARAMETER A

Here we focus on the specific value of the parameter A by
taking some approximations. By referencing the definition of
k̃ above, we have

A = 1

dl

∫
>

d2k̃
(2π )2

fB(ξ2a) + fB(ξ2b) + 1

ξ2a + ξ2b

(
ka

2 − kb
2

)2

√
T0

T1

= 1

dl

∫
>

|k̃|d ˜|k|dθ

(2π )2

fB(ξ2a) + fB(ξ2b) + 1

ξ2a + ξ2b

(
ka

2 − kb
2

)2

√
T0

T1

= 1

dl

∫
>

d|k̃|2dθ

2(2π )2

fB(ξ2a) + fB(ξ2b) + 1

ξ2a + ξ2b

(
ka

2 − kb
2

)2

√
T0

T1
.

(B1)

For simplicity, we will approximately use T1(0) to replace
T1 below for convenience. Besides, we have kb

2 = � sin θ and

ka
2 = �

√
T0
T1

cos θ in the integrated domain. Hence, the kinetic

energies ξ2a and ξ2b can be approximately considered as ξ1� =
ξ0�(T0

T1
cos2 θ + T1

T0
sin2 θ ) and ξ0� separately if we assume the

chemical potential is small enough: |μ|  t0�2

2 . In this way,
the parameter A can be rewritten as

A ≈ 1

2dl

∫ 2π

0

dθ

(2π )2

(
�2 −

(
�

s

)2) fB(ξ1�) + fB(ξ0�) + 1

ξ1� + ξ0�

(
�

√
T0

T1
cos θ − � sin θ

)2
√

T0

T1(0)

= �4
∫ 2π

0

dθ

(2π )2

fB(ξ1�) + fB(ξ0�) + 1

ξ1� + ξ0�

(√
T0

T1
cos θ − sin θ

)2√
T0

T1(0)

= �4
∫ 2π

0

dθ

(2π )2

fB(ξ1�) + fB(ξ0�) + 1

ξ1� + ξ0�

(√
T0

T1
cos θ − sin θ

)2√
T0

T1(0)

≈ �4
∫ 2π

0

dθ

(2π )2

1

(ξ0� + ξ1�)(eξ0�( T0
T1

cos2 θ+ T1
T0

sin2 θ )/kBT − 1)

√
T0

T1(0)

+ �4

√
T0

T1(0)

∫ 2π

0

dθ

(2π )2

fB(ξ0�) + 1

ξ1� + ξ0�

(√
T0

T1
cos θ − sin θ

)2

≈ 4�2

T0

∫ π
2 +T ′

1

π
2 −T ′

1

dθ

(2π )2

2kBT

T0�2T ′
1 sin2 θ

√
T0

T1(0)
+ �4

√
T0

T1(0)

∫ 2π

0

dθ

(2π )2

(√T0
T1

cos θ − sin θ
)2

[1 + fB(ξ0�)]

ξ0�

(
1 + T0

T1
cos2 θ + T1

T0
sin2 θ

) , (B2)

with T ′
1 = T1

T0
 1. Here we approximately consider that

T1�
2

2kBT  1. This expression contains two integrals. The first
one includes a trick. Since T ′

1  1, the first integral becomes
nontrivial only around the two points, θ = π

2 and θ = 3π
2 ,

which give the same value. Therefore, we change our inte-

grated region as
∫ 2π

0 → 2
∫ π

2 +T ′
1

π
2 −T ′

1
. In addition, we have ξ1� =

T1�
2

2  ξ0� at θ = π
2 and θ = 3π

2 . In this way, the first integral

given by

4�2

T0

∫ π
2 +T ′

1

π
2 −T ′

1

dθ

(2π )2

2kBT

T0�2T ′
1 sin2 θ

√
T0

T1(0)

can be figured out to be

4�2

T0

4kBT

(2π )2T0�2

√
T0

T1(0)
.
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The second one,

�4

√
T0

T1(0)

∫ 2π

0

dθ

(2π )2

(√T0
T1

cos θ − sin θ
)2

[1 + fB(ξ0�)]

ξ0�

(
1 + T0

T1
cos2 θ + T1

T0
sin2 θ

)
can be proved to be

�2

πT0

T0
T1(0)

T0
T1(0) + 1

[1 + fB(ξ0�)]

√
T0

T1(0)
.

Combined with these two results, the expression of A is given
by

A = �2

πT0

√
T0

T1(0)

(
4kBT

πT0�2
+

T0
T1

T0
T1

+ 1
[1 + fB(ξ0�)]

)

≈ �2

πT0

√
T0

T1(0)

(
4kBT

πT0�2
+ 1 + fB(ξ0�)

)
> 0, (B3)
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