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Anomalous inverse proximity effect in unconventional superconductor junctions
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We investigate the effects of Andreev bound states due to the unconventional pairing on the inverse proximity
effect of ferromagnet/superconductor junctions. Utilizing quasiclassical Eilenberger theory, we obtain the
magnetization penetrating into the superconductor. We show that in a wide parameter range the direction of the
induced magnetization is determined by two factors: whether Andreev bound states are present at the junction
interface and the sign of the spin-mixing angle. In particular, when Andreev bound states appear at the interface,
the direction of the induced magnetization is opposite to that without Andreev bound states. We also clarify the
conditions under which an inverted induced magnetization appears. Analyzing this effect helps distinguishing
the pairing symmetry of a superconductor.
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I. INTRODUCTION

Superconductors (SCs) dominated by an exotic pairing in-
teraction are often so-called unconventional superconductors
(USCs), which break apart from the global phase symmetry
one or more additional symmetries of the normal state. In a
conventional SC, the electrons usually form Cooper pairs due
to the retarded attractive effective interaction resulting from
electron-phonon coupling [1]. On the other hand, a repulsive
interaction like the Coulomb interaction in strongly correlated
superconductors requires the order parameter to change sign
on the Fermi surfaces, resulting in anisotropic pairings like
for example the d-wave pairing in high-Tc cuprate SCs and in
heavy-fermion SCs.

The internal phase of the pair potential plays an important
role in forming Andreev bound states (ABSs) [2–4]. At an
interface of an USC, an ABS can be formed by the interfer-
ence between incoming and outgoing quasiparticles where the
two quasiparticles feel different pair potentials depending on
the direction of motion [5–7]. Emergence of interface ABSs
changes the properties of superconducting junctions such
as the transport properties [5,8–40] and magnetic response
[41–53].

The ABSs can drastically change the proximity effect as
well. The proximity effect is the penetration of Cooper pairs
into a normal metal (N) attached to a SC [54]. The conven-
tional proximity effect introduces a spectral gap in the density
of states (DOS) of the N metal [55–59] (i.e., a so-called mini-
gap), whereas a zero-energy peak (ZEP) in the DOS signifies
the appearance of ABSs [11,42,59,60]. Together with ABSs,
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odd-frequency Cooper pairs [18,61,62] are known to be in-
duced simultaneously. Odd-frequency pairs are demonstrated
to show anomalous response to the vector [42–51,63] and
Zeeman potentials [52,53].

When a SC is in contact with a magnetic material, another
type of proximity effect occurs. In a ferromagnet/SC (F/SC)
junction, the magnetization in the F penetrates into the SC on
the length scale of the superconducting coherence length ξ0.
This is called the (magnetic) inverse proximity effect (IPE)
[64–71]. The IPE has been studied for junctions of conven-
tional SCs. It was first studied in a ballistic junction of a fer-
romagnetic insulator (FI) and an s-wave SC [64]. In this case,
the induced magnetization is antiparallel to the magnetization
in the FI. In junctions with a ferromagnetic metal (FM) instead
of an FI, the induced magnetization is antiparallel in the diffu-
sive limit [65], whereas it can be parallel in the ballistic limit
[66,67]. The IPE in conventional SC structures has been ob-
served by several experimental techniques, e.g., ferromagnetic
resonance [72,73], nuclear magnetic resonance [68], and polar
Kerr effect [69]. How anisotropic pairing in USCs affects the
IPE, in contrast, has not been discussed so far. In particular,
ABSs and corresponding odd-frequency pairs are expected to
affect how the magnetization penetrates into the SC.

In this paper, we theoretically study the IPE in F/USC
junctions utilizing the quasiclassical Green‘s function the-
ory. We show that, when ABSs appear, the IPE induces a
magnetization with the opposite sign compared to that in the
F/conventional-SC junction (see Fig. 1). Using first a one-
dimensional model, we show that for a single quasiclassical
trajectory the direction of the induced magnetization is de-
termined by two factors: existence of ABSs and the sign of
the spin-mixing angle. We also show that spin-singlet and
spin-triplet pairs near the interface show a correspondence
when T ∼ Tc. Spin-triplet odd-frequency s-wave Cooper pairs
induced at the interface of a ferromagnet/spin-triplet p-wave
SC junction behave in the same way as spin-singlet s-wave
pairs induced at the interface of a junction with an s-wave SC.
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FIG. 1. Schematics of the inverse proximity effect (IPE). The
arrows represent the magnetization vectors. The ABSs are in (a) ab-
sent and in (b) present at the interface. When there are ABSs, the
magnetization induced in the superconductor (SC) is opposite to
that without ABS. The length scale of the IPE is characterized by
the superconducting coherence length ξ0. The model system is two-
dimensional. The interface between the SC and the ferromagnet (F)
is aligned perpendicular to the x- and parallel to the y direction.

We then discuss a two-dimensional system, in which case
the sign of the spin-mixing angle in general depends on the
momentum parallel to the interface k‖. When the magneti-
zation in F is sufficiently small, the results are qualitatively
the same as those in the 1D model. In the case of a large
magnetization in F, however, the k‖ dependence of the spin-
mixing angle cannot usually be ignored. As a result, in this
latter case, the direction of the induced magnetization for su-
perconductors with nodes at k‖ = 0 is not simply determined
by the two factors discussed in the 1D limit.

II. MODEL AND FORMULATION

We consider a ballistic superconducting junction as shown
in Fig. 1, where the interface is located at x = 0. The SC and
F occupy x � 0 and x < 0, respectively. The SC is modelled
either as one-dimensional or two-dimensional. We discuss the
magnetization induced at the interface of the F/SC junction,
where F and SC stand for ferromagnet and superconductor,
respectively. In the IPE, the so-called spin-mixing angle θSM

plays an important role. We will introduce it when we discuss
the boundary condition for the quasiclassical coherence func-
tion (see Sec. II B). An intuitive interpretation of θSM is given
in Appendix E.

A. Quasiclassical Eilenberger theory

Superconductivity in the ballistic limit can be described
by the quasiclassical Eilenberger theory. The Green functions
obey the Eilenberger equation:

ivF · ∇ǧ + [M̌, ǧ]− = 0, (1)

ǧ =
(

ĝ f̂
− f̂

˜
−ĝ

˜

)
, M̌ =

(
iωnσ̂0 −�̂

−�̂
˜

−iωnσ̂0

)
, (2)

where ǧ = ǧ(x, k, iωn) is the Matsubara Green function, vF

is the Fermi velocity, ωn = (2n + 1)πT is the Matsubara fre-

quency, and �̂ is the pair-potential matrix. The accents ·̌ and ·̂
denote matrices in particle-hole space and spin space, respec-
tively. The Pauli matrices in particle-hole space and in spin
space are denoted τ̌ j and σ̂ j with j ∈ {1, 2, 3}, respectively,
and the corresponding identity matrices by τ̌0 and σ̂0. All
of the functions satisfy the symmetry relation K̂ (x, k, iωn) =
[K̂

˜
(x,−k, iωn)]∗, where the unit vector k represents the direc-

tion of the Fermi momentum.
The Eilenberger equation (1) is supplemented by a (non-

linear) normalization condition ǧ2 = 1̌. It is implemented
explicitly by the so-called Riccati parametrization [74–78].
The Green function is expressed in terms of the coherence
function γ̂ in the following way [77,78]:

ǧ = 2

(
Ĝ F̂

−F̂
˜

−Ĝ
˜

)
− τ̌3, (3)

Ĝ = (1 − γ̂ γ̂
˜

)−1, F̂ = (1 − γ̂ γ̂
˜

)−1γ̂ , (4)

Ĝ
˜

= (1 − γ̂
˜
γ̂ )−1, F̂

˜
= (1 − γ̂

˜
γ̂ )−1γ̂

˜
, (5)

where γ̂ = γ̂ (x, k, iωn) [79]. The Riccati parametrization
reduces the Eilenberger equation (1) into the Riccati-type
differential equation [75]:

ivF · ∇γ̂ + 2iωnγ̂ + �̂ − γ̂ �̂
˜
γ̂ = 0. (6)

This Riccati-Eilenberger equation can be simplified for coher-
ence functions incoming from the bulk to

vF · ∇γ + 2ωnγ − �k + �∗
kγ

2 = 0, (7)

where we assume the superconducting order parameter has
only one spin component [i.e., �̂ = �k(σ̂ν σ̂2) with ν ∈
{0, 1, 2, 3}]. In this case, the spin structure of the incoming
coherence function is γ̂ = γ (iσ̂ν σ̂2) (see Appendix A for the
details). In a homogeneous superconductor, the coherence
function is given by

γ̄ (k, iωn) = sω�k

|ωn| + √
ω2

n + |�k|2
, (8)

where the overbar symbol ·̄ denotes the bulk value, γ̄ needs to
satisfy the condition limωn→∞ γ = 0, and sω = sgn[ωn].

In USCs, the pair potential depends on the direction of
the momentum. For isotropic Fermi surfaces, the momentum
dependence of the pair potential is given by

�k = �ϕ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0 for s wave,
�0 cos ϕ for px wave,
�0 sin ϕ for py wave,
�0 cos(2ϕ) for dx2−y2 wave,
�0 sin(2ϕ) for dxy wave,

(9)

where �0 is the amplitude of the pair potential and ϕ charac-
terizes the direction of the Fermi momentum; kx = cos ϕ and
ky = sin ϕ. Note that the interface is perpendicular to the kx

direction. The temperature dependence of the pair potential is
determined by the self-consistency condition for a homoge-
neous SC:

�0(T ) = 2N0λ
π

β

ωc∑
ωn>0

∫
�ϕ�ϕ√
ω2

n + �2
ϕ

dϕ

2π
, (10)
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where N0 is the density of states (DOS) per spin at the Fermi
level β = 1/T , ωc is the BCS cutoff energy, and

�ϕ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for s wave,
2 cos ϕ for px wave,
2 sin ϕ for py wave,
2 cos(2ϕ) for dx2−y2 wave,
2 sin(2ϕ) for dxy wave.

(11)

The coupling constant λ is given by

λ = 1

N0

[
ln

(
T

Tc

)
+

nc∑
n=0

1

n + 1/2

]−1

, (12)

with nc = ωc/2πT .
In this paper, the temperature dependence of the pair po-

tential is taken into account, however the approximation of a
spatially homogeneous pair potential is made.

Spin-dependent interfaces induce a magnetization in the
SC. The induced magnetization, density of the magnetic mo-
ment, is given by

M(x) = μB(n↑ − n↓), (13)

nα (x) = 〈�†
α (x)�α (x)〉, (14)

where μB is the effective Bohr magneton, α = ↑ or ↓ is the
spin index, �α (�†

α) is the annihilation (creation) operator of
a quasiparticle with the spin α, and nα is the density of α-spin
quasiparticles. This magnetization can be obtained from the
diagonal parts of the quasiclassical Green’s function:

M(x) = μBN0π

iβ

∑
ωn

∫
Tr[σ̂3ĝ(x, ϕ, iωn)]

dϕ

2π
,

= 2πμBN0T
nc∑

n=0

∫
Im[g↑ − g↓]

dϕ

2π
, (15)

where we have used the symmetry of the Matsubara Green
function ĝ(x, ϕ, iωn) = −ĝ∗(x, ϕ,−iωn), and the abbreviation
ĝ = diag[g↑, g↓] with g↑(↓) being the normal Green’s function
for the up and down spin.

B. Boundary condition

The boundary conditions for the coherence functions are
given in Refs. [76–78]. Hereafter, the outgoing (incoming)
coherence functions are denoted by � (γ ) as introduced in
Ref. [76]. When the SC and F are semi-infinitely long in the x
direction, the boundary condition is simplified because γ = 0
in the F. The boundary condition is given by

�̂ = r̂γ̂ r̂∗, (16)

where the reflection-coefficient matrix r̂ is given by [80]

r̂ =
[

r↑ 0
0 r↓

]
=

[|r↑|ei(φ+θSM ) 0
0 |r↓|ei(φ−θSM )

]
. (17)

The angle θSM is the so-called spin-mixing angle [64] and r↑
and r↓ are the reflection coefficients for the up-spin and down-
spin particles injected from the SC side. The physical meaning
of θSM is explained in Appendix E. The reflection coefficients

SCFSCF

FIG. 2. Quasiclassical path to obtain the Green’s function in
(+k, ky ) and (−k, ky ) direction, respectively. The particle-like (hole-
like) coherence function must be solved along the quasiclassical path
in +k (−k) direction, which are indicated by the solid and broken
lines. The points of interest are denoted by x0. The momentum par-
allel to the interface is conserved during the reflection. The overbar
symbol ·̄ denotes the bulk value of the coherence function.

can be obtained by matching the wave functions:

rα = h̄(v − vα ) − 2iV

h̄(v + vα ) + 2iV
, (18)

where we assume a potential barrier V δ(x) at the interface, and
v = h̄k/m∗ (vα = h̄kα/m∗) is the x component of the Fermi
velocity vF in the SC (F) side with m∗ being the quasiparti-
cle effective mass. We also introduce a dimensionless barrier
potential parameter z0 = V/(h̄vF ).

The reflection coefficients in the boundary condition are
obtained by matching the wave functions at the interface. The
wave functions are obtained from the single-particle Hamilto-
nian, which is given by

Ĥ =
{− h̄2

2m∗
(
∂2

x + ∂2
y

) − EF − Jexσ̂3 for x < 0,

− h̄2

2m∗
(
∂2

x + ∂2
y

) − ES for x � 0,
(19)

where Jexσ̂3 is the exchange energy in the F and EF (S) are
related to the Fermi energies in the F (S) region (measured
from the bottom of the energy bands, respectively; the electro-
chemical potential defines zero energy). Therefore, the wave
numbers at the Fermi level are given by k = {2m∗ES/h̄2 −
k2

y }1/2, and k↑(↓) = {2m∗[EF + (−)Jex]/h̄2 − k2
y }1/2. Note that

we have made h̄ explicit for convenience.
In a single-spin-component superconductor, the coherence

amplitude propagating from the bulk region can be expressed
as

ˆ̄γ = γ̄ (iσ̂ν σ̂2), (20)

Therefore, the outgoing coherence functions (16) are given by

�̂ =
(

0 �↑
sν�↓ 0

)
=

(
0 r↑γ r∗

↓
sνr↓γ r∗

↑ 0

)
, (21)

for the opposite-spin pairing (ν = 0 or 3), where sν = 1 (−1)
for the spin-triplet (singlet) pairing. The boundary conditions
obtained here are consistent with those derived using the so-
called evolution operators [81–84].

To obtain the coherence amplitude, we need to consider
the group velocity of the quasiparticle and quasihole prop-
erly. The quasiclassical paths to obtain ǧ(x0, k, ky, iωn) and
ǧ(x0,−k, ky, iωn) are shown in Figs. 2(a) and 2(b), where the
solid and broken lines represent the path for the particle-like
and hole-like coherence amplitudes, the arrows indicate the
direction of the Fermi momentum, and ky is the momentum
parallel to the interface. Since the quasiparticle (quasihole)
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FIG. 3. Temperature dependence of induced magnetization at
the interface of a 1D FM/SC model. The induced magnetization
is normalized as M̄ = M/2πμBN0Tc. The exchange energy is set
to Jex = EF or 0.5EF with EF = ES . The spin-independent barrier
potential is set to (a) z0 = 0.1, (b) 0.5, and (c) 1.0, where θSM < 0 for
all of the sets of the parameters. The induced magnetization of the
s-wave junctions is positive, whereas that of the p-wave junctions
are negative. The pair potential depends on the temperature but is
kept constant as function of the spatial coordinate x.

propagates in the same (opposite) directions as k, γ̂ and γ̂
˜should be solved in k and −k directions, respectively.

The Green’s function can be obtained from the coherence
functions [see Eq. (3)]. Using the boundary condition, the
diagonal part of the Green’s functions at the interface are
given in terms of the coherence functions:

ĝ+k = (1 − �̂γ̂
˜

)−1(1 + �̂γ̂
˜

), (22)

ĝ−k = (1 − γ̂ �̂
˜

)−1(1 + γ̂ �̂
˜

), (23)

where ĝ±k = ĝ(x = 0+,±k, ky, iωn). The spin-reduced
Green’s functions at the interface are

gα,+k = 1 + �αγ

1 − �αγ
, gα,−k = 1 + γ�α′

1 − γ�α′
, (24)

where α′ means the opposite spin of α. The spin struc-
ture of the coherence functions are parameterized as
�̂ = diag[�↑, �↓](iσ̂ν σ̂2) and �̂

˜
= diag[�

˜
↑, �

˜
↓](iσ̂ν σ̂2)∗ =

diag[�↑, �↓](iσ̂ν σ̂2)†. Assuming the spatially homogeneous
pair potential, we can replace γ in Eq. (24) by γ̄ , where the
symbol ·̄ means bulk values. This assumption changes the
results only quantitatively but not qualitatively.

III. ONE-DIMENSIONAL MODEL

In order to understand the basics of the IPE. We start with
one-dimensional (1D) models (i.e., superconducting wire).
Such systems can be considered by setting ky = 0.

A. Ferromagnetic-metal junction

The temperature dependence of the induced magnetiza-
tions at the interface of the F/SC junction are shown in Fig. 3
where spin-singlet even-parity and spin-triplet odd-parity
superconducting junctions are considered, which correspond
to the s- and px-wave superconducting junctions in the 2D
case, respectively. The exchange energy in the F is set to
Jex = EF or 0.5EF with EF = ES , the barrier potential is set
to (a) z0 = 0.1, (b) z0 = 0.5, and (c) z0 = 1.0, and the pair
potential is assumed spatially homogeneous but temperature
dependent. In the even-parity case, the magnetization in the

-0.2

0.0

0.2

0 1 2 3 4-0.1

0.0

0.1

FIG. 4. (a) Induced magnetization and spin-mixing angle of a 1D
F/SC system as a function of Jex. The Fermi energy in the F is set to
EF = 0.5ES , which means that the F is a FM (HM) when Jex < 0.5ES

(Jex � 0.5ES). The schematic band structures of the FM/SC and
HM/SC junctions are shown in (b) and (c) respectively. The up-spin
and down-spin subbands for the F are shown in the left side, whereas
the band for the SC is in the right side. The dotted line indicates the
Fermi level. The sign of the magnetization is determined by sgn(Jex )
and the pairing symmetry. The temperature and the barrier potentials
are set to T = 0.2Tc and z0 = 1.

F induces the parallel magnetization in the SC as shown in
Fig. 3. This behavior is consistent with that in the ballistic
limit in Refs. [66,67]. In the odd-parity case, on the contrary,
the induced magnetization is antiparallel to the magnetization
in the F. We have confirmed that no magnetization is induced
when the d vector is perpendicular to the magnetization
vector in the F.

The induced magnetization M|x=0+ and the spin-mixing
angle θSM as functions of Jex are shown in Fig. 4(a) where
EF = 0.5ES , z0 = 1.0, and T = 0.2Tc [85]. In this case, the
F is a ferromagnetic metal (FM) for 0 < Jex < EF and a
half-metal (HM) for Jex > EF as schematically illustrated
in Figs. 4(b) and 4(c). As shown in Fig. 4(a), the sign of
M|x=0+ for the s-wave junction is always opposite to sgn[θSM],
whereas that for the p-wave junction always has the same
sign. These results demonstrate that the sign of the induced
magnetization is determined by the two factors: the pairing
symmetry and the sign of the spin-mixing angle θSM.

B. Ferromagnetic-insulator junction

The IPE occurs in ferromagnetic-insulator(FI)/SC junc-
tions as well. The Jex dependence of M|x=0+ is shown in
Fig. 5(a). In order to model the FI, we set EF = −ES where
the FI-HM transition occurs at Jex = |EF | as schematically
shown in Figs. 5(b) and 5(c). Figure 5(a) shows that M|x=0+ in
the s-wave junction is antiparallel to the magnetization in the
F. This result is consistent with Ref. [64] (see [86]). For the
p-wave case, on the other hand, the induced magnetization
is parallel to the magnetization of the F. We can conclude
that the IPE induces the magnetization with the opposite sign
compared with an s-wave junction.

At low temperature, |M| in Jex < EF for the p-wave junc-
tion is greatly larger than that for the s-wave case. Similar
low-temperature anomalies of the magnetic response have
been reported so far [43–45,45,47–49,52,53]. These anoma-
lies are explained by the emergence of the zero-energy
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(a)

FIG. 5. (a) Induced magnetization and spin-mixing angle of a 1D
F/SC model with EF = −ES . The F is insulating for Jex < ES or a
half-metallic for Jex > ES . The induced magnetization for an s-wave
junction is negative regardless of the temperature (i.e., T = 0.2Tc

and 0.9Tc), whereas that p-wave junctions are positive. The barrier
potential is set to z0 = 0. The s-wave results are consistent with those
in Ref. [64], where θSM is defined with the opposite sign compared
with our definition. The schematics of band structures of the FI/SC
and HM/SC junctions are shown in (b) and (c) in the same manner
as in Figs. 4(b) and 4(c).

ABSs. In superconducting junctions, ABSs appear when
sgn[�(kx, ky)�(−kx, ky)] = −1 because of the interference
between the quasiparticle propagating into an interface and
reflected one. Therefore, the effects of ABSs become larger
as increasing reflection probability |R| [6]. In other words, the
anomalous IPE becomes more prominent in an FI/SC junc-
tion than that in FM/SC and HM/SC junctions. The relation
between the ABSs and the direction of the induced magneti-
zation is discussed in Appendix C. Using the magnetic-wall
model, we analytically derive the magnetization in an SC and
demonstrate that an ABS inverses the induced magnetization.

The amplitude of M|x=0+ changes suddenly at Jex = |EF |
in accordance with the FI-HM transition. After the FI-HM
transition, the induced magnetization decreases with
increasing Jex and vanishes at Jex = 2|EF | regardless of
the pairing symmetry. When EF ± Jex = ES , the dispersion
relation of either band in the F becomes identical to that in the
SC, with the consequence that the reflection probability for the
corresponding spin becomes zero. In this case, both �↑ and �↓
are zero [see Eq. (21)], which means the IPE does not occur.

C. Induced magnetization and pair amplitudes

The induced magnetization can be expressed in terms of
the pair amplitude (i.e., anomalous Green‘s function) when
T ∼ Tc (see Appendix D for the details) [52,87]. In the 1D
limit, in particular, the magnetization is given by

M ≈ 4πμBN0T
∑
ωn>0

m0,3, (25)

mν,ν ′ = Im[ fν,SW f ∗
ν ′,SW + fν,PW f ∗

ν ′,PW], (26)

where SW and PW stand for the s-wave and p-wave pair-
ings, respectively. The spin indices ν = 0 and 3 represent the
spin-singlet and spin-triplet pairs respectively. Note that f0,PW

and f3,SW should be odd-functions of ωn to satisfy the Pauli
rule [10,22,88]. Equation (25) means that the magnetization is
given by the product of the spin-singlet and spin-triplet pairs.

0.0

0.4

0.8

0 1 2
0.0

0.4

0.8

0 1 2

-0.8

-0.4

0.0

0 1 2
0.0

0.4

0.8

0 1 2

FIG. 6. Pair amplitudes in a 1D F/s-wave model. The s-wave
spin-singlet, s-wave triplet, p -wave singlet, and p -wave triplet
components are plotted in (a), (b), (c), and (d). When Jex < ES (i.e.,
FI regime), the magnetization is mainly generated by the product of
the s-wave singlet and s-wave triplet pairs because the s-wave sin-
glet is dominant [see Eq. (25)]. The temperature and the Matsubara
frequency are set to T = 0.9Tc and ωn = ω0.

The pair amplitudes at the interface of the s-wave junction
(i.e., junction with an s-wave SC) are shown in Fig. 6, where
T = 0.9Tc and ω = ω0 = πT . The spin-singlet s-wave, spin-
triplet s-wave, spin-singlet p-wave, and spin-triplet p-wave
pair amplitudes are shown in Figs. 6(a), 6(b), 6(c), and 6(d).
In the FI region (i.e., Jex < EF ) of an s-wave junction, the
conventional spin-singlet s-wave pairs are dominant and the
other pair amplitudes are relatively small. The magnetization
in this case is mainly generated by the spin-singlet and spin-
triplet s-wave Cooper pairs (i.e., f0,SW f ∗

3,SW � f0,PW f ∗
3,PW

when Jex � EF ).
In the p-wave case, on the other hand, the spin-triplet s-

wave pair amplitude is dominant for Jex < EF as shown in
Fig. 7. In addition, the spin-triplet s-wave pair amplitudes

0.0

0.4

0.8

0 1 2
0.0

0.4

0.8

0 1 2

0.0

0.4

0.8

0 1 2
-0.8

-0.4

0.0

0 1 2

FIG. 7. Pair amplitudes in a 1D F/p -wave model. The results are
plotted in the same manner as in Fig. 6. The main contribution comes
from the s-wave pairs even in the p -wave spin-triplet superconduct-
ing junction.

043148-5



SUZUKI, HIRAI, ESCHRIG, AND TANAKA PHYSICAL REVIEW RESEARCH 3, 043148 (2021)

-0.3

-0.2

-0.1

0.0

0.1

0.0 1.0 2.0

-0.3

0.0

0.3

0.6
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FIG. 8. Induced magnetization of a 2D F/SC junction. The
Fermi energy is set to (a) EF = 2ES and (b) EF = −ES . When the
ABSs are present, the induced magnetizations have the opposite sign
to those without ABSs. The temperature and the barrier potentials
are set to T = 0.2Tc and z0 = 1.

have almost the same Jex dependencies for the spin-singlet
s-wave pair amplitude as shown in Figs. 6(a) and 7(b).
Comparing Figs. 6 and 7, similar correspondences between
spin-singlet and spin-triplet pairs are confirmed. In Eqs. (25)
and (26), such a singlet-triplet conversion results in the sign
change of the magnetization (i.e., m0,3 = −m3,0). Namely, the
s-wave pairs in the p-wave junction generate almost the same
amplitude of the magnetization compared with the one in the
s-wave junction. The direction, however, is opposite compared
with that in the s-wave junction. In the Cooper pair picture,
the spin structure of the dominant Cooper pair determines the
direction of the induced magnetization.

IV. TWO-DIMENSIONAL MODEL

Most realistic superconducting junctions are two-
dimensional or three-dimensional. In a 2D system (i.e.,
junction with a two-dimensional SC), local quantities should
be obtained via a ky integration, where ky is the momentum
parallel to the interface [see Eq. (15)]. In particular, the
induced magnetization generated by the IPE is obtained via
ky integration where the partial magnetization depends on ky

via the transport coefficients and the pair potential.
The induced magnetizations in the 2D junctions are

shown in Fig. 8, where the Fermi energy in the F is set to
(a) EF = 2ES and (b) EF = −ES . When EF = 2ES , sgn(M )
is determined by whether the ABSs are present or not. The
anomalous IPE occurs when the ABSs are present at the inter-
face (i.e., px- and dxy-wave junctions). When Jex < EF , all of
the channels are regarded as FM/SC junctions, which results
in the parallel (antiparallel) magnetization in the SC without
(with) ABSs as discussed in the 1D limit [see Fig. 4(a)]. The
direction of the induced magnetization does not change even
in the Jex > ES region.

When EF = −ES , sgn(M ) for each superconducting junc-
tion is inverted compared with Fig. 8(a). In the Jex < EF

FIG. 9. Induced magnetization of a 2D F/S junction with EF =
ES . The results are plotted in the same manner in Fig. 8. When Jex

is sufficiently large, the induced magnetizations for an s-wave and
py-wave junctions are opposite even though no ABS appears in both
of the junctions.

region, all of the channels are regarded as an FI/SC junction
where the induced magnetization in the absence (presence) of
ABSs is negative (positive) as discussed in the 1D limit [see
Fig. 5(a)]. When Jex > EF , even though the channels around
ky = 0 change to HM/SC junctions, the sign of θSM remains
unchanged. Therefore, the total amplitude of the magnetiza-
tion also remains unchanged.

When Jex � EF and EF = ES , the sign change of θSM can
not be ignored. The Jex dependence of M|x=0+ for EF = ES

are shown in Fig. 9. In the py- and dxy-wave case (i.e., SCs
with gap nodes at ky = 0), the direction of the induced mag-
netization changes around Jex = EF as shown in Fig. 9. On
the other hand, the signs of M|x=0+ for the s-, px-, and dx2−y2 -
wave superconducting junction (i.e., SCs without gap does at
ky = 0) are unchanged.

To understand the sign change of the induced magneti-
zation, we evaluated the angle-resolved magnetization M(ϕ)
with ky = sin ϕ. The results for s- and py-wave junctions with
EF = 2ES are shown in Figs. 10(a) and 10(b). In this case,
M(ϕ) are positive for both of the junctions because the sign
of θSM is always positive as shown in Fig. 10(c). Note that
M(ϕ)|ϕ=0 = 0 in the py-wave junction because of the nodes
on the superconducting gap shown by the broken red line in
Fig. 10(b).

The results with EF = ES are shown in Figs. 10(d), 10(e),
and 10(f). The spin-mixing angle can be negative when Jex �=
0 as shown in Fig. 10(f) [39]. In the s-wave junction with
Jex �= 0, the positive contribution (shown in green) around
ϕ = 0 is larger than the negative ones (shown in purple)
around |ϕ| = π/2. The total magnetization, therefore, is al-
ways positive even for EF = ES as shown in Fig. 9. In the
py-wave junction, on the other hand, the positive contribution
is smaller than in the s-wave case because of the nodes. As
a result, the direction of the total magnetization can change
around Jex = EF (Fig. 9).
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FIG. 10. Angle-resolved magnetization and spin-mixing angle of F/SC junctions. The Fermi energy in the F is set to EF = 2ES in (a)–(c),
whereas EF = ES in (d)–(f). The order parameter is assumed spin-singlet s-wave in (a) and (d), and spin-triplet p-wave in (b) and (e). When
EF = ES and Jex �= 0, the sign change of θSM occurs around ky ∼ ±kF . In (e), when Jex > EF , the positive contribution to M is smaller
than the negative one due to the nodes of the py-wave gap at ϕ = 0. In (a), (b), (d), and (e), the partial magnetizations are normalized to
M̄(ϕ) = M(ϕ)/2πμBN0Tc and the exchange energy in F is changed from Jex = 0.8 to 2.0 by 0.2. The temperature and the barrier potentials
are set to T = 0.2Tc and z0 = 0.

V. DISCUSSIONS

The relations between the induced magnetization and the
magnetization of the F are summarized in Table I. In the table,
the sign of θSM is determined in the weak-magnetization limit
(i.e., Jex � EF ). We see that the ABSs always inverse the
induced magnetization by the IPE.

The anomalous IPE presented in this paper can be observed
by ferromagnetic resonance (FMR) measurements [72,73], by
nuclear magnetic resonance (NMR) measurements [68], and
by polar Kerr effect measurements [69]. In these experiments
the conventional IPE has been observed. Replacing the con-
ventional SC by an USC such as a high-Tc cuprate, it would
possible to confirm experimentally the anomalous IPE.

In this paper, we assume that the pair potential depends
only on the temperature but not on the coordinate. This as-
sumption, however, changes the results only quantitatively

TABLE I. Direction of the induced magnetization. The parallel
(antiparallel) arrows mean that the induced magnetization by the IPE
is parallel (antiparallel) to the magnetization in the F, respectively.
We assume the exchange energy is weak enough (i.e., Jex � EF ). In
the table, ABS, FI, and FM stand for Andreev bound state, ferromag-
netic insulator, and ferromagnetic metal.

but not qualitatively. Our main conclusion about the direc-
tion of the induced magnetization would remain unchanged
even if we employ the spatial-dependent self-consistent pair
potential.

VI. CONCLUSION

We have theoretically studied the IPE in F/USC junctions
utilizing the quasiclassical Green function theory. We have
shown that the direction of the induced magnetization is deter-
mined by two factors: by whether the ABS exists and by the
sign of the spin-mixing angle θSM. Namely, in the 1D limit, the
induced magnetizations for the px-wave SC is always opposite
to that for the s-wave SC.

In the 2D model, the spin-mixing angle θSM depends on
the momentum parallel to the interface ky. The results for 2D
F/SC junctions are qualitatively the same as those in the 1D
limit when the exchange energy in the F (Jex) is smaller than
the Fermi energy of the F (EF ). When Jex � EF , the sign of
the induced magnetization is not simply determined by the
ABSs because the sign changes of θSM around ky ∼ ±kF are
not negligible in this parameter range.

In addition, analyzing the pair amplitudes in 1D models,
we have pointed out a correspondence at T ∼ Tc between the
spin-singlet pairs in an s-wave junction and the spin-triplet
pairs in a p-wave junction. The odd-frequency spin-triplet
s-wave pairs induced at the interface of the spin-triplet p-wave
junction have qualitatively the same Jex dependence as that
for the spin-singlet s-wave pairs induced in the s-wave junc-
tion. Reflecting this correspondence, the amplitudes of the
induced magnetizations in the s- and p-wave SC junctions are
qualitatively the same. Their directions, however, are opposite
to each other, where the direction of the magnetization is
determined by the relative phase between the spin-singlet and
spin-singlet pair functions.
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APPENDIX A: SPIN STRUCTURES OF PAIR POTENTIAL

The index ν is a parameter, which decides the spin-
structure of the superconductor. The pair potential is generally
expressed as a mixture of different spin structures:

�̂ =
[
�↑↑ �↑↓
�↓↑ �↓↓

]
=

3∑
ν=0

�νσ̂νσ̂2, (A1)

where �ν=0 is the spin-singlet component, �ν=3 is the
opposite-spin spin-triplet one, and �ν=1 and �ν=2 are the
equal-spin spin-triplet ones. In this paper, for simplicity, we
assume the single-spin-component superconductor for which
the pair-potential matrix is given by

�̂ = �νσ̂νσ̂2, (A2)

with ν being 0, 1, 2, or 3. The spin structure of the coherence
function γ̂ incoming from the bulk is parameterized in the
same way. Writing �̂ ≡ �̂k and �ν ≡ �k (we omit the index
ν for brevity), Eq. (6) is then written as

ivF ·∇γ (iσ̂ν σ̂2) + 2iωnγ (iσ̂ν σ̂2) + �k(σ̂ν σ̂2)

+ γ (iσ̂ν σ̂2)�∗
k(σ̂ν σ̂2)†γ (iσ̂ν σ̂2) = 0,

where we have used

�̂
˜

k = [�̂−k]∗ = [
�̂T

−k

]† = [−�̂k]† = [−�k(σ̂ν σ̂2)†]

= −�∗
k(σ̂ν σ̂2)†,

and �̂T
−k = −�̂k follows from the Pauli principle. Using

(iσ̂ν σ̂2)(iσ̂ν σ̂2)† = σ̂0 we obtain Eq. (7).

APPENDIX B: BARRIER-POTENTIAL DEPENDENCE
OF THE INDUCED MAGNETIZATION

In this Appendix, we discuss the effects of the barrier
potential z0 that changes reflection coefficient. The z0 depen-
dencies of M|x=0+ for the one-dimensional FM/SC models are
shown in Fig. 11. The induced magnetization is not a mono-
tonic function of the barrier parameter z0. When z0 → ∞,
the reflection coefficient (18) becomes spin-independent (i.e.,
rα → −1). Therefore, Mx=0+ vanishes in this limit. When
z0 = 0, the reflection coefficients in Eq. (18) are real as long
as kα is real (i.e., F is a ferromagnetic metal), which means
that the reflected quasiparticles do not have an additional
spin-dependent phase shift. As a result, no magnetization is

-0.4

0.0

0.4

0.0 0.5 1.0 1.5 2.0

FIG. 11. Induced magnetization at the interface of a 1D FM/SC
model. The magnetization M|x=0+ for s- and p-wave superconductors
are respectively positive and negative regardless of the magnitude of
z0. The temperature is set to T = 0.2Tc.

induced in the SC. Note that we have confirmed θSM < 0 for
all set of z0 and Jex.

APPENDIX C: INDUCED MAGNETIZATION
AND ANDREEV BOUND STATES

We discuss the relation between the direction of the in-
duced magnetization and the Andreev bound states, where we
assume magnetic wall (i.e., |rα| = 1).

The diagonal part of the Green’s function is given by
Eq. (24). Using the boundary condition (21), we have the
diagonal part of the Green’s function

ĝ±k = (1 − γ−kγ +k
eiσ̂3θSM )−1(1 + γ−kγ +k

eiσ̂3θSM ), (C1)

where we have used �̂−γ̂
˜

+ = γ̂−�̂
˜

+ = γ−γ +eiσ̂3θSM . In

Eq. (C1), we have used that the reflection coefficients in the
magnetic-wall model can be given by

r̂ = exp[iθSMσ̂3/2]. (C2)

In what follows, we will make the subscript ±k implicit be-
cause the Green‘s function at the interface does not depend on
the direction of motion. The Green‘s function can be reduced
to

ĝ = 1

�
[(1 − R2)σ̂0 + 2iσ̂3R sin θSM], (C3)

� = (1 − R cos θSM)2 + R2 sin2 θSM, (C4)

where R = γ−kγ +k
. Assuming θSM � 1, we have

ĝ ≈ g(0)σ̂0 + g(1)σ̂3, (C5)

g(0) = 1 + R
1 − R , g(1) = 2iRθSM

(1 − R)2
, (C6)

where g(0) is the unperturbed Green‘s function and g(1) is the
linear term with respect to θSM. In the 1D limit, the induced
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magnetization at the interface can be calculated from g(1):

M|x=0 = 4πμBN0T
nc∑

n=0

Im[g(1)]. (C7)

Substituting g(1), we have

M̄|x=0 = T

Tc

nc∑
n=0

4sp�
2
0θSM[

(1 − sp)ωn + (1 + sp)
√

ω2
n + �2

0

]2
, (C8)

sp = �+k�−k/�
2
0 = sgn[�+k�−k], (C9)

where M̄ = M/2πμBN0Tc and we have used

R = sp

ωn −
√

ω2
n + �2

0

ωn +
√

ω2
n + �2

0

, (C10)

which is valid under the uniform pair potential. We see from
Eq. (C8) that the direction of the induced magnetization M̄|x=0

is determined by the factor sp, which reflects the pairing
symmetry of the SC: sp = +1 for the s-, py-, and dx2−y2 -wave
pairings and sp = −1 for px- and dxy-wave SCs. The condition
for the ABS in terms of sp is simply given by sp = −1.
Namely, M̄|x=0 is determined by whether ABS is present or
not (i.e., sp = −1 or +1). Moreover, the induced magnetiza-
tion for sp = −1 is enhanced at low temperature because its
energy dependence is M|x=0 ∼ 1/ωn.

APPENDIX D: SYMMETRY OF COOPER PAIRS
AND INDUCED MAGNETIZATION

When there is a spin-dependent potential, subdominant
pairing component must be induced because of the symmetry
breaking. Near the interface of an F/SC junction, the anoma-
lous Green functions are expressed as a superposition of the
spin-triplet and singlet pairs:

ĝ = diag[g↑, g↓], f̂ = f0iσ̂2 + f3σ̂1, (D1)

f̂
˜

= f
0
(−iσ̂2) + f

3
σ̂1, (D2)

where we consider a spin-dependent potential parallel to
the spin quantization axis. From the normalization condi-
tion (i.e., ĝ2 − f̂ f̂

˜
= σ̂0), we have the explicit forms for

g↑ and g↓: g2
↑(↓) = [1 + f0 f

0
+ f3 f

3
] + (−)[ f0 f

3
+ f3 f

0
].

When T ∼ Tc, the pair amplitude is sufficiently small.
Accordingly, the approximated Green’s function and the mag-
netization are given by the following expressions:

g↑(↓) = 1 + 1

2
{[ f0 f

0
+ f3 f

3
] + (−)[ f0 f

3
+ f3 f

0
]}

M(x) ≈ 2πμBN0T
∑
ωn>0

∫ π

−π

Im[ f0 f
3
+ f3 f

0
]

dϕ

2π
. (D3)

In a 2D system, the anomalous Green’s function can be
expanded in a Fourier series:

fν = Cν,0√
2π

+ 1√
π

∑
l>0

[Cν,l cos(lϕ) + Sν,l sin(lϕ)], (D4)

where Cν,n are Sν,n are coefficients that represent each pair-
ing amplitude (e.g., Cν=0,l=0, C3,1, and S3,2 correspond to

the s-wave spin-singlet, px-wave spin-triplet, and dxy-wave
spin-triplet pairs). Note that the spin-singlet odd-parity and
spin-triplet even-parity components should be odd functions
with respect to the Matsubara frequency. In other words,
they represent the odd-frequency pair amplitudes. Using
f (x, ϕ, iωn) = f ∗(x, ϕ + π, iωn) and the orthogonality of the
trigonometric functions, we can obtain

M(x) = 4πμBN0T
∑
ωn>0

Im

[
C0,0C

∗
3,0

+
∑
l>0

(−1)l
(
C0,lC

∗
3,l + S0,l S

∗
3,l

)]
. (D5)

In the 1D limit, in particular, the magnetization is given by

M = 4πμBN0T
∑
ωn>0

Im[ f0,SW f ∗
3,SW + f0,PW f ∗

3,PW], (D6)

where SW and PW stand for s- and p-wave pairings (i.e.,
even-parity and odd-parity pairing in the 1D limit). The mag-
netization is generated by the product of the spin-singlet and
spin-triplet pairs.

APPENDIX E: SPIN-MIXING ANGLE
AND FERMI SURFACES

The sign of the spin-mixing angle θSM is not simply de-
termined by whether the F is an FM or HM [39]. We show
the evolution of the Fermi surfaces in Fig. 12, where the
Fermi energies are set to EF = ES . The magnetization is set
to (a) Jex = 0.5EF , (b) 0.9EF , and (c) 1.1EF . Increasing Jex,
the spin bands split in the F. As a result, there is only one
Fermi surface for the channels with k‖ as shown in the green
region in Fig. 12. When Jex > EF , the Fermi surface for the
down-spin band vanishes. Comparing Figs. 12 and 10(f), we
see that sgn[θSM] is not in an obvious way related to the band
structure in the F.

In junctions of a ferromagnet and a normal metal, the
spin-dependent potentials in the magnet give rise to a phase
delay of the wave function for the reflected quasiparticle [39].
The quasiparticle injected from the normal metal penetrates
into the ferromagnet even when the process is classically
forbidden. The quasiparticle is reflected after experiencing the

(c)

FIG. 12. Evolution of the Fermi surfaces. The Fermi surfaces
for the F and S are plotted in the upper and lower half plane in
each figure. The Fermi wave numbers of up- and down-spin bands
are denoted by k↑ and k↓, whereas that for the SC is denoted by
k. The exchange energy is set to (a) Jex = 0.5EF , (b) 0.9EF , and
(c) 1.1EF . There are two Fermi surfaces in the F in the light-blue
region, whereas only one Fermi surface exists in the green region.
The outer light-purple region is irrelevant to the IPE.
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spin-dependent potential, which results in an additional phase.
Therefore, the spin-mixing angle is not only determined by the

electronic structure in the ferromagnet but by how the quasi-
particle experiences the magnetic potentials at the interface.
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