
PHYSICAL REVIEW RESEARCH 3, 043160 (2021)

Toward relaxation asymmetry: Heating is faster than cooling
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An asymmetry in thermal relaxation toward equilibrium has been uncovered for Langevin systems near stable
minima [Phys. Rev. Lett. 125, 110602 (2020)]. It has been shown that, given the same degree of nonequilibrium
of the initial distributions, relaxation from a lower temperature state (heating) is faster than that from a higher
temperature state (cooling). In this paper, we elucidate this relaxation asymmetry for discrete-state Markovian
systems described by the master equation. We rigorously prove that heating is faster than cooling for arbitrary
two-state systems, whereas for systems with more than two distinct energy levels, the relaxation asymmetry is no
longer universal. Furthermore, for systems whose energy levels degenerate into two energy states, we find that
there exist critical thresholds of the energy gap. Depending on the magnitude of the energy gap, heating can be
faster or slower than cooling, irrespective of the transition rates between states. Our results clarify the relaxation
asymmetry for discrete-state systems and reveal several hidden features inherent in thermal relaxation.
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I. INTRODUCTION

Systems attached to thermal reservoirs will relax toward a
stationary state. Such thermal relaxation processes are ubiqui-
tous in nature and possess rich properties from both dynamic
and thermodynamic perspectives. One of the counterintuitive
behaviors is the Mpemba effect [1], where cooling a hot
system is faster than cooling a cold system. Such nonmono-
tonic relaxation phenomena have been observed in various
systems [2–6] and theoretically analyzed for microscopic
dynamics [7–9]. In addition, it was found that cooling a
system before heating it could lead to exponentially fast
relaxation [10]. From the perspective of thermodynamics,
thermal relaxation processes exhibit universal relations re-
garding irreversibility, which is quantified by irreversible
entropy production [11]. Notably, it has been shown that
irreversible entropy production during thermal relaxation is
lower bounded by information-theoretical [12–14] and geo-
metrical [15] distances between the initial and final states
in both classical and quantum regimes. These relations im-
ply stronger inequalities than the conventional second law of
thermodynamics and impose geometrical constraints on the
possible relaxation path. Since thermal relaxation is important
in condensed matter [16] and heat engines [17], deepening our
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understanding of thermal relaxation would benefit research in
these areas.

Consider preparing a thermal state corresponding to a
given temperature via thermal relaxation, i.e., attaching a
system to a single reservoir and allowing it to relax toward
equilibrium. In this setting, the relaxation time is a quan-
tity of interest and can be approximately estimated via the
convergence rate of the system state toward the equilibrium
state [18]. Given two identical systems initiated in thermal
states, one at a lower and the other at a higher temperature
than the given temperature, a natural question arises: which
one relaxes faster? Recently, this question has been addressed
by Lapolla and Godec [19] for continuous-state Langevin sys-
tems. By considering a pair of thermodynamically equidistant
temperature quenches (which have the same nonequilibrium
free energy difference), they unveiled an unforeseen asym-
metry in thermal relaxation; i.e., relaxation from a lower
temperature is faster than that from a higher temperature.
Roughly speaking, it implies that heating up cold objects
is faster than cooling down hot objects. This phenomenon
has been proven for quenches of dynamics near stable min-
ima; however, it is not universal for generic systems because
counterexamples have been constructed using multiwell po-
tentials [19]. Another recent paper [20] has reported that
heating can occur faster or slower than cooling even for anhar-
monic single-well potentials, and a crossover region emerges
if the quenches are not too far from equilibrium. Nonetheless,
the relaxation asymmetry may be universal for a specific class
of multiwell potentials. It is well known that overdamped
diffusion under a multiwell potential with sufficiently high
barriers converges to Markov jump dynamics at long times.
By projecting the Langevin dynamics onto the Markov jump
process between basins, it has been shown that the general
asymmetry is preserved in degenerate potentials with sepa-
rated time scales [19].
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Since the average energy of a thermal state increases
with the temperature, the relaxation asymmetry allows us to
say that, from the energetic perspective, uphill relaxation is
faster than downhill relaxation, which is counterintuitive to
an extent. Moreover, relaxation speed cannot be characterized
solely by thermodynamic quantities such as dissipation or
frenesy [21]. Therefore, it is highly nontrivial that free energy
plays an essential role as a quantifier of nonequilibrium degree
in equidistant temperature quenches.

In this paper, we elucidate the relaxation asymmetry for
discrete-state systems modeled by Markov jump processes,
thus improving our understanding of thermal relaxation. First,
we prove that heating is faster than cooling in an arbitrary
two-state system, affirming that there is universality in the re-
laxation asymmetry. However, we find that it is not the case for
generic systems with at least three distinct energy levels. By
analytically constructing counterexamples, we demonstrate
that heating can be faster or slower than cooling, depending
on the transition rates. Nevertheless, restricted to a particular
class of systems, some universal results on the relaxation
asymmetry are obtained. We show that when the energy levels
of the system are two-state degenerate, there exist two critical
energy gap thresholds. Depending on whether the energy gap
is larger or smaller than these thresholds, it can be concluded
with certainty that heating is faster or slower than cooling.
These theoretical results are numerically demonstrated using
several discrete-state systems.

II. SETUP

We consider the thermal relaxation process of an open
system with N states. The system is coupled to a thermal
reservoir at the inverse temperature β f = (kBTf )−1, where
kB is the Boltzmann constant. Owing to interaction with the
thermal reservoir, stochastic transitions between states are in-
duced. The dynamics of the system is governed by the master
equation,

∂t |pt 〉 = R|pt 〉, (1)

where |pt 〉 := [p1(t ), . . . , pN (t )]� denotes the probability dis-
tribution of the system at time t ; the matrix R = [Rmn] ∈
RN×N is time independent with Rmn � 0 denoting the tran-
sition rate from state n to state m ( �= n), and

∑
m Rmn =

0. Without loss of generality, we assume that E1 � · · · �
EN , where En denotes the energy of state n. The transi-
tion rates satisfy the detailed balance condition, Rmne−β f En =
Rnme−β f Em , which is a sufficient condition such that the system
always relaxes to the thermal Gibbs state |π f 〉 after a suffi-
ciently long time, irrespective of the initial state. Here,

π f
n := e−β f En

Zβ f

and Zβ f
:=

N∑
n=1

e−β f En . (2)

For m �= n, the transition rate Rmn can be expressed as

Rmn = �e−β f (Bmn−En ), (3)

where Bmn = Bnm are the barrier coefficients, and � is a posi-
tive constant.

Now, let us formulate the problem. We consider relaxation
that initiates from a thermal state |π i〉 associated with the

inverse temperature βi = (kBTi )−1. This can be regarded as a
temperature quench Ti → Tf at time t = 0−. Given a pair of
cold and hot temperatures, Tc and Th, satisfying Tc < Tf < Th,
we investigate the relaxation speed depending on the quench
direction, Ti = Tc ↑ Tf (heating) and Ti = Th ↓ Tf (cooling).
The degree of nonequilibrium (or free energy) of each initial
state is the same,

D(π c‖π f ) = D(πh‖π f ), (4)

where the relative entropy between two distributions |p〉 and
|q〉 is given by

D(p‖q) :=
∑

n

pn ln(pn/qn). (5)

Note that the characters c and h are associated with the initial
temperatures; therefore, c and h correspond to the heating and
cooling processes, respectively. For convenience, we define
D(p) := D(p‖π f ). We aim to answer the question of which
quench direction fastens the relaxation. To this end, we first
need to quantify the relaxation speed, which can be evaluated
by the distance between the system state and the thermal
state. Analogous to Refs. [7,19], the relative entropy is used
to measure the distance between states. In thermal relaxation,
the relative entropy is closely related to the free energy and
irreversible entropy production [22] as

D(pt ) = β f [F (pt ) − F f ], (6)

�t = D(p0) − D(pt ), (7)

where F (pt ) = ∑
n pn(t )[En + kBTf ln pn(t )] is the free en-

ergy of the distribution |pt 〉, Fi := −kBTi ln Zβi , and �t is
the irreversible entropy production. Note that F (p0+ ) �= Fi

since F (p0+ ) and Fi are evaluated with temperatures Tf and
Ti, respectively. Let |pi

t 〉 be the time-evolution distribution
corresponding to the initial state |π i〉, then heating is said to
be faster (slower) than cooling if

D
(
pc

t

)
< (>)D

(
ph

t

)
(8)

in long times. Throughout this paper, we compare the relax-
ation speeds of the two quenches in the long-time regime, not
over the entire evolution time. Therefore, it is possible that the
heating and cooling curves, D(pc

t ) and D(ph
t ), may intersect

at some point. In what follows, we explain in detail how to
determine the relaxation speed in the long-time regime.

Let 0 = λ1 > λ2 > . . . > λN be the eigenvalues of the
transition matrix and {|vn〉}n be the set of corresponding eigen-
vectors,

R|vn〉 = λn|vn〉. (9)

Notably, all eigenvalues are real numbers since matrix R sat-
isfies the detailed balance condition [23]. The eigenvectors
{|vn〉} form a basis for the space RN with |v1〉 = |π f 〉, and
|vn〉 is a traceless vector for all n � 2 (i.e., 〈1|vn〉 = 0 since
〈1|R = 〈0|). Here, |0〉 (|1〉) denotes the N-dimensional vector
with all zero (one) elements. Therefore, the initial distribution
|π i〉 can be expressed as a linear combination of {|vn〉} as
follows:

|π i〉 = |π f 〉 +
N∑

n=2

γ i
n|vn〉, (10)
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where γ i
n’s are real numbers. Consequently, the probability

distribution at time t can be analytically written in the fol-
lowing form:

∣∣pi
t

〉 = |π f 〉 +
N∑

n=2

γ i
neλnt |vn〉. (11)

In the long-time limit, the probability distribution |pi
t 〉 can be

approximated up to the second-order term as∣∣pi
t

〉 � |π f 〉 + γ i
2eλ2t |v2〉. (12)

Thus, the relaxation speed can be quantified via the value of
|γ i

2| [7]. Accordingly, heating is faster (slower) than cooling if
|γ c

2 | < (>)|γ h
2 | (see Appendix A for proof).

A closed form of γ i
2 can be obtained analytically [8]. The

transition rate matrix R can be transformed to a symmetric
matrix R = [Rmn] ∈ RN×N as follows:

R = F1/2RF−1/2, (13)

where F = [Fmn] ∈ RN×N with Fmn = eβ f Enδmn. The elements
of matrix R can be explicitly written in terms of the elements
of matrix R as

Rmn = eβ f (Em−En )/2Rmn. (14)

Notably, matrix R has the same eigenvalues as R, and
its eigenvectors {| fn〉} are related to those of R as | fn〉 =
F1/2|vn〉. Moreover, these eigenvectors are mutually orthog-
onal, 〈 fm| fn〉 = 〈vm|F|vn〉δmn. Multiplying 〈 f2|F1/2 on both
sides of Eq. (10), we can show that γ i

2 is proportional to
the inner product between the initial distribution |π i〉 and the
vector | f 2〉, given by

γ i
2 = 〈 f2|F1/2|π i〉

〈 f2| f2〉 = 〈 f 2|π i〉
〈 f2| f2〉 , (15)

where | f 2〉 := F1/2| f2〉. Note that 〈 f 2|π f 〉 = 0 since | f2〉 and
| f1〉 = F1/2|π f 〉 are orthogonal. Because the sign of γ i

n can be
absorbed by changing the eigenvectors |vn〉 → −|vn〉, here-
after, we assume γ h

2 � 0, which implies that 〈 f 2|πh〉 � 0.

III. RESULTS

Given the above setup, we now present our main results
on the relaxation asymmetry, including numerical illustrations
and proofs.

A. Two-state systems

First, we consider two-state systems, for which universality
regarding the relaxation asymmetry can be achieved.

Result 1. For two-state systems, heating is faster than cool-
ing.

Result 1 affirmatively validates that the relaxation asym-
metry is universal in two-state systems. Even for two-state
systems, it is highly nontrivial that heating is faster than
cooling. For discrete-state Markovian dynamics, the speed
of state transformation is constrained by time-antisymmetric
dissipation and time-symmetric frenesy (or dynamical ac-
tivity) [24,25]. Relaxation from a thermal state at a higher
temperature has a higher dynamical activity; more precisely,

(b)(a)
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FIG. 1. (a) Schematic of the two-state system. (b) Numerical
illustration of Result 1 in the two-state system. The energy gap ε

is varied from 0.2 to 1.0. The solid lines depict ratio Rt as a function
of time t for each value of ε.

the average number of jumps over all the stochastic trajecto-
ries in the hot two-state system is always greater than that in
the cold two-state system. Consequently, one may intuitively
expect that cooling, which has higher dynamical activity, is
faster than heating. However, the result is counterintuitive,
implying that the dynamical activity alone cannot account for
this relaxation asymmetry.

It is worth discussing the compatibility of Result 1 with
the counterexamples in Ref. [19], in which cooling can be
faster than heating for some double-well potentials. In the
counterexamples therein, there is a time-scale separation: A
local equilibration arises prior to the terminal exponential
relaxation, which is effectively a two-state Markov jump pro-
cess. Although heating occurs faster than cooling in the early
stages, the asymmetry is inverted in the later stages. It has
been observed that the breaking of the asymmetry is inti-
mately related to the configuration between the intrawell and
interwell entropies [19]. Therefore, the apparent discrepancy
between Result 1 and the terminal relaxation trend in the
counterexamples is due to the intrawell entropic contribution,
which is neglected in the Markov jump dynamics considered
here.

To illustrate the above result, we use a two-state system
[see Fig. 1(a)] with the following transition matrix:

R =
(−1 e−β f ε

1 −e−β f ε

)
, (16)

where ε = E1 − E2 > 0 is the energy gap. We vary the value
of ε while fixing the inverse temperatures as follows: β f = 1,
βh = 0.1, and βc is uniquely determined via the condition in
Eq. (4). The time variation of ratio Rt := D(pc

t )/D(ph
t ) is

plotted as a function of time t in Fig. 1(b). Note that Rt <

(>)1 implies that heating occurs faster (slower) than cooling
at time t . As shown, ratio Rt is always smaller than 1, and
there is no intersection between the heating and cooling curves
at any finite time. Therefore, it is numerically verified that
heating is always faster than cooling. Although Result 1 only
indicates the long-time behavior, numerical evidence suggests
that heating is faster than cooling for the entire evolution time.
Proof of Result 1. It suffices to prove that |γ c

2 | < |γ h
2 | = −γ h

2 .
For N = 2, an arbitrary probability distribution |π i〉 can be
expressed as a point (xi, 1 − xi ) in the two-dimensional space.
Since E1 > E2, all thermal states, |π c〉, |π f 〉, and |πh〉, lie on
the segment with (0,1) and (1/2, 1/2) as endpoints. These
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FIG. 2. Geometrical illustration of probability distributions. Two
vectors | f 2〉 and |π f 〉 are orthogonal, 〈 f 2|π f 〉 = 0.

probability distributions are geometrically illustrated in Fig. 2.
In the following, we employ a geometrical approach to prove
Result 1. From the conditions, 〈 f 2|π f 〉 = 0 and 〈 f 2|πh〉 � 0,
we can conclude that 〈 f 2|π c〉 � 0 or γ c

2 � 0. Thus, it is suffi-
cient to show that

γ c
2 + γ h

2 < 0 or 〈 f 2|(π c + πh)/2〉 < 0, (17)

which is equivalent to proving that (xc + xh)/2 > x f . We can
rewrite the equality D(π c‖π f ) = D(πh‖π f ) as follows:

S(πh) − S(π c) = (xh − xc) ln
1 − x f

x f
, (18)

where S(p) := −∑
n pn ln pn is the Shannon entropy of the

distribution |p〉. Note that xc < xh < 1/2 and

g(xi ) := dS(π i )/dxi = ln[(1 − xi )/xi] (19)

is a strictly convex function over xi ∈ [0, 1/2] [i.e., the second
derivative of g(xi ) with respect to xi is positive, g′′(xi ) > 0].
Applying the Hermite-Hadamard inequality for g(xi ), we ob-
tain the following:

1

xh − xc

∫ xh

xc

g(xi )dxi > g
(xc + xh

2

)
, (20)

or equivalently,

S(πh) − S(π c) > (xh − xc)g
(xc + xh

2

)
. (21)

Combining Eqs. (18) and (21) results in the following inequal-
ity:

g(x f ) > g
(xc + xh

2

)
. (22)

Since g(xi ) is a strictly decreasing function, we have (xc +
xh)/2 > x f , which completes the proof. �

B. Systems with at least three distinct energy levels

Next, we consider more general systems that have at least
three distinct energy levels; i.e., there exist three indices 1 �
i < j < k � N such that Ei > Ej > Ek . For such systems, we
obtain the following result.

Result 2. For systems with more than two distinct energy
levels, heating can be faster or slower than cooling, depending
on the transition rates.

Result 2 shows that no universality of the relaxation asym-
metry is achieved in the general case. With an appropriate
choice of barrier coefficients, we can construct a discrete-
state system with |γ c

2 | < |γ h
2 | or |γ c

2 | > |γ h
2 | as desired. This

difference between the continuous- and discrete-state systems
can be explained as follows. For simplicity, we consider a
single-particle system described by the overdamped Langevin
equation. In this continuous-state system, the particle tends
to transit to a close place at any instant time. By contrast, in
discrete-state systems, the particle, in principle, can jump to
anywhere, provided the transition rate between these states
is positive. This degree of freedom could lead to a compli-
cated relaxation compared with the continuous-state system.
As shown below, the construction of the transition matrix
that determines the magnitude relation between the heating
and cooling rates is somewhat artificial; therefore, there may
not be a realistic system with such a transition matrix. We
anticipate that the universality of the relaxation asymmetry
will be achieved if appropriate constraints are placed on the
transition rates.

We numerically illustrate Result 2 in a three-state system
[see Fig. 3(a)]. The transition rates are determined using � =
1 and

e−β f Bmn = γmn

2 cosh[β f (En − Em)]
e−β f (Em+En )/2, (23)

where γ12 = γ21 = 0.1, γ13 = γ31 = 10, and γ23 = γ32 = 0.
The inverse temperatures are fixed as follows: β f = 1, βh =
0.5, and βc is uniquely determined via the condition in Eq. (4).
The energy levels are E1 = 2, E2 = 1.5, and E3 = ±0.5. The
numerical results (i.e., the heating and cooling curves and the
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FIG. 3. (a) Schematic of the three-state system. Numerical illus-
tration of Result 2 for the cases of [(b),(c)] faster heating and [(d),(e)]
faster cooling. [(b),(d)] The heating and cooling curves, D(pc

t ) and
D(ph

t ), are depicted by blue and red solid lines, respectively. [(c),(e)]
The ratio of Rt = D(pc

t )/D(ph
t ) for each case is depicted by the

green solid line.
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Rt ratio) are plotted in Figs. 3(b) and 3(c) for the E3 = −0.5
case and in Figs. 3(d) and 3(e) for the E3 = 0.5 case. As
shown in Fig. 3(c), heating is faster than cooling in the short-
and long-time regimes. However, interestingly, two crossing
points exist in the intermediate-time regime, where cooling
temporarily occurs faster than heating. While it may be diffi-
cult to identify these two crossing points in Fig. 3(b), we can
clearly see in Fig. 3(c) that they appear around times t = 10−1

and t = 20. In contrast, in the E3 = 0.5 case, Fig. 3(e) shows
that the Rt ratio is always greater than 1, implying that cooling
is faster than heating for the entire evolution time. These
numerical results indicate that the relaxation asymmetry is not
universal in three-state systems, which is consistent with the
theoretical finding of Result 2. Here, for simplicity, we have
performed numerical calculations with different energy levels
in the two cases. Nevertheless, as shown below, even under
the condition where the energy levels are fixed, it is easy to
construct a transition matrix that yields the desired relaxation
trend.
Proof of Result 2. We prove the result by analytically con-
structing a transition rate matrix such that heating is slower
than cooling. A transition rate matrix for the opposite case
can also be analogously constructed. First, one can prove
that |π c〉, |πh〉, and |π f 〉 are linearly independent (see Ap-
pendix B). Let {|e1〉, |e2〉} be an orthogonal basis of the space
S spanned by |π f 〉 and |πh〉, and P := |e1〉〈e1| + |e2〉〈e2| be
the projection matrix to the space S . Define | f 2〉 := |π c〉 −
P|π c〉, then | f 2〉 �= |0〉 because |π c〉, |πh〉, and |π f 〉 are
linearly independent. Trivially, 〈 f 2|e1〉 = 〈 f 2|e2〉 = 0; thus,
〈 f 2|π f 〉 = 〈 f 2|πh〉 = 0. Moreover, 〈 f 2|π c〉 = 〈 f 2| f 2〉 > 0
since | f 2〉 �= |0〉.

Next, we construct a transition rate matrix R that results in
|γ c

2 | > |γ h
2 |. Set Bmn = Em + En, one can explicitly calculate

that the matrix R has a single zero eigenvalue associated with
the eigenvector | f1〉 = F1/2|π f 〉, and the remaining eigenval-
ues are all −Zβ f [8]. Let U = {|x〉 ∈ RN | 〈x| f1〉 = 0} be a
subspace orthogonal to | f1〉. Then, there exists an orthogo-
nal basis {| f2〉, | f3〉, . . . , | fN 〉} of U , where | f2〉 := F−1/2| f 2〉,
since 〈 f2| f1〉 = 0 (i.e., | f2〉 ∈ U ). Obviously, | fn〉 (n � 2) is
an eigenvector of R with the corresponding eigenvalue −Zβ f .

Following the idea in Ref. [8], we slightly modify R as fol-
lows:

R → R +
N∑

n=2

εn
| fn〉〈 fn|
〈 fn| fn〉 . (24)

Here, Zβ f > ε2 > . . . > εN � 0 are small numbers that ensure

the positivity of Rmn (m �= n). It is easy to check that R| f1〉 =
|0〉 and R| fn〉 = (−Zβ f + εn)| fn〉 for all n � 2. Now, the ma-

trix R has N different eigenvalues, and | f2〉 is precisely the
eigenvector corresponding to the second-largest eigenvalue
λ2 = −Zβ f + ε2. The transition rate matrix can be recovered

as R = F−1/2RF1/2, and the detailed balance condition is sat-
isfied due to the symmetry of R. With this construction, the
relation between |γ c

2 | and |γ h
2 | can be clarified as

|γ c
2 | = 〈 f 2|π c〉

〈 f2| f2〉 > 0 = 〈 f 2|πh〉
〈 f2| f2〉 = ∣∣γ h

2

∣∣, (25)

which completes the proof. �

C. Degenerate two-level systems

Last, we consider the remaining case, wherein the en-
ergy levels are degenerate to two energy states. In other
words, there exists an index 1 � n < N such that E1 = · · · =
En > En+1 = · · · = EN . Such degenerated two-level systems
are seen in atoms [26] and have been used to enhance
quantum-annealing performance [27] and dissipation-less
heat current [28]. For convenience, we define the energy gap
�E := En − En+1 > 0. Remarkably, we find that, depending
on the magnitude of this energy gap, heating can be faster or
slower than cooling, regardless of the transition rates. Details
are summarized in the following.

Result 3. If βh�E � ln[n/(N − n)], then heating is faster
than cooling. Conversely, if βc�E � ln[n/(N − n)], then heat-
ing is slower than cooling.

Note that Result 1 can be derived from Result 3 by set-
ting N = 2 and n = 1. Result 3 indicates that there are two
critical thresholds of the energy gap �E . As the energy gap
is above or below these thresholds, a universal conclusion
on asymmetry in thermal relaxation can be drawn. It is also
highly nontrivial that the energy gap affects the relaxation
speeds of heating and cooling in this way. When �E is large,
the jump from energy state En+1 to En is less likely to occur
compared with the opposite jump. Thus, heating is expected to
be slower than cooling. However, counterintuitively, heating
is faster than cooling as �E is sufficiently large. In addition,
provided n � N/2, heating is faster than cooling, regardless
of the value of �E . This implies that the number of excited
states also plays a crucial role in determining the relaxation
speed.

Again, we numerically illustrate Result 3 in a three-state
system with n = 2 [see Fig. 4(a)]. The transition rates are
analogously defined as in Eq. (23) with γ13 = γ31 = 10,
γ23 = γ32 = 0.1, and γ12 = γ21 = 0. We consider two cases
of the parameter setting: (i) �E = (1 + κ )β−1

h ln[n/(N −
n)], (β f , βh) = (1, 0.5) and (ii) �E = κβ−1

c ln[n/(N − n)],

)c()b(

(a)

Rt

t

κ = 0.1
0.2
0.3
0.4
0.5

0.6

0.7

0.8

0.9

1.0

1.1

10−3 10−2 10−1 100 101 102

Rt

t

1.00

1.01

1.02

1.03

1.04

10−3 10−2 10−1 100 101 102

FIG. 4. (a) Schematic of the three-state system. Numerical illus-
trations of Result 3 for (b) case (i) and (c) case (ii). The solid lines
depict the ratio, Rt = D(pc

t )/D(ph
t ), for each value of κ . The value

of parameter κ is varied from 0.1 to 0.5.
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(β f , βc) = (1, 1.5). Here, κ ∈ (0, 1) is a tuning parameter.
Note that once the above parameters are provided, the other
parameters are uniquely determined. According to Result 3,
cases (i) and (ii) correspond, respectively, to faster heating
and faster cooling. We vary the value of κ from 0.1 to 0.5
and plot the numerical results of cases (i) and (ii) in Figs. 4(b)
and 4(c), respectively. Figure 4(b) shows that Rt < 1 in the
long-time regime, implying that heating is faster than cooling.
Interestingly, there are crossing points between the heating
and cooling curves in the intermediate-time regime. In both
the system considered here and the two-state system consid-
ered in the previous section, the energy levels are two-state
degenerate. However, the former shows a more complicated
relaxation trend than the latter. For case (ii), conversely, Rt

is always greater than 1, implying that cooling always occurs
faster than heating. Consequently, all these numerical results
are consistent with Result 3.
Proof of Result 3. We employ the same strategy used in prov-
ing Result 1. We prove the former case first, i.e., βh�E �
ln[n/(N − n)] leads to a faster heating. It can be observed
that all points lying on the segment � with |π c〉 and |πh〉 as
endpoints are thermal states. It is also evident that |π c〉, |π f 〉,
and |πh〉 are linearly dependent, i.e., there exists a real num-
ber a ∈ (0, 1) such that |π f 〉 = a|π c〉 + (1 − a)|πh〉. Since
〈 f 2|π f 〉 = 0 and 〈 f 2|πh〉 � 0, 〈 f 2|π c〉 � 0 or γ c

2 � 0 follows
from the continuity of the inner product 〈 f 2|p〉 for |p〉 ∈
�. Thus, it suffices to show that γ c

2 + γ h
2 < 0 or 〈 f 2|(π c +

πh)/2〉 < 0, which is equivalent to proving that (xc + xh)/2 >

x f , where xi = π i
n completely characterizes the thermal state

|π i〉. The condition D(π c‖π f ) = D(πh‖π f ) can be rewritten
as follows:

S(πh) − S(π c) = (xh − xc)n ln
1 − nx f

(N − n)x f
. (26)

Note that xc < xh � 1/(2n) since βh�E � ln[n/(N − n)],
and g(xi ) := dS(π i )/dxi = n ln[(1 − nxi )/(N − n)xi] is a
strictly convex function over xi ∈ [0, 1/(2n)]. Applying the
Hermite-Hadamard inequality for g(xi ) and following the
same steps as in Eqs. (20) and (21), we obtain (xc + xh)/2 >

x f , which proves the former case.
When βc�E � ln[n/(N − n)], one can derive that

1/(2n) � xc < xh, and g(xi ) is a strictly concave function over
xi ∈ [1/(2n), 1/n] [i.e., the second derivative of g(xi ) with
respect to xi is negative, g′′(xi ) < 0]. Applying the Hermite-
Hadamard inequality for g(xi ), we obtain the following:

g(x f ) = 1

xh − xc

∫ xh

xc

g(xi )dxi < g
(xc + xh

2

)
, (27)

or x f > (xc + xh)/2, which implies |γ h
2 | < |γ c

2 |. �

IV. SUMMARY AND DISCUSSION

In this paper, we elucidated the relaxation asymmetry for
discrete-state systems described by Markov jump processes.
We proved that the relaxation asymmetry is universal in two-
state systems, but not in generic systems with more than two
distinct energy levels. For systems with two degenerate energy
levels, we obtained some universal results indicating that the

asymmetry in thermal relaxation depends on the energy gap
and the number of excited states.

Notably, the relaxation asymmetry has recently been
numerically studied for few-level open quantum systems de-
scribed by the Lindblad master equations [29]. When the
initial density matrix contains no coherence, the quantum
systems can be described by classical Markov jump processes
with the population distributions. It has been shown that
heating is always faster than cooling for two-level systems,
whereas heating can be faster or slower than cooling for three-
and four-level systems. These numerical demonstrations are
consistent with Results 1 and 2, thus affirmatively supporting
our theoretical findings.

Although the relaxation asymmetry is not universal in
generic discrete-state systems, universality may be achieved
by imposing some constraints on the transition rates. Such
a question requires further investigation and will be ad-
dressed in future work. It would also be interesting to study
the relaxation asymmetry for non-Markovian systems [30].
For instance, the relaxation of some non-Markovian pro-
cesses, such as a tagged particle in a single file and the
end-to-end distance in a Rouse polymer, has been studied
in Ref. [19]. Another possible direction involves formulating
and investigating the relaxation asymmetry in open quantum
systems [31,32] where coherence is present in the initial state.
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APPENDIX A: QUANTIFICATION OF RELAXATION
SPEED

Given |π i〉 = |π f 〉 + ∑N
n=2 γ i

n|vn〉 and |γ c
2 | < |γ h

2 |, we
will show that D(pc

t ) < D(ph
t ) as t → ∞. Note that |pi

t 〉 =
|π f 〉 + ∑N

n=2 γ i
neλnt |vn〉. In the long-time limit, the term∑N

n=2 γ i
neλnt |vn〉 vanishes. Since

D(p‖p + d p) =
N∑

k=1

d p2
k

pk
+ O(�3), (A1)

where � = ∑N
k=1 |d pk|, we can approximate

D(pi
t ) =

N∑
k=1

(∑N
n=2 γ i

neλntvnk
)2

π
f

k

+ O(e3λ2t ). (A2)

Here, |vn〉 = [vn1, . . . , vnN ]�. Consequently, we have

D
(
ph

t

) − D
(
pc

t

) = [(
γ h

2

)2 − (
γ c

2

)2] N∑
k=1

v2
2k

π
f

k

e2λ2t

+
∑

m,n�2
max{m,n}>2

amne(λm+λn )t + O(e3λ2t ),

(A3)
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where amn are constants. The first term on the right-hand
side is positive since |γ c

2 | < |γ h
2 |. The remaining terms may

be negative; however, they are negligible compared with the
first term in the long-time limit. Therefore, D(pc

t ) < D(ph
t ) as

t → ∞.

APPENDIX B: PROOF OF LINEAR INDEPENDENCE

To prove the linear independence of |π c〉, |π f 〉, and |πh〉,
it is sufficient to show that the determinant of the following
matrix is negative:

X =
⎛
⎝e−βcE1 e−βcE2 e−βcE3

e−β f E1 e−β f E2 e−β f E3

e−βhE1 e−βhE2 e−βhE3

⎞
⎠. (B1)

Here, E1 > E2 > E3 and βc > β f > βh. Without loss of gen-
erality, we assume that E3 = 0 and βh = 0. In this case, the
determinant can be calculated as follows:

|X| = (1 − e−βcE1 )(1 − e−β f E2 ) − (1 − e−βcE2 )(1 − e−β f E1 ).
(B2)

Therefore, |X| < 0 is equivalent to

1 − e−βcE1

1 − e−β f E1
<

1 − e−βcE2

1 − e−β f E2
. (B3)

Set h(x) := (1 − e−βcx )/(1 − e−β f x ), Eq. (B3) is equivalent
to h(E1) < h(E2). We need only prove that h(x) is a strictly
decreasing function over x > 0. Taking the derivative of h(x)
with respect to x, we have

dh(x)

dx
= e(β f −βc )x[βc(eβ f x − 1) − β f (eβcx − 1)]

(eβ f x − 1)2
. (B4)

Since

βc(eβ f x − 1) − β f (eβcx − 1) =
∞∑

n=1

xn

n!

(
βcβ

n
f − β f β

n
c

)

=
∞∑

n=1

xn

n!
βcβ f

(
βn−1

f − βn−1
c

)

< 0 (∵ 0 < β f < βc),

we have dh(x)/dx < 0, which completes the proof.
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