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Orbitally selective Mott phase in electron-doped twisted transition metal-dichalcogenides:
A possible realization of the Kondo lattice model
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Moiré superpotentials in two-dimensional materials allow unprecedented control of the ratio between kinetic
and interaction energy. By this they pave the way to study a wide variety of strongly correlated physics under
a new light. In particular, the transition-metal dichalcogenides (TMDs) are promising candidate “quantum
simulators” of the Hubbard model on a triangular lattice. Indeed, Mott and generalized Wigner crystals have
been observed in such devices. Here we theoretically propose to extend this model into the multiorbital regime
by focusing on electron-doped systems at filling higher than 2. As opposed to hole bands, the electronic bands
in TMD materials include two, nearly degenerate species, which can be viewed as two orbitals with different
effective mass and binding energy. Using realistic band-structure parameters and a slave-rotor mean-field theory,
we find that an orbitally selective Mott (OSM) phase can be stabilized over a wide range of fillings, where
one band is locked in a commensurate Mott state, while the other remains itinerant with variable density. This
scenario thus realizes the basic ingredients in the Kondo lattice model: a periodic lattice of localized magnetic
moments interacting with metallic states. We also discuss possible experimental signatures of the OSM state.
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I. INTRODUCTION

Experiments in van der Waals materials have convincingly
demonstrated the power of moiré superlattices as a tool to
tune the strength of electronic correlations. Following the
theoretical prediction [1], a wide variety of strongly correlated
phenomena was experimentally observed [2–14]. The Dirac
dispersion, characterizing the unperturbed electronic states in
graphene, leads to topologically nontrivial flat bands [15,16]
with large Wannier orbitals [15,17,18], from which these cor-
related states emerge.

In contrast, semiconducting transition-metal dichalco-
genides (TMDs) subject to moiré potentials are expected to
have a simpler microscopic picture. The low-energy physics
is captured by a Hubbard model on a triangular lattice [19,20].
Mott insulators and generalized Wigner crystals have been
experimentally observed [21–24], as well as possible indi-
cations of superconductivity [21]. The relative simplicity of
their microscopic starting point makes the TMD moiré devices
prime candidates for condensed-matter “quantum simulators”
of the Hubbard model.

A canonical model that is both of great fundamental in-
terest to quantum condensed matter, and has not yet been
realized in moiré devices, is the Kondo lattice model [25]. Its
main ingredients are a lattice of localized moments coupled
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to a Fermi liquid of itinerant electrons. The main coupling
between these two degrees of freedom is spin exchange. The
case where the strongest exchange mechanism is antiferro-
magnetic is understood to be the minimal model that captures
the low-energy physics of many rare-earth compounds, known
as heavy-fermion materials [26,27]. When the dominant ex-
change is the Hund’s coupling between the local and itinerant
orbitals, the coupling is ferromagnetic. Such a scenario was
discussed in the context of the orbitally selective Mott (OSM)
phase [28,29].

Materials that host coexisting itinerant and localized states
exhibit a plethora of exotic phases such as heavy-Fermi
liquids, metallic magnets, high-Tc superconductors, and non-
Fermi liquids [28–40]. However, what makes them especially
interesting is the existence of quantum phase transitions,
where the lattice of local moments melts into a metallic
state [24,30,33,36,39,41–43]. Such a transition is not captured
by the Ginzburg-Landau paradigm, because it must include
a whole Fermi surface that emerges at the quantum critical
point [34,37,40]. What controls the different ground states,
and the nature of the quantum critical point separating them,
is still debated. However, the comparison between theory and
experiment becomes challenging due to the complex structure
of the materials which realize this physics. For this reason, a
controlled experimental realization of such a minimal model
is highly desirable.

In this paper we explore the conditions under which
TMDs subject to a moiré potential can host a state of coex-
isting itinerant and localized electrons known as the OSM
state [29,40,45]. We first argue that the miniband structure
of electron-doped TMD moiré devices can potentially host
multiple flat bands, which can be simultaneously at a state of
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FIG. 1. (a) Schematic band structure of a single-layer TMD near
the K and K ′ points. While the hole Bloch bands have a large
spin-orbit coupling splitting, the electron bands are nearly degenerate
(red and blue indicate different Bloch bands, which we refer to
as “species”). (b) With a moiré potential the electron bands form
multiple flat minibands that can overlap in energy space and be
simultaneously at partial filling. (c) Schematic phase diagram arising
from our slave-rotor mean-field analysis. A charge localized state
of one species can coexist with a Fermi-liquid state of the other,
which is known as the orbitally selective Mott (OSM) state. Inside the
region marked by the dashed black line the essential ingredients of
a Kondo lattice model are realized. The red lines indicate correlated
insulating states.

partial filling. This is mainly because of the relatively small
spin-orbit splitting of the bare conduction bands around the
K and K ′ points [44] [see Fig. 1(a)]. We consider the situation
where such minibands are induced in one layer by another “in-
active” layer in a heterogeneous structure [19]. For example,
two prototypical bilayers we consider are WS2/WSe2, where
the effects of spin-orbit splitting on the conduction bands are
small but noticeable, and MoS2/MoSe2, where the splitting
is negligible. In both cases the sulfur-based compounds are
where the electronic states reside, and the selenium-based
layers take the role of the “inactive” layer that induces the
moiré potential. Using a slave-rotor mean-field approxima-
tion [46–48], which was recently used in the context of twisted
bilayer graphene [49], we study a simplified on-site interac-
tion Hubbard model. We identify the emergence of the OSM
state at fillings surrounding n = 4 or n = 2 (depending on the
strength of spin-orbit coupling). In this phase one species is in
a Mott state while the other species is partially filling one of
its minibands [see Figs. 1(b) and 1(c)].

II. MODEL HAMILTONIAN

The two lowest Bloch bands above the band gap, which
we denote here as species τ = a, b, have nearly degenerate
band minima in the vicinity of each valley, K and K ′ [44] (see
Fig. 2). Due to spin-orbit coupling they are split and assume
different effective masses. As mentioned above, this splitting
is significantly smaller compared with the equivalent splitting

(a) (b)

FIG. 2. (a) Typical dispersion of the two lowest Bloch bands
of the conduction band in a bare single-layer TMD obtained from
the tight-binding model [44]. Near the K and K ′ points the bands
are approximately parabolic and assume a small splitting due to
spin-orbit coupling in the second order (see inset), where each band
can accommodate two electrons, one at each valley. (b) Upon lightly
doping the system, two Fermi pockets of opposite spin orientation
form around each high-symmetry point, corresponding to the two
Bloch bands.

in the valence band. Nonetheless, the spin projection along z
remains a good quantum number up to second order in pertur-
bation theory. As usual, we obtain an additional valley degree
of freedom by expanding the momentum around K and K ′.
Note, however, that spin-orbit coupling slaves spin to valley
within a given Bloch band. We therefore denote the additional
degree of freedom by its spin as follows: For the lower Bloch
band τ = a, the state σ =↑ and σ =↓ corresponds to a valley
K and K ′, respectively. On the other hand, for the higher
Bloch band τ = b, the state σ =↑ and σ =↓ correspond to
a valley K ′ and K , respectively. The resulting Hamiltonian
(up to quadratic order in deviation from the high-symmetry
points), is given by

H0 =
∑
kτσ

(
�τ + k2

2mτ

)
c†

kτσ
ckτσ , (1)

where �τ and mτ are the species-dependent band minimum
and mass, respectively. The values are listed in Table I.

In principle, the Fermi surfaces surrounding the K and K ′
points (in terms of the momentum relative to these points)
are nondegenerate except for six high-symmetry lines. How-
ever, as a result of the parabolic band approximation, used
in Eq. (1), the Fermi surfaces are spherically symmetric and
are thus doubly degenerate everywhere (the degeneracy corre-
sponds to the spin index σ ). This reflects an emergent SU(2)
symmetry of each species [19].

TABLE I. The effective mass and spin-orbit splitting near the
conduction-band minima of the high-symmetry points K and K ′

for different TMD single layers (taken from Ref. [44]). Here � =
�b − �a is the spin-orbit splitting between the bands.

ma/me mb/me � (meV)

MoS2 0.45 0.51 3
MoSe2 0.51 0.61 21
WS2 0.40 0.30 29
WSe2 0.44 0.31 36
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FIG. 3. The two lowest minibands of the two species near
the conduction-band minima resulting from a moiré potential of
angle θM = 3◦ and depth V0 = 15 meV. The dashed lines indicate
the average band energies, ε̄τ (see text). In this paper we focus on the
lowest pair of such minibands that overlap in energy space. (a) For
WS2/WSe2 this pair includes the lowest miniband of species b and
the first excited band of species a. (b) For MoS2/MoSe2 the SOC
is very weak and the miniband structure is nearly degenerate for
all minibands. Therefore, for this material we consider the lowest
miniband for both Bloch bands.

In this paper we consider two prototypical TMD bilayers,
WS2/WSe2 and MoS2/MoSe2. In both cases the band align-
ment properties are such that the charge carriers reside on
the sulfur-based side of the bilayer upon electronic doping.
Thus the selenium-based layers are inactive and only induce
the moiré potential. In the case of MoS2/MoSe2 spin-orbit
coupling is very weak and consequently the masses mτ and
band minimum points �τ in Eq. (1) are almost identical. In the
case of WS2/WSe2, the effects of spin-orbit coupling are more
noticeable, such that mb/ma ≈ 0.75 and �b − �a = 30 meV.

We now turn to consider the influence of a moiré potential
on the band structure close to the bottom of the conduction
bands τ = a, b. We follow Refs. [19] and [20]. The induced
potential is given by

HM =
∑
jτkσ

V0(G j )c
†
k+G jτσ

ckτσ , (2)

where G j = R̂( j π
3 )(4π/

√
3aMx̂), j = 0, . . . , 5 are the six

shortest reciprocal lattice vectors of the moiré superlattice.
aM = a/θM is the moiré lattice constant, and θM = √

δ2 + θ2

is the effective twist angle. Here δ is the lattice mismatch, and
θ accounts for any additional twist. We take the strength of the
potential to be V0 = 15 meV for both bilayers.

The parabolic Hamiltonian Eq. (1) together with the moiré
potential Eq. (2) are diagonalized using a nearly-free-electron
approximation truncated at the level of 19 bands (third nearest
neighbor in reciprocal space).

In Fig. 3 we plot the two lowest minibands of each
species using realistic parameters for the bilayers. In panel
(a) we show that for the strongly spin-orbit-coupled bilayer,
WS2/WSe2, the lowest miniband of species b, overlaps with
the first remote miniband of species a. On the other hand,
in panel (b) we show that for the weakly spin-orbit-coupled
bilayer, MoS2/MoSe2, the minibands of the two species are
almost identical. In this case the two lowest minibands (and
the two first excited bands) overlap in energy.

We will be interested in the physics arising from partially
filling two different minibands simultaneously. Therefore,
from here on we will focus exclusively on the lowest pair of

minibands that overlap in energy space corresponding to the
two Bloch bands τ = a, b. The miniband Hamiltonian then
assumes the form

Hmb =
∑
kτσ

ξkτψ
†
kτσ

ψkτσ . (3)

However, we still define the density in units of total filling,
starting from the bottom of the conduction band. Conse-
quently, for WS2/WSe2 [Fig. 3(a)] the relevant range of filling
is n ∈ [2, 6], where the lowest miniband of species a is already
completely filled and contributes a background charge of 2.
This situation is also depicted in the center of panel (b) in
Fig. 1. On the other hand, for MoS2/MoSe2 the two lowest
minibands of each species overlap and therefore we focus on
the range of filling n ∈ [0, 4].

The second ingredient in our model is the interaction. We
consider an on-site repulsion of the form

HI = U

2

∑
i

(η δnia + δnib)2, (4)

where δnτ = ∑
σ ψ†

τσψτσ − 1 is the density operator in
particle-hole symmetric form [50]. η is a phenomenological
parameter, which accounts for the possible difference in the
Wannier-orbital spread of the species. When the lowest mini-
band of species b overlaps with the first remote miniband of
a [Fig. 3(a)], the spread of the Wannier orbital of the latter is
expected to be wider than that of the former. Consequently,
electrons in miniband a will have a weaker Coulomb repul-
sion, corresponding to η < 1. On the other hand, when the
overlapping minibands are both the first flat band [Fig. 3(b)],
the interactions are expected to be roughly equal and η = 1.
We consider a constant interaction U of moderate strength,
which corresponds to the estimate of Ref. [19] with a large
dielectric constant κ ≈ 5 [51,52].

III. SLAVE-ROTOR MEAN-FIELD ANALYSIS

We now turn to study the ground state of the Hamiltonian
Eqs. (3) and (4). In particular, we are interested to understand
whether a Mott state of one of the species can be stabilized
over a finite density range, where the other band remains
metallic. To this end, we employ the slave-rotor mean-field
theory [46–48]. It consists of decomposing the field operators
into bosonic rotors multiplied by neutral spinon operators
ψiτσ = e−iθiτ fiτσ . The respective density operator of each
species, which are conjugates of the phases above, are then
represented by angular momentum operators L̂iτ = −i∂/∂θiτ ,
subject to the local constraint L̂iτ = f †

iτ fiτ − 1, where the sum
over spin is implicit.

The above decomposition allows for a mean-field treatment
of the Mott transition [46]. The corresponding “order parame-
ter” is the quasiparticle weight Zτ = |〈eiθτ 〉|2. When the rotor
fields are pinned Zτ �= 0, resulting in a finite overlap between
the quasiparticle and bare-electron operators. Moreover, the
uncertainty principle implies the conjugate charge operator
L̂τ experiences large fluctuations. Thus we can identify this
phase with a Fermi liquid. On the other hand, when the charge
operators L̂τ are pinned, which corresponds to small charge
fluctuations, the conjugate phases are strongly fluctuating and
Zτ = 0. This phase is thus associated with the Mott state.
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Before applying the slave-rotor decomposition, however, it is
essential to decompose the miniband dispersion, ξkτ , Eq. (3),
into two terms

ξkτ = ε̄τ + εkτ , (5)

where ε̄τ is the average energy of the miniband (ε̄τ =∑
k∈MBZ ξk,τ ), and the remainder, εkτ , is the kinetic part of the

dispersion, which averages to zero. ε̄τ can be interpreted as
the effective binding energies of electrons to the respective
minibands (dashed lines in Fig. 3). The importance of this
decomposition is to separate these local energy shifts from
the dispersion because they should not be renormalized by
the quasiparticle weights Zτ . Indeed, in the slave-rotor theory
the quasiparticle weight only renormalizes the bandwidth but
does not shift the average energy of the band [46].

Performing the slave-rotor decomposition to both species
we obtain the Hamiltonian

HSR = −
∑
i jτσ

(t i j
τ ei(θiτ −θ jτ ) + δi j ε̄τ ) f †

iτσ f jτσ

+ U

2

∑
i

(L̂ia + ηL̂ib)2, (6)

where t i j
τ are the set of tight-binding parameters that reproduce

the dispersive part εk in Eq. (3) when transformed to recipro-
cal space.

To asses the ground state of the Hamiltonian Eq. (6), we
employ the variational method, as opposed to Ref. [46], where
the self-consistent mean-field approach was used. Namely,
we minimize the expectation value of Eq. (6) with respect to
the variational wave function denoted by |�V 〉 = |Ka, ha〉 ⊗
|Kb, hb〉 ⊗ |μa〉 ⊗ |μb〉. This variational state is a product of
the ground states of the rotor Hamiltonians,

H τ
θ = 1

2 L̂2
τ + hτ L̂τ + Kτ cos θτ , (7)

and two Slater-determinant states (“Fermi sea” states) of the
spinons, where the density is controlled by the chemical po-
tentials μa and μb.

We must determine six variational parameters with three
constraints 〈L̂τ 〉 = 〈 f †

iτ fiτ 〉 − 1 and
∑

τ 〈 f †
iτ fiτ 〉 = n. The pa-

rameter Kτ controls whether species τ is metallic or localized.
When the minimal energy solution is obtained with Kτ �= 0
the rotors are pinned and we get a finite quasiparticle weight
Zτ �= 0 corresponding to the metallic state. On the other
hand, for Kτ = 0 the rotors are in eigenstates of the angular
momentum operator where the average of eiθτ vanishes, cor-
responding to the Mott state (Zτ = 0). Additionally, there is a
freedom to redistribute charge between the two bands, which
is controlled by the difference in the chemical potentials,
μa − μb. Finally, the constraints are fulfilled using the three
Lagrange multipliers hτ and the sum μa + μb. Note that in
the case of WS2/WSe2, where the overlapping bands include
one of the first excited bands of species a, which is more
dispersive compared to the lowest band of species b, we apply
the slave-rotor decomposition only to band b. For more details
on the slave-rotor analysis we perform and the minimization
procedure see Appendix C.

In Fig. 4 we plot the phase diagrams resulting from the
variational minimization. Panels (a) and (d) correspond to the

WS2/WSe2 bilayer using U = 60 meV and η = 1/2. Fig-
ures 4(a) and 4(b) are maps of the filling of species b and a,
respectively, in the space of total filling n and twist angle θM .
In this case we recall that there is another completely filled
miniband below the relevant pair of overlapping minibands
[see Fig. 3(a)], and therefore the total filling is given by n =
2 + na + nb. We turn our focus to the region inside the white
dashed line, where the filling of species b is locked to unity
while the filling of species a varies continuously [53]. In the
same region we find that the quasiparticle weight Zb vanishes
[panel (d)]. Thus this region is identified as the OSM phase,
where a lattice of localized magnetic moments coexists with
itinerant electrons. Panel (c) shows the filling of each band for
a specific twist angle θM = 3◦, showing that the density of the
itinerant band can be tuned over a large range inside the OSM
phase.

In panels (e)–(h) in Fig. 4 we plot the results for
MoS2/MoSe2 using U = 40 meV and η = 1. Panels (e) & (f)
and (g) & (h) are maps of the filling and quasiparticle weight
of species a and b, respectively. In Fig. 5 we plot the filling
of each of the two bands vs total density for θ = 3.5◦. We
identify two OSM phases, one where band a is locked in a
Mott state (marked OSMa) and one where band b is locked in
the Mott state (marked OSMb). Additionally, at n = 2 there
is a Mott state of both species, which is expected to have
an approximate SU(4) symmetry [54–57]. We also note that
in this case, where the considered minibands are both the
lowest of their corresponding species, there is no additional
band filled in the background and the total density is given
n = na + nb.

For both materials, the OSM state assumes a large portion
of the phase space (in Appendix C we show that this scenario
is relevant to other TMD materials). For small twist angles, the
density of itinerant electrons can be tuned between completely
empty and completely filled states, which potentially allows
one to tune the strength and sign of the RKKY interaction
between local moments, which is mediated by the itinerant
miniband [58]. At larger twist angles (θM � 4◦) the lattice of
localized electrons melts into a Fermi liquid. Such a transition
is characterized by the emergence of a Fermi surface which is
not captured by the Ginzburg-Landau paradigm and is there-
fore of special interest [34,37,40,59].

We have also tested the stability of the OSM phase to
variations in the parameters �ε̄ = ε̄a − ε̄b and η numerically.
In Appendix D we show that the range of filling where the
OSM phase occurs is large for a wide range of �ε̄ and η.
We also roughly estimate this range analytically and find that
it is expected to be large in the parameter regime |�ε̄| <

U (1 − η)2/2 − Tit . Here Tit < 0 is the kinetic energy gain of
filling the Fermi sea of the itinerant band minus the interaction
energy associated with on-site fluctuations of charge. This
analysis shows that the existence of a wide OSM phase is
robust to the parameters of our model.

IV. EXPERIMENTAL CONSEQUENCES
OF THE OSM STATE

We turn to discuss experimental consequences of the OSM
phase. We first discuss the enlarged entropy associated with
the formation of local moments. When the moments are free
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FIG. 4. Results of the slave-rotor mean-field theory. (a)–(d) Results for WS2/WSe2 at filling higher than 2 using U = 60 meV and η = 1/2.
Note that the total filling ranges between 2 and 6 because there is one (lowest) miniband that is already filled and adds a background charge of
2. Thus each miniband (of a and b) accommodates only two electrons per moiré lattice site, one for each valley. (a) Color map of the density
of band b in the space of filling n and twist angle θM . (b) The corresponding density map of band a. (d) Color map of the quasiparticle weight
of species b. (c) The densities of species a and b at θM = 3◦ vs total density. (e)–(h) Results for MoS2/MoSe2 using U = 40 meV and η = 1.
(e, f) The density of species a and b, respectively. (g, h) Maps of the quasiparticle weights of species a and b, respectively. In all cases we
observe finite regions, where the quasiparticle weight of a certain band falls to zero concomitant with odd integer filling. In these regimes the
other species is in a compressible Fermi-liquid state and supports noninteger filling. These regimes thus realize the OSM and are marked by
white dashed lines.

they contribute one kB per lattice site. If a magnetic ordering
is present, the local-moment contribution will be significant
above the ordering temperature. Additionally, a distinct fea-
ture of this contribution will be a strong dependence on
magnetic field. Indeed, the authors of Refs. [60,61] have re-
cently measured such an enlarged entropy in twisted bilayer
graphene (TBG), where they attributed it to local moments

FIG. 5. The densities of species a and b at θM = 3.5◦ vs total
densities for MoS2/MoSe2 using U = 40 meV and η = 1.

coexisting with metallic states. Similarly, in the regime where
both phases are metallic but close to the OSM regime we may
expect a Pomeranchuk effect upon heating [60,61].

To estimate the change in entropy across the OSM
transition, we assume the local moments contribute their
maximal entropy, while the metallic states contribute
sM = − 2

�

∑
τ,k∈BZ [Nkτ log Nkτ + (1 − Nkτ ) log(1 − Nkτ )],

where Nkτ are the momentum space Fermi-Dirac distribution
functions, which include the effects of the quasiparticle
weight Zτ . In Fig. 6 we plot the entropy per moiré lattice
site as a function of density for the WS2/WSe2 bilayer
at θM = 2.5◦ for three different temperatures. The distinct
signature is a large jump at the boundaries of the OSM state,
where we also observe an enhanced specific heat manifested
in the strong dependence of S with T .

Another suitable probe for the OSM state is magneto-
transport [40], especially given that we predict this state at
a relatively high density range n ∼ 2–4, where the effects
of disorder are less prominent as compared with the filling
range of the lowest miniband. Inside the OSM phase the Hall
number, which is seen both in the slope of the classical Hall
resistivity and in the period of quantum oscillations, will cor-
respond to a “small” Fermi surface (of volume nb = n − 1).
At the phase transition point [green hue in Fig. 1(c)] the local
moments melt into a metallic state, manifested in a Lifshitz
transition, where we can distinguish two scenarios. When
the dominant exchange interaction between the two species
is antiferromagnetic we expect a heavy-Fermi-liquid state to
emerge between the fully metallic phase and the magnetic
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FIG. 6. The entropy per site in units of kB log 2 as a function of
filling at angle θM = 2.5◦ for three different temperatures. Here the
Mott state is assumed to contribute one bit per site.

metal. In this case the Hall number changes from the “small”
volume n − 1 to the “large” volume n. The second scenario is
where the exchange interaction is dominated by ferromagnetic
exchange (e.g., due to the orbital Hund’s coupling). In this
case theory does not predict the emergence of a hybridization
gap between the local and itinerant electrons. Instead, a new
Fermi surface emerges at the transition point. Thus we expect
the appearance of beating in quantum oscillations and nonlin-
earity of the classical Hall effect (see, for example, Ref. [62]).
Thus magnetotransport measurements across the melting tran-
sition can also distinguish the nature of the magnetic exchange
mechanism.

Finally, another prominent feature of the OSM phase can
be seen in the dependence of the compressibility on density.
As can be seen in Fig. 5, inside the OSM phase and close to the
transition the itinerant band develops negative compressibility
∂n/∂μ < 0 [63,64]. This is because the incompressible state
forms before half filling on the expense of the itinerant elec-
tron band. As a consequence, the density of the compressible
band drops near the transition.

V. SUMMARY

We proposed that electron-doped TMDs subject to a moiré
potential are prime candidates to realize the Kondo lattice
model. The essential ingredient is the multiplicity of electron
band minima close to the K and K ′ points, which allows
for two moiré bands of different widths to be simultaneously
at partial filling. We used a simplified model with constant
on-site Coulomb repulsion and a slave-rotor mean-field theory
to study the possible ground states of the system. We found
a large phase space, where an orbitally selective Mott phase
forms. Such a state is characterized by a Mott state of one
species coexisting with a metallic state of the other. This opens
a path to simulate the Kondo lattice model and possible exotic
phase transitions in TMD moiré devices.

Note added. Upon completion of this paper we came to
learn about a related theoretical proposal regarding trilayers
of twisted graphene sheets [65].
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APPENDIX A: CONTINUUM DISPERSION

In this Appendix we provide additional information about
the computation of the continuum Hamiltonian. We start with
the tight-binding approximation for single-layer semiconduct-
ing TMDs of the trigonal prismatic structure (H) [44]. This
model consists of three orbitals dz2 , dxy, and dx2−y2 , taking
into account spin-orbit coupling and hopping up to the third
nearest neighbors on the triangular lattice. The conduction
band consists of two Bloch bands denoted by τ = a, b, which
are plotted in Fig. 2 (colored red and blue, respectively) and
will be referred to as “species” henceforth. Each such band
has two parabolic minima near the K and K ′, corresponding to
spin states σ =↑↓. (The valley and spin are locked; however,
it is important to note that the spin orientations near K and K ′
are opposite in the two Bloch bands.) Up to quadratic order
in deviations from the high-symmetry points we obtain the
Hamiltonian

Ĥ0 =
∑
kτσ

c†
kτσ

(
�τ + k2

2mτ

)
ckτσ . (A1)

Here �τ and mτ are species-dependent band minimum and
mass, respectively. k is the lattice momentum relative to the
high-symmetry points, i.e., relative to K for (a,↑), (b,↓)
and relative to K ′ for (b,↑), (a,↓). A crucial feature that
is unique to the conduction bands, is that the higher-order
spin-orbit splitting, |�a − �b|, is comparable to the expected
moiré lattice depth and resulting miniband width (see Table I).

We now turn to consider the effect of a moiré potential,
which we assume is induced by a second layer. At small twist
angles θM � π the superlattice constant is given by aM ≈
a/θM , where θM ≡ √

δ2 + θ2, δ is the mismatch between the
layers taken from Ref. [20], and θ accounts for any additional
twist. In this limit we have aM � a, which justifies the use of a
simple triangular periodic potential constructed out of the six
smallest harmonics Gj = R̂( j π

3 )(4π/
√

3aMx̂), j = 0, . . . , 5:

VM (r) =
∑

i

V0(Gi )e
−iGi ·r . (A2)

The potential has threefold rotational symmetry which states
that V0[R̂( 2

3π )Gi] = V0(Gi ) and V0(−Gi ) = V ∗
0 (Gi ). To obtain

the miniband structure of the lowest minibands, we use a 19-
band model without counting degeneracy of spin and species.
For simplicity we take the moiré potential strength to be
uniform across platforms and given by V0 = 15 meV [19,20].

In Fig. 3 we compare the two lowest minibands for the two
species (species a colored blue, and species b colored red)
for realistic parameters of two candidate materials. As can be
seen, a feature of these miniband structures is the overlap of
bands belonging to different species. Note that the overlap-
ping minibands are not necessarily the same numeral subband.
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As shown in panel (a) for WS2, the overlap is between the
first excited band of one species and the lowest miniband of
the other (the same is true for WSe2 and MoSe2). On the
other hand, for MoS2 the overlap occurs between the lowest
minibands of the two species [panel (b)]. Upon restriction to
the two bands of interest (namely, those that are overlapping),
we obtain the dispersion in Eq. (3).

APPENDIX B: INTERACTIONS

In the paper we assume a contact interaction of the form

HI = 1

2

∑
iττ ′

Uττ ′δniτ δniτ ′ , (B1)

where δniτ = ψ
†
iτψiτ − 1. Notice that we have written the

interaction in a particle-hole symmetric manner, which can be
absorbed into the parameters ε̄τ in Eq. (5).

The relative strength of the interaction parameters Uττ ′

depend on the spread of the Wannier orbitals of the corre-
sponding minibands [19,20]. Namely, when both minibands
are the lowest subband of their corresponding species [as
shown for MoS2 in Fig. 3(b)], the spread of the two Wannier
functions is approximately the same, and we expect Uaa �
Uab � Ubb. In this case the interaction (B1) is proportional to
the square of total density.

On the other hand, when the two overlapping bands belong
to different subbands [see WS2, in Fig. 3(a)], their correspond-
ing Wannier functions will differ in width (namely, the higher,
more dispersive band will have a larger spread). Thus in this
case, the interaction parameters may differ significantly. To
account for this effect we consider the phenomenological
parameter η such that Ubb = ηUab = η2Uaa. The interaction
equation (B1) then assumes the form

HI = U

2

∑
i

(η δnia + δnib)2, (B2)

where η < 1 describes the scenario where the Wannier func-
tion of band b has a smaller spread when compared to a.

The value of U itself is twist-angle dependent [19]. For
simplicity, however, we will take a constant value U =
60 meV for WS2, WSe2, and MoSe2, which corresponds to
a dielectric environment of ε = 5 [51]. For MoS2 we use
U = 40 meV. We note these values are weaker than those used
in other studies estimates [20,66].

The quadratic form of the interaction (B2) was chosen for
simplicity. In general, the ratio between the inter- and in-
traspecies interactions is not controlled by a single parameter
η. Therefore,it is important to note that the OSM phase space
is expected to be reduced in the case where the interspecies
interaction Uab becomes much larger than Uaa or Ubb. As
we show in Appendix D and in the analysis of MoS2 with
η = 1, however, the OSM state is not very sensitive to large
interspecies interaction. Another crucial interaction we have
neglected is longer-range interaction. We expect these inter-
actions to cause additional Wigner crystal insulating phases
to appear. They will likely cause the phase space of the OSM
state to shrink as well. However, these incompressible states
may also stabilize over a finite range of doping with the aid of
a background incompressible state, i.e., forming an orbitally

selective Wigner crystal. Finally, we have also neglected spin-
exchange interactions (e.g., Hund’s), which will be discussed
in Appendix E.

APPENDIX C: DETAILS OF THE VARIATIONAL
MINIMIZATION OF THE SLAVE-ROTOR MEAN-FIELD

FREE ENERGY

In this section we describe in more detail the slave-rotor
mean-field theory [46–48] that we have used in the main text.
We first decompose the field operators into bosonic rotors
(e−iθiτ ) multiplied by neutral spinon operators ( fiτ ):

ψiτσ = e−iθiτ fiτσ . (C1)

The respective density operator of each species, which are
conjugates of the phases above, are then written in terms of
angular momentum operators

L̂iτ = −i
∂

∂θiτ
(C2)

subject to the local constraint

L̂iτ = f †
iτ fiτ − 1,

where the sum over spin is implicit. The application of the
slave-rotor decomposition to Eqs. (3) and (4) of the main
text enables a simple mean-field analysis, which captures the
localization-delocalization transition of a half-filled band.

This decomposition allows for a mean-field treatment of
the Mott transition. The “order parameter” is the quasiparticle
weight Zτ = |〈eiθτ 〉|2. When the rotor’s phase θτ assumes a
finite expectation value, Zτ �= 0 and the spinon quasiparticles
have a finite overlap with the original electronic operator.
This phase thus corresponds to a Fermi-liquid state. On the
other hand, when θ is delocalized the rotor eiθτ has a vanish-
ing expectation value and the quasiparticle weight disappears
(Zτ = 0), corresponding to a Mott phase.

Below we will describe two approaches. First, we will
consider the case where only one species is decomposed (the
flatter of the two). This case is more applicable to a situation
where the density of states of the two bands differs signifi-
cantly. In the second case we will consider the same analysis
where both bands are decomposed.

1. Slave-rotor decomposition of a single band
in a two-band system

Applying the aforementioned slave-rotor decomposition to
the flatter band (for the purpose of the discussion let it be τ =
b), as is the case for Eqs. (3) and (4), we obtain

HSR = −
∑

i j

(
t i j
b ei(θib−θ jb) f †

ib f jb + t i j
a ψ

†
iaψ ja

)

+
∑

i

(ε̄b f †
ib fib + ε̄aψ

†
iaψia) + U

2

∑
i

(L̂ib + ηδnia)2,

(C3)

where t i j
τ are the set of tight-binding parameters that reproduce

the dispersive part εk in Eq. (5) when transformed to recipro-
cal space.

To estimate the location of possible Mott phases of
Eq. (C3) we use a variational approach. This should be
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contrasted with Ref. [46], where the self-consistent mean-field
technique was used. In the variational approach we minimize
the expectation value of Eq. (C3) with respect to a vari-
ational wave function denoted by |�V 〉 = |Kb, hb〉 ⊗ |μb〉 ⊗
|μa〉, which is a product of the ground states of the following
variational Hamiltonians:

Hb
θ = 1

2
L̂2

b + hbL̂b + Kb cos θb, (C4)

Hb
f =

∑
k

(εkb − μb) f †
kb fkb, (C5)

Ha
ψ =

∑
k

(εka + �ε̄ − μa)ψ†
kaψka, (C6)

where we have shifted the energies such that the center of band
b is at zero and �ε̄ = ε̄a − ε̄b. Equation (C4) controls the rotor
field, where the term proportional to Kb acts to pin the phase
θb, giving rise to a finite quasiparticle weight Zb. Thus we can
identify the Fermi-liquid (Mott) phases with situations where
the minimal energy solution is obtained with Kb �= 0 (Kb = 0).
The parameter hb is used to obey the slave-rotor constraint
on average. The second and third variational Hamiltonians
Eqs. (C5) and (C6) generate Fermi sea states of spinons and
a electrons, with density controlled by the parameter μb and
μa, respectively. Notice that the ground state of Eq. (C5) is
independent of the bandwidth and therefore Zb is omitted.

We then minimize the expectation value of the full Hamil-
tonian Eq. (6), denoted by

F (Kb, hb, μb, μa) = 〈�V |HSR|�V 〉,
with respect to the four parameters Kb, hb, and μb and μa

subject to two constraints:

〈L̂b〉 = 〈 f †
ib fib〉 − 1 〈 f †

ib fib〉 + 〈ψ†
iaψia〉 = n. (C7)

The difference between the number of constraints and varia-
tional parameters implies that two are free. These correspond
to the quasiparticle weight of band b and any distribution of
the total density between the bands. These two parameters are
dictated by energetics.

Notice that in using Eq. (7) we have neglected spatial
fluctuations of the field θb. This restricts our ground-state
manifold (for example, it cannot capture spin correla-
tions [47]). However, it allows for a significant simplification:
The expectation value of the rotor correlation function be-
comes a product of local expectation values 〈ei(θiτ −θ jτ )〉 =
〈eiθiτ 〉〈e−iθ jτ 〉 = Zτ . Consequently, the expectation value of the
kinetic energy terms can be straightforwardly transformed
back to momentum space, reproducing the exact continuum
dispersion relation, Eq. (3):

F =
∑

k

[ZbεkbNkb + (εka + �ε̄)Nka]

+ U

2

∑
i

[〈
L2

b

〉 + 2η〈Lb〉〈na − 1〉 + η2〈(na − 1)2〉],
(C8)

where Nkb = N0(εkb − μb), Nka = N0(εka + �ε̄ − μa), and
N0(x) = 1/(eβx + 1). Here β is the inverse temperature,
which will be taken to infinity β → ∞, which is used as a
numerical parameter to smooth the discretization.

FIG. 7. The results of the slave-rotor mean-field analysis for
MoSe2, U = 60 meV, and η = 1/2. (a, b) The density of the two
species in the space of the moiré angle θM and total density n.
(c) Quasiparticle weight of species b, Zb. The region of half filling
nb = 1 and Zb = 0 corresponds to a Mott state of band b. (d) The
densities of bands a and b at θM vs total density.

In panels (a)–(d) of Figs. 4, 7, and 8 we plot the phase
diagram obtained from minimizing Eq. (C8) for the band-
structure parameters of WS2, MoSe2, and WSe2, respectively.
Note that as opposed to the main text, we do not specify the
precise bilayer composition. For each TMD material here, one
must consider a second “inactive” layer that induces the moiré

FIG. 8. The results of the slave-rotor mean-field analysis for
WSe2, U = 60 meV, and η = 1/2. (a, b) The density of the two
species in the space of the moiré angle θM and total density n. (c) The
quasiparticle weight of species b, Zb. The region of half filling nb = 1
and Zb = 0 corresponds to a Mott state of band b. (d) The densities
of bands a and b at θM vs total density.
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potential and has band alignment properties that ensure it has
a higher-in-energy conduction band. We use U = 60 meV and
η = 1/2. Panels (a) and (b) are maps of the density of bands
b and a, respectively, in the space of total density n and twist
angle θM . Panel (c) is the corresponding quasiparticle weight
Zb. Panel (d) shows the relative filling at θM = 3. There are
two distinct regimes as a function of angle. For θM < 3.5, the
filling of band b is roughly split in half. Between n = 0 and
n = 1, band b fills until it reaches a localized state (charac-
terized by Z = 0 and nb = 1). Then band b fills continuously
between n = 1–3. Finally, band b continues to fill until n = 4
is reached. The regime where band a is continuously filling
realizes an orbitally selective Mott phase, where a Kondo lat-
tice model is expected to be simulated with variable itinerant
electron density.

On the other hand, for θM > 3.5 the bands fill up one-
by-one. In particular, band b fills completely between n = 2
and n = 4 with a Mott state at n = 5. Then above n = 5 it
resets back into the Mott state and band a fills completely.
This behavior thus, resembles a Stoner-like polarization of
the species. However, we comment that the slave-rotor mean
field tends to overestimate the size of band-polarized regions.
This is because it overestimate the contribution of charge
fluctuations to the interaction energy when the filing differs
significantly from 1/2.

2. Two-band slave-rotor decomposition

As explained in the case of MoS2, the electronic bands
experience a much weaker spin-orbit coupling. Consequently,
the shape and effective binding energies are almost identical
[see Table I and Fig. 3(b)]. In this case it makes sense to
decompose both bands in an unbiased manner,

HSR = −
∑
i jτ

t i j
τ ei(θiτ −θ jτ ) f †

iτ f jτ

−
∑

iτ

ε̄τ f †
iτ fiτ + U

2

∑
i

(Lia + Lib)2, (C9)

where η = 1 and �ε̄ = ε̄a − ε̄b is much smaller than the band-
width and U .

Following the previous section, we now use four varia-
tional Hamiltonians of the form of Eqs. (7) and (C5), which
generate a ground state |Kτ , hτ , μτ 〉 controlled by six varia-
tional parameters and subject to three constraints:

〈L̂τ 〉 = 〈 f †
iτ fiτ 〉 − 1 ; 〈 f †

ia fia〉 + 〈ϕ†
ibϕib〉 = n. (C10)

In panels (e)–(h) of Fig. 4 of the main text we plot the phase
diagram resulting from the minimization of the expectation
value of Eq. [9] As can be seen, at n = 2 both Za and Zb

equal zero for small enough angles. The similarity of the
bands of the two species leads us to propose electron-doped
MoS2 as a candidate material to realize an SU(4) symmetric
Mott insulator on a triangular lattice, which is an interesting
problem in its own right [54,55].

3. Details of the numerical minimization procedure

In this Appendix we provide the details of the numer-
ical minimization procedure of Eq. (C8). To calculate this

functional, we performed straightforward Brillouin zone in-
tegration on a square grid of size 150 × 150. The integration
itself was performed by MATLAB’s trapezoidal numerical in-
tegration, and the Fermi-Dirac distribution was written as
N0(εk ) = 1

1+e−βεk
, with β = 1

T being the inverse temperature.
To broaden the discretization we use a finite temperature
β = 60/max(εa). In addition, the minimal ground state that
was found for the phase diagram in Fig. 3 was found by
MATLAB’s minimization algorithm fmincon, which minimizes
the functional Eq. (C8), under the constrains of Eq. (C7) by
means of the specified variational parameters. The optimiza-
tion algorithm that was found to converge most efficiently was
the interior-point algorithm, which is the default algorithm of
fmincon.

APPENDIX D: ON THE STABILITY OF THE OSM STATE
TO VARIATIONS OF PHENOMENOLOGICAL

PARAMETERS

In the main text we have presented the results of a slave-
rotor mean-field analysis, where bands of different species fill
either one-by-one or simultaneously, depending on the twist
angle. The latter scenario is is of particular interest to us, as it
gives way to the orbitally selective Mott phase.

Given that we have a number of unknown parameters,
including η and the energy difference

�ε̄ = ε̄a − ε̄b, (D1)

it is important to test the stability of the OSM state. In this
Appendix we compute a lower bound on the phase-space
volume of the OSM state in the space of �ε̄ and η.

To obtain this estimate we focus specifically on the com-
mensurate filling n = 2 (or n = 4 for the strongly spin-orbit-
coupled bilayer WS2/WSe2). If the bands fill one-by-one, this
filling point will be characterized by one completely filled
band and another completely empty. On the other hand, if
the bands fill simultaneously, this filling value is likely to
be characterized by a partial filling of both bands with total
density of unity. Here we will make a restrictive assumption
that both bands are at filling unity, where one is in a Mott
state and the other is either metallic or also in a Mott state.
The phase diagrams we have computed are consistent with
this behavior at filling n = 2 (or 4).

Under this assumption we can estimate the expectation
value of the Hamiltonian Eq. (6) within these restrictive trial
states:

|Fa〉 = |na = 2〉 ⊗ |nb = 0〉,
|Fb〉 = |na = 0〉 ⊗ |nb = 2〉,
|P〉 = |na = 1〉 ⊗ |nb = 1〉, (D2)

and compare which of them has a lower energy. The first two
states represent fully polarized states and thus correspond to
the scenario where the band fills one-by-one. The third state,
however, is where the filling is shared between the two bands.
We will further assume that band a is the flatter of the two
bands and is in a Mott state at na = 1. The energy per unit cell
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FIG. 9. Stability of simultaneous occupation of two moiré mini-
bands for filing n = 2 (or n = 4 for the strongly spin-orbit-coupled
bilayer WS2/WSe2) in the space of �ε̄ and the phenomenological
parameter η. The blue lines correspond to Tit = −U/4 (species b in
a metallic state), and the dashed lines are the case Tit = 0 (species b
also in a Mott state).

of these three states is given by

Ea ≡ 〈Fa|HSR|Fa〉
�

= 2ε̄a + U

2
(1 − η)2,

Eb ≡ 〈Fb|HSR|Fb〉
�

= 2ε̄b + U

2
(1 − η)2,

Eab ≡ 〈P|HSR|P〉
�

= ε̄a + ε̄b + Tit. (D3)

Here � is the total number of sites. Tit � 0 is the sum of the
negative kinetic energy associated with half-filling band b, and
the interaction energy associated with the charge fluctuations
�n2

b = 〈(nb − 1)2〉 at the half-filling point. Thus, when Tit < 0
band b remains in a metallic state and reaches zero when it
falls into a Mott state as well.

When Eab < min(Ea, Eb) the third state (simultaneous fill-
ing) is more favorable energetically. On the other hand, when
Ea or Eb are minimal, the ground state can be band polarized
(but not necessarily), where the bands fill one-by-one.

Comparing these energies, we conclude that the partial
filling state is stable at least in the regime

|�ε̄| < U (1 − η)2/2 − Tit. (D4)

In Fig. 9 we plot the stability region defined by Eq. (D4) for
the case of Tit = −U/4. The case of Tit = 0 is also plotted for
comparison (dashed line).

Given that Tit � 0, there exists such a regime for any value
of η. Note that the width in �ε̄ of this window scales with U at
strong coupling. We thus conclude that the regime of partial
occupation of both bands is wide and robust to parameters

FIG. 10. Stability diagram of the coexistence of localized and
itinerant states in the space of η and �ε̄ with U = 60 meV obtained
from numerical minimization of Eq. (C8). The color bar denotes the
width of the Mott region in filling averaged over all angles between
2◦ and 5◦ (the maximal width is 2). The white dashed line is the
analytic estimate, where the two species are expected to be simulta-
neously at partial filling at n = 4, Eq. (D4), with Tb = −10 meV.

such as the ratio of species interaction η and splitting of the
bands �ε̄.

In Fig. 10 we plot the width of the OSM phase �n =
nmax − nmin averaged over the angles 2◦ and 5◦, which is
obtained from the numerical minimization of Eq. (C8). Here
nmax and nmin mark the boundaries of the OSM phase per angle
(maximal value is 2), as shown in Fig. 4(c). The white dashed
line is the analytic estimate Eq. (D4). We thus, conclude that
the OSM phase is not sensitive to parameters and is a generic
feature of the phase diagram of electron-doped moiré TMDs.

APPENDIX E: SPIN-EXCHANGE INTERACTIONS
AND EXPECTED PHENOMENOLOGY

Inside the OSM, phase charge fluctuations of the localized
species are quenched and therefore the relevant interspecies
interactions are of spin-exchange type. In this section we
discuss two such interactions and their possible influence on
the magnetic ground state.

We anticipate that the ferromagnetic Hund’s coupling is the
largest exchange mechanism,

HH = −
∑

i

JH (ψ†
ibσψib) · Si, (E1)

where Si is the spin of the localized moments at site i (let us
assume they belong to species a). Using standard harmonic
oscillator states, we estimate JH ≈ 0.2U .

Upon approaching the melting point of the OSM state,
however, other interaction terms compete with Eq. (E1),
for example, the interaction that scatters across the
original Brillouin zone. To see this let us first write
this term in terms of the original operators Eq. (1),
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HJ = JP
∑

k,k′,p c†
k+p a↑c†

k′−p a↓ck′ b↓ck b↑ + H.c., where JP/U

∼ a/aM ≈
√

δ2 + θ2
M (for an angle of θM = 3.5◦ we obtain

JP ≈ 0.1U ). Taking into account the moiré potential and the
slave-rotor decomposition described above, this interaction
assumes the form

HJ = J̃P

∑
k,k′,p

f †
k+p a↑ f †

k′−p a↓ψk′ b↓ψk b↑ + H.c., (E2)

where J̃P = ZaJ . Thus when the band a is localized and
Za = 0 this term vanishes. However, if the local moments
are incorporated into the Fermi surface (through the for-
mation of a heavy-Fermi liquid) they reacquire a finite
quasiparticle weight Z [48]. Thus this interaction can become
important close to the melting point of the local-moment
lattice.

As mentioned above, inside the OSM phase we expect the
dominant exchange to be Hund’s and therefore spin correla-
tions to be ferromagnetic, as in Ref. [29]. When the Hund’s
coupling Eq. (E1) is dominant, the main influence of the itin-
erant electrons inside the OSM state is to mediate long-range
RKKY interactions [58],

HRKKY ≈ J2
Hν0k2

F

8π

∑
i j

sin kF Ri j

R2
i j

Si · S j, (E3)

where ν0 is the density of states. Thus, as the filling of
the itinerant band is modified from zero to 2, the nearest-
neighbor interaction mediated by the electrons can be tuned
from ferromagnetic in the dilute limit to antiferromagnetic and
back to ferromagnetic (going through a van Hove singularity).
This interaction is added to the direct superexchange between
sites [19], which may have a cooperative effect or frustrate the
magnetic interactions.

APPENDIX F: THE HEAVY-FERMI-LIQUID STATE

When the antiferromagnetic correlations dominate we ex-
pect a heavy-Fermi-liquid state to compete with the internal
magnetic interactions. For completeness, in this Appendix
we compute the Kondo temperature assuming J̃P = 4 meV

FIG. 11. The Kondo temperature inside the OSM state for MoSe2.

within the large-N mean-field theory [67]. We find that TK ∼
5–15 K inside the OSM phase and therefore, we expect
that if the antiferromagnetic correlations dominate the OSM
melting transition can be accompanied by a detectable heavy-
Fermi-liquid state. Moreover, in this case the tunability of
the itinerant electron density may allow tuning through the
Doniach phase diagram [25].

Let us briefly describe the large-N mean-field theory. The
dispersion of the two species is taken to be

HMF =
∑

k

[(Zbεkb − μb) f †
kb fkb + (εka − �ε̄ − μa)ψ†

kaψka],

(F1)
where the density of each species nτ is set separately using
the Lagrange multipliers μτ according to their values in the
slave-rotor mean-field calculation. We then decouple Eq. (E2)
using the mean-field hybridization χ = J/2〈 f †

bσ ψaσ 〉 + c.c..
We then solve for χ self-consistently, while tuning μa and μb

to conserve the density of a and b on average. The Kondo tem-
perature is then estimated by seeking the lowest temperature
where there is a self-consistent solution for χ = 0. To obtain
the Kondo temperature TK we estimate the lowest temperature
where χ = 0.

In Fig. 11 we plot the resulting Kondo temperature as a
function of twist angle and density for J̃ = 4 meV. As can
be seen, the Kondo temperature is measurable in standard
cryosthetics and might be physically important.
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