
PHYSICAL REVIEW RESEARCH 3, 043159 (2021)

Twisted Breit-Wheeler electron-positron pair creation via vortex gamma photons
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Particles in quantum vortex states (QVSs) carrying definite orbital angular momenta (OAM) bring different
perspectives in various fundamental interaction processes. When unique properties arise in the QVS, understand-
ing how OAM manifests itself between initial particles and the outcome in vortex particle collisions becomes
essential. This is made possible by applying the complete vortex description for all involved particles such
that angular momenta (AM) are represented by explicit quantum numbers and their connections are naturally
retrieved. We demonstrate the full-vortex quantum-electrodynamics (QED) results for the Breit-Wheeler pair
creation process and derive the AM-dependent selection rule. The numerically resolved cross sections show
antisymmetric spin polarization and, most importantly, the OAM spectra in vortex collision processes. The latter
reveals efficient conversion of OAM to created pairs, leading to featured hollow and ring-shaped structure in the
density distribution. These results demonstrate a clear picture in understanding the AM physics in the scattering
processes of high energy particles.
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I. INTRODUCTION

The experimental advances in production and measure-
ment of electrons carrying orbital angular momentum (OAM)
[1–4] have attracted extensive interest in this decade. In ad-
dition to spin angular momentum (SAM), electron beams
containing OAM are closely associated with the vortex
structure, also known as the “twisted” modes. Theoretical
description of the relativistic vortex electrons is based on the
spinor Bessel mode [5,6] as an exact solution of the free
Dirac equation. In analog to photon [7] and scalar particle
states [8], the quantum vortex state (QVS) in Bessel mode
can be interpreted as the superposition of the plane wave
states according to a particular phase structure. Alternatively,
direct comparison with the optical vortex field [9,10] leads
to another vortex state, the Laguerre-Gauss mode [11,12],
under the paraxial approximation. These vortex states have
shown several unique features, including spin-orbital cou-
pling [5,13], spin-orbital conversion [14], spin and orbital
Hall effects [15,16], and geometric phase [17]. The OAM
degree of freedom manifests itself in various interaction pro-
cesses such as the vortex electron state dressed in laser field
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[18,19], Compton scattering [7], elastic electron-atom scat-
tering [20,21], two-photon annihilation of vortex positron
[22], resonance production in vortex particle collisions [23],
radiation from vortex electrons [24,25], and strong-field ion-
ization [26–28]. The ongoing studies have brought up new
perspectives in high energy physics, nuclear physics, atomic
dynamics, strong-field physics, and in producing exotic vortex
light sources.

In a broad range of particle collisions, transferring of po-
larization and OAM from the initial states to the final ones is
of central interest. Governed by the conservation law of total
angular momentum (TAM), this important connection can be
revealed from the angular momentum (AM) dependent cross
sections. The latter depends on resolving the complete vortex
scattering in which all interacting particles are described by
the QVS, as a plane wave does not carry OAM. Up to now,
however, due to the complexity of the QVS, the quantum
electrodynamics (QED) picture of complete vortex scattering
remains to be seen.

In this article, we apply the first full-vortex description on
the Breit-Wheeler (BW) pair creation process, where OAM
properties appear in both photon fields and created fermion
particles. To describe the annihilation of two QVS gamma
photons into a QVS electron-positron pair, we employ the
vortex states for both and derive the scattering cross section
within the theoretical framework of QED. This allows AM to
be explicitly expressed by the quantum numbers and inher-
ently conserved. The AM-dependent selection rules and the
OAM spectra are illustrated. Together they show how OAM
is transferred from the initial gamma photons to final elec-
trons and positrons, which also depends on the asymmetric
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polarization distribution. Consequently, the generated pairs
exhibit periodic ring-shape and hollow structure in the density
distribution, providing a unique feature for identifying the
vortex scattering process.

II. DEFINITION OF QUANTUM VORTEX STATES:
BESSEL MODES

The particles carrying definite OAM can be described
by the QVS (also known as the “twisted state”). The
QVS is defined by the Bessel modes which are con-

structed from the superposition of plane wave (PW) states
via �s,l

k⊥,kz
(x) = ∫

d3k′ϕ̃l
k⊥,kz

(k′)�s
k′ (x) in cylindrical momen-

tum space k′ = (k′⊥, φ′
k, k′

z ) [7], assuming the particle
propagates along the z axis. Here �s

k′ (x) denotes a PW
scalar, vector, or spinor particle state, and ϕ̃l

k⊥,kz
(k′) =

1/(
√

2π il k⊥)δ(k′
z − kz )δ(k′⊥ − k⊥)eilφ′

k is the Fourier spec-
trum containing a spiral phase with OAM number l and s
represents the spin if the particle carries. Under this definition,
the QVS of the photon field takes the form

Aj,λ;μ
k⊥,kz

(x) = ε
j,λ;μ
k⊥,kz

(r)eikzz−iωt

= eikzz−iωt

4π
√

ω

⎛
⎜⎜⎜⎝

0
(i/2)

[
(1 − kz/ω)
 j+λ

k⊥ (r) + (1 + kz/ω)
 j−λ

k⊥ (r)
]

(λ/2)
[
(1 − kz/ω)
 j+λ

k⊥ (r) − (1 + kz/ω)
 j−λ

k⊥ (r)
]

(λk⊥/ω)
 j
k⊥ (r)

⎞
⎟⎟⎟⎠, (1)

where λ = ±1 is the polarization parameter, ω is the photon
energy, j is the total angular momentum (TAM) of the QVS
photon, and the transverse function is defined by 
n

k⊥ (r) =
Jn(k⊥r)einθ [Jn(r) is the Bessel function of the first kind]. The
photon QVS satisfies the orthonormality: (Aj,λ

k⊥,kz
, Aj′,λ′

k′⊥,k′
z
) =

−(1/k⊥)δλλ′δ j j′δ(k⊥ − k′⊥)δ(kz − k′
z ). We use the natural

units h̄ = c = 1 throughout the derivation. Analogously, the
QVS of electron and positron can be constructed from the
positive and negative-frequency PW solutions of the Dirac
equation, and they are given by

ψ±,l,s
p⊥,pz

(x) = e±ipzz∓iEt

√
2(2π )|p|

√
1 − M

E

[
χ±

z 
l
p⊥ (r) ± ip⊥χ±

⊥
]
,

(2)
where M and E are electron/positron mass and energy. χ±

z
and χ±

⊥ represent the spinor wave functions in longitudinal

and transverse dimensions. For an electron, χ+
z = ((E + M )ξ s

pzσzξ
s )

and χ+
⊥ = (

0

σ
l,p⊥
⊥ ξ s); for a positron,χ−

z = ( pzσzη
s

(E + M )ηs) and χ−
⊥ =

(σ
l,p⊥
⊥ ηs

0
), with transversal matrix σ

l,p⊥
⊥ = (

0 −
l−1
p⊥ (r)


l+1
p⊥ (r) 0 ).

ξ s and ηs are two basis spinors characterizing the elec-
tron and positron spin states in the rest frame. The
spinor QVS satisfies the orthonormality (ψ±,l,s

p⊥,pz
, ψ±,l ′,s′

p′⊥,p′
z
) =

(1/p⊥)δss′δll ′δ(p⊥ − p′⊥)δ(pz − p′
z ). One finds that due to

the spin-orbit interaction of relativistic particles, the QVS is
neither the eigenmodes of the projection of the OAM oper-
ator L̂z nor the SAM operator Ŝz on the z axis, but rather
of the TAM operator Ĵz = L̂z + Ŝz. For a vortex photon, the
eigenvalue of Ĵz is j: ĴzA

j,λ
k⊥,kz,μ

= jA j,λ
k⊥,kz,μ

; the vortex elec-

tron/positron gives Ĵzψ
±,l,s
p⊥,pz

= (l + s/2)ψ±,l,s
p⊥,pz

.

III. S-MATRIX AND SCATTERING CROSS SECTION OF
VORTEX BW PROCESS

In perturbation theory, the S matrix for the vortex BW
process contains two terms: S f i = S1 + S2. The Feynman di-
agram for S1 is drawn in Fig. 1(a), where the cone on each
external line represents a QVS and its polar angle is defined
by tan αp = p⊥/pz. This diagram is calculated as

S1 = −ie2
∫

d4xd4x′ d4q

(2π )4 ψ̄+,l1,s1
p1⊥,p1z

(x)/Aj1,λ1

k1⊥,k1z
(x)

(/q + M )

(q2 − M2)
e−iq·(x−x′ )/Aj2,λ2

k2⊥,k2z
(x′)ψ−,l2,s2

p2⊥,p2z
(x′) (3)

with the slash /A = Aμγ μ. We consider the forward and backward scatterings here. Substituting the eigenmodes of photon field
(1) and electron/positron field (2) into Eq. (3), one obtains

S1 = − ie2

16π

√
(E1 − M )(E2 − M )

ω1ω2E1E2 p2
1 p2

2

δ(ω1 + ω2 − E1 − E2)δ(k1z + k2z − p1z − p2z )

×ξ s1†�
j1,λ1; j2,λ2

k1⊥,k1z ;k2⊥,k2z
(l1, p1⊥, p1z; l2, p2⊥, p2z )ηs2

∣∣Eq=−ω1+E1=ω2−E2
qz=−k1z+p1z=k2z−p2z

, (4)

where the (2 × 2) matrix

�
j1,λ1; j2,λ2

k1⊥,k1z ;k2⊥,k2z
(l1, p1⊥, p1z; l2, p2⊥, p2z ) =

(
υ11δ j1+ j2,l1−l2 υ12δ j1+ j2,l1−l2+1

υ21δ j1+ j2,l1−l2−1 υ22δ j1+ j2,l1−l2

)
. (5)
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FIG. 1. (a) Feynman diagram of matrix element S1; the cones represent the QVS particle. (b) Differential cross sections of elec-
trons, dσ (e–)/d p⊥d pz [MeV–4], in cylindrical momentum space created in BW process with plane-wave particle states. The energies
of head-on colliding photons are ω1 = ω2 = 5 MeV. Differential cross sections of electrons dσ (e–)/d p1⊥d p1z [MeV–4] (c) and positrons
dσ (e+)/d p2⊥d p2z [MeV–4] (d) in vortex BW process. The energies and z momenta of the QVS photons are ω1 = ω2 = 5 MeV and
k1z = −k2z = 4 MeV, the AM parameters are j1 = 3, j2 = 2, λ1 = λ2 = 1. The AM of created electron and positron are l1 = 3, m1 = 1/2
and l2 = −2, m2 = −1/2.

The matrix elements υ11, υ12, υ21, and υ22 are derived in
the Appendix. The second term S2 can be obtained by ex-
changing two incident photons in S1, � matrix and matrix ele-
ments υ: S2, �̃, υ̃ = S1, �, υ(k1 ↔ k2, j1 ↔ j2, λ1 ↔ λ2). It
is found that each matrix element in � and �̃ has an AM-
dependent Kronecker delta function, which gives the selection
rules for the vortex BW process,

j1 + j2 = l1 − l2 + �, (6)

with � = 0, ±1. The minus sign before l2 stems from the
definition of positron AM. Using the S-matrix element one
obtains the spin-dependent pair creation probability: dP =
(2π2/(RL))2k1⊥k2⊥ p1⊥ p2⊥|S f i|2d p1⊥d p1zd p2⊥d p2z, where
R and L are the large radius and length used in the cylin-
drical normalization. The differential cross section is derived
as dσ = dP/(T 〈uz〉). For a head-on collision, the relative
current density of the incident photons is given by 〈uz〉 =
|k1z/ω1 − k2z/ω2|/V , and the cross section reads

dσ = π3α2

16

k1⊥k2⊥ p1⊥ p2⊥(E1 − M )(E2 − M )

ω1ω2E1E2 p2
1 p2

2|k1z/ω1 − k2z/ω2| Tr[ξ s1ξ s1†(� + �̃)ηs2ηs2†(� + �̃)
†
]

× δ(ω1 + ω2 − E1 − E2)δ(k1z + k2z − p1z − p2z )d p1⊥d p1zd p2⊥d p2z. (7)

For the unpolarized photon scattering, the cross section can
be obtained by averaging over the photon polarization λ1 and
λ2.

The selection rules from Eq. (6) are related to
the spin states of electron and position in the rest
frame. If ξ s1 is the eigenmode of σz for an electron
with the eigenvalue s1 = +1, ξ s1 = (1

0), and ηs2 for

positron with s2 = +1, ηs2 = (1
0), the trace in Eq. (7)

is given by Tr[ξ s1ξ s1†(� + �̃)ηs2ηs2†(� + �̃)
†
] =

|υ11 + υ̃11|2δ j1+ j2,l1−l2 . Since the positron has the reversed
AM definition with respect to the electron, i.e., the eigenvalue
of the state ηs2 = (1

0) is m2 = −1/2, the TAM in the z axis of
the created electron-positron pair is l1 − l2, corresponding to
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FIG. 2. (a)–(d): αp1-dependent cross sections dσ (e–)/dαp1 [MeV–2] of electrons carrying the AM of l1 = 3 for different photon polariza-
tions. The TAMs of the gamma photons are j1 = 3 and j2 = 5, energies ω1 = ω2 = 5 MeV and z momenta k1z = −k2z = 4 MeV. The colored
solid lines represent the angular distributions of electrons with spin m1 = 1/2 in the rest frame, the dashed lines represent electrons with spin
m1 = −1/2. The black solid line in Fig. 2(a) represents the electron angular distribution created in the BW process with plane-wave particle
states. (e) Polarizability of electrons scattered into +z and −z directions versus the electron OAM number l1.

the conservation law: j1 + j2 = l1 − l2, which agrees with the
selection rule of � = 0. Similarly, � = +1, −1 correspond
to m1 = m2 = +1/2 and m1 = m2 = −1/2, respectively.
The m1 = −m2 = −1/2 case is consistent with the selection
rule of � = 0. In other words, Eq. (6) concludes TAM
conservation in the z direction in the vortex BW process.
The cross section of non-spin-polarized pairs is obtained by
summing over the pair spin states.

IV. NUMERICAL RESULTS

The cross section for electrons/positrons can be numer-
ically obtained by integrating over the positron/electron
momentum in Eq. (7). This is done trivially by dropping the
two delta functions. We choose an example of two vortex pho-
tons with energies ω1 = ω2 = 5 MeV and z momenta k1z =
−k2z = 4 MeV. The TAMs of two QVS photons are j1 = 3
and j2 = 2, with polarization λ1 = λ2 = 1, respectively. Fig-
ures 1(c) and 1(d) show the differential cross sections of
electron and positron, where the AMs are l1 = 3, m1 = 1/2
(electron) and l2 = −2, m2 = −1/2 (positron) following the
selection rule j1 + j2 = l1 − l2. We find the cross sections
exhibit oscillating distributions in the momentum domain.
The structures of electron and positron are symmetrically
correlated, governed by the conservation law of energy and
momentum. We thus focus on the electron spectrum in the
following.

In general, the BW process with PW particle states
leads to monoenergetic spectra due to the constraint of
four-dimensional momentum conservation. This is shown in
Fig. 1(b) as a comparison. The electron cross sections in a
head-on collision of two PW photons (ω1 = ω2 = 5 MeV)
exhibit a half circle with an exact 5-MeV radius. This is signif-
icantly different from the vortex situation [Figs. 1(c) and 1(d)],
since the QVS particle has transverse momentum perpendic-

ular to its properation direction. The transverse momentum is
characterized by the magnitude, while the azimuthal angle is
integrated when constructing the QVS [5,7].

From Fig. 1 one notices that if the QVS gamma photons are
polarized, e.g., λ1 = λ2 = 1, the spectral distributions with
definite spin projections are asymmetrical with respect to
±|pz|, which implies spin polarization for the created parti-
cles. The differential cross section dσ (e−)/dαp1 is displayed
in Fig. 2. Here we follow the photon energy and momen-
tum employed in Fig. 1 but vary the photon polarization (λ1

and λ2) and electron/positron spin state (m1 and m2). First
of all, we see that unlike the PW BW process which has
the highest cross section near the axis [black-solid line in
Fig. 2(a)], the one for the vortex BW process peaks off axis,
due to the transverse momentum in the QVS. The electron
with l1 = 3 and m1 = +1/2 [red-solid line in Fig. 2(a)] comes
from two positron AM channels: l2 = −5, m2 = −1/2 and
l2 = −4, m2 = +1/2. The channels are switched to l2 = −6,
m2 = −1/2 and l2 = −5, m2 = +1/2 when the spin state
is flipped to m1 = −1/2 [red-dashed line]. However, these
channels are not equally distributed. The former is almost
one order of magnitude higher than the latter in the region
αp1 < π/2 and lower in αp1 > π/2. As a result, electrons
emitted into αp1 < π/2 are characterized with a significant
positive polarization (m1 = +1/2) and a negative one in the
opposite direction. This trend also applies for λ1 = λ2 = −1,
except that the polarization distributions is reversed, shown in
Fig. 2(b).

When photons have opposite polarizations λ1 = −λ2 =
1, the cross section with m1 = +1/2 is much higher
than that with −1/2 in the full angular space αp1 ∈
[0, π ], giving +1/2 spin-polarized electrons in all di-
rections as shown in Fig. 2(c). Naturally, λ1 = −λ2 =
−1 creates −1/2 spin-polarization [Fig. 2(d)]. The elec-
tron polarizability along the ±z directions is quantified
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FIG. 3. Electron cross sections σ (e–) [MeV–2] versus electron OAM l1. The incident gamma photons are polarized, and possess the TAMs
j1 = 3 and j2 = 5, energies ω1 = ω2 = 5 MeV and z momenta k1z = −k2z = 4 MeV. The photon polarization parameters are λ1 = λ2 = 1
(a) and λ1 = −λ2 = 1 (c). (b) Electron cross sections σ (e–) [MeV–2] for λ1 = λ2 = 1 polarized photons from different electron/positron
polarization channels.

via ρ = [σ+1/2(e−) − σ−1/2(e−)]/[σ+1/2(e−) + σ−1/2(e−)] in
Fig. 2(e). One sees that |ρ| is above 0.5 at all OAM numbers
l1, approaching 0.9 in a certain region. Note that for ini-
tially unpolarized photons the created electron-positron pair
carrying different spins has almost identical distribution, i.e.,
polarization vanishes.

A key interest of vortex interaction processes is how it is
related to the particle OAM numbers. We show the OAM-
dependent cross section in Fig. 3. The total cross section
peaks at l1 = 2 and 6, which correspond to the spins m1 = 1/2
and −1/2, as shown in Fig. 3(a). The peaking values are
shifted by one unit with respect to the photon TAM ( j1 = 3,
j2 = 5). In fact, the OAM peak at l1 = 2 is mainly converted
from a photon with j1 = 3 through the dominating channel
m1 = 1/2 and m2 = −1/2; see the red lines in Fig. 3(b). The
other channel of m2 = 1/2 is significantly suppressed from
the polarization dependence discussed in Fig. 2(a). The blue
lines indicate that the peak at l1 = 6 originates from the pho-
ton TAM j2 = 5, while the polarization channel m1 = −1/2
and m2 = −1/2 dominates. This connection can also be seen
when varying the photon polarization. For instance, with λ1 =
−λ2 = 1, since the m1 = 1/2 spin state dominates the electron
creation over m1 = −1/2, see Fig. 2(c), electrons with an
OAM number peaking at l1 = 3 and 6 are suppressed, leading
to the main cross section at l1 = 2 and 5, seen in Fig. 3(c).
In other words, the OAM-dependent cross section explicitly
reveals the OAM number of photons in certain polarization
state. The one-unit shift induced by the latter would be negli-
gible at large AM numbers | j| 
 1.

The electron QVS manifests itself in the transverse den-
sity distribution. From Eq. (2) we obtain the AM-dependent
probability density

ρ
+;l1,s1
⊥;p1⊥,p1z

= 1

2(2π )2

{[(
1+ M

E1

)
+

(
1 − M

E1

) p2
1z

|p1|2
]

J2
l1 (p1⊥r)

+ p2
1⊥

|p1|2
(

1 − M

E1

)
J2

l1+s1
(p1⊥r)

}
. (8)

This is shown in Fig. 4(a) of the eigenstate with electron en-
ergy E1 = 5 MeV, transverse momentum p1⊥ = 3MeV, l1 =
3, and m1 = 1/2. A periodic ring-shaped profile is seen with
a hollow on the axis. The peak density on each ring declines
at larger radii. We determine the radius R0 of the maximum

density via dρ
+;l1,s1
⊥;p1⊥,p1z

/dr = 0 (the first ring) and relate it to
the polar angle in Fig. 4(b). These dependencies suggest a
clear connection between the OAM and the radius of the ring
structure with known spin states.

In principle, the ring-shaped structure for monoenergetic
electrons in Fig. 4(a) could be retrieved by extracting electrons
within a small energy spread, implying a potential scheme to
identify the AM of high-energy polarized gamma photon. In
reality, the created pairs in the vortex BW process are not
monoenergetic. When considering the momentum spectrum
distribution generated in a scattering process as the weighting
factor, the transverse density of the created electrons can be
obtained by summing each monoenergetic electron density.
From Fig. 4(c) we notice that the transverse density oscillation
is significantly weakened or even offset in this case. However,
the hollow density structure is always present, as a unique
feature of the vortex modes and hence can be seen as a robust
signature to identify the vortex scattering process.

V. CONCLUSIONS

In conclusion, we have examined the vortex BW pair cre-
ation process based on the QED theory. The full-vortex cross
sections clearly reveal the connections of AM between initial
photons and final pairs, showing dependence on polarization
and OAM numbers. The vortex scattering process leads to
distinctive hollow and ring-shaped density distribution of the
created pairs.

On the experimental side, the generation of twisted elec-
trons and photons have been realized at low energies by using
the spiral phase plate or fork grating [1,2,9,29]. However,
these methods do not work for gamma photons since their
wavelength is orders of magnitude smaller than the optical
wave. An attractive scheme to generate the QVS gamma
photons is based on the linear Compton scattering [7], where
the low-energy twisted optical photons are scattered off from
energetic electrons and blueshifted to gamma photons. To
improve the production efficiency, a promising method could
be the nonlinear Compton scattering with strong lasers of
relativistic intensities. The OAMs of generated gamma pho-
tons can originate from the OAM of strong vortex laser
(Bessel or Laguerre-Gaussian mode) [30], and it is achievable
using off-axis spiral phase mirrors [31]; alternatively, they can
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FIG. 4. (a) Transverse density distribution of a monoenergetic QVS electron with energy E1 = 5 MeV, transverse momentum p1⊥ =
3 MeV, AMs l1 = 3 and m1 = 1/2. (b) Radius R0 of first maximum density versus the polar angle of electron momentum for electron spin
s1 = 1 and different OAM l1. (c) Transverse density of the created electrons (l1 = 3 and m1 = 1/2) in a vortex BW process.

also be transferred from the spin polarizations of circularly
polarized laser photons.
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APPENDIX: DERIVATION OF S-MATRIX ELEMENTS

The S1 matrix in Eq. (3) contains a transverse phase eiq⊥·r
which can be expanded into the AM modes einθ in cylindrical
coordinates,

eiq⊥·r =
∑

n

inJn(q⊥r)einθ−inφq . (A1)

Substituting Eqs. (1), (2), and (A1) into Eq. (3), one obtains

S1 = − ie2

8(2π )3

√
(E1 − M )(E2 − M )

ω1ω2E1E2 p2
1 p2

2

δ(ω1 + ω2 − E1 − E2)δ(k1z + k2z − p1z − p2z )

×
∑
n,n′

in−n′
∫

dq⊥q⊥
(q2 − M2)

[(
p1zξ

s1†σz�
j1,λ1

k1⊥,k1z
, (E1 + M )ξ s1†�

j1,λ1

k1⊥,k1z

)

−ip1⊥
(
ξ s1†�̃

j1,λ1

k1⊥,k1z
, 0

)]((Eq + M )δnn′ −Qn,n′
q⊥,qz

Qn,n′
q⊥,qz

−(Eq − M )δnn′

)

×
[(

(E2 + M )�′ j2,λ2

k2⊥,k2z
ηs2

−p2z�
′ j2,λ2

k2⊥,k2z
σzη

s2

)
+ ip2⊥

(
0

�̃
′ j2,λ2

k2⊥,k2z
ηs2

)]∣∣∣∣∣Eq=−ω1+E1=ω2−E2
qz=−k1z+p1z=k2z−p2z

, (A2)

in which there are five (2 × 2) matrixes:

�
j1,λ1

k1⊥,k1z
=

∫
dθdrrJn(q⊥r)Jl1 (p1⊥r)ei(n−l1 )θ�

j1,λ1

k1⊥,k1z
(r, θ ), (A3)

�̃
j1,λ1

k1⊥,k1z
=

∫
dθdrrJn(q⊥r)einθσ

l1,p1⊥†
⊥ (r, θ )� j1,λ1

k1⊥,k1z
(r, θ ), (A4)

�
′ j2,λ2

k2⊥,k2z
=

∫
dθ ′dr′r′Jn′ (q⊥r′)Jl2 (p2⊥r′)ei(l2−n′ )θ ′

�
j2,λ2

k2⊥,k2z
(r′, θ ′), (A5)

�̃
′ j2,λ2

k2⊥,k2z
=

∫
dθ ′dr′r′Jn′ (q⊥r′)e−in′θ ′

�
j2,λ2

k2⊥,k2z
(r′, θ ′)σ l2,p2⊥

⊥ (r′, θ ′), (A6)

Qn,n′
q⊥,qz

= 1

2π

∫
dφqe−i(n−n′ )φq (σ · q) =

(
qzδnn′ q⊥δn′,n+1

q⊥δn′,n−1 −qzδnn′

)
, (A7)

with

�
j,λ
k⊥,kz

(r, θ ) =
(

λk⊥
ω

Jj (k⊥r)ei jθ i
(
1 + λkz

ω

)
Jj−1(k⊥r)ei( j−1)θ

i
(
1 − λkz

ω

)
Jj+1(k⊥r)ei( j+1)θ − λk⊥

ω
Jj (k⊥r)ei jθ

)
. (A8)
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Substituting these equations into (A2), the S1 matrix leads to

S1 = − ie2

16π

√
(E1 − M )(E2 − M )

ω1ω2E1E2 p2
1 p2

2

δ(ω1 + ω2 − E1 − E2)δ(k1z + k2z − p1z − p2z )

×ξ s1†

(
υ11δ j1+ j2,l1−l2 υ12δ j1+ j2,l1−l2+1

υ21δ j1+ j2,l1−l2−1 υ22δ j1+ j2,l1−l2

)
ηs2

∣∣∣∣Eq=−ω1+E1=ω2−E2
qz=−k1z+p1z=k2z−p2z

, (A9)

which is consistent with Eq. (4). The four matrix elements in Eq. (A9) are derived as

υ11 =
∫

dq⊥q⊥
(q2 − M2)

{
[p1z p2zqz + p1z(E2 + M )(Eq + M ) + p2z(E1 + M )(Eq − M )

+qz(E1 + M )(E2 + M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2

j2
+ [p1z p2zqz − p1z(E2 + M )(Eq + M )

−p2z(E1 + M )(Eq − M ) + qz(E1 + M )(E2 + M )]

(
1 + λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1

j1−1S̃ j2+l2+1
j2+1

+ [p1z p2⊥qz + p2⊥(E1 + M )(Eq − M )]
λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2

j2−1

+ [p1⊥ p2zqz − p1⊥(E2 + M )(Eq + M )]
λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1+1

j1
S̃ j2+l2+1

j2+1

+ [p1z p2zq⊥ + q⊥(E1 + M )(E2 + M )]
λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2+1

j2+1

− [p1z p2zq⊥ + q⊥(E1 + M )(E2 + M )]
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1

j1−1S̃ j2+l2
j2

+ [p1z p2⊥qz − p2⊥(E1 + M )(Eq − M )]
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1

j1−1S̃ j2+l2+1
j2

+ [p1⊥ p2zqz + p1⊥(E2 + M )(Eq + M )]
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1+1

j1+1S̃ j2+l2
j2

+ p1z p2⊥q⊥
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2+1

j2
+ p1⊥ p2⊥qz

λ1k1⊥λ2k2⊥
ω1ω2

Sl1+1
j1

S̃ j2+l2+1
j2

− p1⊥ p2zq⊥
λ1k1⊥λ2k2⊥

ω1ω2
Sl1+1

j1
S̃ j2+l2

j2
− p1⊥ p2⊥q⊥

λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1+1

j1
S̃ j2+l2

j2−1

+ p1⊥ p2⊥q⊥
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1+1

j1+1S̃ j2+l2+1
j2

− p1z p2⊥q⊥

(
1 + λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1

j1−1S̃ j2+l2
j2−1

+ p1⊥ p2⊥qz

(
1 − λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1+1

j1+1S̃ j2+l2
j2−1

+p1⊥ p2zq⊥

(
1 − λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1+1

j1+1S̃ j2+l2+1
j2+1

}
, (A10)

υ12 = −i
∫

dq⊥q⊥
(q2 − M2)

{
[p1z p2zqz − p1z(E2 + M )(Eq + M ) + p2z(E1 + M )(Eq − M )

−qz(E1 + M )(E2 + M )]
λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2−1

j2−1

+ [p1z p2zqz + p1z(E2 + M )(Eq + M ) − p2z(E1 + M )(Eq − M )

−qz(E1 + M )(E2 + M )]
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1

j1−1S̃ j2+l2
j2

+ [p1z p2zq⊥ − q⊥(E1 + M )(E2 + M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2

j2

− [p1z p2⊥qz + p2⊥(E1 + M )(Eq − M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2−1

j2
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+ [p1⊥ p2zqz + p1⊥(E2 + M )(Eq + M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1+1

j1
S̃ j2+l2

j2

− [p1z p2zq⊥ − q⊥(E1 + M )(E2 + M )]

(
1 + λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1

j1−1S̃ j2+l2−1
j2−1

− [p1z p2⊥qz − p2⊥(E1 + M )(Eq − M )]

(
1 + λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1

j1−1S̃ j2+l2
j2+1

+ [p1⊥ p2zqz − p1⊥(E2 + M )(Eq + M )]

(
1 − λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1+1

j1+1S̃ j2+l2−1
j2−1

− p1⊥ p2zq⊥
λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1+1

j1
S̃ j2+l2−1

j2−1 − p1z p2⊥q⊥
λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2

j2+1

+ p1z p2⊥q⊥
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1

j1−1S̃ j2+l2−1
j2

+ p1⊥ p2zq⊥
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1+1

j1+1S̃ j2+l2
j2

+ p1⊥ p2⊥q⊥
λ1k1⊥λ2k2⊥

ω1ω2
Sl1+1

j1
S̃ j2+l2−1

j2
− p1⊥ p2⊥qz

λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1+1

j1
S̃ j2+l2

j2+1

−p1⊥ p2⊥qz
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1+1

j1+1S̃ j2+l2−1
j2

− p1⊥ p2⊥q⊥

(
1 − λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1+1

j1+1S̃ j2+l2
j2+1

}
, (A11)

υ21 = −i
∫

dq⊥q⊥
(q2 − M2)

{
[p1z p2zqz − p1z(E2 + M )(Eq + M ) + p2z(E1 + M )(Eq − M )

−qz(E1 + M )(E2 + M )]
λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2+1

j2+1

+ [p1z p2zqz + p1z(E2 + M )(Eq + M ) − p2z(E1 + M )(Eq − M )

−qz(E1 + M )(E2 + M )]
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1

j1+1S̃ j2+l2
j2

− [p1z p2zq⊥ − q⊥(E1 + M )(E2 + M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2

j2

+ [p1z p2⊥qz + p2⊥(E1 + M )(Eq − M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2+1

j2

− [p1⊥ p2zqz + p1⊥(E2 + M )(Eq + M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1−1

j1
S̃ j2+l2

j2

− [p1⊥ p2zqz − p1⊥(E2 + M )(Eq + M )]

(
1 + λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1−1

j1−1S̃ j2+l2+1
j2+1

+ [p1z p2⊥qz − p2⊥(E1 + M )(Eq − M )]

(
1 − λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1

j1+1S̃ j2+l2
j2−1

+ [p1z p2zq⊥ − q⊥(E1 + M )(E2 + M )]

(
1 − λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1

j1+1S̃ j2+l2+1
j2+1

− p1z p2⊥q⊥
λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2

j2−1 − p1⊥ p2zq⊥
λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1−1

j1
S̃ j2+l2+1

j2+1

+ p1⊥ p2zq⊥
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1−1

j1−1S̃ j2+l2
j2

+ p1z p2⊥q⊥
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1

j1+1S̃ j2+l2+1
j2

− p1⊥ p2⊥q⊥
λ1k1⊥λ2k2⊥

ω1ω2
Sl1−1

j1
S̃ j2+l2+1

j2
− p1⊥ p2⊥qz

λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1−1

j1
S̃ j2+l2

j2−1

− p1⊥ p2⊥qz
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1−1

j1−1S̃ j2+l2+1
j2

+p1⊥ p2⊥q⊥

(
1 + λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1−1

j1−1S̃ j2+l2
j2−1

}
, (A12)

υ22 = −
∫

dq⊥q⊥
(q2 − M2)

{
[p1z p2zqz + p1z(E2 + M )(Eq + M ) + p2z(E1 + M )(Eq − M )

+qz(E1 + M )(E2 + M )]
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2

j2
+ [p1z p2zqz − p1z(E2 + M )(Eq + M )
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−p2z(E1 + M )(Eq − M ) + qz(E1 + M )(E2 + M )]

(
1 − λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1

j1+1S̃ j2+l2−1
j2−1

− [p1z p2zq⊥ + q⊥(E1 + M )(E2 + M )]
λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2−1

j2−1

− [p1⊥ p2zqz − p1⊥(E2 + M )(Eq + M )]
λ1k1⊥
ω1

(
1 + λ2k2z

ω2

)
Sl1−1

j1
S̃ j2+l2−1

j2−1

− [p1z p2⊥qz + p2⊥(E1 + M )(Eq − M )]
λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1

j1
S̃ j2+l2

j2+1

− [p1⊥ p2zqz + p1⊥(E2 + M )(Eq + M )]
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1−1

j1−1S̃ j2+l2
j2

+ [p1z p2zq⊥ + q⊥(E1 + M )(E2 + M )]
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1

j1+1S̃ j2+l2
j2

− [p1z p2⊥qz − p2⊥(E1 + M )(Eq − M )]
λ2k2⊥
ω2

(
1 − λ1k1z

ω1

)
Sl1

j1+1S̃ j2+l2−1
j2

+ p1z p2⊥q⊥
λ1k1⊥λ2k2⊥

ω1ω2
Sl1

j1
S̃ j2+l2−1

j2
− p1⊥ p2zq⊥

λ1k1⊥λ2k2⊥
ω1ω2

Sl1−1
j1

S̃ j2+l2
j2

+ p1⊥ p2⊥qz
λ1k1⊥λ2k2⊥

ω1ω2
Sl1−1

j1
S̃ j2+l2−1

j2
+ p1⊥ p2⊥q⊥

λ1k1⊥
ω1

(
1 − λ2k2z

ω2

)
Sl1−1

j1
S̃ j2+l2

j2+1

− p1⊥ p2⊥q⊥
λ2k2⊥
ω2

(
1 + λ1k1z

ω1

)
Sl1−1

j1−1S̃ j2+l2−1
j2

+ p1⊥ p2zq⊥

(
1 + λ1k1z

ω1

)(
1 + λ2k2z

ω2

)
Sl1−1

j1−1S̃ j2+l2−1
j2−1

+ p1⊥ p2⊥qz

(
1 + λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1−1

j1−1S̃ j2+l2
j2+1 −p1z p2⊥q⊥

(
1 − λ1k1z

ω1

)(
1 − λ2k2z

ω2

)
Sl1

j1+1S̃ j2+l2
j2+1

}
. (A13)

Here the integral of the triple-Bessel product [32] is given by

Sm
n =

∫ ∞

0
drrJn(k1⊥r)Jm−n(q⊥r)Jm(p1⊥r), (A14)

S̃m
n =

∫ ∞

0
drrJn(k2⊥r)Jm−n(p2⊥r)Jm(q⊥r). (A15)

The S2 matrix is derived by exchanging two incident photons in S1: S2 = S1(k1 ↔ k2, j1 ↔ j2, λ1 ↔ λ2).
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