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Group theoretic approach to many-body scar states in fermionic lattice models
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It has been shown [K. Pakrouski et al., Phys. Rev. Lett. 125, 230602 (2020)] that three families of highly
symmetric states are many-body scars for any spin- 1

2 fermionic Hamiltonian of the form H0 + OT , where T
is a generator of an appropriate Lie group. One of these families consists of the well-known η-pairing states.
In addition to having the usual properties of scars, these families of states are insensitive to electromagnetic
noise and have advantages for storing and processing quantum information. In this paper we show that a number
of well-known coupling terms, such as the Hubbard and the Heisenberg interactions, and the Hamiltonians
containing them, are of the required form and support these states as scars without fine tuning. The explicit
H0 + OT decomposition for a number of most commonly used models, including topological ones, is provided.
To facilitate possible experimental implementations, we discuss the conditions for the low-energy subspace of
these models to be comprised solely of scars. Further, we write all the generators T that can be used as building
blocks for designing new models with scars, most interestingly including the spin-orbit coupled hopping and
superconducting pairing terms. We expand this framework to the non-Hermitian open systems and demonstrate
that for them the scar subspace continues to undergo coherent time evolution and exhibit the “revivals.” A full
numerical study of an extended two-dimensional tJU model explicitly illustrates the novel properties of the
invariant scars and supports our findings.
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I. INTRODUCTION

In recent literature there has been considerable interest
in the many-body scar states [1–37] (for their pedagogi-
cal overviews, see [38,39]). The scar states are typically
spread throughout the energy range of the spectrum and
are, therefore, relevant when the excitation energy is high.
They do not obey the eigenstate thermalization hypothesis
(ETH) [40–42], one of the most fundamental conjectures
that allows us to bridge quantum mechanics with statisti-
cal physics. On the practical side, an initial state made of
many-body scar states repeatedly returns to itself in time
evolution, preventing the loss of quantum information through
thermalization. This offers intriguing prospects for quantum
computing.

Examples of many-body scars have been found in a num-
ber of systems including correlated electron models with
the Heisenberg [12,18,43,44], Hubbard [11,18,20,45] and
density-density [46,47] interactions. These findings represent
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a scattered puzzle of scar phenomenology lacking a clear
fundamental mechanism.

In our previous paper [22] (see also [23,24]), we presented
a general strategy for systematically designing the Hamil-
tonians with a many-body scar subspace S invariant under
the action of a continuous group G, which is bigger than
the symmetry group of the Hamiltonian. The general form
of such Hamiltonians is H = H0 + ∑

j O jT G
j , where T G

j are
generators of the symmetry group G and Oj are a set of oper-
ators such that the product OjT G

j is Hermitian. H0 must admit
the states in S as eigenstates and the revivals are observed
when the gaps between the corresponding eigenvalues have a
common divisor.

In this work, we demonstrate that many of the commonly
used condensed matter models of interacting electrons actu-
ally happen to be of this form and specify their group-invariant
scar subspaces S. This applies to the Hubbard, Heisenberg,
and some other interactions, and any models constructed out
of them on various lattices and in arbitrary dimension such
as the extended two-dimensional (2D) tJU model that we
consider in detail as a prototype. Most of these models can
be readily implemented in experiment paving the way for
their systematic experimental studies. Our results show that
some of the known scar states [14,20] can indeed be explained
by the mechanism of Ref. [22]. An important feature of our
construction is that G is a large Lie group, such as O(N ) or
SU(N ), whose rank is of order N , the number of lattice sites.

2643-1564/2021/3(4)/043156(20) 043156-1 Published by the American Physical Society

https://orcid.org/0000-0003-0384-5909
https://orcid.org/0000-0002-1807-234X
https://orcid.org/0000-0002-1210-3088
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.043156&domain=pdf&date_stamp=2021-12-03
https://doi.org/10.1103/PhysRevLett.125.230602
https://doi.org/10.1103/PhysRevResearch.3.043156
https://creativecommons.org/licenses/by/4.0/


PAKROUSKI, PALLEGAR, POPOV, AND KLEBANOV PHYSICAL REVIEW RESEARCH 3, 043156 (2021)

The generators of such groups include the nearest-neighbor
hopping terms, and using them we can construct a variety of
(approximately) local lattice models.

We also extend the framework of [22] to non-Hermitian
Hamiltonians. In particular, we study a model where the prod-
uct OT is not Hermitian. This opens the way to studying
the coherent time evolution of a group-invariant scar sub-
space in open systems. To our knowledge, many-body scars
at finite energy density in non-Hermitian systems have not
been discussed previously,1 while the nonstationary, periodic
phenomena in dissipative strongly interacting systems is an
emergent hot topic [48–53].

In Sec. II we specify the three families of scar states that are
relevant to our discussion of spin- 1

2 fermionic models. We de-
scribe their structures, and the generators T annihilating them.
These generators may be viewed as the free Hamiltonians.
In Sec. III we show how the well-known interaction terms,
such as the Hubbard and Heisenberg interactions, decom-
pose in terms of the same generators. As a consequence, the
models including any linear combinations of such interaction
terms also have H0 + OT decomposition. In Table III we give
these decompositions for several models, such as the J1-J2

and Haldane-Hubbard models. We conclude with an example
(Sec. V) where the full construction is detailed for the tJU
model and the numerical evidence of many-body scar states is
provided.

II. GROUP GENERATORS AND INVARIANT STATES

Consider a lattice of N sites with each one hosting a
complex spin- 1

2 fermion (electron). Their two spin states are
created on site j by operators c†

jσ , where σ =↑,↓. We do
not assume any spatial structure in general but will specify
it where necessary. It is useful to think of the Hilbert space of
2N fermionic degrees of freedom as factorized according to
the representations of one of the following groups:

G1 = O(N ) × O(4) = O(N ) × SU(2)spin × SU(2)η,

G2 = U(N ) × SU(2)spin = U(1)Q × SU(N ) × SU(2)spin,

G3 = Ũ(N ) × SU(2)η = U(1)M × S̃U(N ) × SU(2)η, (1)

where the large rank groups O(N ), SU(N ), S̃U(N ) act on the
site index. In particular, the factorization under O(N ) × O(4)
is natural if one works in the representation of 4N Majorana
fermions [54,55]. Due to the peculiar nature of the Hilbert
space, the representations of a group acting on the site index
are locked to particular representations of the dual O(4) =
SU(2)spin × SU(2)η [54] [the SU(2)η group is often called the
pseudospin].

The symmetry properties of the invariant states we are
going to consider in this work are summarized in Table I [the
states are given explicitly in (22), (24), and (25)]. Note that
each of these subspaces is invariant under two groups, a large
group acting on the site index and a small group acting on the
spin or pseudospin. For example, the states |nζ 〉 are invariant

1A phenomenon equivalent to scars at zero-energy density was
mentioned in the Supplemental Material of Ref. [93].

TABLE I. Properties of the invariant subspaces with respect to
the groups acting on the lattice index and spin and pseudospin
groups.

States Lattice index Spin Pseudospin

|nη〉 Ũ(N )-invariant singlet Spin- N
2|nζ 〉 U(N )-invariant spin- N

2 Singlet
|nη〉′ Ũ(N )′-invariant singlet Spin- N

2

under both U(N ) and SU(2)η. Therefore, the generators of
each of these groups TU(N ) and TSU(2)η and the commutators
[TU(N ), TSU(2)η ] all annihilate2 the |nζ 〉 states and can be used
as T in the H0 + OT Hamiltonian. Further insights into the
interrelations between the various groups and the invariant
states are provided in Fig. 1 and Appendix C.

In order to construct the Hamiltonians such that the invari-
ant states are many-body scars, we now discuss the generators
of all the relevant groups. We will use the standard notation
for the fermion numbers at site i:

ni↑ = c†
i↑ci↑ , ni↓ = c†

i↓ci↓ , ni = ni↑ + ni↓. (2)

The total fermion number is

Q =
N∑

i=1

ni, (3)

and we will call the corresponding symmetry U(1)Q [the ac-
tual generator is (Q − N )/2].

The generators of the rotation group SU(2)spin are given by

QA =
N∑

i=1

SA
i , A = 1, 2, 3. (4)

The spin operator at site i is

SA
i = 1

2

∑
α,β

c†
iασ A

αβciβ, (5)

where σ A are the Pauli matrices, and the greek indices take
two values, ↑ and ↓. In particular,

2S3
i = Mi = ni↑ − ni↓ (6)

is the magnetization at site i. The symmetry corresponding to
total magnetization is U(1)M ⊂ SU(2)spin.

Another important group is the pseudospin [56–58], which
is denoted by SU(2)η. Its generators are

η+ =
∑

j

c†
j↑c†

j↓ = 1

2

∑
j,σ,σ ′

c†
jσ c†

jσ ′εσσ ′,

η− = (η+)†, η3 = 1

2
(Q − N ), (7)

so that U(1)Q ⊂ SU(2)η. Here, εσσ ′ is the antisymmetric ten-
sor of rank 2 such that ε↑↓ = 1.

2Some of these terms involve a sum over all system sites and should
be excluded if a purely local Hamiltonian is desired.
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The generators of SU(2)spin and SU(2)η involve summa-
tion over all lattice sites. Therefore, using such generators in
the interaction terms

∑
j O jT G

j will produce a very nonlocal
Hamiltonian. Instead, we will follow the suggestion in our
previous paper [22] to construct these interaction terms using
the generators of large rank groups, such as SU(N ), which
include the nearest-neighbor spin-independent hopping terms.

The full set of generators of SU(N ) are the hopping terms
with generally complex amplitudes:

Ti j = λ
∑

σ

c†
iσ c jσ + H.c., λ ∈ C. (8)

There is an SO(N ) subgroup of SU(N ) whose generators are
the spin-preserving hopping terms with imaginary amplitudes

T O
kl = i

∑
σ

(c†
kσ

clσ − c†
lσ ckσ ). (9)

They are invariant under SU(2)spin × SU(2)η.
An alternate basis for the generators of SU(N ) is

T a =
∑
i, j,σ

t a
i jc

†
iσ c jσ , a = 1, . . . N2 − 1 (10)

where t a are the traceless Hermitian N × N matrices. The
simple root generators of this algebra could be chosen as the
nearest-neighbor hoppings

Ti =
∑

σ

c†
iσ cn(i)σ , (11)

where n(i) is the nearest neighbor of the site i on a given
lattice. Commuting simple roots we can restore the whole
algebra (8). Any Hermitian spin-independent hopping terms
on any lattice are linear combinations of Ti j (8). They belong
to the SU(N ) algebra and annihilate the SU(N ) singlets [and
consequently also the singlets of the larger group U(N )].

There is another, less obvious, group S̃U(N ), whose gener-
ators are (9) and the spin-orbit coupled hopping

T̃ sym
kl =

∑
α,β

(
c†

kα
σ 2

αβclβ + c†
lασ 2

αβckβ

)
. (12)

The spin-preserving hopping terms (9) are generators of the
SO(N ) which is a subgroup of both S̃U(N ) and SU(N ) (see
Fig. 1).

By combining operators T̃kl [Eq. (12)] and QA [Eq. (4)] we
obtain more general spin-orbit coupled hopping terms

T̃ A
i j =

∑
α,β

(
c†

iασ A
αβc jβ + c†

jασ A
αβciβ

)
(13)

that annihilate the singlets of Ũ (N ) and SU(2)spin (|nη〉 states).
A special case of these generators is the local spin operator SA

i .
By commuting η+ [Eq. (7)] and Ti j [Eq. (8)] we can get the

operators that annihilate the singlets of SU(2)η and of U(N )
(|nζ 〉 states)

T +
i j = [η+, Ti j] = λ

∑
σ,σ ′

εσσ ′c†
iσ c†

jσ ′ , T − = (T +)†. (14)

There is a particular set of generators of U(N ) that we will
find useful:

Ki = ni − 1, i = 1, . . . N. (15)

O(N)

T̃ , Mi T, Ki
TO

Ũ(N), SU(2)spin U(N), SU(2)η

|nη〉

inv.

|nζ〉

inv.inv. inv.

R

Ũ(N)′, SU(2)spin

T̃ ′ = R†T̃R

inv.

|nη〉′
R

FIG. 1. Interrelations between the three invariant subspaces and
the corresponding groups. The three groups that act naturally on
the Hilbert space are shown inside the ellipses, the corresponding
generators are shown inside the rectangular boxes, and the invariant
states are shown inside the circles.

For example,

KN = nN − 1 = η3

N
− T N2−1, (16)

where T N2−1 is the generator of SU(N ) corresponding to the
matrix

tN2−1 = diag

(
1

N
,

1

N
, . . . ,−1 + 1

N

)
. (17)

We have
∑N

i=1 Ki = 2η3, and the square of Ki can be ex-
pressed in terms of the local magnetization:

K2
i = 1 − M2

i , (18)

where we used n2
i↑ = ni↑ and n2

i↓ = ni↓.
Now let us consider a special case of a bipartite lattice

where the vertices are divided into two nonintersecting sets,
which we can call red and blue (see Fig. 2). Here, in addi-
tion to the above operators, we can define the transformed
generators

T̃ ′ = R†T̃ R, (19)

1 2 3 4 5 6 7 8

910111213141516

17 18 19 20 21 22 23 24

2526272829303132

1 2 3 4 5 6 7 8

910111213141516

17 18 19 20 21 22 23 24

2526272829303132

FIG. 2. A depiction of the bipartite square 2D lattice. The red
lines indicate the “even” hoppings that connect sites on different
sublattices. The green lines indicate the “odd” hoppings that connect
sites on the same sublattice. The numbers labeling the sites show the
lattice site index, which is acted on by one of the large groups such
as SU(N ).
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where

R = i

∑
j∈B

n j

, R†R = I, (20)

and the sum runs over the blue sites. The generators (19) form
a group that we denote as S̃U(N )′. A particular subset of the
generators T̃ ′ is the nearest-neighbor hopping terms with a
real coefficient

T ′
〈i, j〉 =

∑
σ

c†
iσ c jσ + H.c. (21)

Other ways of constructing a S̃U(N )′ algebra of longer-
range hopping terms are discussed in the next subsection.
We will denote the spin-preserving subgroup of this group as
SO(N )′ ⊂ S̃U(N )′.

We now provide the basis for each invariant subspace listed
in Table I. Each subspace should be invariant under the action
of H0 for the invariant states to be scars [22]. A particular
H0 may have eigenstates that are different from the basis
discussed below but may be obtained from it by a rotation.

The subspace invariant under U(N ) and SU(2)η is spanned
by |nζ 〉 which have the highest possible physical spin; namely,
they form the spin-( N

2 ) representation of SU(2)spin [22]:

|nζ 〉 = ζ n√
N!n!

(N−n)!

|0ζ 〉 , |0ζ 〉 =
N∏

j=1

c†
j↓ |0〉 , (22)

where n = 0, . . . , N , and

ζ = Q1 + iQ2 =
N∑

j=1

c†
j↑c j↓ (23)

is the spin-raising operator.
The states |nη〉 are invariant under Ũ(N ) and SU(2)spin;

they form the (N + 1)-dimensional representation of pseu-
dospin SU(2)η:

|nη〉 = (η)n√
N!n!

(N−n)!

|0〉 , n = 0, . . . , N (24)

where η = η+ [Eq. (7)]. On a bipartite lattice we can further
define the states |nη〉′ that are invariant under Ũ(N )′ and form
the (N + 1)-dimensional representation of SU(2)′η:

|nη〉′ = R |nη〉 = (η′)n√
N!n!

(N−n)!

|0〉 , η′ =
N∑

j=1

eiπ jc†
j↑c†

j↓. (25)

These states are known as the η-pairing states [56,59].3 It is
not hard to check that[

SA
i , η

] = [
SA

i , η′] = 0. (26)

Combined with the fact that both families of states include the
vacuum, that is annihilated by SA

i , this means that all the |nη〉
and |nη〉′ states are annihilated by the local spin operators SA

i .
The importance of the spin and pseudopspin SU(2) groups

has been previously understood in the context of the Hubbard
model [56–58]. These two SU(2) groups are related by the

3In [22] these states were denoted as |n′
O〉.

TABLE II. Action of generators on the invariant states. The en-
tries 0 denote the states annihilated by them. The entries ∗: these
operators act with a constant when summed over all lattice sites (see
Table IV). “-” means the states are not eigenstates of the correspond-
ing operator.

Annihilate |nζ 〉 S̃U
′
(N )︷ ︸︸ ︷ ↓

|〉 Ti j (8)Ki (15) (ηα )2 (7) T O
i j (9)T̃ A

i j (13)Mi (QA)2 T ′ (21)
|nζ 〉 0 0 0 0 – ∗ N (N + 2)/4 0
|nη〉 – ∗ N (N + 2)/4 0 0 0 0 –
|n′η〉 – ∗ – – – 0 0 0︸ ︷︷ ︸

Annihilate |nη〉

Shiba transformation, that acts on the fermion operators in the
following way:

c j↑ → c j↑, c j↓ ↔ (−1) jc†
j↓. (27)

We note that this transformation interchanges the |nη〉′ and
|nζ 〉 states and leaves the SO(N ) generators (9) invariant. The
Hubbard Hamiltonian is also known [60] to be invariant under
the Shiba transformation.

All three families of scars have a very high degree of
symmetry with respect to the spatial index j. As a conse-
quence, when the sites are arranged into a lattice, all three
families are translation and permutation invariant. In Table II
we summarize the action of all the generators we mentioned
on the three families of the invariant states. This table provides
a simple way of constructing Hamiltonians with one of the
families as scars: any linear combination of the operators with
0 in a corresponding row can be used as an operator T in
the general H0 + OT form. In Sec. III we show that many of
the commonly known interaction terms, such as the Hubbard
and Heisenberg interactions, can be decomposed in terms of
the generators listed above and therefore have invariant many-
body scar states.

A. Longer-range hopping terms

Some classic models, e.g., the Hubbard model, include
only the nearest-neighbor hopping term with a real coefficient
t :

Hnn = t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.). (28)

However, the models that aim to describe realistic materials,
such as the high-Tc superconductors, may include the next-
to-nearest-neighbor or even longer-range hopping terms with
real coefficients. It is, therefore, interesting to inquire if the
deformation by such additional hopping terms preserves the
families of scar states. In this section we discuss when such
terms are generators of the relevant symmetry groups and
annihilate the paired states |nη〉′.

Any Hermitian spin-independent hopping terms on any
lattice (including T ′, T O

i j ) are special cases of the complex-
amplitude hopping Ti j [Eq. (8)]. Therefore, they belong to
an SU(N ) algebra and annihilate the |nζ 〉 subspace. The
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nearest-neighbor hopping with real amplitude (21) on a bi-
partite lattice is a generator of S̃U(N )′ and annihilates |nη〉′.

A complication with the longer-range real-amplitude
hopping

T r
i j =

∑
σ

(c†
iσ c jσ + c†

jσ ciσ ) (29)

comes from the fact that a commutator of such terms may not
always be expressed as T r

kl alone. Yet, in some special cases,
a constraint on the lattice type, hopping range or boundary
conditions allows this algebra to be closed. For example, T ′

〈i j〉
is restricted to the nearest-neighbor hopping on a bipartite lat-
tice where we can perform a transformation (20) on ck which
maps t → it . Then the hopping terms become generators (9)
of SO(N ), which is important for the argument that the states
|nη〉 are scars.

However, if the next-to-nearest-neighbor (NNN) hopping
terms are added, the transformation keeps those hopping co-
efficient real. As a result, the O(N ) invariant states |nη〉 are
not scars in presence of the NNN hopping terms. Indeed,
combining the nearest- and next-nearest-neighbor hopping
does not lead to a closed algebra. For example, let us consider
the following set of hopping terms connecting sites 1,2,3 in a
linear chain:

T1 =
∑

σ

(c†
1σ c2σ + H.c.), T2 =

∑
σ

(c†
2σ c3σ + H.c.),

T3 =
∑

σ

(c†
1σ c3σ + H.c.). (30)

The hoppings T1 and T2 are nearest neighbor, while T3 is next-
nearest neighbor. Then

[T1, T2] =
∑

σ

(c†
3σ c1σ − c†

1σ c3σ ). (31)

It is not of the form of T3; therefore, the subalgebra of hopping
terms with real coefficients does not close.

To avoid this issue, we may use a bipartite lattice and
restrict the allowed hopping terms. A closed SO(N )′ algebra is
formed by the “even” long-range real-amplitude hopping that
contains exclusively the terms connecting the sites belonging
to different groups of the bipartite lattice (red to blue) in Fig. 2,
meaning that it is a hopping over 2k neighbors, where k is
a non-negative integer. The number of the nearest neighbors
hopped over by the term ti j

∑
σ c†

iσ c jσ is determined by the
lattice as the smallest number of connected sites that need
to be visited when traveling from site i to site j. The even
nearest-neighbor hopping is shown in red lines in Fig. 2 and
includes the nearest-neighbor hopping as a subset. Such hop-
ping annihilates |nη〉′ as a generator of SO(N )′ and |nζ 〉 as a
generator of SU(N ).

The algebra SO(N )′ can also be constructed on a bipartite
lattice when both even and odd nearest-neighbor hopping are
present in the system. In this case, we must require that all
the even nearest-neighbor hopping terms have real ampli-
tudes while all the odd nearest-neighbor terms have imaginary
amplitudes (for example, in Fig. 2 we may include the nearest-
neighbor hoppings with a real amplitude and the shortest
diagonal hoppings with an imaginary amplitude). Such a hop-
ping will again annihilate both |nζ 〉 and |nη〉′ subspaces. An

example of this scenario is the Haldane model [61] discussed
in Appendix A6.

B. Electromagnetic field

In the absence of an electromagnetic field, the hopping
terms are typically taken to have real coefficients. The pres-
ence of a (possibly time-dependent) electromagnetic field in
a lattice model introduces the phase factors eiαi j c†

iσ c jσ . As
discussed above, such spin-independent hopping terms with a
complex amplitude Ti j are generators of SU(N ) and therefore
annihilate the |nζ 〉 states.

The only effect of an electromagnetic field on the |nζ 〉
states comes from the coupling between the magnetic field
and the spin of the electrons: δH = −μ �Q · �B, which results
in a linear in B and equidistant splitting of the |nζ 〉 states
according to the projection of their total spin and changes
the “revivals” period. Other families of the invariant states are
mixed by the electromagnetic field with the rest of the spec-
trum. Because |nζ 〉 forms the maximum-spin representation
of SU(2)spin these states get split the most by the magnetic
field with respect to all other states in the Hilbert space. If all
other terms in the Hamiltonian are bounded this means that
in a strong enough magnetic field an |nζ 〉 state can always be
made the ground state.

For some particular configurations [for example, a closed
one-dimensional (1D) chain with a magnetic field of π

through it], the modified hopping amplitude may be purely
imaginary. In such cases, the hopping T O

i j [Eq. (9)] is a gener-
ator of SO(N ), which makes the states |nη〉 insensitive to the
magnetic field (they also have zero spin).

III. INTERACTION TERMS

Let us consider an arbitrary lattice with N sites on which
spin- 1

2 electrons are placed, and let i and j refer to two sites
on this lattice. We would like to rewrite the commonly used
electron-electron interaction terms in the form H0 + OT and
analyze their action on the three invariant subspaces.

A. Hubbard interaction

In the Hubbard model, two electrons interact only when
they are located on the same site i. The Hubbard interaction
at site i may be written in terms of the generators Ki of group
U(N ):

HHub
i = ni↑ni↓ = 1

2

(
n2

i − ni
) = 1

2

(
K2

i + Ki
)
. (32)

This annihilates the |nζ 〉 states. While neither |nη〉′ nor |nη〉
are eigenstates of (32), they are eigenstates of the Hubbard
interaction summed over the full lattice that we write using
(32), (18), and (15) as

∑
i

HHub
i = 1

2

(
Q − N +

∑
i

K2
i

)
= 1

2

(
Q −

∑
i

M2
i

)
.

(33)
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Since the local magnetization Mi annihilates the states |nη〉
and |nη〉′, we have∑

i

HHub
i |nη〉′ = n |nη〉′ = Q

2
|nη〉′ ,

∑
i

HHub
i |nη〉 = n |nη〉 , (34)

which implies that the energies of these scar states have equal
spacing. This is related to the fact that the pseudospin genera-
tors η± do not commute with the Hamiltonian of the Hubbard
model [56–58].

A slightly modified Hubbard interaction

H̃Hub
i = (2ni↑ − 1)(2ni↓ − 1) = (−1)ni (35)

can be cast in the form

H̃Hub
i = 1 − 2M2

i = 2K2
i − 1 (36)

and has the advantage that all three invariant families are
eigenstates on every site: H̃Hub

i |nζ 〉 = − |nζ 〉; H̃Hub
i |nη〉 =

|nη〉; H̃Hub
i |nη〉′ = |nη〉′.

B. Density-density interaction

The density-density interaction at different sites, Hdd
i j =

nin j , can also be written in terms of the generators (15):

Hdd
i j = (Ki + 1)(Kj + 1). (37)

For the SU(N )-invariant states |nζ 〉, we have Hdd
i j |nζ 〉 = |nζ 〉.

Neither |nη〉 nor |nη〉′ states are eigenstates of Hdd
i j since Ki

does not act on them with a definite value.
The generalized density-density interaction reads as

Hgdd
i j =

∑
σ,σ ′

V σσ ′
i j niσ n jσ ′

= αi jnin j + βi jniMj + γi jMin j + δi jMiMj, (38)

and Mi |nη〉′ = Mi |nη〉 = 0 (see Table II). Mi does not annihi-
late |nζ 〉 and mixes them with the nonsinglet states. However,
|nζ 〉 are eigenstates of the total magnetization:

∑
i Mi |nζ 〉 =

(N − 2n) |nζ 〉.
Similarly, |nη〉 and |nη〉′ are not eigenstates of ni, but for

the total fermion number Q we have Q |nη〉′ = 2n |nη〉′ and
Q |nη〉 = 2n |nη〉. For |nζ 〉 we have ni |nζ 〉 = |nζ 〉. The above
observations mean that Hgdd

i j annihilates |nη〉 and |nη〉′ states
when αi j = 0 and leaves |nζ 〉 unchanged when βi j = γi j =
δi j = 0; for example, αi jnin j |nζ 〉 = αi j |nζ 〉.

When the coefficients in Eq. (38) are translation invariant,
V σ,σ ′

i j = V σ,σ ′
i− j , the |nζ 〉 become eigenstates of β and γ terms:∑

i

βkniMi+k |nζ 〉 = βk

∑
i

Mi+k |nζ 〉 = βk (N − 2n) |nζ 〉 .

We note that Ref. [20] demonstrated that for
∑

σ V σ,σ ′
i j = 0

(satisfied by the β, γ , δ and violated by αi j terms) [Eq. (38)]
respects η symmetry and admits the |nη〉′ states as scars.

C. Heisenberg interaction

The Heisenberg interaction HHeis
i j = �Si · �S j couples spins

on two different sites i and j. Using the expression (5) for the

spin operator in the Hilbert space of spin- 1
2 complex fermions,

we find

4�Si · �S j = (c†
i↑ci↑ − c†

i↓ci↓)(c†
j↑c j↑ − c†

j↓c j↓)

+ (c†
i↑ci↓ + c†

i↓ci↑)(c†
j↑c j↓ + c†

j↓c j↑)

− (c†
i↑ci↓ − c†

i↓ci↑)(c†
j↑c j↓ − c†

j↓c j↑)

=
∑
α,β

(−c†
iαc jαc†

jβciβ − c†
jαciαc†

iβc jβ

− c†
iαciαc†

jβc jβ + c†
iαciα + c†

jαc jα ). (39)

This may be written as

�Si · �S j = 1
4 + Ci j, (40)

where

Ci j = − 1
4 (Ei jE ji + EjiEi j + KiKj ) (41)

and we introduced the off-diagonal generators of SU(N ):

Ei j =
∑

α

c†
iαc jα, i = j. (42)

Equation (40) represents the H0 + OT decomposition of the
Heisenberg interaction with respect to the group U(N ). It
follows that the U(N )-invariant states |nζ 〉 are degenerate
eigenstates of �Si · �S j on any lattice, in any dimension, and for
any i = j with energy 1

4 . We also note that the Heisenberg
interaction annihilates the states |nη〉 and |nη〉′ because they
are annihilated by the local spin operators SA

i [see Eq. (26)
and the discussion following it].

D. Symmetry-breaking perturbation

To highlight the ergodicity-breaking properties of the in-
variant states and to be able to tune to the fully chaotic regime
we will consider a simple symmetry-breaking term of the OT
form that we write for a rectangular lattice in two dimensions,
where i labels the horizontal and j the vertical direction:

H p
h =

∑
i, j

ri j (M̃i j + M̃(i+1) j )S
hor
i j

+ qi j (M̃i j + M̃i( j+1))S
vert
i j , (43)

where ri j, qi j ∈ [0, 1] are real random numbers and

M̃i j = rMc†
i j↑ci j↑ − qMc†

i j↓ci j↓,

Shor
i j =

∑
σ

c†
(i+1) jσ ci jσ + H.c., (44)

Svert
i j =

∑
σ

c†
i( j+1)σ ci jσ + H.c.,

where rM, qM are also real random numbers.
Both Shor

i j and Svert
i j are special cases of the hopping T ′

〈i j〉
[Eq. (21)] which is simultaneously a generator for SU(N )
and S̃U(N )′ groups (see Sec. II and Table II). Therefore,
the full perturbation term H p

H is of the pure OT form and
annihilates two invariant families: |nζ 〉 and |nη〉′. It can be
added to any model supporting these states as scars without
changing their energy but breaking all symmetries except the
particle-number conservation.
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TABLE III. Well-known models written as H0 + OT . The decomposition is different for paired |nη〉/|nη〉′ and |nζ 〉 states. The term in the
third (H ζ

0 = OT η) column is part of H0 for the decomposition with respect to the U(N ) group (|nζ 〉 scars) and a part of OT with respect to Ũ(N )
or Ũ′(N ) groups (|nη〉 or |nη〉′ scars). Equations (18) and (40) allow to easily switch between the expressions for |nζ 〉 and paired states. All
models are considered in the unrestricted Hilbert space that allows any onsite occupations including double occupations. All decompositions
are valid in any dimension and on any lattice except for the models that involve the |nη〉′ states; they only become scars when the lattice is
bipartite. Nnn

1 and Nnn
2 are the numbers of nearest- and next-nearest-neighbor pairs in a particular lattice. Ci j [Eq. (41)] are generators of SU(N ).

The last three columns indicate which families of the invariant states are many-body states in the corresponding model. *: only when � = π/2,
t1 = 0. **: only when � = π/2.

Model H0 H ζ

0 = OT η OT |nζ 〉 |nη〉 |nη〉′

Hubbard
(

U
2 − μ

)
Q −UN

2 t
∑
〈i j〉

T ′
〈i j〉 + U

2

∑
i

K2
i � �

Heisenberg J
4 Nnn

1 J
∑
〈i j〉

Ci j � � �

J1-J2
J1Nnn

1 +J2Nnn
2

4 J1
∑
〈i j〉

Ci j + J2
∑

〈〈kl〉〉
Ckl � � �

Haldane-Shastry π2 (N2−1)N
24N2 − π2

N2

∑
n<n′

Cnn′
sin2 ( π (n−n′ )

N )
� � �

t-J J
4 Nnn

1 J
∑
〈i j〉

Ci j + t
∑
〈i j〉

T ′
〈i j〉 � �

tJU
(

U
2 − μ

)
Q J

4 Nnn
1 − UN

2 J
∑
〈i j〉

Ci j + t
∑
〈i j〉

T ′
〈i j〉 + U

2

∑
i

K2
i � �

Hirsch (reduced) [67]
(

U
2 − μ

)
Q −UN

2

∑
〈i j〉

OHR
i j T ′

〈i j〉 + U
2

∑
i

K2
i � �

Hirsch (full) [68] U
2 (Q − N ) + V Nnn

1

∑
〈i j〉

OHF
i j T ′

〈i j〉 + U
2

∑
j

K2
j + V

∑
〈i j〉

(KiKj + Ki + Kj ) �

Haldane-Hubbard
(

U
2 − μ

)
Q −UN

2 t1
∑
〈i j〉

T ′
〈i j〉 + U

2

∑
i

K2
i + t2

∑
〈〈kl〉〉,σ

(ei�kl c†
kσ clσ + H.c.) � �∗ �∗∗

We note that the symmetry-breaking terms such as (43)
also lead to the absence of any dynamical symmetries that
could otherwise cause persistent oscillations of local observ-
ables [62].

E. Non-Hermitian perturbation

A non-Hermitian Hamiltonian may result under certain
approximations from reducing a closed full system to an ef-
fective description of an open subsystem. The non-Hermitian
Hamiltonian may not conserve the norm of the state which
corresponds to the probability leaking out or into the open
system. While the derivation of such an effective description is
beyond the scope of this work, we show here that the invariant
states remain stable and decoupled also in non-Hermitian sys-
tems as long as the non-Hermitian Hamiltonian has the form
H0 + OT . We consider the following non-Hermitian OT term

H p
nh =

∑
i, j

(M̃i j − M̃(i+1) j )S
hor
i j + qi j (M̃i j − M̃i( j+1))S

vert
i j .

(45)

This only differs by a minus sign from Eq. (43), and thus
also annihilates the same two invariant families |nζ 〉 and |nη〉′.
This operator is invariant under complex conjugation, and its
eigenvalues form complex-conjugate pairs. According to the
classification of Refs. [63,64], the model falls into the Ginibre
symmetry class AI, and therefore will have the same level
statistics as the Ginibre GUE (GinUE) distribution [65].

Another possibility to obtain a non-Hermitian term of the
OT form annihilating invariant states is by taking only a
“half” of the hoppings (8), (9), (12), (13), and (21), without
the Hermitian conjugate. A 2D modified Hubbard model of

this form

HHub
nH =

∑
i, j,σ

(t1(c†
i jσ c(i+1) jσ + c†

i jσ ci( j+1)σ )

+ t2(c†
(i+1) jσ ci jσ + c†

i( j+1)σ ci jσ )) + U
∑
i, j

ni j↑ni j↓,

(46)

where t1 = t2 are real parameters, was recently shown [66]
to be amenable to quantum Monte Carlo simulations. Since
such non-Hermitian hopping terms are certain generators of
the SU(N ) group, they annihilate the |nζ 〉 states.

IV. MODELS WITH INVARIANT SCARS

The interaction terms considered above, as well as their
linear combinations, are of the form H0 + OT . Together with
the generators from Sec. II they can be used as building blocks
for designing Hamiltonians in which some of the invariant
states |nζ 〉, |nη〉, and |nη〉′ are many-body scars.

Many commonly used models, such as the Hubbard,
Heisenberg, and tJU models fall into this class. In Table III we
explicitly rewrite them as H0 + OT and indicate the invariant
states comprising the scar subspace, the derivations and some
more details are given in Appendix A. The presence of |nη〉′
scars in the extended Hubbard and Hirsch models, that has
been demonstrated in the literature [14,20], is a direct conse-
quence of the group theoretic structure presented in this work.

Because several families of scars with different symmetries
may be present in the same model simultaneously the H0 +
OT decomposition is different between |nζ 〉 and the paired
|nη〉 / |nη〉′ states. However, the difference is only in that a
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certain constant term (shown in third column of Table III)
is either a part of H0 or OT depending on which group we
consider (full separate expressions with respect to each group
are given in Appendix A).

To facilitate the design of custom models not listed here we
also added Table IV to the Appendix which gives the action
of other common Hamiltonian terms on the invariant states.

Note that in models that conserve spin, the |nζ 〉 states that
comprise a maximum spin-N/2 representation of SU(2)spin

will not be true scars. To make them such, adding a pertur-
bation breaking spin conservation [such as (43) or (45)] is
required. Analogously, the states |nη〉′ only become true scars
upon addition of an η-pairing symmetry-breaking perturba-
tion of the OT form.

A. Engineering the location of scars in the spectrum

1. Making a scar the ground state

The energies of the scars and the basis in the invariant
subspace are determined by the H0 part of the Hamiltonian,
and we can change their position in the spectrum by adding
a term to H0 that commutes with it (is diagonal in the basis
selected by H0).

The |nζ 〉 states form the maximum spin representation of
SU(2)spin and have a definite total spin and its axis projec-
tion quantum numbers. This means that a sufficiently strong
magnetic field will make the |nζ 〉 state with the largest axis
projection the ground state. It also controls the splitting be-
tween the |nζ 〉 states and the revivals period. For the basis in
Eq. (22) one would use the Bz = Q3 [Eq. (4)] magnetic field
while for the basis (54) used later in our numerical example
we will use the By = Q2 field (4).

The states |nη〉 and |nη〉′ have a definite particle number and
include the states with maximal and minimal possible particle
number (all filled |Nη〉 or |Nη〉′ and all empty |0η〉 or |0η〉′).
This guarantees that a sufficiently large chemical potential
term can be used to make one of these two states the ground
state.

2. Coupling to the rest of the scar subspace

Suppose we are at zero temperature and are in the ground
state which per the above results is a scar state. Now we turn
on for a limited time the “raising operator” of the correspond-
ing scar family.

In case the ground state is an all-filled |Nη〉 or |Nη〉′ state
we add a term η− + η+ to the Hamiltonian [see (25) and (7)].
This may potentially be made by placing the system into direct
contact with a superconductor. As a result, the system will be
initialized to a state that is a linear combination of |nη〉 or |nη〉′.
Moreover, since |nη〉 form an irreducible representation of
SU(2)η we can by the action of a group eit (αη−+α∗η+ ) send any
initial state, say |0η〉 or |Nη〉, to any desired linear combination
of the paired states.

In case the ground state is a state with maximal spin |Nζ 〉
we add a term ζ + ζ † [Eq. (23)] to the Hamiltonian. This
may be implemented by introducing an external magnetic
field [Bx = Q1 for basis (22) and Bz = Q3 for basis (54)].
As a result the system will be initialized to a state within
the |nζ 〉 subspace. The same algebraic argument as for |nη〉

above shows that with an appropriate choice of magnetic field
and interaction time one can turn any initial state in the |nζ 〉
subspace into an arbitrary desired linear combination of |nζ 〉
states.

Finally, we can mix the states from the families |nη〉 and
|nζ 〉 by the simultaneous action of magnetic field and η term.
After the above steps the system is initialized to a state in the
singlet scar subspace. At this point one may choose to lower
or turn off the magnetic field or the chemical potential that
was used in the first step in Sec. IVA1 to make one of the scar
states the ground state.

It would be interesting to analyze the relation of this
scheme to a number of protocols for preparing a paired |nη〉′
state that rely on dissipation or periodical driving [69–72].

3. Low-energy subspace composed of scars only

We can also arrange for all the low-energy subspace be
composed solely of many-body scars. To do that we need
to add a non-negative definite operator P to the Hamiltonian
that annihilates the scars (and the scars only). Increasing the
magnitude of such a term will leave the scars untouched but
will push the rest of the spectrum up in energy.

For the scar states invariant under a particular group we
have various options for designing the desired operator P. For
example, P can be chosen to be the quadratic Casimir operator
of the corresponding group, as was done in [73]. However,
from the point of view of lattice models this is a complicated
and nonlocal operator. A simple choice of a local operator is
P = ∑

k (TkT †
k )l , where Tk are the simple root generators of

the group (11) and l > 0 is an integer.
The Hubbard interaction already includes (33) a similar

term P = ∑
i K2

i with Ki the generator of U(N ) [Eq. (15)].
It does annihilate the |nζ 〉 scars and pushes nonscar states
high in energy for large U at half-filling (where the H0 energy
contribution of the Hubbard interaction is zero). However, it
also “accidentally” annihilates some of the nonscar states and
thus does not alone allow to create a scar-only low-energy
subspace.

V. TWO-DIMENSIONAL tJU MODEL

We illustrate the concepts discussed above using the exam-
ple of a perturbed tJU model on a 2D rectangular bipartite
lattice shown in Fig. 2. The Hamiltonian of the standard
tJU model [76–78] combines the Hubbard and Heisenberg
interactions

HtJU =
∑
〈i j〉σ

(tc†
iσ c jσ + H.c.) + J

∑
〈i j〉

�Si · �S j

+ U
∑

i

ni↑ni↓ − μQ (47)

and can be viewed as a generalization of Hubbard or t-J mod-
els relevant for high-Tc superconductivity [79]. It is typically
assumed that t is real and negative, so that the kinetic energy is
minimized at zero momentum. Certain types of longer-range
hopping could be considered in addition without changing the
structure of the scar subspace as discussed in Sec. II A.

The H0 + OT decomposition of the model (47) with real
t can be performed with respect to to two groups U(N ) and

043156-8



GROUP THEORETIC APPROACH TO MANY-BODY SCAR … PHYSICAL REVIEW RESEARCH 3, 043156 (2021)

-10 -5 0 5 10 15 20 25

time(g-1)

-5

0

5

10

g(
t,

)
 = 0
 = 2
 = 5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

spacing (s) 10-3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
(s

)

N
x
 = N

y
 = 3

GOE (4000)

(b)

FIG. 3. Quantum chaos for Hermitian tJU (50) and high magnetic field γ = 3.6. (a) Spectral form factor g(t, β ) for three different
temperatures. (b) Level spacing distribution P(s). The red curve is the data for the random GOE matrix with size 4000 × 4000. This model has
〈r〉 = 0.5306. 〈r〉GUE = 0.6027 and 〈r〉GOE = 0.5359 [74].

Ũ(N )′ which leads to two families of group-invariant scars
|nζ 〉 and |nη〉′. In case of U(N ) we have

HtJU = J

4
Nnn

1 + Q

(
U

2
− μ

)
− UN

2

+ t
∑
〈i j〉

T ′
〈i j〉 + J

∑
〈i j〉

Ci j + U

2

∑
i

K2
i , (48)

while for the group Ũ(N )′ it is

HtJU = Q

(
U

2
− μ

)
+ t

∑
〈i j〉

T ′
〈i j〉 + J

∑
〈i j〉

�Si · �S j − U

2

∑
i

M2
i , (49)

where we have used the H0 + OT decomposition of individual
terms (21), (33), and (40) derived earlier. In both equations the
first line is H0 and acts on the invariant states with a constant
while the second OT line only consists of terms proportional
to group generators that annihilate the invariant states. Note
that the two expressions (48) and (49) are only different by
assigning a certain constant term to H0 or OT as indicated in
the decomposition given in Table III.

We recall that the states invariant under group G become
scars in a model that can be written as H0 + ∑

k OkTk , where
Tk are generators of G. Note that a generator of any subgroup
of G is also a generator of G and can also appear as Tk in
the decomposition. This is actually the case in (49) (and all
other decompositions with respect to paired states) where the
hopping terms are generator of S̃U(N )′, while the Heisenberg
and magnetization terms involve the local spin �Si that is also
a part of the full symmetry group of |nη〉′ (see Appendix C).

The standard tJU model (47) conserves the total physical
spin. Therefore, the states |nζ 〉 form a separate symmetry
sector of this model. To make them true scars we break the
total spin conservation by adding a perturbation (43). The full
Hermitian Hamiltonian we study numerically reads as

HtJU
h = HtJU + βH p

h + γ Q2, (50)

where we added a term proportional to the SU(2)spin generator
Q2 [Eq. (4)]. It acts as H0 on |nζ 〉 and splits them according
to the index n: Q2 |nζ 〉 = (2n − N ) |nζ 〉). For the SU(2)spin-
invariant states |nη〉′ it is of the pure OT form and annihilates
them exactly.

Note that by increasing γ we can make the scar state with
maximum Q2, |S1〉 [Eq. (54)] the ground state. This may be
used to initialize the system to a state from many-body scar
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FIG. 4. Quantum chaos for non-Hermitian tJU [Eq. (51)] and high magnetic field γ = 3.6. (a) Spectral form factor g(t, β ) at infinite
temperature (β = 0) calculated using only real and imaginary parts of the eigenvalues or their magnitude. (b) Level spacing distribution P(s).
This model has 〈r〉 = 0.7378. For reference, the Ginibre value 〈r〉GinUE ≈ 0.74 was supported numerically in [75].
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subspace as described in Sec. IV A. The full non-Hermitian
Hamiltonian we consider is

HtJU
nh = HtJU

h + β1H p
nh, (51)

where for numerical investigations we set β1 = 0.4β. In both
the Hermitian and the non-Hermitian cases, the part of the full
Hamiltonian that acts with a constant on the invariant states is

H |nζ 〉
0 = J

4
Nnn

1 +
(

U

2
− μ

)
Q − UN

2
+ γ Q2, (52)

H |nη〉′
0 =

(
U

2
− μ

)
Q. (53)

The states |nη〉′ are already eigenstates of (53) as written in
Eq. (25) while the states in Eq. (22) are not the eigenstates
of (52). Instead, the basis in the SU(N )-invariant subspace
determined by the Hamiltonian (52) reads as∣∣nζ̃

tJU

〉 = ζ̃ n

2n
√

N!n!
(N−n)!

|S1〉 , |S1〉 =
∏

a

c†
a1 + ic†

a2√
2

|0〉 , (54)

where ζ̃ = Q3 − iQ1.
The energies of the invariant states are given by

En
η = (U − 2μ)n,

En
ζ̃

= J

4
Nnn

1 − μN + γ (2n − N ), (55)

where n is the index of a state in its respective family (25)
or (54).

The energy of the product state |0ζ̃
tJU 〉 = |S1〉 in large sys-

tems is proportional to N and therefore has good chances
to be the ground state at half-filling for (J/2 − μ − γ ) < 0.
An |nη〉′ state is more likely to be the ground state when
(U − 2μ) < 0.

Because both Hermitian and non-Hermitian models we
consider have an exact H0 + OT decomposition, they have
the two families |nζ 〉 and |nη〉′ as scars for any choices of the
coupling constants. The two scar families form two equidis-
tant towers of states with the energies given in (55). Revivals
within each individual subspace can be observed for any val-
ues of the couplings. However, to see the revivals of an initial
state that is a mix of |nζ 〉 and |nη〉′ subspaces all the gaps
between them must have a common divisor which represents
a constraint on the choice of the constants μ, U , and γ .

A. Numerical results

For the numerical experiment we use the rectangular 3 × 3
lattice and choose open boundary conditions to make sure
the real-amplitude nearest-neighbor hopping is a generator
of Ũ(N )′ and annihilates the |nη〉′ states (boundary condition
would not matter in a system with even number of sites). We
set t = −0.4, J = 1, U = 8, μ = 1.3, and rM = 1.426 974
and qM = 2.890 703 [see Eq. (44)]. For γ = 1 this corre-
sponds to the ground-state filling of ν = Q

2N = 0.44(4), 11%
below the half-filling which corresponds to the potentially
high-Tc-relevant regime [80,81]. For our simulation we in-
stead choose γ = 3.6. At this value the half-filled |S1〉 state
(54) becomes the ground state. This simplifies the initializa-
tion of the system to the scar subspace in experiment, which

FIG. 5. Spectrum of the non-Hermitian tJU model (51). All the
particle-number sectors are plotted together. The invariant states
shown in red remain at purely real energies.

is discussed in detail in Sec. IV A. Because |S1〉 is a prod-
uct state, it can alternatively be created by application of a
simple gate circuit on each site (see Supplemental Material of
Ref. [22]).
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FIG. 6. Entanglement entropy computed numerically for the 3 ×
3 system in the half-filling sector Q = 9. The cut separates the five
sites in the first and second rows from the four sites in the second and
the third rows. (a) Hermitian Hamiltonian (50), (b) non-Hermitian
Hamiltonian (51).

043156-10



GROUP THEORETIC APPROACH TO MANY-BODY SCAR … PHYSICAL REVIEW RESEARCH 3, 043156 (2021)

-20 -10 0 10 20
0

1

2

3

4

5 |n >

FIG. 7. Entanglement entropy for non-Hermitian tJU [Eq. (51)]
in low magnetic field γ = 1.

1. Quantum chaos

The level statistics parameters of the Hermitian model
r = 0.5306 (rGOE = 0.5359) and the non-Hermitian model
rnh = 0.7378 (rGinibre ≈ 0.74) are close to the values of the
corresponding random ensembles (defined in Appendix B)
and thus indicate that the bulk spectra of both systems are
fully chaotic. This is further elaborated by the gap distribution
P(s) and by the presence of the “dip-ramp-plateau” structure
in the spectral form factor (Figs. 3 and 4) typical for chaotic
systems.

The level spacing distribution P(s) is the probability den-
sity function of the spacings between consecutive eigenvalues.
A key feature of the P(s) of random Gaussian matrices is that
it decays to zero as s → 0. This phenomenon is called level
repulsion and implies that it is very unlikely for eigenvalues
to be nearly identical. We observe level repulsion in both Her-
mitian (Fig. 3) and non-Hermitian (Fig. 4) systems studied.

The spectral form factor (SFF) is usually defined as

g(t, β ) = |Tr(e−βH−iHt )|2/Tr(e−βH )2, (56)

and gives information about the longer-range correlations of
eigenvalues. The main elements of the SFF for a random
matrix is a dip-ramp-plateau structure. The ramp is caused by
the repulsion of eigenvalues that are far apart; these eigen-
values are anticorrelated, which is why the ramp is below
the plateau. The plateau is a result of generic level repul-
sion, as degeneracies are unlikely. The ramp and plateau
occur at later times and thus probe shorter distances, and
these elements are a result of a phenomenon known as
spectral rigidity. The dip occurs at early times and so it
probes larger distances; it is the Fourier transform of the
entire spectrum. The probability density function (pdf) of the
eigenvalues for a random Hermitian matrix follows a semi-
circular distribution. This shared property of the pdf leads to
a similar slope of the dip in the SFF of the Wigner random
ensembles.

In the Hermitian case the dip-ramp-plateau structure is
seen at high enough temperature (Fig. 3). In the non-
Hermitian system the dip-ramp-plateau structure is best seen
if the SFF is calculated for the real parts of the eigenvalues
only. In both systems the large magnetic field γ = 3.6 (used
to make one of the scar states the ground state) causes the
correlations at one corresponding frequency that results in the
peak seen in the SFF plot soon after the dip. This peak is
absent or much less pronounced for moderate magnetic field
of γ = 1 (see Appendix B).

2. Spectrum

In the spectrum of the non-Hermitian Hamiltonian (51)
shown in Fig. 5 we observe that all the scar states remain at
the real axis and are not effected by the non-Hermitian terms
while the majority of the eigenvalues of the non-Hermitian
Hamiltonian become complex. This demonstrates the stabil-
ity of the many-body scar states in suitably designed open
systems.

The non-Hermitian spectrum has a “conjugation symme-
try”: for every state with energy a + ib there is another state
with energy a − ib. All the observables measured in any two
such states (such as entanglement entropy) are also equal. For

-20 0 20
E
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0.1

0.2

(a)

<M>
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i
>

<M>
T

<M>
|n >'

-40 -20 0 20
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-0.2

-0.1

0

0.1

0.2

(b)

<M>
|

i
>

<M>
T

<M>
|n >

FIG. 8. ETH violation by the scar states for the Hermitian Hamiltonian (50). Shown is the expectation value 〈ψi|M|ψi〉 evaluated for
every eigenstate ψi. The green line is the microcanonical (window) average. (a) Particle-number sector Q = 8, operator M = GO [Eq. (57)].
(b) Particle-number sector Q = 9 (half-filling), M = GU [Eq. (58)].
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FIG. 9. ETH violation by the scar states for the non-Hermitian Hamiltonian (51). Shown is the expectation value 〈ψi|M|ψi〉 evaluated for
every eigenstate ψi. The green line is the microcanonical (window) average. (a) M = GO [Eq. (57)], particle-number sector Q = 8. (b) M = GU

[Eq. (58)], particle-number sector Q = 9, half-filling.

this reason we choose to plot such observables as a function
of the real part of the energy eigenvalue: Re E .

3. Entanglement entropy

The entanglement entropy at half-filling is shown in Fig. 6.
We observe that in both Hermitian and non-Hermitian systems
the |nζ 〉 scar states expectedly have entanglement entropy
much lower than the rest of the spectrum at corresponding en-
ergy (temperature). This is also true for the |nη〉′ scars that are
located in the respective particle-number sectors (not shown).
High magnetic field used to make one of the |nζ 〉 states the
ground state leads to the emergent structure most clearly seen
in Fig. 6 for the non-Hermitian case: each total spin sector
acquires different energy and starts to form a separate arc as
it would be if the total spin was exactly conserved by the
Hamiltonian. This additional structure disappears for smaller
magnetic field of γ = 1 as seen in Fig. 7.

4. ETH violation

To further demonstrate the violation of strong ETH we
evaluate the “superconducting”

GO = 〈c†
x1y1↑c†

x1y1↓cx2y2↓cx2y2↑〉 (57)

and “magnetic”

GU = 〈c†
x1y1↑cx1y1↓c†

x2y2↓cx2y2↑〉 (58)

off-diagonal long-range order (ODLRO) correlators charac-
teristic of the |nη〉′ [56] and |nζ 〉 [22] states, respectively. We
observe (see Figs. 8 and 9) that the corresponding expectation
values are significantly different in the invariant states relative
to the microcanonical average in both systems which allows
us to conclude the invariant states are scars in this system.

Because of the high symmetry of the invariant states, the
above correlators, when evaluated for scars, do not depend on
the coordinates x1, y1, x2, y2 [22]. For the numerical evalua-
tion we set the points 1 and 2 to be the most distant points
in our system with open boundaries: (x1, y1) = (1, 1) and
(x2, y2) = (3, 3).

Note that while all the |nζ 〉 states are at half-filling (Q = 9)
the particle number of the paired states |nη〉′ is 2n and there-

fore only one such state is visible for any fixed filling (the data
shown are for Q = 8).

Very strong magnetic field is present in both systems and
couples to the states with nonzero magnetization. This results
in the spikes seen in the data for the non-Hermitian system
which is apparently more susceptible to the magnetic field.

5. Time evolution and revivals

One of the most striking and counterintuitive features of
the scar states in the non-Hermitian Hamiltonian (51) is the
stable and coherent time evolution of the scar subspace shown
in Fig. 10. The system is initialized to a state that is a uniform
mix of all the 2N + 2 = 20 scar states present in the system.
As shown in Fig. 10 this state is coming back to itself exactly
after the time intervals 2π/ω ≈ 20.94, where ω = 0.3 is the
greatest common divisor of all the gaps between the scar
states according to (55). The norm of the state is preserved
throughout, although the system is open (Hamiltonian is non-
Hermitian).

0 20 40 60 80 100
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0.6

0.8

1

f(
)

FIG. 10. Time dependence of the squared overlap between the
initial state (composed of scars only) and a time-evolved state for the
non-Hermitian Hamiltonian (51). The overlap repeatedly reaches the
value of 1 with the period of approximately 20.94 as expected given
the energies of the invariant states.
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FIG. 11. Time evolution for the non-Hermitian Hamiltonian (51). Squared overlap between the time-evolved and initial states. (a) Initial
state is composed of 20 generic states (compare to the time evolution for the initial state composed of 20 scars in Fig. 10). (b) In the initial
state 1% (by weight) of 29 generic states are admixed to 20 scar states (99% by weight).

For the initial state composed of generic eigenstates the
imaginary components of the eigenvalues lead to the probabil-
ity density quickly flowing into the effectively open system.
As can be seen in the left panel of Fig. 11, the norm of the
time-evolved state and correspondingly the overlap explode
already over one revival period.

A similar phenomenon is observed also if only 1% (by
weight) of generic, complex eigenstates is admixed to the
initial state dominated (99% by weight) by scars. The initially
small imaginary components obtain exponential amplification
with time; however, a few periods of the revivals with the same
period as in other systems can still be observed as shown in the
right panel of Fig. 11.

As expected, starting from a mix of scar states, stable
revivals are also observed for the Hermitian Hamiltonian (see
Fig. 12). In contrast, the information initially stored in the
generic states quickly dissipates through thermalization (right
panel of Fig. 12).

VI. DISCUSSION

We have shown explicitly that the Hamiltonians of some
well-known models (Table III) are of the H0 + OT form;

therefore, they support the group-invariant scars for any cou-
pling constants and without a need for fine tuning. A large
number of other models can be built by combining the terms
we list as the group generators in Sec. II. Of particular interest
are the “superconducting” terms in (14) and the spin-orbit
coupled hopping terms in (12) and (13). It will be very inter-
esting to explore the interplay of the weak ergodicity breaking
and the superconductivity or topology by studying the models
built of such terms.

Another possible generalization of our approach is to con-
sider discrete groups G instead of Lie algebras. In this case we
should use T = g − 1 with H = HO + OT , where g ∈ G and
g−1H0g = H0.

From the quantum computation perspective, the group-
invariant scar states we consider are analogous to a
“decoherence-free” subspace that can be used to reduce noise
in the universal quantum computation [82,83]. Thus, another
interesting direction for future work is the development of
specific protocols that would enable more robust quantum
computation.

Many of the models we are considering are among the
most commonly and widely used in condensed matter physics.
Therefore, there is a great potential for studying these models
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0.8
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FIG. 12. Time evolution for the Hermitian Hamiltonian (50). Squared overlap between the time-evolved and initial states. (a) Initial state
is composed of 20 scars. (b) Initial state is composed of 20 generic states.
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and the weak ergodicity breaking effects therein in cold atom
quantum simulations, and also for identifying materials that
could host this phenomenon. We do describe conditions under
which the ground state is a many-body scar or the full low-
energy subspace consists solely of scars, which should further
facilitate the experimental explorations.

While in this work we considered the case of spin- 1
2

fermionic systems, the general approach of Ref. [22] can be
readily applied to the systems with larger number of fermionic
species per site and richer structure of the singlet subspace.
Such examples will be considered in our subsequent work.

Finally, we have demonstrated that the invariant scar sub-
space continues to undergo stable, coherent time evolution in
a class of suitably designed open systems with non-Hermitian
Hamiltonian. This greatly expands the realm of weak er-
godicity breaking phenomena and will hopefully inspire new
theoretical and experimental studies. In particular, it would
be interesting to study the relation of the degenerate group-
invariant scar subspaces in the non-Hermitian systems [e.g., in
(55), By = 0 for |nζ 〉 or μ = U/2 for |nη〉′] to the “exceptional
points,” the degeneracies in the non-Hermitian operators that
lead to numerous exotic phenomena and are being intensively
studied currently [52,84–86].
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Moudgalya, B. Buča, and A. Prem for useful discussions and
A. Dymarsky for his valuable comments on a draft of this
paper. I.R.K. is very grateful to the Institute for Advanced
Study for hosting him during his sabbatical leave. The simula-
tions presented in this work were performed on computational
resources managed and supported by Princeton’s Institute
for Computational Science & Engineering and OIT Research
Computing. This research was supported in part by the US
NSF under Grant No. PHY-1914860. K.P. was also supported
by the Swiss National Science Foundation through the Early
Postdoc.Mobility Grant No. P2EZP2_172168 and by DOE
Grant No. de-sc0002140. F.K.P. is currently a Simons Junior
Fellow at NYU and supported by a Grant No. 855325 from
the Simons Foundation.

APPENDIX A: DERIVATION OF THE H0 + OT
FORM OF THE HAMILTONIAN

Throughout this Appendix we will use the following def-
initions: ν = Q

2N is the filling fraction; Nnn
1 and Nnn

2 are the
numbers of nearest- and next-to-nearest-neighbor pairs in a
particular lattice.

TABLE IV. The action of various operators on the invariant
states. Summation

∑
i goes over all the lattice sites. Lattice can be

arbitrary, and the |nη〉′ states are defined, however, on a bipartite
lattice only.

|〉 ∑
i HHub

i

∑
i Mi Q �Si · �Sj

∑
i Ki

∑
i K2

i

|nζ 〉 0 N − 2n N 1
4 0 0

|nη〉 n 0 2n 0 2n − N N
|nη〉′ n 0 2n 0 2n − N N

1. Hubbard model

The Hubbard model Hamiltonian reads as

HHub = t
∑

〈i, j〉,σ
[c†

jσ ciσ + c†
iσ c jσ ] − μQ + U

∑
i

HHub
i ,

where i and j label sites of an arbitrary lattice in arbitrary
dimension, 〈i, j〉 stands for the nearest neighbors, and t is a
negative real number.

Substituting our result (32) we obtain the H0 + OT form in
terms of the generators of U(N ),

HHub = Q

(
U

2
− μ

)
− U

N

2
+ t

∑
〈i, j〉

T ′
〈i, j〉 + U

2

∑
i

K2
i ,

(A1)

where the hopping term is a generator of SU(N ) as a special
case of Ti j [Eq. (8)]. On a bipartite lattice this hopping term
coincides with (21) is therefore a generator of S̃U(N )′. Using
(18) we obtain the H0 + OT decomposition for the group
S̃U(N )′:

HHub = Q

(
U

2
− μ

)
+ t

∑
〈i, j〉

T ′
〈i, j〉 − U

2

∑
i

M2
i . (A2)

Comparing the two expressions (A1) and (A2), we notice that
they are similar except that the constant UN/2 belongs to H0

in the first and to OT in the second equation [as a consequence
of (18)].

Only the |nζ 〉 states are scars for the Hubbard model on an
arbitrary lattice. On a bipartite lattice, because the H0 + OT
decompositions are possible with respect to two different
groups SU(N ) and S̃U(N )′, the singlets of these groups |nζ 〉
and |nη〉′ together form the (2N + 2)-dimensional scar sub-
space. In the pure Hubbard model the |nζ 〉 subspace (Q = N)
is degenerate with energy [see (A1)]

HHub |nζ 〉 = −μN |nζ 〉 , (A3)

while the η-paired states |nη〉′ (Q = 2n) are split equidistantly
according to their particle number [see (A2)]

HHub |nη〉′ = (U − 2μ)n |nη〉′ . (A4)

The states |nη〉 are not eigenstates of the Hubbard model; they
are mixed by the hopping terms.

2. Heisenberg model

The spin- 1
2 Heisenberg Hamiltonian is

HHeisenberg = J
∑
〈i j〉

�Si · �S j . (A5)

The constraint �Si · �Si = 3
4 translates into the requirement of

half-filling on each site: ni = 1. This sector of Hilbert space
contains the |nζ 〉 states and a single, half-filled |nη〉 / |nη〉′
state. When we restrict to the locally half-filled subspace
Ki = 0, we get from (40)

�Si · �S j = 1
4 − 1

2 Ei jE ji (A6)

and the H0 + OT form [with respect to SU(N )] is

HHeisenberg = J

4
NNN

1 + J

2

∑
〈i j〉

Ei jE ji, (A7)
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where NNN
1 is the number of nearest-neighbor links on a given

lattice and Ei j are the SU(N ) generators.
Therefore, the U(N )-invariant states |nζ 〉 are degenerate

eigenstates of the Heisenberg model with the energy

EHeis
|nζ 〉 = J

4
NNN

1 . (A8)

3. Haldane-Shastry model

The isotropic (� = 0) Hamiltonian [87] of the 1D
Haldane-Shastry model [87,88] reads as

HHS =
∑
n<n′

J (n − n′)�Sn · �Sn′ , (A9)

with J (n − n′) = π2

N2 sin2( π (n−n′ )
N )

. We have seen that each of

such terms acts on |nζ 〉 states with a constant [Sec. III C and
Eq. (40)]: �Si · �S j |nζ 〉 = 1

4 |nζ 〉.
Therefore, all the |nζ 〉 states are degenerate in the isotropic

Haldane-Shastry model, are scars, and have the energy

EHS
nU

= π2

4N2

∑
k

1

sin2
(

πk
N

) = π2

4N2

N3 − N

6
, (A10)

which is always integer in units of π2

4N2 . We note that Ref. [87]
does mention the existence of such integer-energy states.4

Both families of paired states are exactly annihilated by the
Haldane-Shastry Hamiltonian as a special case of the Heisen-
berg interaction.

4. J1-J2 model

J1-J2 model is the Heisenberg interaction between nearest
neighbors (J1) and next-nearest neighbors (J2):

HJ1J2 = J1

∑
〈i j〉

�Si · �S j + J2

∑
〈〈kl〉〉

�Sk · �Sl . (A11)

Using Eq. (40) we write

HJ1J2 = J1

∑
〈i j〉

HHeis
i j + J2

∑
〈〈kl〉〉

HHeis
kl

= J1

∑
〈i j〉

(
Ci j + 1

4

)
+ J2

∑
〈〈kl〉〉

(
Ckl + 1

4

)

= 1

4

(
J1NNN

1 + J2NNN
2

) + J1

∑
〈i j〉

Ci j + J2

∑
〈〈kl〉〉

Ckl ,

(A12)

where the SU(N ) generators Ci j are defined in Eq. (41).
It follows that HJ1J2 |nζ 〉 = 1

4 (J1NNN
1 + J2NNN

2 ) |nζ 〉, while
HJ1J2 annihilates the paired states |nη〉 and |nη〉′ just as each

4The precise statement in Ref. [87] is “For the isotropic model,
the numerical study reveals a surprising fact: States are grouped into
highly degenerate supermultiplets, and at every value of the crystal
momentum and parity, every energy level is contained in the set
derived from states with real pseudomomenta, and the energies in
units of π2

4N2 are all integers.”

of its terms does individually. Therefore, all three families
decouple in the J1-J2 model and are scars.

We also note that the above results directly apply
to the Majumdar-Ghosh model which is a special case
with J1 = 2J2.

5. Hirsch model

a. The “reduced” version [14,67]

The “reduced” Hirsch model for which the |nη〉′ states were
shown to be scars in Ref. [14] reads as

HHir
r = −

∑
〈i j〉,σ

[t − X (ni,−σ + n j,−σ )](c†
i,σ c j,σ + H.c.)

+ U
∑

j

n j,↑n j,↓ − μQ, (A13)

where X is a real number and −σ is the opposite direction of
spin σ or equivalently [14]

HHir
r = −

∑
〈i j〉

[t − X (ni + n j − 1)]
∑

σ

(c†
i,σ c j,σ + H.c.)

+ U
∑

j

n j,↑n j,↓ − μQ. (A14)

Defining

OHR
i j = −[t − X (ni + n j − 1)], (A15)

noticing that the terms T ′
〈i j〉 are generators of both S̃U(N )′ and

SU(N ) [see (21)], and using Eq. (32) for n j,↑n j,↓ we obtain the
H0 + OT form for the model (A14) with respect to the group
SU(N ) (|nζ 〉 scars)

HHir
r =

∑
〈i j〉

OHR
i j T ′

〈i j〉 + U

2

∑
j

K2
j + Q

(
U

2
− μ

)
− UN

2

(A16)

and with respect to the group S̃U(N )′ (|nη〉′ scars)

HHir
r =

∑
〈i j〉

OHR
i j T ′

〈i j〉 + Q

(
U

2
− μ

)
− U

2

∑
i

M2
i . (A17)

On a generic lattice T ′
〈i j〉 is a generator of SU(N ) and the

half-filled SU(N )-invariant |nζ 〉 states become scars with the
energies,

HHir
r |nζ 〉 = −μN |nζ 〉 . (A18)

On a bipartite lattice the nearest-neighbor hopping
T ′

〈i j〉 is a generator of S̃U(N )′. Therefore, in addition
to the |nζ 〉 the |nη〉′ states become scars with the
energies

HHir
r |nη〉′ = (U − 2μ)n |nη〉′ . (A19)

b. The full version from Ref. [68]

The Hirsch model in its original formulation [Eq.
(6) in Ref. [68], see also [89]] contains an addi-
tional density-density term but is missing the chemical
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potential

HHir = − t0
∑
〈i j〉,σ

(c†
i,σ c j,σ + H.c.)

+ U
∑

i

HHub
i + V

∑
〈i j〉

nin j

+ �t
∑
〈i j〉,σ

(c†
i,σ c j,σ + H.c.)(ni,−σ + n j,−σ ). (A20)

Defining

OHF
i j = [−t0 + �t (ni + n j − 1)] (A21)

and using (37) for density-density we bring the full Hirsch
model to the H0 + OT form with respect to the group SU(N ):

HHir = U

2
(Q − N ) + V NNN

1 +
∑
〈i j〉

OHF
i j T ′

〈i j〉

+ U

2

∑
j

K2
j + V

∑
〈i j〉

(KiKj + Ki + Kj ). (A22)

We have seen in Sec. III B that the generic density-density
interaction can be written in terms of the SU(N ) generators
but does not have the paired states as eigenstates. Therefore,
only |nζ 〉 states with energies

HHir |nζ 〉 = V NNN
1 |nζ 〉 (A23)

are scars in the full Hirsch model [68].

6. Haldane-Hubbard model

The spin-full Haldane-Hubbard model is [61,90,91]

HHH = t1
∑

〈i, j〉,σ
[c†

jσ ciσ + c†
iσ c jσ ] − μQ + U

∑
i

HHub
i

+ t2
∑

〈〈kl〉〉,σ
[ei�kl c†

kσ
clσ + e−i�kl c†

lσ ckσ ], (A24)

and can be defined on any bipartite lattice and in particular on
the 2D honeycomb lattice of graphene.

The model is obtained by adding the complex-amplitude
next-nearest-neighbor hopping to the Hubbard model which
means the H0 + OT decomposition only differs from Hub-
bard model by the addition of the t2 hopping to the OT (see
Table III).

In the most general case the t2 hopping terms are the
generators of SU(N ) and the model possesses only one scar
family |nζ 〉 with the corresponding H0 + OT decomposition:

HHH = Q

(
U

2
− μ

)
− U

N

2
+ t1

∑
〈i, j〉

T ′
〈i, j〉 + U

2

∑
i

K2
i

+ t2
∑

〈〈kl〉〉,σ
[ei�kl c†

kσ
clσ + e−i�kl c†

lσ ckσ ]. (A25)

For �kl = π/2 the amplitude of the t2 hopping becomes
purely imaginary and because the lattice in the Haldane-
Hubbard model is always bipartite the hopping t1 + t2 is a
generator of S̃U(N )′ (see Sec. II A) and the |nη〉′ family of

scars is added while the corresponding H0 + OT decomposi-
tion reads as

HHH(�kl = π/2)

= Q

(
U

2
− μ

)
+ t1

∑
〈i, j〉

T ′
〈i, j〉

+ it2
∑

〈〈kl〉〉,σ
[c†

kσ
clσ − c†

lσ ckσ ] − U

2

∑
i

M2
i . (A26)

If in addition t1 = 0, then the remaining t2 hopping alone
is a generator [see Eq. (9)] of SO(N ) which is a subgroup
of both S̃U(N )′ and S̃U(N ) and the third scar family of
[S̃U(N ) × SU(2)spin]-invariant states |nη〉 is added. The cor-
responding H0 + OT decomposition is

HHH(�kl = π/2; t1 = 0)

= Q

(
U

2
− μ

)
+ it2

∑
〈〈kl〉〉,σ

[c†
kσ

clσ − c†
lσ ckσ ] − U

2

∑
i

M2
i . (A27)

APPENDIX B: QUANTUM CHAOS

We can better understand several properties of our system
using knowledge from random matrix theory. There are three
main random matrix ensembles corresponding to the Hermi-
tian models that we study in this paper; these are commonly
known as the Wigner ensembles consisting of the Gaussian
orthogonal ensemble (GOE), the Gaussian unitary ensemble
(GUE), and the Gaussian symplectic ensemble (GSE). The
GOE is time reversal invariant and is a random real symmetric
matrix (H = HT ) where the entries are drawn from a normal
Gaussian distribution. The GUE is not time-reversal invariant
and is a random Hermitian matrix (H = H†) where the entries
are drawn from a complex Gaussian distribution. Finally, the
GSE is time-reversal invariant (but breaks rotational sym-
metry) and is comprised of real quaternion matrices. Here,
we quantify quantum chaos in our models using three dis-
tinct measures, and we can compare some of these measures
from our model to those of the corresponding random matrix
ensemble. We examine the spectral form factor (SFF) [92],
the level spacing distribution [P(s)], and the mean spacing
ratio 〈r〉.

a. Hermitian Hamiltonian

The mean level spacing ratio 〈r〉 is often used to quantify
chaos as well as spectral transitions between Wigner-Dyson
ensembles. The spacing ratio r is defined as

r = min (si, si−1)

max (si, si−1)
where si = λi+1 − λi, (B1)

where λi is the ith eigenvalue. See Eq. (B2) for the definition
for a non-Hermitian system. We also see level repulsion in
the probability density function of the consecutive level spac-
ing ratio P(r), as we send r → 0. The analytic mean level
spacing ratios are calculated in [74], and are 〈r〉 ≈ 0.5359,
〈r〉 ≈ 0.6027, and 〈r〉 ≈ 0.6762 for the GOE, GUE, and GSE
respectively.
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FIG. 13. Quantum chaos for Hermitian tJU [Eq. (50)] and low magnetic field γ = 1. (a) Spectral form factor g(t, β ). The peak caused by
the magnetic field is almost absent (compare to Fig. 3). (b) Level spacing distribution P(s). This model has 〈r〉 = 0.5284. 〈r〉GUE = 0.6027 and
〈r〉GOE = 0.5359.

Based on the Figs. 3 and 13, we can conclude that our
Hermitian models have a chaotic bulk; the SFF has a dip-
ramp-plateau structure, and the level spacing plots and 〈r〉
values closely match those of the GOE. We note that the peak
is absent or much reduced for the moderate magnetic field
γ = 1 (see Fig. 13).

b. Non-Hermitian Hamiltonian

The Ginibre symmetry classes are the non-Hermitian
analogs to the Dyson symmetry classes. We can compute the
level spacings of our non-Hermitian models and compare to
those of the Ginibre random matrix analog. It is also possi-
ble to compute complex spacing ratios 〈r〉. For example, the
Ginibre GUE (GinUE) 〈r〉 is numerically determined to be
≈0.74 [75].

The r value is defined as [75]

rn =
∣∣∣∣En,1 − En

En,2 − En

∣∣∣∣, (B2)

where En,1 and En,2 are the nearest and the next-nearest energy
levels in the spectrum to the given energy level En.

We can see from Fig. 4 that our non-Hermitian model
shows evidence of a chaotic bulk. The level spacing plot fits
closely to that of the Ginibre distribution, and the 〈r〉 value of
our model is also close to the Ginibre value. The interpretation
of the SFF for the non-Hermitian model is less straightfor-
ward, though we do see a dip-ramp-plateau structure when
considering only the real part of the eigenvalues. The dip-
ramp-plateau structure is less clear when considering only the
magnitude or imaginary part of the eigenvalues.

APPENDIX C: FULL SYMMETRY
OF THE SCAR FAMILIES

Since the states |nζ 〉 are invariant under the groups U(N )
and SU(2)η, these states are invariant under the action of all

the commutators. Thus, we can take an arbitrary hopping (8)
and commute it with (7) and see that they do not commute:

T +
i j =

∑
σ

[c†
iσ c jσ + c†

jσ ciσ , η+] =
∑
σ,σ ′

εσσ ′c†
iσ c†

jσ ′ . (C1)

It means that the groups U(N ) and SU(2)η, when joined
together, do not form a direct product as in the case of Gi’s
groups. Rather, they form a so-called semidirect product of
these groups. And one can work out that it corresponds to

U (N )�SU(2)η = Sp(2N,C), (C2)

and the states |nζ 〉 are invariant with respect to this group
Sp(2N,C). Moreover, the Hilbert space could be decomposed
in the following way:

G2 ⊂ Gsp = Sp(2N,C) × SU(2)spin,

H =
∑
k�N

〈k〉sp ⊗ (n − k)su, (C3)

where 〈k〉sp corresponds to an antisymmetric representation of
Sp(2N,C) formed by multiplying k copies of the fundamental
representation, and (k) is a usual spin-k representation of
SU(2)η.

The same holds for the groups Ũ(N ) and SU(2)spin, but
then we instead have another S̃p(2N,C) group:

G3 ⊂ G̃sp = S̃p(2N,C) × SU(2)η. (C4)

The |nη〉 states are invariant with respect to S̃p(2N,C). The
latter contains SA

i , the local SU(2)spin generators, which shows
that the Heisenberg interaction is actually of a T T form for
the |nη〉 states. This is another way to see that the Heisenberg
interaction exactly annihilates the paired |nη〉 and |nη〉′ states.
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Michailidis, Z. Papić, M. Serbyn, M. D. Lukin, and
D. A. Abanin, Emergent SU(2) Dynamics and Perfect
Quantum Many-Body Scars, Phys. Rev. Lett. 122, 220603
(2019).

043156-17

https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevLett.122.220603


PAKROUSKI, PALLEGAR, POPOV, AND KLEBANOV PHYSICAL REVIEW RESEARCH 3, 043156 (2021)

[3] N. Shiraishi and T. Mori, Systematic Construction of Coun-
terexamples to the Eigenstate Thermalization Hypothesis, Phys.
Rev. Lett. 119, 030601 (2017).

[4] S. Moudgalya, N. Regnault, and B. A. Bernevig, Entanglement
of exact excited states of affleck-kennedy-lieb-tasaki models:
Exact results, many-body scars, and violation of the strong
eigenstate thermalization hypothesis, Phys. Rev. B 98, 235156
(2018).

[5] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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[71] J. Tindall, B. Buča, J. R. Coulthard, and D. Jaksch, Heating-
Induced Long-Range η Pairing in the Hubbard Model, Phys.
Rev. Lett. 123, 030603 (2019).

[72] J. Li, D. Golez, P. Werner, and M. Eckstein, η-paired supercon-
ducting hidden phase in photodoped Mott insulators, Phys. Rev.
B 102, 165136 (2020).

[73] K. Pakrouski, I. R. Klebanov, F. Popov, and G. Tarnopolsky,
Spectrum of Majorana Quantum Mechanics with O(4)3 Sym-
metry, Phys. Rev. Lett. 122, 011601 (2019).

[74] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution
of the Ratio of Consecutive Level Spacings in Random Matrix
Ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[75] L. Sá, P. Ribeiro, and T. Prosen, Complex Spacing Ratios: A
Signature of Dissipative Quantum Chaos, Phys. Rev. X 10,
021019 (2020).

[76] S. Daul, D. J. Scalapino, and S. R. White, Pairing Cor-
relations on t − U − J Ladders, Phys. Rev. Lett. 84, 4188
(2000).

[77] S. Basu, R. J. Gooding, and P. W. Leung, Enhanced bound-
state formation in two dimensions via stripelike hopping
anisotropies, Phys. Rev. B 63, 100506(R) (2001).

[78] F. C. Zhang, Gossamer Superconductor, Mott Insulator, and
Resonating Valence Bond State in Correlated Electron Systems,
Phys. Rev. Lett. 90, 207002 (2003).

[79] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Superconduc-
tivity in narrow-band systems with local nonretarded attractive
interactions, Rev. Mod. Phys. 62, 113 (1990).

[80] E. Dagotto, Correlated electrons in high-temperature supercon-
ductors, Rev. Mod. Phys. 66, 763 (1994).

[81] M. Abram, M. Zegrodnik, and J. Spałek, Antiferromagnetism,
charge density wave, and d-wave superconductivity in the ex-
tended t-j-u model: Role of intersite coulomb interaction and a
critical overview of renormalized mean field theory, J. Phys.:
Condens. Matter 29, 365602 (2017).

[82] P. Zanardi and M. Rasetti, Noiseless Quantum Codes, Phys.
Rev. Lett. 79, 3306 (1997).

043156-19

https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevB.103.L220301
https://doi.org/10.1103/PhysRevB.102.224303
https://doi.org/10.1103/PhysRevLett.126.210601
https://doi.org/10.1103/PhysRevB.102.241115
https://doi.org/10.1103/PhysRevResearch.2.043267
http://arxiv.org/abs/arXiv:2005.05062
https://doi.org/10.1103/PhysRevLett.126.020603
https://doi.org/10.1103/PhysRevLett.125.060601
https://doi.org/10.1103/PhysRevB.102.174303
https://doi.org/10.1103/PhysRevResearch.3.023100
http://arxiv.org/abs/arXiv:2103.01808
https://doi.org/10.1103/PhysRevD.101.126002
https://doi.org/10.1103/PhysRevD.97.106023
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1142/S0217984990000933
https://doi.org/10.1142/S0217979291000110
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevB.102.041117
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevResearch.2.023286
https://doi.org/10.1063/1.1704292
https://doi.org/10.1103/PhysRevB.104.125102
https://doi.org/10.1103/PhysRevB.39.11515
https://doi.org/10.1016/0921-4534(89)90225-6
https://doi.org/10.1038/nphys1073
https://doi.org/10.1103/PhysRevB.96.085104
https://doi.org/10.1103/PhysRevLett.123.030603
https://doi.org/10.1103/PhysRevB.102.165136
https://doi.org/10.1103/PhysRevLett.122.011601
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1103/PhysRevLett.84.4188
https://doi.org/10.1103/PhysRevB.63.100506
https://doi.org/10.1103/PhysRevLett.90.207002
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1088/1361-648X/aa7a21
https://doi.org/10.1103/PhysRevLett.79.3306


PAKROUSKI, PALLEGAR, POPOV, AND KLEBANOV PHYSICAL REVIEW RESEARCH 3, 043156 (2021)

[83] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-Free
Subspaces for Quantum Computation, Phys. Rev. Lett. 81, 2594
(1998).

[84] M. V. Berry, Physics of nonhermitian degeneracies, Czech. J.
Phys. 54, 1039 (2004).

[85] W. D. Heiss, The physics of exceptional points, J. Phys. A:
Math. Theor. 45, 444016 (2012).

[86] M.-A. Miri and A. Alù, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).

[87] F. D. M. Haldane, Exact Jastrow-Gutzwiller Resonating-
Valence-Bond Ground State of the Spin- 1

2 Antiferromagnetic
Heisenberg Chain with 1/r2 Exchange, Phys. Rev. Lett. 60, 635
(1988).

[88] B. S. Shastry, Exact Solution of an s = 1/2 Heisenberg Antifer-
romagnetic Chain with Long-Ranged Interactions, Phys. Rev.
Lett. 60, 639 (1988).

[89] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Supercon-
ductivity in a narrow-band system with intersite electron

pairing in two dimensions. ii. effects of nearest-neighbor
exchange and correlated hopping, Phys. Rev. B 39, 11653
(1989).

[90] J. He, S.-P. Kou, Y. Liang, and S. Feng, Chiral spin liquid
in a correlated topological insulator, Phys. Rev. B 83, 205116
(2011).

[91] D.-A. Le, M.-T. Tran, T.-T.-M. Tran, T.-T. Nguyen,
T.-H. Nguyen, and A.-T. Hoang, Phase transitions in
the haldane-hubbard model within coherent potential
approximation, Phys. B: Condens. Matter 532, 139
(2018).

[92] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad,
S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, Black
holes and random matrices, J. High Energy Phys. 05 (2017)
118.
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