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Near equilibrium, Green-Kubo relations provide microscopic expressions for macroscopic transport coeffi-
cients in terms of equilibrium correlation functions. At their core, they are based on the intimate relationship
between response and fluctuations as embodied by the equilibrium fluctuation-dissipation theorem, a connection
generically broken far from equilibrium. In this paper, we identify a class of perturbations whose response
around far-from-equilibrium steady states is linked to steady-state correlation functions via an equilibrium-like
fluctuation-response equality. We then utilize this prediction to substantiate linearized hydrodynamic trans-
port equations that describe how spatial inhomogeneities in macroscopic nonequilibrium systems relax. As
a consequence, we derive nonequilibrium Green-Kubo relations for the transport coefficients of two types of
hydrodynamic variables: local conserved densities and broken-symmetry modes. A by-product of this work is
to provide a theoretical foundation for the validity of Onsager’s regression hypothesis around nonequilibrium
steady states. Our predictions are analytically and numerically corroborated for two model systems: density
diffusion in a fluid of soft, spherical active Brownian particles and phase diffusion in the noisy Kuramoto model

on a square lattice.
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I. INTRODUCTION

The fluctuation-dissipation theorem (FDT) is a cornerstone
of statistical mechanics [1-4]. It quantifies a fundamental
correspondence between two experimental procedures for
interrogating an equilibrium system: Measuring a system’s
response to a weak perturbation and passively observing
its fluctuations both contain the same information. A ma-
jor consequence has been in refining our understanding of
the material coefficients that determine how spatial inhomo-
geneities in near-equilibrium macroscopic systems relax via
hydrodynamic transport. The resulting predictions, known
as Green-Kubo relations, equate these macroscopic trans-
port coefficients D to the microscopic equilibrium correlation
functions of local current observables j.(t), whose fluctua-
tions depend on space r and time ¢ in a volume V [4-10],

Dy = é / dt / dr / dr'(jr0)jrO)eg. (1)
0 4 v

Here, B is the inverse temperature and x is the static suscepti-
bility (or thermodynamic derivative).
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Even for far-from-equilibrium steady states, response can
still be related to a nonequilibrium correlation function by
a modification of the FDT’s original derivation [11,12]. The
resulting correlation function turns out to be rather formal,
often requiring detailed microscopic knowledge of the steady
state or its dynamics [13—17]. Even still, this nonequilib-
rium modification of the FDT allows one to link integrals of
nonequilibrium correlation functions to microscopic currents
[18-20], in much the same spirit as the macroscopic Green-
Kubo relation in (1).

Nonequilibrium Green-Kubo relations that relate macro-
scopic transport coefficients to local current observables
have appeared in the literature in particular situations. These
studies can be categorized according to the method. For
a two-dimensional nonequilibrium viscous fluid [21,22],
Green-Kubo relations were deduced by assuming that On-
sager’s regression hypothesis [23] remains valid around
nonequilibrium steady states. An alternative approach utilizes
the projection operator method [24,25] adapted for non-
Hamiltonian dynamics [26-29]. The resulting Green-Kubo
relations incorporate a time-reversed dynamics, apparently
obscuring the interpretation of the resulting correlation func-
tions. This obstacle has been overcome for at least one specific
model of a nonequilibrium active fluid [30].

In this paper, we demonstrate that generally Green-Kubo
relations for macroscopic transport coefficients maintain their
equilibrium form arbitrarily far from equilibrium. The key
step in this derivation is the elucidation of a class of per-
turbations with explicit conjugate variables whose response
is given by simple nonequilibrium correlation functions,
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Active Brownian Particles
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FIG. 1. Perturbing the dynamics of a fluid of active Brownian
particles: Particles (red) are self-propelled with a velocity vy whose
direction 6 diffuses. They interact pairwise through a repulsive force
F and experience translational noise. The surrounding environment
induces diffusive behavior of the particles characterized by diffusion
coefficients D, and D,. The stochastic equations of motion (21)
correspond to the Fokker-Planck operator L. The type of perturbation
in (3) corresponds to multiplying all system parameters by 1 — AQ.

akin to the equilibrium FDT. This observation generalizes
our previous work on the static response to time-dependent
perturbations [31]. We then exploit this equilibrium-like
fluctuation-response equality to provide a theoretical foun-
dation for linearized hydrodynamic equations governing
transport in homogeneous nonequilibrium fluids. The tech-
nique we use was originally developed by Kubo to analyze
conductivity [6], but elaborated for simple equilibrium flu-
ids by Oppenheim and collaborators [32-35]. We consider
two kinds of slow hydrodynamic modes, local densities of
conserved variables and the Nambu-Goldstone modes that
emerge from a broken continuous symmetry [4]. Our theory is
illustrated by numerical simulations of two examples, a fluid
of soft active Brownian particles and a noisy Kuramoto model.

II. FLUCTUATION-RESPONSE EQUALITY

Consider a classical system with microscopic state z,
whose dynamics, either stochastic or deterministic, are well
modeled as Markovian. As such, the system’s probability
density P(z, t) evolves according to the master equation [36]

0;P(z,t) = LP(z, 1), 2)

with generator £. We will further assume that left undisturbed
the system will relax to a unique steady-state distribution
Pi(z) given by the solution of LP; = 0. This model in-
corporates deterministic Hamiltonian dynamics, where LP =
{P, H} is the Poisson bracket with a Hamiltonian H, as well
as non-Hamiltonian deterministic and stochastic dynamics.
A stochastic nonequilibrium example that will be a useful
illustration is the fluid of active Brownian particles (ABPs)
pictured in Fig. 1, where L is the Fokker-Planck operator [36].

Our focus is on how averages of observables (O(t)) =
J O@)P(z, 1)dz change in response to weak perturbations.
While this can be analyzed quite generally [11,12,14,15], we
have identified a specific class of dynamical perturbations
with interesting and useful properties of the form

L'P=LP—Mt)L[OR)P], 3

with a small time-dependent parameter A(z) and a time-
independent conjugate coordinate Q(z). For an equilibrium

system evolving under Hamiltonian dynamics, the pertur-
bation takes the form AL(QP) = A{QP, H}, which at first
glance appears to differ from the classical linear response
perturbation A{P, O} generated by modifying the Hamilto-
nian H' = H — AQ. However, at equilibrium, the distribution
is solely a function of the Hamiltonian, as for example the
canonical distribution Py o e~ (with B = 1). In this case,
both perturbations have the same effect on an equilibrium
distribution, which can be seen by noting that {QF., H} =
{Q, H}Peq = {Peq, O}, since {Peq, H} = 0. Thus, this approach
encompasses equilibrium linear response theory. Clearly, mul-
tiple perturbations can then lead to the same response, and
in Appendix A, we delineate in detail this equivalence class.
For nonequilibrium dynamics, implementing the perturbation
embodied in (3) can require a rather complicated coordinated
change in the system’s parameters, as can be seen in Fig. 1.

Now, imagine starting the system in its nonequilibrium
steady state at t = —oo and then turning on the perturba-
tion. A standard first-order perturbation analysis [11,12,37]
detailed in Appendix A reveals that the average of an observ-
able (O(t)) at time ¢ over a statistical ensemble initially at
steady state will deviate from the steady-state average (O)ss =
f O(z)Pss(z)dz by

(0)) — (0) = f

—00

(0)Q(s)) A (s)ds. )

Here, we have introduced the time-translationally-invariant
steady-state correlation function, defined for any two observ-
ables, O1(z) and O (z), by

(01(1)02(8))ss = /dzdz’ 01@)P(z, 1|7, $)0>(z' )P (@)

_ / d201@ " E[0,@Ps@]  (5)

in terms of the transition probability P(z,#|z’, s) obtained as
the solution of (2) with a delta-function initial condition §(z —
7).

Noteworthy is that the response to these perturbations is
given by the steady-state correlation between the observable
O and the conjugate observable Q that explicitly appears in
the perturbation (3), just as the equilibrium FDT. By contrast,
previous studies that addressed generic perturbations, arrived
at correlation functions where instead of Q, the conjugate
observable that appeared required knowledge of the entire
steady-state distribution (via 9, In Py) or of the generator of
the dynamics [11,12,14,15].

While executing such a perturbation in the laboratory will
generically be challenging, the theoretical utility is born out
in the simplicity of the response function and the applications
that entails. First, the fluctuation-response equality in (4) im-
plies we can measure any correlation function we choose by
observing the appropriate response (3). We can exploit this
in a computational experiment, where there is no issue ap-
plying any perturbation we choose. Such an approach would
be the far-from-equilibrium equivalent of the “nonequilib-
rium perturbation method” utilized for measuring equilibrium
correlation functions in simulation [38]. The second major
application, and the one we focus on for the rest of this
paper, is to derive Green-Kubo relations. Some of the earliest
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derivations of Green-Kubo relations exploited the equilibrium
FDT [8,9,32]. It was very quickly realized that the external
perturbations played only a formal intermediary role in the
derivation and therefore need not be realizable in the labora-
tory [32]. A concrete example of this point is the derivation of
the Green-Kubo relation for the shear viscosity of a simple
fluid due to Jackson and Mazur where a nongradient force
was introduced into a Hamiltonian dynamics to mimic a shear
[39]. With this observation, we now employ this previously
developed program to study transport in macroscopic sys-
tems, adapting it to nonequilibrium steady states using our
fluctuation-response equality (4).

III. HYDRODYNAMIC TRANSPORT

We now focus our attention on an N-particle macroscopic
system in a volume V. We will assume that its macroscopic
dynamics on long length scales and timescales can be accu-
rately captured by a few hydrodynamic variables, which are
many-bodied observables with a relaxation time that diverges
with system size. Typically they are local densities of con-
served quantities or Nambu-Goldstone modes due to broken
continuous symmetries [4]. For example, the near-equilibrium
dynamics of a simple fluid are completely captured by the
conserved number, momentum, and energy densities [4].
Away from equilibrium, hydrodynamics has been quite suc-
cessful in modeling active matter [40]—systems composed
of constituents that individually consume energy. Theories of
flocking [41], active gels [42], and experiments on cellular
spindle dynamics [43] further reinforce the need to describe
both conserved densities as well as broken-symmetry modes.
For clarity of presentation, we will focus on systems that
possess a single hydrodynamic variable A,(¢); the general-
ization to multiple hydrodynamic variables is presented in
Appendix B.

In the homogeneous steady state, our hydrodynamic vari-
able will be spatially uniform and constant in time with value
A. Upon the emergence of a small spatial inhomogeneity,
either due to an external stimulus or internal fluctuation, the
deviation from the steady-state 8A,(r) = A.(z) — A will by
assumption relax (or regress) via a linear hydrodynamic equa-
tion with drift v and transport coefficient matrix D,

0;84,(t) = =V - [VA, ()] + V- [D- V84, ()], (6)
or in Fourier space [8Ax(1) = [, 8A.(t)e*" dr],
9,8A4(t) = (ik - v —k - D - k)SAL (7). )

Near equilibrium when there is a single hydrodynamic vari-
able v = 0, due to time-reversal symmetry, as there can be
no preferred direction of motion. To have a nontrivial drift
v # 0 near equilibrium, multiple hydrodynamics are required,
in which case v is called the Eulerian term or the reactive
coupling [44]. Nonequilibrium steady states, by contrast, can
support spatial flow of a single variable and therefore we allow
for a nonzero v here.

Equation (6) [or equivalently (7)] serves as the definition of
the parameters v and D. As such, at the macroscopic hydro-
dynamic level, they can only be measured by first setting up
a spatially inhomogeneous profile and fitting the subsequent
relaxation to Eq. (6) [or (7)].

‘We can now view (7) as the beginning of a long wavelength
(small k = |k|) expansion of a generalized linear transport
equation modeling the exponential regression of the hydro-
dynamic variable,

0 8Ak(1) = —MidA(1), ®)

where My, is a generalized transport coefficient that for small
k must behave as My ~ —ik-v+k-D-k+---. In the fol-
lowing section, we will use our equilibrium-like fluctuation-
response relation to provide a statistical-mechanical basis for
this expansion and as a result extract microscopic expressions
for v and D, known as Green-Kubo relations.

But first we need to connect the macroscopic to the micro-
scopic. To this end, we specify our hydrodynamic system’s
microscopic state. For each of the i=1,..., N particles,
we denote its position as r; and any other of its degrees
of freedom, such as momentum or polarity, as s;, such that
z; = (r;,s;)andz = (24, - . ., Zy ). Microscopic expressions for
hydrodynamic variables are then typically formed as densities
of single-particle observables a(z ;) through a sum of the form

(4]

N
A@) =Y aj@z)sr —r)). ©)

J=1

For example, the choice a; = 1 defines the particle number
density. Notice that the {A,(z)},ev are a family of state-space
observables parametrized by the spatial location r. The link
to the macroscopic hydrodynamic variable then emerges on
average, (A,(t)) = A, ().

The two types of hydrodynamic variables we will
consider—conserved densities and Nambu-Goldstone
modes—are identified by their microscopic dynamics.
For the conserved density, its evolution along a single
dynamical trajectory is distinguished by a continuity equation
A, +V, - J» =0, with corresponding local current j,.
Reexpressing this continuity equation in Fourier space,
8Ay = ik - j,, is particularly illuminating, since it makes
explicit that the small-k modes vary slowly in time with
a relaxation time that diverges as k — 0. By contrast,
Nambu-Goldstone modes need not be conserved. Instead,
they are distinguished by diverging static fluctuations.

IV. GREEN-KUBO RELATIONS

The generalized transport equation in (8) describes the re-
laxation from an initially inhomogeneous profile. To connect
this relaxation to the microscopic dynamics, we follow the
procedure laid out in Refs. [32-34]. Underpinning this proce-
dure is the conceptual insight that if we start to slowly turn
on an external perturbation conjugate to A, from ¢ = —oo0,
by t+ = 0 we have generated an inhomogeneous profile that
is minimally disturbed from the steady state. At ¢t = 0, we
switch off the perturbation and track the subsequent evolution.
If this microscopic experiment is to be consistent with the
macroscopic transport equation, the two must both give the
same evolution on long length scales and timescales. This
consistency requirement leads to nonequilibrium Green-Kubo
relations connecting the relaxation dynamics to fluctuations.
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Our first step is to specify the coordinate in our perturbation
(3). The required form is

Q(z):/A,(z)frdr, A1) = e O(—1), (10)
1%

where we eventually take ¢ — 0T, and the Heaviside step
function ®(—t) turns off the perturbation at # = 0. The choice
of f, is immaterial as long as all integrals converge, as it
will shortly drop out of the calculation. Using this choice of
conjugate coordinate in the fluctuation-response equality (4)
leads to an expression for the evolution of A fort > 0, which
after an integration by parts and sending € — 0, becomes

(8A, 1)) = /v (A Ay (0)) s £ dr . an

We now remove the dependence on f, in favor of the nonuni-
form profile generated by this perturbation at t = 0. This is
facilitated by first Fourier transforming (11) and exploiting the
assumed translational invariance of the homogeneous steady
state to arrive at

(8Ar(1)) = ‘l/(Ak(t)A—k(O)>ssfk 12)
in the large system-size limit [32]. This equality is true at
every positive time, including at # = 0, which allows us to
solve for fi = V (8Ax(0))/(Ax(0)A_x(0))ss in terms of the ini-
tial value (8Ax(0)) and substitute back in to find

(BA®) _ (A®A1(0)ss
(8Ac(0))  (Ak(0)A_1(0))s

Equality (13) demonstrates that the time evolution of the re-
laxation of the average is identical to that of the correlation
function, at least for the particular ensemble produced atr = 0
by this perturbation.

Importantly, equality (13) depends only on the behavior
of the sole slow hydrodynamic variable. (Here, there is just
one variable, but in general we need to include all slow
degrees of freedom as described in Appendix B.) Thus, at
long enough length scales and timescales, any vagaries of the
initial preparation will die out exponentially fast, and (13)
should continue to remain true when the generalized transport
equation in (6) accurately describes the exponential relax-
ation of A,(t) = (Ar(t)). From this we can conclude that the
steady-state correlation function of the hydrodynamic mode is
governed by the same macroscopic linear equation,

13)

(A OA_K(0))ss = —Mi(Ar(A_£(0))s,  (14)

at least for long times and small k. This prediction is a
key contribution of this study as it provides a statistical-
mechanical rationale for an Onsager’s regression hypothesis
around nonequilibrium steady states, as was conjectured in
Refs. [21,22].

Consistency between the macroscopic and microscopic de-
scriptions embodied by (14) leads to the conclusion that My
can be inferred from the dynamics of steady-state correla-
tion functions [32-34]. Thus, we can exploit (14) to solve
for the generalized transport coefficient systematically for
small k, when we expect hydrodynamics to be an accu-
rate description, and thus deduce the expansion parameters

My~ —ik-v+k-D-k—+---. The steps are detailed in Ap-
pendix B, but follow closely [32-34]. Here, we report the
results.

The precise form of the resulting Green-Kubo relations
depends on the specifics of how the hydrodynamic vari-
able’s microscopic dynamics behave for small wave numbers.
Let us first address conserved local densities whose micro-
scopic relaxation rate diverges with small k, 3,A; = ik - j,,
but whose static correlation function remains finite, ¥ =
limk_>o(AAkAA_k)SS. The static correlation function j is related
to the static structure factor by dividing by an extensive quan-
tity such as V or N. In equilibrium, % /V can be related to a
thermodynamic susceptibility via the equilibrium FDT, which
can then be deduced solely from the equilibrium equation of
state [4,8]. Equality (12) at + = O shows that ¥ can still be
connected to the static response induced by (3). However, such
an interpretation loses much of its utility away from equilib-
rium due to the absence of any macroscopic nonequilibrium
thermodynamics. Even still, recent work suggests there might
be a useful thermodynamic structure, at least for spherical
ABPs [45].

Carrying out the expansion of the generalized transport
coefficient, we find for the drift

= lim (j, A_t)ss, (15)

which captures the conservative (or Eulerian) part of the
dynamics. The transport coefficient then captures the fluctu-
ations around this steady drift, which motivates the introduc-
tion of the dissipative current as the relative flow: I, = j, —
vA,. The dissipative current I, represents the rapidly fluctuat-
ing part of j,, in light of the orthogonality limy_,o(IxA_z)ss =
0, suggesting that its fluctuations decay on microscopic
timescales [34]. The resulting Green-Kubo relation is most
simply expressed using the half-Fourier transform in time
Iio = [y Ix(t)e™ dt,

Dy =C+E, (16)

where the first term is the dissipative-current correlation func-
tion

C= hm hm(lkw ks

w—0k—0

/ dt / dr / ar LOL ), (17)

and the second is the matrix of first-order corrections to the
drift

~

Enr _hmM

/dr/dr (IFA) s (P — 7). (18)

The dissipative-current correlation function is assumed to
decay fast enough so that the time integral converges to a
finite value. As such, we are assuming that the plateau value
problem, a long-standing problem of Green-Kubo relations
[24,46-49], does not occur in systems of interest.
Comparison with the typical equilibrium expression in
(1) brings to light two apparent differences. The first is
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the use of the dissipative current I, instead of the cur-
rent j,, and the second is the appearance of E. Both terms
had already appeared in early works on near-equilibrium
transport [33,34,39], and were rediscovered for hard-core
and Langevin dynamics [26,27,50], an observation we re-
count in more detail in Sec. VI. Historically E was set to
zero since early studies focused on near-equilibrium systems
evolving with deterministic Hamiltonian dynamics where
time-reversal-symmetry forces (jkAA,k)SS =0 [6,39]. How-
ever, if the dynamics are stochastic it is possible for E # 0
even in time-reversal-symmetric equilibrium systems, as we
will see for an equilibrium fluid of Brownian particles.

Nambu-Goldstone modes, by contrast, are identified by
the divergence of their static correlation function (AxA_g)ss
as k — 0. Near equilibrium, rigorous arguments based on
Goldstone’s theorem and the Bogoliubov inequality lead to
a minimum divergence of 1/k> [4]. However, for stochas-
tic nonequilibrium dynamics, the microscopic foundation of
these modes is shakier. The connection between symmetries
and conservation laws arising from Noether’s theorem is not
robust enough for stochastic dynamics to encompass typical
nonequilibrium matter [51]. Without that connection there are
no general grounds for a nonequilibrium Goldstone theorem.
Progress has been made on specific models using a field-
theoretic approach [52], whose general applicability is unclear
to us. Even still our approach allows us to demonstrate that
diverging static fluctuations will generically lead to hydrody-
namic modes in a nonequilibrium system.

To be as agnostic as possible, we take a generic divergence
of the form (AkA_k)ss ~ k~4 with g arbitrary. To have a con-
sistent small k expansion of (14) when the static correlation

fqnction diverges, the correlation functions (Aka,/i,k)ss and

(Akfi,k)ss must scale in such a way that the limits defining
the drift and the leading-order transport coefficient are finite,
X ArA s — (ArwA_i)s
k-v:limlim<k k)sA A<k k)s’ (19)

0—>0k=>0 ik(AkAfk)ss
(A;w)Afkhs - (A;(A,\fk>ss
k> (AAkAAfk>ss

k-D-k=lim lim (20)

w—0k—0
with k = k/k and A;((t) = A(t) — i(k - v)Ar(1). These expres-
sions are actually the most general forms for v and D, and
specialize to (15) and (16) when the hydrodynamic mode is
conserved.

V. ILLUSTRATIONS

The Green-Kubo relations in (15), (16), (19), and (20)
predict that two distinct experimental procedures must give
the same result: (i) Measure the transport parameters v and
D directly via their defining equation (6) by perturbing the
system and then measuring the rate of exponential relaxation,
or (ii) extract the same information by passively observing
the steady-state fluctuations. In this section, we corroborate
and illustrate this equivalence. Our first model is a fluid of
ABPs with a single conserved density, and the second is a
noisy Kuramoto model, where the breaking of the continuous
rotational symmetry upon synchronization leads to a Nambu-
Goldstone mode.

A. Active Brownian particles

We first consider a fluid of N spherical ABPs in a
two-dimensional box of size L x L, with periodic bound-
ary conditions. Interactions are modeled through a repulsive,
short-ranged, pair potential ¢(|r; —r;|). Activity enters by
each particle being self-propelled with a velocity vpe(6;) =
vo(cos 6;, sin 6;), whose orientation 6; diffuses with diffusion
coefficient D,. Including translational noise with diffusion
coefficient D; leads to an evolution governed by the pair of
overdamped Langevin equations [53,54]

Fi(t) = voe(0:(1)) + uF (t) + /2D, &;(t),
0:i(t) = 2D, n;(t), 1)

where &; and 7; are independent Gaussian white noises, @
is the bare mobility, and F; = —V,, Zj(ﬁ) o(|r; —rj|) is the
total force acting on the ith particle due to pair interactions.

The only conserved variable is the total number of par-
ticles. Momentum and energy are not conserved due to the
self-propulsion and noise. Accordingly, the only hydrody-
namic variable is the local particle density p, = >, 8(r — r;),
with steady-state average p = N/L>. Since the particles do not
prefer any particular direction, the density transport exhibits
an unbiased isotropic diffusion with v = 0 and transport coef-
ficient proportional to the identity matrix D = DI,

3 (8 k(1)) = —K>D(S px(1)), (22)

with a diverging relaxation time (k) = 1/(k*D).

We first validate the Green-Kubo relation (16) through
direct numerical simulation. This is accomplished by first
measuring the transport coefficient D as the rate of exponen-
tial relaxation from an inhomogeneous initial condition per
its definition and then comparing that to the prediction of
the Green-Kubo relation. As detailed in Appendix C, we use
a harmonic interaction potential ¢(r) = (K/2)(r — a)*®(a —
r), with interaction strength K and length a, and we set D; = 0
to enhance the nonequilibrium effects and facilitate the nu-
merical analysis. To measure D directly, we first observed the
evolution of the Fourier modes p; from a nonuniform initial
condition with all the particles localized to the band L/4 <
x; < 3L/4, as depicted in Fig. 2(a). Figure 2(b) displays the
expected exponential relaxation of a hydrodynamic mode
whose slope is proportional to k>D. Repeating this experiment
ten times and then averaging gives us our estimate of D and
its error [Fig. 2(c)]. Next, using a single long steady-state
simulation, we estimated D from the steady-state correlation
functions appearing in the Green-Kubo relation. Figure 2(c)
shows the coincidence of the two methods for measuring D
as a function of vy for two values of the interaction strength
K ={0.5, 1}, confirming the validity of the Green-Kubo rela-
tion.

To gain further insight, we complement the numerical
validation with an analytic analysis. The microscopic dy-
namics of the density p, is given by a nonlinear stochastic
differential equation with multiplicative noise, known as the
Dean equation [55,56]. It is further coupled to the self-
propulsion orientation through the polarization density p, =
> ;€0)8(r—r;) as well as higher harmonics. To make
analytic progress we take the limit of a dense, weakly in-
teracting fluid. Following Ref. [56], we then linearize these
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FIG. 2. Density diffusion for interacting ABPs: (a) Macroscopic relaxation experiment where the particles are initialized to the middle half
of the volume (red) and then allowed to evolve in time to a near homogeneous configuration (pink). (b) The first three nonzero Fourier modes
in the x direction |py| with k € {27 /L, 67 /L, 107 /L} (from top to bottom) display the expected exponential relaxation with a k-dependent
slope confirming the hydrodynamic behavior. (c) Comparison of the transport coefficient measured using the macroscopic relaxation method
(solid symbols) to the prediction of the Green-Kubo relation (16) obtained from steady-state correlation functions (open symbols) as a function
of activity vy for two interaction strengths, K = 0.5 (blue), and K = 1.0 (red). The dashed (K = 0.5) and dotted (K = 1.0) lines are analytic

predictions from the linear theory. Parameters are in Appendix C.

equations about the steady state (p and p = 0), and trun-
cate the orientation harmonics at p,, since higher harmonics
do not contribute in the limit X — 0. The resulting linear
Gaussian dynamics derived in Appendix C can be solved
analytically allowing us to determine each term in the Green-
Kubo relation, which are all diagonal (C = CI, E = El) with
elements

_ NID + /@D,
X7 Dot wpdo + 03/ 2D’
. Nvg

2D,

C

. E=ND, (23)

where ¢y = lim;_,o ¢ is the zero wave-vector limit of the
pair potential. Combining, we arrive at a prediction for the
transport coefficient

2

vV
D=D D 0 24
1+W%+wr (24)

Weak interactions and activity enhance the diffusion. We
further see for an equilibrium Brownian fluid where vy = 0,
the current-current correlation function vanishes (C = 0), and
the transport coefficient is determined solely by E. Thus in
stochastic models even in equilibrium, E is required for an
accurate prediction of the transport coefficient.

The predictions from this linearized theory (24) are com-
pared to the simulation in Fig. 2(c) where the dashed line
is for the weaker interaction (K = 0.5) and the dotted is the
stronger interaction (K = 1.0). For the weaker interaction
(K = 0.5), the linear approximation agrees well with the sim-
ulations when vy is large. When v is small, the predictions
of the linear theory for both the strong and weak interac-
tions fall outside the error bars, overestimating the transport
coefficient. Even still, the coincidence of the two numerical
measurements of D suggests the macroscopic Green-Kubo
relation remains valid. This illustrates how even when the mi-
croscopic dynamics are nonlinear, the emergent macroscopic
dynamics can still be linear, as emphasized by Van Kampen
[57].

B. Stochastic Kuramoto model

Our second illustration is a variant of the Kuramoto model,
which is a canonical model for synchronization among a large
collection of phase oscillators [58]. In the original Kuramoto
model, all oscillators interacted with each other and evolved
deterministically [59], though later variations included a va-
riety of modifications such as allowing for dynamical noise
[60]. Here, we consider a noisy version with N = L,L, oscil-
lators evenly spaced on a two-dimensional square lattice of
size L, x L, with nearest-neighbor interactions and periodic
boundary conditions. The time evolution of the ith oscillator’s
phase 6; is described by the stochastic equation

0i(t) = Qi+ K Y _sin(0;(1) — 6:(t)) + V2T &),  (25)

J~i

where the sum extends over neighbors of i, and K is the
interaction strength. There are additionally two sources of
noise. The oscillator’s intrinsic frequency €2; is sampled from
a Gaussian distribution of mean  and variance o>. Each
oscillator also experiences white Gaussian dynamical noise
& with a strength characterized by T. When the strength of
noise, o and T, is weak and the interaction K is strong, a finite
system synchronizes and all the oscillators rotate coherently
at a common frequency Q. The effect of the noise on this
synchronization transition has recently been investigated in
Ref. [61].

In the synchronized state, the rotational symmetry of the
equations of motion (25) is spontaneously broken. As a result,
we expect that localized perturbations in phase will relax
diffusively via a Nambu-Goldstone mode. We can see this
explicitly if we consider a small perturbation to the synchro-
nized state 0;(t) = 6y + Qt + 50;(t), where 0, is an arbitrary
offset that emerges when the symmetry is broken. Lineariz-
ing the interaction in (25) by assuming neighboring phases
are close (|66; — §6;] <« 1), and Fourier transforming (6 =
> j 0 je”"’f'), shows that each mode oscillates independently,

80k(t) = Qu — K° K86, (1) + V2T & (t) (k #0), (26)
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FIG. 3. Phase diffusion in the synchronized Kuramoto model: (a) Macroscopic relaxation experiment where the leftmost tenth of phases
are initialized 7 /2 away from the homogeneous state (top). After 1 = 100, the inhomogeneity has begun to diffuse away (bottom). (b) Plot
of the first five smallest k& Fourier modes in the x direction as a function of time, which verifies the expected exponential relaxation. Their
slope (inset) is linearly proportional to k> whose slope is a measurement of D. (c) Comparison of the transport coefficient measured using
the macroscopic relaxation method (solid symbols) to the prediction of the Green-Kubo relation (20) obtained from steady-state correlation
functions (open symbols) as a function interaction strength K for two noise strengths (7, o) = (0.01, 0.01) (blue) and (7', o) = (0.002, 0.005)

(red).

for small k. Upon averaging over the noises, we find that the
average phase relaxes as

3 (80k(t)) = —k*K (86k(1)). 27)

In other words, the phase regresses diffusively with relaxation
time 7(k) = 1/(k?K) characterized by a transport coefficient
D = K that does not depend on the strength of the noises.

The transport coefficient D can also be deduced via the
Green-Kubo relation (20). The exact calculation based on the
linear equation (26) gives for small &,

- No? . N No?
(89k59—k)ss — W, ((SQk(SQ_k)SS ~ —m,
No?

(86080 k)55 = ——. (28)
iw

Consequently, the Green-Kubo relation (20) yields the consis-

tent prediction D = K. See Appendix D for more details on

the linearized theory.

To corroborate this analysis, we estimated the transport
coefficient by two independent numerical simulations. We
first setup an initial nonuniform profile of phase by rotating
the leftmost tenth of oscillators ahead by 7 /2 and observed
the subsequent regression of the first few smallest kK modes 6
in the x direction, as illustrated in Fig. 3(a). Figure 3(b) dis-
plays the expected linear regression of 6, averaged over 100
realizations, whose slope we use to extract D = 1/[k>t (k)]
(inset). Steady-state simulations are then used to deduce D
from the correlation functions in the Green-Kubo relation
(20). Figure 3(c) shows the coincidence of the two different
measurements of D in comparison to the prediction from the
linearized theory (dotted line). As long as the strength of the
noises is weak enough for the system to reach the synchro-
nized state, the transport coefficient D is only determined
by K. See Appendix D for thorough information about the
simulation methods and the error analysis.

VI. COMPARISON WITH EARLIER RESULTS

The near-equilibrium FDT and Green-Kubo relations are
deep, long-standing results, and consequently have been

extensively analyzed and extended in various directions. In
this section, we compare and contrast our present develop-
ments with pertinent earlier literature.

A. Fluctuations and response

In Sec. II, we identified a class of dynamical per-
turbations whose response can be identified as a simple
correlation function, akin to the equilibrium FDT. Gra-
ham has also identified a group of perturbations that
result in an equilibrium-like fluctuation-response equality
[62]. Here, we elucidate the connection between these two
approaches.

To make this connection, let us take a look at the steady-
state distribution of our perturbed dynamics in Eq. (3) with
the external control parameter fixed A(t) = A. The resulting
steady-state distribution, given as the solution of L'P,(z) = 0,
is then approximately

1+10@) _ Py(z)ero®
1 + X(Q>SS - (eXQ)ss

accurate up to first order in A. We see that the steady state
of the perturbed dynamics is approximately an exponential
reweighting of the unperturbed steady state P (z) by the con-
jugate coordinate Q.

For nonequilibrium systems modeled using a Fokker-
Planck equation, Graham previously demonstrated that a
perturbation that changes the steady state via an exponential
reweighting as in Eq. (29) when applied dynamically will sat-
isfy an equilibrium-like FDT, equivalent to Eq. (4). Graham’s
analysis, however, was performed by first deriving a covariant
form of the Fokker-Planck equation and then identifying a
decomposition of the dynamics where it is more natural to
work with exponential shifts in the steady-state distribution.
As noted in Ref. [63], it is perhaps the rather formal math-
ematical language of Ref. [62] that has obscured this earlier
prediction.

Our analysis complements this previous work in two im-
portant ways. Our approach is valid for any Markovian
dynamics and is not restricted to continuous-time, continuous-

PSIS(Z) >~ Pi(z)

: 29
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space diffusion processes modeled via a Fokker-Planck
equation. As such, we identify the pertinent perturba-
tions using the original governing master equation, without
recourse to a covariant formulation. This allows us to iden-
tify the changes in the system parameters directly, as in
Fig. 1.

B. Green-Kubo expressions

Green-Kubo relations for non-Hamiltonian dynamics—
such as hard-core classical fluids or systems described by
stochastic Langevin equations—have been deduced using the
Mori-Zwanzig projection operator method independently by
Ernst and Brito [26,27] as well as by Espaifiol [28,29]. While
those authors explicitly only considered systems near equi-
librium, their arguments trivially extend to homogeneous
nonequilibrium fluids such as those considered here.

The work of Ernst and Brito most closely parallels the
present analysis. They projected directly onto the linear
Langevin equation for the hydrodynamic variables. Espafiol,
by contrast, employed the projection operator method to
obtain the nonlinear Fokker-Planck equation describing the
evolution of the full distribution of the hydrodynamic fluctua-
tions. From this more general approach one can in principle
obtain an equation for the linear regression of the hydro-
dynamic variables through a suitable expansion, as detailed
for example by Zwanzig [25,64]. Thus, both analyses lead
to similar conclusions. In this section, we demonstrate how
our linear response theory derivation of the Green-Kubo rela-
tions agrees with the relations obtained using the projection
operator method. For simplicity and clarity of presentation,
we will assume in this section there is a single conserved
hydrodynamic variable and (j,A_) = 0, so that v = 0 and
E=0.

To state the prediction obtained from the projection opera-
tor method, we first need to introduce a couple of concepts.
The first object we will need is the generator of the time-
reversed [26-29] or dual dynamics [65,66]

L =P )L Ps(z)", (30

where L' is the adjoint operator of L defined by
[ f@)Lg(@)dz = [ g(z)Lf(z)dz. We have also assumed that
there are only even variables under time reversal. If there
are odd variables, one must additionally reverse their sign
by including the time-reversal operator (see Ref. [67] for an
exposition in the quantum context). In the dynamics generated
by L, every trajectory of the original dynamics appears with
the same probability except run in reverse [37]. When £ = L,
the dynamics are said to be detailed balance, and every tra-
jectory occurs with the same probability as its time reverse
[65]. Apart from this interpretation, we will also find useful
the following property of the dual generator,

L[0(z)Py(2)] = Ps(@)LT0(z), (31

which allows us to “commute” the generator L past the
steady-state distribution at the expense of introducing the
adjoint of the dual generator. With the generator and its
dual in hand, we can use them to define time-dependent

hydrodynamic variables in the Heisenberg picture going for-
wards and backwards in time as

QAL (1) = LTAT 1) = ik - ji ), (32)

QAL (1) = —LTAE (1) = ik - J; (1) (33)

Here, the superscript H stands for the Heisenberg picture. We
have also taken this opportunity to introduce local currents
for both the forward ji and time-reversed ]kH dynamics. This
should be contrasted with the conservation equations intro-
duced earlier, where the derivative was taken along a single
dynamical trajectory.

The projection operator method then leads to the following
Green-Kubo relation for the transport coefficient [26-29],

Dy = En%/ (i ) (), (34)
— 0 s

where the subscript on the average (O)p, = f O(2)Py(z)dz
emphasizes that this is a static average over the steady-state
distribution as opposed to the average over steady-state dy-
namical trajectories employed in the rest of the paper, denoted
by (-)ss. Much has been made over the fact that the correla-
tion function in Eq. (34) contains a mixture of the forward
and time-reversed dynamics [26-29]. Indeed, it leads one to
believe that to measure this correlation function one needs
access to both the forward and the time-reversed dynamics in
the same experimental setup. Admittedly, this appears chal-
lenging in an experiment, though the effect of time reversal
can be readily be extracted computationally, as was done in
Ref. [50].

The equality in Eq. (34) appears identical to our expression
for the Green-Kubo relation (16) except under the integral
is a two-time average of Heisenberg operators going in two
time directions as opposed to the forward-in-time current-
correlation function in Eq. (16). In fact, these two expressions
are mathematically identical, and Eq. (34) is simply the
Heisenberg representation of a current correlation function.
To see this, observe that

ik - (1 72 O),, - ik

_ / dz[¢F LT A [£TA 1 @)]Pu2)

- / dz A @) LA 1 @)Pu(@)], (35)

where in the last line we used Eq. (31). Next, we can recognize
the resulting operator expression as the time derivative of
the steady-state correlation function upon comparison with
Eq. (5), to find

ik - (7" O),, - ik = =80, (A (A _1(5)) sl
= ik - (D)) 4 (O),, - ik. (36)

Thus, the Green-Kubo relations obtained using the projec-
tion operator method contains the same current-correlation
functions as obtained here, but expressed in terms of the
Heisenberg picture.

When the dynamics are stochastic or not time-reversal
symmetric, it is not well appreciated that when standard
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correlation functions are expressed in the Heisenberg picture
they include the time-reversed or dual dynamics. This point
may have interfered with the widespread understanding that
the projection operator method when applied to the study of
nonequilibrium fluids leads to predictions equivalent in form
to equilibrium.

VII. CONCLUSION

We have identified a class of perturbations whose response
verifies an equilibrium-like fluctuation-response equality.
This allowed us to rationalize Onsager’s regression hypoth-
esis around nonequilibrium steady states and served as the
foundation of a systematic method to extract linearized hydro-
dynamic transport equations around homogeneous nonequi-
librium steady states. The key resulting predictions were
Green-Kubo relations that link hydrodynamic transport co-
efficients to steady-state fluctuations, which were verified in
two models both analytically and numerically. As for the
traditional equilibrium Green-Kubo relations, our approach
here complements results for non-Hamiltonian and stochastic
systems based on the projection operator method [26—29].
In the projection operator method, one must conjecture a
criterion to single out a projected state that contains all rel-
evant macroscopic dynamical information. On the other hand,
we make no assumptions about the microscopic distribution
corresponding to the inhomogeneous state and thus avoid the
choice of projected state; however, we do assume that our
perturbation generates a response that captures the long-time
correlations. As a result, we naturally find Green-Kubo ex-
pressions in terms of simple steady-state correlation functions.

Our derivation of Green-Kubo relations is valid for any
system as long as the microscopic dynamics is Markovian
and the steady state is statistically translationally invariant.
Relaxing the Markovian assumption may be possible, since
non-Markovian dynamics can be made Markovian by intro-
ducing auxiliary variables [36]. Another important direction
is to inhomogeneous boundary-driven steady states, when the
environmental interactions can be modeled via Markovian
stochastic processes.

Finally, near-equilibrium time-reversal symmetry implies
that cross-transport coefficients are equal, a prediction known
as Onsager reciprocity [23]. The microscopic expressions for
transport coefficients valid far from equilibrium derived here
open the door to studying the violation of Onsager reciprocity
as well as its connection to time-reversal-symmetry breaking
and dissipation.

ACKNOWLEDGMENTS

We thank Suriyanarayanan Vaikuntanathan and Alexandre
Solon for valuable discussions. We also thank Freddy A.
Cisneros for providing us the simulation code for the ABP
simulations.

APPENDIX A: EQUILIBRIUM-LIKE
FLUCTUATION-RESPONSE RELATION

In this Appendix, we derive and analyze the equilibrium-
like fluctuation-response equality (4).

To proceed, we will solve to linear order the master equa-
tion of the perturbed dynamics

0;P(z,t) = LP(z,t) — A(t)L[Q()P(z,1)].

We assume the unperturbed system (A = 0) relaxes to a
unique steady-state distribution Pi(z) given as the solution
of LPi(z) = 0. Taking the initial condition at t = —oco as
the steady-state distribution P(z, —00) = P(z), the formal
solution of (A1) is

(AD)

t

Pz 1) = P(@) — / dsi(s)e"VELIO@Ps @], (A2)
—00
up to linear order in the perturbation. Accordingly, we arrive

at Eq. (4) for the response of an observable,

<0(t)> - <0)ss
__ / ds 3 (s) / dz 0" VL LIOE)P(2)]

—00

:f ds h()(O)Q(5)) s (A3)

Here, we have identified the time-translationally-invariant
steady-state correlation function, which is defined for any two
observables, O (z) and 0,(z), by

(01(1)02(0))ss

_ / dzdZ 0P, 112, 0)0>(Z)Ps (@)

= / dz 01(2)e“[02(z)Ps(2)] (A4)
in terms of the transition probability P(z, f|z’, 0) obtained as
the solution of (A1) with a delta-function initial condition
3z —17)).

The defining characteristic of this perturbation is that the
conjugate coordinate Q(z) appearing in the perturbation ap-
pears naturally in the response correlated with the observable.
Since this attribute is central to our analysis, we next deduce
the class of perturbations with this property.

To this end, consider the dynamics in the presence of a
generic linear perturbation

0,P(z,t) = LP(z,t) — AMt)MP(z, 1), (AS)

for an arbitrary linear operator M suitably well behaved.
Following the identical linear perturbation theory analysis as
above, we find that the response of an observable to this
perturbation is

(0@)) = (O = — /

o0

ds A(s)/dz O(Z)e(l_s)L‘MPss(Z)-

(A6)

By comparing Eqs. (A3) and (A6), we see that the con-
dition that the linear response to the perturbation of M is
identical to £(Q-) is

/ ds )\.(S)/ dz O(Z)@(tis)LMPss(z)

—0Q0

_ / s 1(s) f d2 0@V LIO@P@)]. (A7)

oo
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To satisfy (A7) for an arbitrary observable O, the action of the
generator M on the steady-state distribution must be the same

as L(Q-):
MP(z) = LIQ(z)Pss(2)]-

In Sec. II, we demonstrated that our dynamical per-
turbation (3) is equivalent to perturbing the energy of a
deterministic Hamiltonian dynamics. We can now use our
equivalence condition (A8) to demonstrate that perturbing
the potential energy of an equilibrium system generates the
same response as our perturbation (3) for a broader class of
nondeterministic dynamics.

To this end, we consider a general underdamped Langevin
dynamics whose generator is given by (arguments are sup-
pressed for clarity)

(A8)

LP = —(V,H) - (V4P) + (V H) - (V,P)

where ¢ and p are collective notations for the positions
and momenta of all constituent particles, H = H(q, p) is a
Hamiltonian-like energy function, f,. is a nonconservative
force, G is a matrix describing friction, and T is a matrix
describing thermal fluctuations. The underdamped Langevin
dynamics (A9) encompasses (i) Hamiltonian dynamics as a
special case where f,. =0 and G =T =0 and (ii) over-
damped Langevin dynamics as a limiting case where friction
and thermal fluctuation are strong.

We define a potential energy perturbation as a change of the
energy function H(z) - H(z) — A(t)U(q), whose generator
is given by £ — A ()M with

MP(z, 1) =[VU(@] - [VpP(z, 1)]. (A10)

Let us compare this with our perturbation (3) with the choice

Q@) =U(g),
£[U(q)Pss(Zg H]= _Pss(Z)[VpH(Z)] : [VqU(q)]

The equivalence condition (A8) then implies the potential
energy perturbation is equivalent to £ — A(t)LU (q) if

VpPss(Z) = _Pss(z)VpH(Z)y

(A11)

(A12)

or equivalently, In P(z) = —H(z) + h(q) for any arbitrary
position-dependent function h(g). The condition (A12)
is satisfied at equilibrium where the steady-state distri-
bution is given by the Boltzmann distribution Py(z) =
e 1@ /([ dze™ @) in units of B = 1. Therefore, the potential
energy perturbation H (z) — H(z) — A(¢t)U (g) is equivalent to
L — A(t)LU (g) at equilibrium.

APPENDIX B: DERIVATION OF
GREEN-KUBO RELATIONS

In this Appendix, we elaborate the connection between
the equilibrium-like fluctuation-response equality and Green-
Kubo relations in the presence of multiple hydrodynamic
variables.

Consider a system with n hydrodynamic variables,
{Aﬁ‘ @)}rey Witha =1, ..., n, locally defined at each location
r. In a homogeneous steady state, the hydrodynamic variables

have uniform mean values A% = (Af)ss. Hydrodynamic trans-
port coefficients describe the rate at which an inhomogeneity
relaxes away as the system approaches the homogeneous
steady state. In order to exploit (4) to derive Green-Kubo
relations for hydrodynamic transport coefficients, we choose
the form of the perturbation functions to be

0@) = / drA®@)f*, A1) = e O(—1), B1)

v

where € is a positive constant which we will eventually take
to zero so that that perturbation is turned on slowly and ®(¢)
is the Heaviside step function forcing the perturbation off at
t = 0. The conjugate fields f,* are arbitrary as long as all inte-
grals converge. The Einstein summation convention is adapted
for repeated greek indices (1 < «, §, y < n) throughout this
Appendix. Under these choices, equality (4) for O = 814‘," =
A% — (A%) implies

(BAZ (1)) = (A2 (1)) — (A7)
0
= / ds / dr' o, (A OAL (s))so ! (B2)
—00 14

fort > 0. We eliminate the time integral by first integrating by
parts and then taking the limit ¢ — 0 (adiabatically turned-on
perturbation),
(847 (1)) = / dr' (A7 (DAL (9)ss ) - (B3)
v
Using the translation invariance of a homogeneous steady
state (A%(1)AL(0))ss = (A% ()AL (0))ss and an exchange of
integration range [, dr [, dr' =~ [, d(r —r') [, dr’ for alarge
system size V' twice, we obtain a compact symmetric expres-
sion for the Fourier modes A} = [, drA? e as

((SAAZU)) ~ /d(r_r/)<AAf_,/(I)Ag(O))Sseik'(’*")
\%4

! B ik-r
X/Vdr fie

1 o o
v /V dr /V dr (A% ()AL (0)) ™) fF

R

L g it g
= V(Ak(t)A,k(O))ssfk- (B4)

The choice of fkﬁ is immaterial since it can be eliminated by
the initial condition (842 (0)) = (A2(0)A”  (0)s 7 /V.

Although equality (B4) is based on the particular ensemble
generated at ¢ = 0, the long-time behavior of the hydrody-
namic modes is insensitive to this initial ensemble. At the
same time, the long length-scale and timescale relaxation
behavior of hydrodynamic variables A = (814,‘:) towards the
homogeneous steady state will be well captured by the linear
regression equation

98A% (1) = —MP5AP (1) (B5)

with a generalized transport coefficient Mj. The connection
between microscopic and macroscopic dynamics can be made
by noticing that particularities of the initial ensemble at = 0
will die out fast and (B4) should become universal at long
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length scales and timescales. Therefore, comparing (B4) and
(B5), we conclude that the equality

B (A (DAY L (0))ss = =M (AL (DAY L (0))ss (B6)

holds at long times for small k = |k|.

In the following, we make use of the procedure to drive
Green-Kubo relations for equilibrium transport established by
Oppenheim and collaborators [33,34]. We begin by manip-
ulating (B6) into a form that makes as many of the time
derivatives explicit as possible, allowing us to do an expan-
sion for long times and small k. To this end, we note that
the long-timescale dynamical information is contained in the
small frequency modes of the half-Fourier transform 84, =
o dte" A(t). Taking the half-Fourier transform in time, we
can express (B6) in two ways: first, by directly taking the
half-Fourier transform

(AL A7 (0)) = —MP (AP A7 (0))ss, (B7)

or, second, by using the transform to replace a time derivative
with a frequency as

—iw(A%, A7 L(0))ss + M (AP AV (0)s = (AZAY )ss.
(B8)

For brevity, from now on, we will suppress the time argument
t = 0 unless especially necessary for clarity, thus A}:k(O) =

AAZk so on. Next, we multiply (B8) by M, F and then substitute
(B7), to obtain

—iw (AL A Vs +MEP AL AV ) = —MEPAPAY ).
(BY)

Then we remove the frequency via the identities (i)
—za)(A,‘ijy Yss = (A A K)ss — (A,‘fw A_k)bs, which can be
proved by integration by parts, and further utilizing the sta-
tionarity (ii) (Afwfizk)ss = —(AfwA)ik)sp Equation (B9) then
becomes

(AYAY )i — (AL, + MIPAD HAY )

P (B10)
aB B AV

M, " (A AT )ss

from which we can derive Green-Kubo relations for hydrody-
namic transport coefficients.

It is useful to define a dissipative rate 3,‘2‘ ) = AA,‘;‘ )+
M,‘:’S A,’f (t). From equality (B7), the correlation (B¢ A”, )
vanishes in the hydrodynamic limit, suggesting that the fluctu-
ations of B“ decay on microscopic times. Thus, the dissipative
rate B" represents the rapidly fluctuating part of Ay. Since
<B,°:wAZk>ss = (Bg, (B, — MYRAP ) = (Bg, B ), we can
alternatively express (B10) in the compact symmetric form

(AQAY ) — (BE B ) = —MP(APAY ). (B11)

More generally, time-retardation effects in the macroscopic
dynamics by allowing the generalized transport coefficient to
frequency-dependent My, [4]. Repeating the same algebraic
procedure in this case leads to the same end result (B11)
except for the replacement of M’ F by My (f . For simplicity,
we adhere to the frequency-independent case.

The last step in the derivation of Green-Kubo relations is
to connect hydrodynamic transport coefficients to the micro-
scopic correlation functions using equality (B11). To this end,
we assume that the generalized transport coefficient can be
expanded as a series in ik in the hydrodynamic limit, which
is equivalent to a gradient expansion in real space. The first
two (multicomponent) coefficients v and D of the expansion
Ml‘:ﬁ ~ —ik - v*# +k-D* -k +--- describe the drift and
diffusive behavior of the macroscopic dynamics, respectively.
Inserting this expansion of M}, into (B11) and comparing the
terms order by order in k, lead to the Green-Kubo relations.
Although this procedure can be done generally without any
assumption on the hydrodynamic variables A%, it can be sim-
plified for local densities of conserved variables owing to
corresponding continuity equations. Thus, we derive Green-
Kubo relations for local densities and Nambu-Goldstone
modes separately.

1. Local densities

Local densities of conserved variables satisfy continuity
equations 9,AY = —V - j7, which define the corresponding
local currents j;'. The continuity equations in Fourier space,
A,‘Z = ik - ji, make explicit that the rates of change of local
densities are at least linear in k. The dissipative rates BY =
A‘," + Ml‘:ﬁfil’f ~ ik - (ji — v“’sfif) + - - are also proportional
to k in the small-k limit, which suggests the definition of
dissipative currents I} = ji — v“’sAf [33,34]. Plugging the
definitions of currents into (B11) leads to

ik - (GRAY s — k- (g 17 )ss - K
o (B12)
= (ik - v —k-D*F k4. ) APAY ).
Defining the static correlation function as 7P =

limy o (AfA7
find for v*#

)ss and comparing linear terms in k, we

v = lim (AT ). (B13)

The dissipative-current correlation term k - (I} I ]:k)ss -k does
not appear, since it is at least quadratic in k. By introducing a
first-order correction matrix E*¥ via

<JkA ) IRLE ﬁV+EaV ik+---,

we can also derive a Green-Kubo relation for D*# by compar-
ing second-order terms,

Olﬁ~ﬂy_ . . o y oy
D 777 = lim lim (I, 17 )y + E°7.

(B14)

(B15)

2. Nambu-Goldstone modes

Nambu-Goldstone modes, which emerge when a continu-
ous symmetry is broken, are not necessarily conserved. Thus
the corresponding local currents are not defined in general due
to the absence of continuity equations, and thus the k depen-
dence of the rate A,"(‘ is not simple. Moreover, steady states
with a broken continuous symmetry are characterized by a
long-range correlation, which is indicated by the divergence
of the limit limkﬁo(AfAAZk)ss. Due to the absence of local
currents and finite static correlation functions, which made
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the derivations for local densities simpler, we need to consider
the small-k expansion of (B11) more generally. Thus, we take
a divergence of the form (AAIEAAZk)SS ~ k~9 with an arbitrary
exponent g. We recall (B10) here for convenience:

(ALAY )i — (AL, + MOPAP VAT ) = —MPP (APAY ).

(B16)

To be consistent with macroscopic regression, the leading or-
ders must balance in the small-k limit. Therefore, comparing

J

k-v*? = lim lim —
w—0k—0 1k

(<A§:AV s

the leading-order terms of k after taking the following con-

siderations, we obtain a Green-Kubo relation for v*#: First,
A A S, 4 ~ .

the term M (AL, A7 ) = MM (A} A7 ) is clearly a

higher-order correction. Second, in contrast to locallden.smes

for conserved quantitie?s, there is no guarantee that (AgwAfk)ss

is higher order than (AA,‘ijAZk)SS. Lastly, we define the inverse

matrix [(A¢A 4)s]™" such that (A7A”, ) - [(Akd &)i7d =
8. Consequently, we have

PR 1

— AgA7)8) - [Aed 0] (B17)

withk =k /k. The next order correction leads to a Green-Kubo relation for D*#,

k-D* .k = lim lim

w—0k—

(<(Akw

It is noticeable that (B17) and (B18) are reduced to (B14) and
(B15) when the mode is conserved. In fact, (B17) and (B18)
are generally valid for any hydrodynamic variables, since they
are derived without any prior knowledge about A,"“.

APPENDIX C: ACTIVE BROWNIAN PARTICLES
1. Linearized Dean equation

In this Appendix, we derive a coupled linearized Dean
equation for a system of active Brownian particles. For the
sake of readability, time arguments are suppressed in this Ap-
pendix unless strictly necessary. The resulting linear equations
predict a Green-Kubo relation for the diffusive transport coef-
ficient D for the case of soft interactions at a high density. We
recall the equations of motion for active Brownian particles

(1),
Fi(t) = voe(6i(1)) + uFi(t) + /2D, &),
6i(1) = 2D, n(t), (CD)

where F; = =V, )" i ¢(|r; — r;|) with an interaction poten-
tial ¢(r); simulations are performed with the specific choice
o(r) = (K/2)(r — a)*®(a — r). The time evolution equation

J

ikv P AL YAY ) —

1

(A — ko P ADA ) - [AiA )]y

(B18)

i

of the local particle number density p, = 27:1 8(r—rj),
known as the Dean equation [55], is not closed. Instead, it
is determined by an infinite hierarchy involving the local
harmonic densities whose nth orders are defined by

N
" =" cos(nd;)8(r —r;), (€2)
j=1
and
N
s =) sin(nd)s(r —r)). (©3)
j=1

The particle density corresponds to the zeroth-order har-
monic density o, = cﬁo), and the first-order harmonic densities
are distinguished as the local polarization density p, =
eV, sV = Z] , €(6,)8(r — r;). However, it was shown out
that the infinite hierarchy of equations can be truncated at the
first order in the hydrodynamics limit [68]. In what follows,
we shall ignore the higher-order harmonics.
The truncated coupled Dean equations are then given by

Pr = _Vr . (Uopr - ,LL/ dr/ prpr’vr¢(|r - r/|) - Der,Or + ;f>’ (C4)
\%4

. U / / T IO
p,=—3°Vrpr+vr'<Mfdr ProrVep(Ir —v'|) + D,V,p, — €’”) D,p, — P, (C5)
\4

where the noise fields are constructed as

N
& =2D, ) &8 —r)), (C6)
j=1

N
= V0 L8 (g e . “

prot_ /3D, Z <C089 )8('._"]). ©8)
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The nonlinear terms in (C4) and (C5) can be lin-
earized by assuming the fluctuations around the homogeneous
state are small. Since the homogeneous state does not
exhibit any spatial discrete symmetry, the homogeneous
densities are p = N/V and p = 0. The fluctuations around
this homogeneous state are then denoted by p, = p + 80,
and p, = ép,. Neglecting the second-order terms in the
fluctuations 8,60 and 8p,6pr, We can approximate the
interaction as

/ dr' X.peV,p(Ir —r'|) ~ XV,/ dr' Spr¢p(jr —r'))
v v
(€9)

for X € {p, p}. Applying (C9) to (C4) and (C5), and taking
the Fourier transform in space, we obtain the following lin-
earized equations,

8 = ik - vopy — k*(Dy + updi)dpr + ik - &, (C10)

P = ikvopx — (Dr + 2D, )py + ik - g0 — ™,
(C11)

where ¢ = [ dre®*"¢(r). This type of linearization of the
Dean equation is known to be accurate for soft interactions
at a high density [56].

Since all the steady-state covariances of the noise fields in
(C6)—(CS8) are constant, we can replace multiplicative noises
in (C10) and (C11) with additive noises in the homogeneous
steady state. Consequently, in the homogeneous steady state,
(C10) and (C11) become coupled linear stochastic equations
with additive noises,

( 8/ )= _|_.< Sk >+ <V ZkszNAl(cO)), (C12)

ik - py ik - py VK*D,NA"

with matrix

(C13)

L — K2(D; + updo) —vo
=0 kw2 D, )

The noise fields A,(c”)(t) are  characterized by
(A OAD ) = Sund(k + K3 —1').

Equation (C12) belongs to the class of the multivariate
Ornstein-Uhlenbeck processes, whose covariance matrix is
analytically solvable. We define the steady-state covariance
matrix of 8 pox and ik - p; as

Yy — ( (5:0k5:07k>ss
<(lk : pk)(sp—k)ss

(6 p(—ik - p_))es
((ik - py)(—ik ~p_k)>ss)’ (€14

which satisfies the matrix algebraic equationL - ¥ + ¥ - LT =
KEN diag{2D,, D,} [36]. The two-time correlation function
of 8y is given by (8px(1)8p_(0))ss = [e~"~ - £]11. Thus we
have

7 = im (8 k8 Pk )ss
X kl_l'}})(pkpk)“

D, +v%/(2D,)

= hm[Z]” = — 3 N, (CIS)
k=0 D: + upeo + vy/(2D;)
Sodpi)s .. [L-T
E = — fim OP0P—ss _ o L2l g
k—0 k2 k=0 k2

C = lim lim {8Pkwdp—k)ss

w—>0k—0 k2
. L2 (il + )7y
= — lim lim
w—0k—0 k2
v
= N. (C17)
2D,

In conclusion, the linearized Dean equation predicts that the
transport coefficient is given by

2

— _ Y,
D=7 '(C+E)=D; + upgo+ -

. C18
D, (C18)

Noteworthy is that § oy, is the same as py as long as k is nonzero
since the offset [, dre*"p = N§(k) only contributes at
k=0.

2. Numerical simulations

We measure the transport coefficient D in two indepen-
dent numerical simulations. ABP simulations were performed
using a bespoke computer code implementing the Euler algo-
rithm in PYTHON v2.7.16. The length scale was set by a = 1,
the force scale by setting ;+ = 1, and the timescale by setting
D, =10 and D; = 0. All simulations were performed at a
density of p = 1. The integration time steps are chosen to
be Ar = 0.001 for relaxation simulations and At = 0.005 for
steady-state simulations. The simulations are performed for
ten combinations of two interaction strengths K € {0.5, 1} and
five self-propulsion speeds vy € {1, 2, 3, 4, 5}.

a. Relaxation simulation

We first measure D directly by observing the regression of
pr- Due to the noise in the data, we only use the smallest-k
mode to measure D. Initially, we place N = 1600 particles
uniformly in the region between x = L/4 and x = 3L/4 and
y from 0 to L, with L = 40, and then simulate the particle
dynamics for 10° time steps. The time series of the Fourier
modes of the local particle number density is calculated from
the position data. We only observe the x-directional mode, i.e.,
k = (2n /L, 0). For a given parameter set (K, vy), we perform
ten independent simulations to get ten time series of px. Each
mode pj decays exponentially with an exponent —1/t. We
first measure the decay exponent 1/t for ten samples, and then
estimate D from 7 /(27 /L)?. Taking the average and standard
error on the mean over ten independently measured D, we
estimate the transport coefficient and its error.

b. Steady-state simulation

Second, we deduce the transport coefficient from the
Green-Kubo relation Dy = C + E where

¥ = lim K )sss
X k_)o(pkp K)ss

€= lim fo dt Ge()j—1(0))s, (C19)

E = lim (]kpik)ss.
k=0 ik
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Since the particles do not prefer any particular direction, the
drift coefficient vanishes v = 0. To this end, we measure the
steady-state correlation functions (ox0—k)ss» {JkP—k)ss» and
(Jk(t)j-x(0))ss numerically. The local current jj is calculated
by taking the x component of

N ikr;(t) ikr;(t—At) ) )

. e it 4 et T ri(t)—r;j(t — At)

o =2 I ‘
= 2 At

Jj=

(C20)

The system size is chosen to be L = 20 for the steady-state
simulations. To estimate the limiting value of the correlation
functions for k — 0, we use the smallest-k mode as an ap-
proximation instead of taking the extrapolation from several
modes. This is because the extrapolation is not reliable due
to the noise in data and the small system size. To calculate
the steady-state correlation functions, we assume that the
system is ergodic and replace the ensemble average with a
time average, i.e., (O1(1)02(5))ss = lim7_ o0 % fOT dr' o, (t +
t")Oy(s +t') for any observables O; and O,. We run a sin-
gle long simulation for 4 x 10° time steps and drop the first
8 x 10° steps to discard transient dynamics.

The details of estimating the three quantities in (C19) are
as follows. First, we estimate ¥ as the correlation function
(pkp—k)ss of the smallest-k mode. Second, we estimate E
by the slope of Im{{jxp_x)} as a linear function of k in the
small-k regime. To measure the slope, we use the first two
smallest-k modes. Lastly, assuming an exponential decay of
(@) j-k(©))ss = (jij—k)sse™"/*, we estimate C from 7 (j§)s.
The two-time correlation (jy(#)jo(0))ss is calculated using the
Wiener-Khinchin theorem [36], and 7 is estimated from a
least-squares linear fitting on In(jo(¢)jo(0))ss as a function of
t. To analyze the error, we divide the time series of py and ji
into ten blocks and repeat the estimation of D for each block
of data. The error of D is estimated by the standard error on
the mean over the ten estimations.

APPENDIX D: NOISY KURAMOTO MODEL
1. Linear approximation

In this Appendix, we derive a linear approximation to
the noisy Kuramoto model near the synchronization state.
Owing to the linearity, correlation functions can be obtained
analytically, and thus the transport coefficient of the Nambu-
Goldstone mode can be deduced from a Green-Kubo relation.

We recall the stochastic equation that governs the time
evolution of the ith oscillator (25),

N
0:(t) = Qi + K Y _sin (0;(t) — 0,(1)) + V2T &(1), (D)

i

where the sum extends over neighbors of i. The oscillators
are evenly spaced on a two-dimensional square lattice and
the position of the ith particle is denoted by r;. The intrinsic
frequency €2; is sampled from a Gaussian distribution with
mean  and variance 2. In the synchronized state, the oscil-
lators rotate coherently at a common frequency £, so that each
oscillator deviates slightly 0;(t) = 6y + Qt + 86;(¢), where 6
is an arbitrary offset. Assuming the phase differences between

neighboring oscillators are small, we approximate the interac-
tion in (D1) as

K> sin@;—0)~K Y (6;—6)

J~i J~i

=K ) (80, — 56).

J~i

(D2)

Then, near the synchronized state, the time evolution of
the Fpurier modes 66, = Zj 89,-@”‘"/ is governed by the
equation

80k = — 2K (2 — cosk, — cosk,)80k(1)
+ V2T N (1),

with noise correlations (¢ (£)gy (t')) = §(k +k')8(t — t'). For
long-wavelength modes, we can linearize (D3) in k to obtain
the approximated linear equation

D3)

80k (t) = % — kKPK86(1) + V2T NGk (1), (D4)

with the solution

t

80k (t) = e K50, (0)+ / dt' e RK Q4+ V2T NG (1))
0

(D5)

Utilizing this solution, we can obtain the steady-state equal-
time correlation function from the long-time limit
(86 80—k }ss
(uQ_) TN (D6)
KKK
which depends on the disorder. Since the intrinsic frequency

of each oscillator is independent of the others, the frequency
correlation function is given by

= lim (864 (1)804(1)) =

N N

@80 = 3 T (@000

1 1

m‘.
-
Il

o (D7)
— Z Zo,z(sjlelk-(rj—rl) — O'2N,
=1 1=1
leading to
02N ;KT
(506801 )e = W(l n 7k2). (DS)

Other correlation functions involving time derivatives can be
obtained from the two-time correlation function

(804 (1)80_1(0) s = (86480t )sse™ XK

02N ;KT ,\ _ox P9
= e (14 ke
Explicitly, we have
(80x80_i)ss = 1im B, (864 (1)80k(0))ss
o2N KT ,
aierd (ha= BRI
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<wmw%m=—/ dt ¢ 92 (56 (11561 (0))ss
0
0N KT
=—|1 —kz).
iw— k2K< + o2

Green-Kubo relations (B17) and (B18) give the transport co-
efficients as

(D11)

(80k860_k)ss — (80kwd0 _i)ss

v = lim lim . =0, (D12
w—0k—0 ik (36,80 _k)ss
and
89 86_ s — 89 80 _k)ss
D = lim lim L0ke20 K = OOt _ g 3

w—0k—0

k2 (89k897k>ss

2. Numerical simulations

We measure the transport coefficient D in two independent
numerical simulations. Simulations of the noisy Kuramoto
model were performed using a bespoke computer code im-
plementing the Heun algorithm [69] in PYTHON v3.7.4. The
integration time steps are chosen to be At = 0.001 for the
relaxation simulations and At = 0.01 for the steady-state sim-
ulations. The phases of oscillators are defined in the range
of [—m, ], and the average phase is set to zero. This is
equivalent to choosing a comoving frame of reference. The
simulations are performed for eight combinations of four in-
teraction strengths K € {1, 2, 3, 4} and two noise strengths
(T, o) € {(0.002, 0.005), (0.01, 0.01)}.

(@1
L 038 0.93t
= 0.92f
0.91f
0.6f 0 50 100
t
0 20 40 60 80 100
t
(b) 15
=0
t =100
,310*
=
ol
i |
0.0 0.5 1.0 1.5
0

FIG. 4. The relaxation to the synchronized steady state is ob-
served from the changes of two quantities. (a) The order parameter
increases with time. The pink lines show the changes in the order
parameter for 100 independent simulations. The red line shows the
change in the ensemble-averaged order parameter, |Z§]:1<ei9j)ss|-
(b) The initial bimodal phase distribution approaches a unimodal
distribution as time passes. The system parameters are chosen as
(K, T,o0) = (4,0.002, 0.005).

a. Relaxation simulation

We first measure D directly by observing the regression
of |(6)| for the first five modes with the smallest k£ values.
To obtain the average (), 100 independent simulations are
performed for a given parameter set (K, T, o). The intrinsic
frequencies €2; and the noise trajectories &;(t) vary by sample.
The initial phases are assigned to be 7 /2 for a leftmost tenth
of the oscillators and O for the others. The system size is
L, = 1000 and L, = 20 and simulations run for 103 steps. The
time series of 6 is calculated from the phase data. Only the
x-direction modes are observed so as to see the slowest regres-
sions. That is, the wave vectors of the observed modes are k =
2r/Ly)n with n € {(1,0), (2,0), (3,0), (4,0), (5,0)}. The
averaged modes |(f)| decay exponentially with exponent
—1/t(k). We first measure 1/7(k) for the five different k by
least-squares linear fittings of In | (6 )|. Then a quadratic fitting
of 1/t (k) provides an estimate for D. The error is estimated
from the standard deviation of the quadratic fitting.

0.20¢ 1)
- 0.157
< 0.10 e

0.05} .

—0.316k2 + 3.976

0.0 0.2 0.4 0.6 0.8 1.0
k

FIG. 5. Steady-state correlation functions of the noisy Kuramoto
model for a set of parameters (K, T, o) = (4,0.002, 0.005). The
dashed lines in (a) and (b) are the correlation functions obtained from
the linear approximation, (D8) and (D10). The orange solid line in
(c) is obtained by a weighted least-squares fitting, and the legend
shows the fitting values.
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The relaxation from the inhomogeneous initial state to the
synchronized homogeneous steady state is also observed from
two other quantities. The order parameter of the Kuramoto
model, defined by the absolute value of re® = ﬁ 21;;1 e,
quantifies the extent to which the phases of oscillators are
synchronized. Figure 4(a) shows the order parameter of the
system increases with time, indicating a relaxation to the
synchronized steady state. Also, the phase distribution P(8, t)
in Fig. 4(b) shows the unsynchronized phases (6 = 7 /2) grad-
ually absorb into around the synchronized phases (6 = 0).

b. Steady-state simulation

Second, we deduce the transport coefficient from the
Green-Kubo relation (20). Since the linear theory predicts
(ékwé_k)ss is much smaller than (éké‘_k)SS by the factor k%, we
estimate the transport coefficient by the ratio

<ék97k>ss

D=—-—lm——.
k—0 k2 (OkO—k)ss

(D14)

To this end, we measure the steady-state correlation functions
(OrO—k)ss and (6x0_g)ss numerically. The system size is chosen
by L, = L, = L = 20 for the steady-state simulations. The
first 18 modes with the smallest k values are observed. That
is, the wave vectors of the observed modes are k = (27 /L)n

with |n| € {1, \/5, 2, \/5, 3, \/g, \/E}. The degeneracies of
the modes are {2, 2, 2,4, 2,2, 4}, respectively. To calculate
the steady-state correlation functions, we assume that the
system is ergodic and replace the ensemble average with a
time average, i.e., (O1(¢)02(s))ss = lim7_ % fOT dr'O,(t +
t")Oy(s 4 t') for any observables O; and O;. Since the linear
theory predicts the relaxation time is (k) = 1/(k*K), we
run a single long simulation of [5 x 10% 4+ t(k = 27 /L,)/At]
time steps and drop the first 7 (k = 2 /L,)/ At steps to discard
transient dynamics. We perform a weighted quadratic fitting
on {(Ok0_1)ss/ (k2 (6k0_k)ss) With respect to k so as to get its
limiting value for k — 0. The weighting factor is the inverse
square of the error. We estimate D and its error by the fitting
value a of the fitting function a + bk and its standard devia-
tion, respectively.

To estimate the errors of correlation functions, we
found the effective independent number of data points
Reft = trun/[2tcorr (k)] by measuring the correlation times of
Ok (1)0_x(t) and 6, (t)6_x(¢) directly, where ty = 5 x 103 is
the simulation time and f.o(k) is the numerically measured
correlation time. The errors are estimated by the standard
deviations of 6 (t)6_ () and 6 (¢ )6, (¢) divided by the factor
A/Neie [38]. The error of the ratio between two correlation
functions is determined by the rule of propagation of errors.
Figure 5 exemplifies the k dependence of steady-state correla-
tion functions for a fixed set of parameters.
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