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We consider the properties of a specific distribution of mixed quantum states of arbitrary dimension that
can be biased towards a specific mean purity. In particular, we analyze mixtures of Haar-random pure states
with Dirichlet-distributed coefficients. We analytically derive the concentration parameters required to match the
mean purity of the Bures and Hilbert-Schmidt distributions in any dimension. Numerical simulations suggest
that this value recovers the Hilbert—Schmidt distribution exactly, offering an alternative and intuitive physical
interpretation for ensembles of Hilbert—Schmidt-distributed random quantum states. We then demonstrate how
substituting these Dirichlet-weighted Haar mixtures in place of the Bures and Hilbert—Schmidt distributions
results in measurable performance advantages in machine-learning-based quantum state tomography systems and
Bayesian quantum state reconstruction. Finally, we experimentally characterize the distribution of quantum states
generated by both a cloud-accessed IBM quantum computer and an in-house source of polarization-entangled
photons. In each case, our method can more closely match the underlying distribution than either Bures or
Hilbert—Schmidt distributed states for various experimental conditions.
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I. INTRODUCTION

Ensembles of random density matrices have found broad
applicability in quantum information science [1-7]. Of partic-
ular recent interest is their use in quantum state tomography
systems, either as training sets for machine-learning-based
techniques [8—12] or as prior distributions for Bayesian state
reconstruction [13—-19]. Significant effort has been devoted
to developing such ensembles based on various underlying
measures and determining their characteristics [20-24]. How-
ever, as quantum information science becomes increasingly
reliant on classical computational resources for support, the
opportunity has emerged to improve the performance of these
systems through the creation of bespoke ensembles that more
closely resemble the system under investigation.

In the case of pure states, ensembles are typically generated
according to the Fubini—Study measure, induced by the Haar
measure over the unitary group U (D) [20,21,24]. A random
pure state |/g) can be found by first generating a Haar-random
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unitary from U (D) and applying it to any fixed quantum state
[v) to obtain |yg) = U|y). Equivalently, one could use a
column of the Haar-distributed unitary as |yg), since |{) can
be chosen arbitrarily.

Several methods for generating ensembles of mixed states
exist. Two of the most widely used are based on the Hilbert—
Schmidt (HS) and Bures measures. The HS measure has a
simple physical interpretation as that which is induced when
a Haar-random pure state |y) of dimension D? is traced
down to dimension D. More generally, the HS measure is
a special case of a family of induced measures related to
tracing a DM-dimensional Haar-random pure state down to
a D-dimensional mixed state. Although somewhat less intu-
itive physically, another metric commonly used for generating
ensembles of random density matrices is the Bures measure.
The Bures measure is unique as the sole monotone metric that
is both Fisher and Fubini—Study adjusted, thereby aligning
with standard metrics in both the classical and pure-state
limits [22]. In this sense, the Bures distribution represents a
canonical choice for situations of complete randomness, such
as a prior for Bayesian state reconstruction when all possible
input states can occur.

Recently, an additional ensemble of mixed quantum states
based on sums of nonorthogonal Haar-random pure states
has been explored as a prior for Bayesian quantum state
reconstruction techniques, where the coefficients of these en-
sembles are distributed according to the symmetric Dirichlet
distribution [17-19]. Motivated initially by both its computa-
tional simplicity and amenability to tuning effective rank [17],
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this distribution allows for significant speed-ups in Bayesian
quantum state estimation compared to alternative parametriza-
tions [18]. Yet it is not clear from the existing literature
how these states behave outside of limiting special cases,
particularly in relation to other standard distributions, thus
leaving a significant gap in the theoretical justification for this
distribution.

In this paper, we determine various properties of the
ensembles of density matrices generated by mixing Haar-
random pure states with Dirichlet-distributed coefficients. We
find that an immediate advantage of these ensembles com-
pared to standard alternatives is that they can be biased toward
a particular mean purity. We also determine the Dirichlet
concentration parameter required to recover mean purities
equal to those of the standard Bures or HS measures. Nu-
merical simulation of up to ten-dimensional states indicates
that for proper tuning of the concentration parameter, we can
exactly recover the HS distribution, offering an alternative and
intuitive physical interpretation for random quantum states
distributed according to the HS measure. We then apply our
results to generate training data for a machine-learning-based
quantum state tomography system and as a prior distribution
for Bayesian state reconstruction. In each case, we find mea-
surable performance improvements using tailored ensembles
of states as opposed to those based on Bures or HS. Finally,
we perform experiments on both an IBM quantum computer
(IBM Q) and a source of polarization-entangled photons to
determine the typical ensemble of states generated by each
throughout a characteristic experiment. In each case, we find
that we can more closely match the distributions of these
systems using Dirichlet-distributed mixtures than by standard
methods.

II. BIASED DISTRIBUTIONS
A. Dirichlet distribution

The Dirichlet distribution is defined for vectors x =
(x1, ..., xx ) where the elements of x belong to the open K — 1
simplex: x; > 0 and Zlexj = 1. The probability density
function of the Dirichlet distribution is defined by

F(Zf:l aj) ad xo.t,-—l

Dir(x|a) =
1_[5;1 Do) !

; ey

where & = (o, ..., ax) with all @; > 0 defines the concentra-
tion parameters and I'(-) is the standard gamma function.
The concentration parameters determine the properties of
the distribution. To understand this intuitively, in Fig. 1 we
plot 103 Dirichlet-distributed random points on a ternary plot
when K = 3. The four examples shown in Fig. 1 are rep-
resentative exceptional cases. In Fig. 1(a), the distribution
is uniform, with an equal probability of sampling anywhere
within the simplex. The uniform sampling of Fig. 1(a)
contrasts with Figs. 1(b)-1(d), where the concentration pa-
rameters bias the distribution towards the center, away from
the center, or into one corner of the simplex, respectively.
The behavior visualized in Fig. 1 is also reflected in the
mean, variance, and covariance of the Dirichlet distribution.
These statistical properties will be useful in what follows and

(b)

(0.1,0.1,0.1)

FIG. 1. Ternary plots of 10° Dirichlet vectors x = (x;, X3, x3).
Each plot is sampled from a distribution with a different set of
concentration parameters, with (a)—(c) symmetric.

are given by

E[X;] =&,
&l —a
var|. j] o+ 1 ()
Sl — &
cov[X;, X;] = fk(:;f—_i_oifm‘
0

for all j, k € {1, ..., K}, with §;; the Kronecker delta, ap =
Zle aj, and &; = oj/ap. In the equations below, we note
that we do not always use capital letters to distinguish random
variables from the specific values they assume when the result
is more clear otherwise.

Throughout this paper, we will be interested in special
cases of the Dirichlet distribution with all ; equal, known as
the symmetric Dirichlet distribution. Figures 1(a)-1(c) are ex-
amples of the symmetric Dirichlet distribution, which behave
analogously for any value of K. In particular, the flat Dirich-
let distribution occurs when all concentration parameters are
equal to 1 for any K.

B. Constructing mixtures of Dirichlet-weighted pure states

The properties of the Dirichlet distribution described above
make it remarkably well suited for defining the coefficients of
amixture of pure quantum states. To begin with, the restriction
of the components of x to the K — 1 simplex is precisely the
requirement for the coefficients of a convex sum, such as a
density matrix, which is the convex sum of pure quantum
states. Further, we can already see intuitively from Fig. 1 that
the concentration parameters offer a powerful way of altering
the overall properties of the coefficients.

An ensemble of D-dimensional mixed quantum states
made from a convex sum of K Haar-random pure states [v;)
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is given by

K
p=Y_ X)Wl 3)
j=1
where the vector x is a random variable distributed according
to Dir(x|a), having been specialized to the symmetric case
o = {«, ..., «}. To our knowledge, this ensemble of states was
first considered by Mai and Alquier [17], inspired by work on
low-rank matrix estimation via machine learning [25,26]. In
light of this, and for convenience in the following analysis, we
dub this construction the “Mai—Alquier” (MA) distribution.
For our purposes here, we apply the MA label specifically to
the case of symmetric Dirichlet weights, but admit any K €
N; thus, for a given dimension D, the MA distribution requires
specification of two parameters, o and K. Since first being
defined in [17], the MA distribution has been used to analyze
data from several quantum optical experiments via Bayesian
quantum state tomography [18,19,27,28].

To characterize the properties of an ensemble of states
generated according to Eq. (3), we begin by calculating the
mean purity. We have chosen purity as our primary metric of
interest for several reasons. The first is that, like the distri-
butions we are analyzing, it is invariant under local rotations,
and hence we can abstract away any considerations related
to system alignment. Further, the purity of a quantum system
can be estimated without full state tomography [29]. Finally,
it applies to both individual and composite quantum systems
equally well, as opposed to an entanglement metric, which is
only applicable to the latter. The purity of p is given by

Tr(p )—Zx +2Zx]xk 4)

j>k

where Fj i = [(¥;|¥)[*. Since ZZ ik Xj%Fx > 0, we see
that for a given set of coefficients x the minimum purity occurs
when all Fj; =0, meaning that the states in the sum are
orthogonal. This related case, where all states in Eq. (3) are
orthogonal, was studied by Zyczkowski in [30] in the context
of estimating the volume of the separable states in the space
of all mixed quantum states.

Random states of D dimension from the ensemble de-
scribed in [30] can be generated by taking K = D in Eq. (1),
using x as the entries in a diagonal matrix, and rotating this
matrix by a Haar-random unitary from U (D). Many studies
have generated random density matrices in this fashion, but
of particular interest to applications discussed in Sec. IIT A
is [8], which uses this method to generate training data for a
machine-learning-based separability-entanglement classifier.
In the Appendix, we characterize the mean purity of the
distribution described by Zyczkowski as a function of the
Dirichlet concentration coefficients and compare these results
with the Bures, HS, and MA distributions. We find that the
Zyczkowski distribution is, as the MA distribution, capable
of biasing based on mean purity. Also in the Appendix, we
compare how well the Zyczkowski and MA distributions fit
the experimental scenarios of Sec. IV, and find in all three
scenarios the MA distribution fits as well or better than the
Zyczkowski distribution, as measured by the Bhattacharyya
coefficient [31]. As a final point of comparison, in Sec. IIC

we will find that the MA distribution appears to simplify to
the HS distribution given the correct choice of concentration
parameter, which, to our knowledge, is not possible with the
Zyczkowski distribution. For these reasons, we focus our anal-
ysis on the MA distribution in our comparisons with Bures
and HS here.

The expectation value of the purity can be found from

EmalTr(p?)] = ZE +2 ZE[x X ]

j=1 Jj>k

K K
=Y E[]+2) BlxxlElFil,  (5)
j=1 Jj>k

where we have used the linearity of the expectation operator
and the fact that the states |/;) are statistically independent of
the weight coefficients x;. (When needed for clarity in this and
what follows, we apply a subscript s € {MA, B, HS} to expec-
tations and variances in order to distinguish the density matrix
distribution over which the quantity is computed.) For two
Haar-randomly chosen pure states, the fidelity is distributed

according to [23]
P(F)= (D —1)(1 — F)"2. ©6)

From this we can calculate the first moment as
1
1
E[F] = / FP(F)dF = —, @)
0 D

which corresponds with the expression in [23]. The remaining
expectation values can be found from Eq. (2) and the standard
relationships

= E[X?] - E[XV?
E[X;X;] — E[X;]E[X]. (®)

var[X ]
cov[X;, Xi ] =

The resulting expectation value of the purity is then given by

D D+K-—1
Ena[Tr(p%)] = +5((1 ++a1<> ), ©)

2
where we have evaluated % ok = =K - —K.

It is instructive to consider the behav10r of Eq. (9) in
several special cases. In the limit ¢« — oo, the variance of
the symmetric Dirichlet distribution vanishes, and all coeffi-
cients approach x; = 1/K. This limit corresponds to the case
explored in both [32,33], and we find that for large o our
Eq. (9) reduces to the expression found in [33]: E[Tr(p?)] =
(D+ K —1)/DK. (We will return to the results of [32] in
Sec. I C in the context of comparisons with the HS ensemble.)
In the opposite limit where all of the o — 0, the Dirichlet
distribution favors a single entry of value 1 with all others 0
[34], and thus we find a mean purity of unity as all states are
rank-1.

The ability to alter the properties of this ensemble of states
is further exemplified in Fig. 2(a), where we plot the smoothed
probability density function obtained from numerical samples
of the purity for different @ when K = D = 4 (corresponding
to two qubits). In particular, we show ten values of « in
steps of 0.1 from o = 0.1 to o = 1, with these extremal cases
plotted in solid red and the intermediate cases in dashed blue.
Note also that the o values of the solid-red lines correspond
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FIG. 2. Behavior of the probability density function and mean
purity of the MA distribution. (a) Numerically sampled and
smoothed probability density function of MA distributed random
states for K = D = 4. Ten different curves are shown corresponding
toa =0.1to o = 1in steps of 0.1. The solid (red) lines are « = 0.1
and o = 1, with the other values shown as dashed (blue) lines.
(b) Mean purity of MA distributed states for D =4 and K =1 to
K =10 in steps of 1. The solid (red) lines indicate K = 1, 4, 10,
with the other values shown with dashed (blue) lines. The K =4
curve corresponds to the curves in part (a).

to those visualized for the K = 3 distribution in Figs. 1(a)
and 1(c).

In Fig. 2(b) we consider the impact of increasing K for
a fixed D, in other words, making each mixed state in the
ensemble a sum of more pure states. Specifically plotted is
Eq. (9) with D =4 and K ranging from 1 to 10 in single
increments, as a function of «, with the end cases in solid
red. Further, for ease of comparison with Fig. 2(a), we also
make the K = D = 4 case in solid red, where the mean of
each distribution corresponds to the y value along the K = 4
line. As expected, the more terms in the sum of each p, the
more rapidly the states in the ensemble become mixed as «
increases.

Finally, we can also place an upper bound on the variance
of the purity of p using the Bhatia—Davis inequality as [35]

a(l+a)D—1)*K—1)
(D + aDK )2

We see for a fixed D and K that in the limit « — O we find
varya[Tr(p?)] — 0, which is consistent with the intuition that
all but one element in X approaches zero in this limit, meaning
that p becomes a pure state. In the opposite limit of « — o0,
we find for fixed D and K that

varya[Tr(p?)] <

(10)

D -1D)*K-1)

K2 1rn

lim varya[Tr(p?)] <
o—>00

This limit includes but does not equal 0, which is consistent
with the interpretation that when o — oo, the state will not
always approach the completely mixed state. This is obvious if
we consider K < D, as it is impossible for the state to become
full rank, and thus no set of coefficients could result in an
identity matrix. However, we note that a completely mixed
state can be reached consistently for any o and D if we instead
take the limit

Jim vary4[Tr(p?)] = 0. (12)

Physically, this can be interpreted to mean that if p is com-
posed of a sufficiently large sum of Haar-random pure states,
it will always approach the maximally mixed state, regardless
of coefficients.

Finally, we note that although extensions of our results
beyond the symmetric distribution are straightforward, we
have focused on the symmetric distribution in this section
because the equivalence under exchange of index simplified
the presentation. It is possible that asymmetric distributions
may offer additional flexibility in specific cases, and gener-
alizations in this direction represent an interesting area for
further research.

C. Comparisons with standard methods

We begin by reviewing standard methods for generating
random quantum states according to the Bures and HS dis-
tributions. While each can in principle be induced through
the partial trace on higher dimensional pure states [21], it is
simpler in practice to derive each from the complex Ginibre
ensemble [24], which consists of D x D complex matrices
with independently chosen entries from a standard normal
distribution [36]. A random quantum state p from the Bures
ensemble can be generated according to

A +U)GGTA+U

o= = Pt 13)
Tr[(1 +U)GGT (1 +U")]
and from the Hilbert—Schmidt ensemble by
GG’
=—, 14
? = GG (4

where G is a random matrix from the Ginibre ensemble and
U is a Haar-distributed random unitary from U (D) [24].

The average purity of Bures-distributed states was found in
[24] and is given by

5 5D% +1
BslTr(p")] = 55 (15)

Similarly, for the HS distribution, the average purity was
found to be [21]

Eps[Tr(p?)] = 2D (16)
HSURO N = oy
We immediately see that [37]
Es[Tr(p*)] > Eps[Tr(0*)] (17)

for any dimension D > 2.
For ease of comparison, we fix K = D in Eq. (9), which
becomes

D+a2D —1)

EyalTr(0*)lk=p = D+ aD?

(18)
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FIG. 3. Comparison of the numerically sampled probability dis-
tribution of purity for MA, Bures, and HS distributed random
quantum states. Both plots show D =K = {2, ..., 10}, and each
curve was created using 10° samples. (a) The Bures distribution is
plotted with solid (red) lines, and the corresponding MA distribu-
tion with o = ap is plotted with dashed (black) lines. (b) The HS
distribution is plotted with solid (red) line, with the corresponding
MA distribution with @ = ayg plotted with dashed (black) lines. We
see complete overlap between the HS and MA distributions when
o = oys.

We note that K = D is a natural choice as it is the minimum K
capable of producing a full rank state. From these expressions,
we find that Ey4[Tr(p?)]x—p can be made equal to either the
Bures or HS averages by setting o equal to the following:

2D — 1
44D’

The probability density for the purity of the Dirichlet-
distributed mixed states and the Bures and Hilbert—Schmidt
ensembles are plotted in Fig. 3. The Bures and Hilbert—
Schmidt probability densities are in solid (red) with the o =
ap and o = ags MA ensembles plotted with dashed (black)
lines. The probability densities are shown for K = D and
D e {2,...,10}: the D € {2, 10} cases are labeled, with the
others in sequential order. For all dimensions considered, the
tailored MA distribution appears to reproduce the HS ensem-
ble exactly.

For all D > 2, ays > ap, and hence we arrive at the fol-
lowing inequalities:

19)

oOp = adgs = D.

a<ap

a>ays
Hpra

> UB > WHS > Mpa s (20)

where we have used the shorthand p = E[Tr(p?)] and the
MA distributions assume K = D. The findings summarized
in Egs. (19), (20) represent major contributions of our present
investigation, revealing quantitatively how the parameter o of
the MA distribution can be tuned to obtain an equal, higher,
or lower mean purity compared to well-known fiducial density
matrix measures. As we will see below, for many applications

Validation Sets

2 Neural Network
g
(O]
(7p]
(@)}
.E [l [ ]
£ l
©
= Fidelity

Bayesian Mean Estimation

FIG. 4. Two advanced methods for reconstructing quantum
states: neural network (top) and Bayesian mean estimation (bottom).
Both methods require a defined distribution as input: the training set
for the neural network, and prior for BME. In both methods, fidelity
and mean-squared error (MSE) between the target and reconstructed
quantum states are evaluated for common validation sets.

Prior

the system under investigation may produce states that are
nearly pure on average, and hence randomly sampling states
with & < ap can bias the distribution to better reflect the states
of interest. Such tunability in rank is unavailable from Bures
(by definition); for HS, changing to draws of complex-normal
D x K matrices G (with K < D) can be used to reduce the
rank—and increase purity—of p formed using Eq. (14) [15],
but this comes at the cost of eliminating full-rank states from
consideration altogether. In contrast, adjusting « in the MA
ensemble is able to favor pure or mixed states while still
providing support over the full D-dimensional Hilbert space.

Finally, as a side note, the « values found to match the
mean purities of Bures and HS distributions in Eq. (19) are
almost as interesting for what they are not as for what they
are. For example, neither case corresponds to o = 1, despite
the fact that « = 1 gives a uniform distribution of coefficients
over the simplex [Fig. 1(a)] and therefore ostensibly may seem
the default choice for a uniform density matrix distribution.
At the other extreme, nor does the limit « — co give mean
purities commensurate with Bures or HS. Indeed this latter
limit corresponds to the sum of D evenly weighted Haar-
random pure states, which was noted in [32] to differ from
the HS ensemble in general; thus our conclusion ayg # 00 is
consistent with these findings as well.

III. APPLICATIONS

We now explore applications that show measurable perfor-
mance improvements when substituting the MA distribution
for either the Bures or HS distributions. In particular, we con-
sider two different methods for reconstructing quantum states
from measured tomography data as shown in Fig. 4. The first
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method reconstructs states using pretrained neural networks.
In Sec. III A, we study the impact of the chosen training set
on the fidelity of the reconstruction. The second approach we
consider for state reconstruction is Bayesian mean estimation
(BME). In Sec. III B, we examine the significance of using a
carefully selected prior distribution for the rate of convergence
of a BME-based reconstruction method.

So that we can study the efficacy of these techniques in
a range of situations, we have opted to perform state re-
construction as a function of the number of measurements
performed. In particular, we perform reconstruction of (D =
4)-dimensional states using simulated data sets from random
Pauli measurements (one measurement per each random basis
selection) with the total number of measurements ranging
from 1 to 1000. This approach allows us to view the dispar-
ity in performance both in the high-statistical noise regime
where very little data is available and in the more ideal
asymptotic case where the observed frequencies approach
the actual probability distributions. The low-count regime
is of particular interest for tomography of high-dimensional
systems where the size and complexity of the system may
limit the amount of measurements that can be feasibly
performed.

In each section, we perform numerical simulations using
sets of randomly sampled quantum states. For training, we
utilize full 1000-measurement data sets from 10° randomly
chosen states from a given metric: Fubini—Study (pure
states), Bures, HS, or MA of a particular «. Pure states of
dimension D = 4 were sampled by taking the first column of
a Haar-distributed unitary from U (D). We sample the Bures
and HS distributions using Eqgs. (13) and (14). Validation
is then performed using 2000 randomly chosen states from
the metric under consideration (which need not match the
training set), where we consider total measurement numbers
of M e{l,15,25,50,75, 100,200, 400, 600, 800, 1000}.
The Bayesian approach does not utilize a training set (the
analog functionality is realized by the mathematically
specified prior distribution), but performance is tested using
the same validation sets as the neural network cases.

A. Neural network quantum state tomography

Machine learning has found broad applicability in quantum
information science in topic areas as diverse as experi-
ment design [38], state classification [8,39,40], and even
studies on quantum foundations [41]. Recently, several stud-
ies have applied machine-learning methods to quantum
state reconstruction [8—12]. Here we consider how well a
machine-learning-based quantum state tomography system
can reconstruct states of one distribution when trained on
another. Specifically, we will first consider reconstructing pure
two-qubit quantum states by training a network exclusively
on either (i) Haar-random pure states, (ii) randomly generated
states from the Bures distribution, or (iii) randomly generated
states from the HS distribution. Further, we will demonstrate
the versatility of the MA distribution by separately training a
network on randomly generated states from ten different MA
distributions (« from 0.1 to 1 in steps of 0.1), and we will
show how well each of these networks reconstructs pure-,
HS-, and Bures-distributed validation states. We note that a

Pg
2
Input < Prn > ‘m/p—gp""/p—g|
~ e ¥
2 — Hidden Layers | @ Fidelity
(S @
‘I
Y
T = Thn
|
Backpropagation of error Tg

FIG. 5. Architecture of the neural network. p, and p,, represent
the ground truth and predicted density matrices. Similarly, z,, and
T, Tespectively are the ground truth and predicted tau vectors.

previous study has considered the issue of matching training
distributions to validation distributions and dealt with it using
a pipeline of neural networks trained on different distributions
[10]. Instead, in this study we consider the generalizability
of a single neural network for reconstructing states from the
entire Hilbert space.

The architecture of the neural network [42] we consider
is shown in Fig. 5. The network consists of an input layer
that receives the measured tomography values, Tr(,oé), which
connects to a convolutional layer with a kernel size of (2, 2),
stride lengths of 1, ReLU as an activation function, and filters
of size 64. Then we attach a max-pooling unit with a pool-size
of (2, 2), stride of length 2, and the “valid” padding, which is,
again, followed by another convolutional layer with the same
configuration as mentioned before. Next, we implement a
flattening layer, which is then fully connected to a dense layer
with 3000 neurons using the ReLLU activation function. We
then apply a dropout unit with a 50% dropout rate, followed
by another dense layer with 1200 neurons using a ReLU acti-
vation function, followed by a dropout unit with the same rate.
After this, we fully connect another dense layer with a linear
activation as shown by blue circles in Fig. 5. The prediction
made at this layer (blue circles in Fig. 5) is branched into two
pipelines. The first pipeline evaluates the t,,, vectors and com-
pares them with the ground truth values 7,. Note that the target
7, vectors are obtained from the Cholesky decomposition of
the target density matrices (p,). In the two-qubit scenario, for
any random quantum state, p, = & &7, where

T 0 0 0
T4+ iT5 T] 0 0
. . 21
§ Ti0 + iT11 T6 + i1y (%) (N 2D
Ti4+iTis T2 +iT;3 T+iTy T3
which can be rearranged as the vector
£ = 1 =(10, T1, T2, T3, ceeenr, Ti5). (22)

Consequently, the mean-squared loss between the predicted
and the target T vectors is obtained and back-propagated for
the learning, while the second pipeline makes predictions for
the corresponding density matrices from the predicted t,, vec-
tors. At the end, the network compares the predicted density
matrices (p,,) with the ground truth states, and evaluates the
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FIG. 6. Reconstructing pure states from networks separately
trained with either Haar-random pure states, Bures-drawn mixed
states, or HS-drawn mixed states.

fidelity

Fiom 00 = [T,/ Vo0 - (23)

Ultimately, the final network settings are chosen to maximize
the average fidelity of the reconstructed states to the ground
truth.

To illustrate the proof of concept, we reconstruct two-qubit
quantum states using networks separately trained using each
of the ensembles introduced above. Each network is trained
for 75 epochs at a learning rate of 0.008. Once the networks
are trained, we make predictions for a validation set of pure
quantum states that are unknown to the networks. The re-
construction fidelities for the predicted quantum states for
various measurement scenarios are shown in Fig. 6. We find
that the network trained with pure states quickly reconstructs
the validation set with near unit fidelity as shown by blue box
plots. However, the networks separately trained with Bures
(red box) and HS (green box) states struggle to reconstruct the
validation set with reconstruction fidelities leveling off around
0.87 and 0.79, respectively. For this and all subsequent box
plots below, the notch gives the median and each box encloses
[O1, O3], while the whiskers extend from Q; — 1.5(Q3 — Q1)
to O3+ 1.5(Q3 — Q1), where Q; and Q3 are the first and
third quartiles. At first, this is somewhat surprising, as the
pure states are a subset of the mixed states. Hence, a naive
assumption is that a system capable of reconstructing mixed
states with high fidelity would also reconstruct pure states
with similar fidelity. Therefore, we are faced with a problem of
network generalization: the reconstruction fidelity of a neural
network depends heavily on the distribution used to train it.
One possible way to overcome this generalization issue is to
train multiple neural networks for different situations, as we
performed in [9], or even to combine them together into a
pipeline, as was done in [10]. Instead, we attempt to solve
the same problem by biasing the training distribution to better
cover the Hilbert space through proper tuning of the MA dis-
tribution. In Fig. 7, we vary « of the MA distribution from 0.1
to 1.0 in steps of 0.1 and sample training sets for 1000 random
Pauli measurements. For each «, we separately train a net-
work on states randomly sampled from the corresponding MA
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FIG. 7. Reconstruction fidelity versus various concentration pa-
rameters (o). The fidelity at various measurements with the network
trained at « = 0.4 is shown in the inset, which corresponds to Fig. 6.

distribution. Once the network is trained, we reconstruct the
validation sets containing Bures-, HS-, and Haar-distributed
pure states individually. The reconstruction fidelities for Bures
and HS states gradually increase with an increase in « (red
and green box plots), whereas the reconstruction fidelities for
Haar-random pure states slowly decrease with an increase in
« (blue box plots). However, reconstruction fidelities for the
three cases approximately coalesce when training states are
sampled from a distribution with o ~ 0.4. The difference in
reconstruction fidelity seen in Fig. 7at« = 0.1 and @ = 1 for
different validation sets stresses the importance of carefully
selecting training sets for machine-learning-based reconstruc-
tion techniques. For comparison, we also include an inset in
Fig. 7 in the same form as Fig. 6. We see in the inset that
reconstruction of all three validation sets converge, unlike the
situation in Fig. 6.

This investigation highlights that by tuning the degree of
sparsity of the Dirichlet distribution, we are able to hedge our
bets on accurate state estimation. A neural network trained
with a parameter setting of @ = 0.4 attains significantly higher
reconstruction fidelities for validation on pure states compared
to a neural network trained on Bures. Further, as we see in
Fig. 7, this gain in pure state reconstruction fidelity (blue
boxes), comes with a relatively minor reduction in Bures and
HS reconstruction fidelity (red and green boxes, respectively).
Hence, through proper tuning of the training set, we are able
to create a neural network reconstruction system with signifi-
cantly more generality than one trained on Bures, HS, or pure
states alone.

B. Bayesian quantum state tomography

Here, we continue to explore inference for the same data
sets, but now employ Bayesian mean estimation (BME)
[13,43], ultimately finding similar advantages for the custom
states as in the neural network cases. In contrast to alternative
approaches in quantum state tomography, Bayesian inference
defines a complete probability distribution for p, utilizing
Bayes’ theorem to combine prior knowledge and experimental
results within a single consistent framework. Bayesian tomog-
raphy enjoys several appealing features, including automatic
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uncertainty quantification and the return of reliable estimates
under any measurement conditions [13]. Moreover, the mean
of the posterior distribution is optimal in that it minimizes
the mean-squared error with respect to the ground truth for
any number of measurements [44]—hence the emphasis on
“mean” in BME. Although BME remains fairly uncommon in
quantum state tomography, due in large part to the computa-
tional difficulties associated with high-dimensional integrals,
several practical Monte Carlo approaches for quantum BME
[14-18] have appeared following the initial proposal [13],
making it an increasingly attractive prospect in quantum state
estimation.

Formally, in the Bayesian viewpoint we assign a probabil-
ity distribution to w, a vector of all parameters necessary to
define a given density matrix p(w). The length and content of
w can vary depending on the chosen parametrization, but it is
assumed that all allowed values produce a physical p(w), i.e.,
unit trace, Hermitian, and positive semidefinite. According to
Bayes’ rule, the posterior probability density for w following
an experiment can be written as

1
m(W) = ZLp(W)mo(w), (24)

where the likelihood Lp(w) o< P(D|w) (the probability of
observing data set D given parameters w), (W) is the prior
on w, and Z is a normalizing constant (which does not need
to be determined in the following examples). Considering
a collection of M measurements on a repeatedly prepared
input state, with each result described by an operator A,
the likelihood can be written as Lp(w) = ]_[Am/[=1 Tro(W)A,;
in the special case of projective measurements (such as the
Pauli measurements in our example), this becomes

M

Lpw) = [ | WmloW)¥m) , (25)

m=1

with |,,) the eigenstate observed in measurement 1.

Of primary interest for our present purposes, however, is
the prior 7o(w). Just as the training set in the neural network
case specifies the realm of states expected in subsequent ex-
periments, (W) expresses all a priori assumptions about the
system under test in the form of an explicit probability distri-
bution over states p(w). As frequently emphasized in BME,
the exact functional form of any well-chosen prior—e.g., one
which assigns reasonable probability to all states in the Hilbert
space—will have minimal impact on the posterior 7 (w) in the
limit M — oo, since the likelihood Lp(w) then dominates.
However, mo(w) can have a profound impact in the case of
few measurements, such as the conditions explored here.

Given the neural network findings in Fig. 7, we focus
our comparison specifically on priors corresponding to ei-
ther the Bures, HS, or MA (K =4, o = 0.4) distribution.
For each option, we select a parametrization amenable to
numerical sampling. Bures states can be represented by the
vector w = (wy, , Wop2), With each element independently
distributed according to a complex standard normal distri-
bution wy ~ CN(0, 1). We assign D? of the components to
populate the D x D Ginibre matrix G in Eq. (13); the re-
maining D? elements comprise a second, independent Ginibre
matrix, which is then fed into the algorithm of [45] to produce

the Haar-random unitary U also required in Eq. (13). Thus the

Bures prior can be written as mp(w) o ]_[,%221 e~ 2w Since
HS states can be represented using a single Ginibre draw
[Eq. (14)], we can shorten w to a length-D? vector and define
the HS prior as (W) ]_[,(Di1 eIl

For the MA prior, we take w = (u, vy, ..., Vp), where u =
(uy, ..., up) is a real D-dimensional vector of positive scalars,
and v is a D-dimensional complex vector. The prior follows
To(W) ]_[f=1 uﬁ_le’“ke’%vzv", and we define p(w) accord-
ing to

D i

127% Vka
= E ) —. 26
W) k:1<21u1>|vk|2 (20

This equation is equivalent to Eq. (3) expressed in the
computational basis, though for convenience we now uti-
lize unnormalized parameters; our combined gamma and
complex-normal prior ensures that the normalized entities
u/ >, u; and v /|v| are Dirichlet- and Haar-distributed, re-
spectively, as required [17].

For either prior, the Bayesian mean estimate for p is

P = / dw 7 (W)p(w), @7

which we compare to the ground truth p, by fidelity
F(ppme, pg) [Eq. (23)]. Computation of Eq. (27) is effected
utilizing preconditioned Crank-Nicolson (pCN) Markov chain
Monte Carlo (MCMC) techniques [46] recently introduced to
quantum state tomography [18], with the only modification
being an improved, reversible proposal distribution for the
gamma random variables u; based on [47]. A total of 2'°
samples of w are kept in estimating Eq. (27), and a thinning
value of 28 was found sufficient for convergence in fidelity,
thus corresponding to total MCMC chain lengths of 2'8.

The distribution of fidelities F(ppyE, pg) obtained for
several sets of quantum states appear in Fig. 8, plotted as
a function of M: Figure 8(a) corresponds to ground truth
draws (i.e., a validation set) from the Bures distribution, and
Fig. 8(b) to pure states. The fidelities increase rapidly with
measurements M, and all three priors produce nearly identical
distributions for the Bures ground truth states, whereas the
MA prior displays a noticeable edge over both Bures and HS
when the ground truth draws are pure.

To further quantify this comparison, we can take ad-
vantage of theoretical optimality guarantees offered by the
Bayesian mean estimate ppyg, namely, that pgyr minimizes
the expected value of every operational divergence, a type
of reward-scheme—motivated metric quantifying the close-
ness of an estimator to the ground truth p, [13]. While
fidelity does not correspond to such an operational di-
vergence, the squared Frobenius distance D% (A,B)=||A—
B|% = Tr[(A — B)"(A — B)] does. Accordingly, if we define
a mean squared error (MSE) according to (D%(,b, Pe))—
the average squared distance over all validation states for a
particular type of estimator p — p = pgyp is guaranteed to
minimize MSE, for any number of measurements, provided
that the prior 7y(x) used matches the actual distribution from
which p, is drawn.
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FIG. 8. Bayesian inference fidelity for simulated two-qubit ex-
periments. (a) Validation set drawn from Bures metric. (b) Validation
set drawn from Fubini-Study metric. Inference is performed using
either the Bures, HS, or MA prior (with K = D and o = 0.4), for a
specified number of random Pauli measurements.

Calculating MSE for all examples in Fig. 8, as well as
for the outputs of the Bures-, HS-, and MA-trained neural
networks of Sec. IIl A with the same input data, we obtain
the results in Fig. 9. As expected, the BME results based
on a Bures prior attain the smallest error of all inference
procedures when the validation states are themselves Bures-
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FIG. 9. Mean-squared Frobenius error (D% (p, p,)) for each esti-
mation procedure. Simulated data sets from (a) Bures-drawn states
and (b) Haar-random pure states. BME (neural network) results
corresponding to either the Bures or MA priors (training sets) are
plotted.

distributed [Fig. 9(a)]. Yet the MA prior with ¢ = 0.4 results
prove extremely close and are difficult to distinguish on this
scale. However, when the validation set is restricted to pure
states, the MA prior and MA-trained network improve on
their Bures and HS counterparts in realizing more accurate
estimates [Fig. 9(b)]. Importantly, in this latter case, none of
the BME priors matches the actual validation distribution,
so that MSE optimality does not apply to any curve here,
in contrast to the case “BME Bures” in (a). As a surprising
side note, the neural network trained on HS realizes lower
MSE on a Bures validation set than the network actually
trained on Bures directly [Fig. 9(a)]; the cause of this is
unknown, but we suspect it results from the fact that the
neural network was trained to maximize fidelity rather than
minimize the Frobenius error, for which performance is not
guaranteed.

IV. COMPARISONS WITH EXPERIMENTAL SCENARIOS

In the previous section, our use of simulated data sets
allowed us to test the performance of the MA distribution
directly against fiducial density matrix distributions. Yet in
practice, a quantum system may produce states whose distri-
bution deviates significantly from standard measures such as
Fubini-Study, Bures, and HS. Therefore in this section, we
will apply the tunability of the MA distribution toward match-
ing the purity distributions of actual experimental systems,
specifically a cloud-accessed quantum computer (IBM Q) and
a commercial polarization-entangled photon source.

Our primary metric of comparison will be the Bhat-
tacharyya coefficient [31]. We will calculate the Bhat-
tacharyya coefficient from numerically sampled histograms
of 100 bins normalized such that the total sums to unity.
The number of sampled states used to generate these
histograms will vary by scenario, and is explicitly men-
tioned in each section. To denote the vector of histogram
bin heights, we adopt the notation of hy;, where s €
{MA, B,HS,IBM1,IBM?2, EPS}; the first three are for the
MA, Bures, and HS distributions, respectively, and the
IBM1, IBM2, and EPS subscripts refer to the measured
data in Figs. 11, 12, and 14, respectively. We calculate the
Bhattacharyya coefficient from

100

Bhy, b)) =Y /(D (D). (28)
=1

The Bhattacharyya coefficient between identical histograms
is 1, and two completely nonoverlapping (orthogonal) his-
tograms has a coefficient of 0. While the Bhattacharyya
coefficient in this discrete form can depend on how many
bins we separate the data into, we find that 100 is sufficient
to capture the essential features we want to exemplify.

A. IBM Quantum Computer

To illustrate the proof of concept, we implement two dif-
ferent scenarios on an IBM quantum computer that result in
distributions of states with significantly different mean purity.
First, we assume a simple approach and initialize a four-qubit
quantum state with all qubits in the |0) state and perform
tomography without intermediary gates. The intention of this
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FIG. 10. IBM Q tomography setup. An arbitrary four-qubit quan-
tum circuit generates random quantum states on a seven-qubit
computer (ibmq_jakarta), followed by Pauli measurements. MLE
is used to reconstruct the quantum states.

scenario is to obtain a distribution of states with very high
purity in order to mimic the operation of an “ideal” system.

In the second scenario, we operate on the four initial qubits
with a quantum circuit consisting of nine U gates and three
CNOT gates, as shown in Fig. 10. The U gates can be repre-
sented in matrix form as

cos ()

% sin (%)

U®. ¢, —e sin (3) 29

©.4. 1) 645 cos (2) | (29)
To generate a distribution of random states, we randomly se-
lect the values of (6, ¢, A) for the U gates such that (6, ¢, A) €
22N (0, 1), where N'(0, 1) is the standard normal distribu-
tion.

We perform quantum state tomography using 81 quantum
circuits that project on all combinations of the four local Pauli
bases {X,Y,Z}, ® {X,Y,Z}, ®{X,Y,Z}s ®{X,Y,Z}4. All
measurements were executed over the cloud with a seven
qubit NISQ-era quantum computer, ibmg_jakarta [48]. To
reduce statistical noise in the IBM Q measurement results, we
execute circuits for 5000 shots. Further, we implement a mea-
surement correction fitter for a full calibration with the method
“least_squares,” and perform maximum likelihood estimation
(MLE) with the method “Istsq” from the Qiskit Ignis API to
reconstruct quantum states. The “Istsq” method first computes
the least-squares estimate of the density matrix, then applies
the technique of [49] to impose positive semidefiniteness.

Overall we perform complete state tomography 240 times
(120 with no intermediate circuits, and 120 random circuits),
5000 shots each. We then use these measurement results to
reconstruct the corresponding density matrices and evaluate
their purity. Histograms of the measured purity distribu-
tions found from the reconstructed states with no gates and
with random instances of the circuit shown in Fig. 10 are
shown, respectively, in Figs. 11 and 12. The mean purity of
IBM Q measured data in Figs. 11 and 12 is 0.98 and 0.75,
respectively. For comparison, we also show the (D = 16)-
dimensional Bures and HS distributions, and the D = K = 16
MA distribution with mean purity tuned to match the data sets
obtained from IBM Q. Each simulated histogram was created
from 10° random samples.

To quantitatively compare the distributions in Figs. 11
and 12, we also determine the overlap of the histograms
in terms of the Bhattacharyya coefficients. In particular,
we find

Bhismi, hus) = B(higu, hg) =0,

Probability Density
o
~

...............

Probability Density
o
(o]

0.4

0.2

0.0~ : —— — —

"0.80 0.85 0.90 0.95 1.00
Purity

FIG. 11. Histograms comparing the Bures, HS, and MA distri-
butions to the measured distribution of purity from the IBM Q for
four-qubit quantum circuits initialized at |0) with no gates before
tomography. The MA distribution has D = K = 16 and « is tuned so
that the mean of the distribution matches that of the measured IBM
Q distribution.
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FIG. 12. Histograms comparing the Bures, HS, and MA distribu-
tions to the measured distribution of purity from the IBM Q for states
resulting from random instances of the circuit shown in Fig. 10. The
MA distribution has D = K = 16 and « is tuned so that the mean of
the distribution matches that of the measured IBM Q distribution.
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FIG. 13. (a) Schematic of the setup used to characterize the dis-
tribution of quantum states generated by a polarization-entangled
photon source (EPS). DSF: dispersion-shifted fiber; DS: detector
station; PA: polarization analyzer consisting of several waveplates
(red) and a polarizer (blue); SPD: single-photon detector. (b) Mean
density matrix resulting from performing quantum state tomography
on the entangled state output by the EPS 1000 consecutive times.

Bhsmz, hus) = B(higuo, hg) =0,
B(hsgpi, hya) = 0.92,

B(higmo, hya) = 0.55. (30)

In other words, after generating 10° random states from both
the Bures and HS distributions, neither resulted in a single
state in the same bin as any of the measured states in either
Figs. 11 or 12. We also see a very high overlap between the
MA distribution and the measured data in Fig. 11, where the
average state has very high purity.

B. Polarization-entangled photons

A schematic diagram of the experimental setup used to
characterize the distribution of quantum states generated by
a polarization-entangled photon source is shown in Fig. 13(a).
The setup consists of an entangled-photon source (EPS) [50]
connected to two separate detector stations (DS) with telecom
optical fibers. The EPS creates signal and idler photons via
four-wave mixing [51] by pumping a dispersion-shifted fiber
(DSF) with a 50 MHz pulsed fiber laser that operates at
1552.52 nm. The DSF is stored in a laboratory-grade freezer at
—86°C in order to reduce the generation of Raman-scattered
noise photons. The average number of generated photon pairs
per pulse can be tuned in the 0.001 — 0.1 range but is set at
~0.1 here. By arranging the DSF in a Sagnac loop with a po-
larizing beam splitter (PBS), the signal and idler photons are
entangled in polarization [52]. The signal and idler photons
are then spectrally demultiplexed into 100 GHz-spaced ITU
outputs, resulting in photons with a temporal duration of about
15 ps. For this experiment, we use channels 28 (1554.94 nm)
and 34 (1550.12 nm).

The detector stations include polarization analyzers (PA)
and gated single-photon detectors (SPDs) with a detection
efficiency of n ~ 20% and a dark count probability of ~4 x
1073 per gate. Automated FPGA-based software controls the
detectors and analyzers in order to perform full polarization
state tomography from measurements in 36 different bases.
Each of the 36 measurements is performed over 10 million
detector gates, resulting in up to several thousand detected
coincidences per measurement. The density matrix is then
reconstructed using MLE [53]. The time required to perform
all 36 measurements and MLE is about 12 s. Tomography is
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FIG. 14. Histograms comparing the Bures, HS, and MA dis-
tributions to the measured distribution of purity from a two-qubit
entangled photon source (EPS). The MA distributionhas D = K = 4
and « is tuned so that the mean of the distribution matches that of the
measured EPS distribution.

performed 1000 consecutive times, resulting in a total exper-
iment duration of ~4 hr. The mean density matrix is shown
in Fig. 13(b). The purity is calculated for all 1000 density
matrices. Analogously to Figs. 11 and 12, we plot in Fig. 14
the histograms of the measured data, the D = 4 HS and Bures
distributions, and the D = K = 4 MA distribution with mean
purity tuned to match the EPS distribution.

To make a quantitative comparison between the various
distributions in Fig. 14, we have also calculated the Bhat-
tacharyya coefficients to be

B(hgps, hps) = 0.006,
B(hgps, hya) = 0.3.

B(hgps, hg) = 0.1,
(31

These results indicate that the MA distribution is closer to
the measured EPS distribution than either the Bures or HS
distances in terms of the Bhattacharyya coefficients.

V. DISCUSSION

From a purely theoretical standpoint, the idea of perform-
ing inference with a prior (or training set) that does not
correspond to the actual distribution of validation states seems
unwarranted; after all, why should one intentionally select a
prior that does not match the quantum states under investi-
gation? And as we explored in Sec. IV, the flexibility of the
MA distribution permits construction of priors or training sets
that are well-tailored to an experimental system, so that such
a situation of mismatched priors can be at least partially miti-
gated. Yet in some cases, such detailed prior specification may
be undesirable. For example, if one has strong beliefs that a
quantum system produces pure maximally entangled states—
after all, that was its design—it would be unwise to impose
these beliefs on the prior in the context of state tomography:
The goal is to show that this belief is true from subsequent
measurements, not assume it a priori. Accordingly, selection
of an appropriate prior or training set might be motivated less
by experimenter beliefs and more by the goal of providing
a generic benchmark designed to let experiments guide the
posterior distribution to the ground truth.
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In this practical sense, our examples highlight the value of
exploring nontraditional priors and training sets for quantum
state tomography. Even if lacking some of the theoretical
properties of archetypal quantum state measures (like Bu-
res), custom distributions like the MA distribution can attain
performance comparable to these measures over the general
Hilbert space—thus ensuring good fiducial uniformity as a
test distribution—while enabling improvements for specific
subspaces (e.g., pure states). Such performance hedging for
desired outcomes bears resemblance to the recent estimation
approach of classical shadows [54], which, when compared
to BME, accepts much higher estimation error on average
in exchange for remarkably low error for specific cases of
interest [55].

Interestingly, we have demonstrated measurable perfor-
mance improvements by matching the MA distribution to only
a single feature of the underlying distribution, the mean purity.
A topic of future research would be to determine how much
further these results can be improved by matching the under-
lying distribution in more sophisticated ways, such as aiming
to maximize overlap rather than merely matching means.

The apparent recovery of the HS distribution by a properly
tuned MA distribution offers, to our knowledge, a new and rel-
atively simple physical interpretation of the HS distribution.
Traditionally, the HS distribution is motivated as naturally
induced by tracing out Haar-random states of a higher dimen-
sion. Our results indicate that alternatively, one can think of
a D-dimensional HS distribution resulting from a sum of D
Haar-random pure states with appropriate Dirichlet weights.
It would be interesting to determine if the distributions found
via other induced measures can also be interpreted similarly
by finding an appropriate K and Dirichlet weights.
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APPENDIX

We can create random density matrices according to [30]
by taking x of length D, creating a diagonal matrix from it,
and rotating it with a Haar-random unitary from U (D). The
purity of such a state is given by

D
Tr(p*) = ) x}. (A1)
j=1
and the expectation value of the purity by
D 148
Ez[Tr(p>)] = Y E[x}] = ——-, A2
2[Tr(p?)] ; [7] 15 D5 (A2)

where we have used § as the concentration parameter of the
Dirichlet distribution so as not to be confused with the MA
expressions (where o was used).

The B values, which tune the mean purity of this
distribution to match that of the Bures, HS, and MA distri-
butions [analogous to Eq. (19) for the MA distribution], are
given by

aD—1) (D —1)2D —1)
Pmn=sop 7= 0+

D—1
Bus = Drl (A3)

In Fig. 15, we overlay the numerically sampled and smoothed
probability density functions of the Bures, HS, MA, and

(a)

Probability Density

(b)

Probability Density
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Purity

FIG. 15. Comparison of the Bures, HS, MA, and Zyczkowski
distributions all with the same mean purity for D =K =6.
Smoothed probability density functions are created from sampling
each distribution 10° times. An analogous plot over several D values
is shown in Fig. 3. (a) The solid (red), dashed (black), and dotted
(blue) lines correspond to the Bures, MA, and Zyczkowski distri-
butions, respectively. (b) The solid (red), dashed (black), and dotted
(blue) lines correspond to the HS, MA, and Zyczkowski distribu-
tions, respectively.
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Zyczkowski distributions for D = 6 (K = D for MA). These
plots are generated using 10° random samples from each
distribution, and the HS (solid red), Bures (solid red), and
MA (dashed black) lines are equivalent to the D = 6 curves
in Fig. 3. In Fig. 15(a), we compare the distribution of
Zyczkowski (blue dotted) and MA (dashed black) distribu-
tions against the Bures distribution (solid red) when all have
the same mean purity. Similarly, in Fig. 15(b) we compare
the distribution of Zyczkowski (blue dotted) and MA (dashed
black) distributions against the HS distribution (solid red)
when all have the same mean purity. We see that, unlike
the MA distribution, the distribution of Zyczkowski does not
reproduce either the HS or Bures distributions. Further, the
mode of Zyczkowski’s distribution appears to be more mixed
than any of the other three distributions for the same mean
purity for the parameters plotted in Fig. 15.

Finally, as was performed in Sec. IV, we fit Zyczkowski’s
distribution by way of the mean purity to the data ob-
tained in our experimental scenarios and compare with the

MA distribution. Adopting the same notation as in Sec. IV
we write the vector of histogram bins as hy, where s €
{MA,B,HS,Z,IBM1,IBM?2, EPS} labels the distribution,
with the new addition of Z for Zyczkowski. Calculating the
Bhattacharyya coefficients we find

Bhgmi, hya)  Bhypuo, hya)
B(hgumi, hz) B(hpm2, hz)
B(hgps, hya)
B(hgps, hz)

1

1.2 (A4)

In these expressions a value above one means that the MA
distribution has a higher overlap with the experimental data,
and a value of one means the two distributions are similar.
Hence, in all three cases we find that the MA distribution fits
as well or slightly better than the distribution of Zyczkowski
as measured by the Bhattacharyya coefficient when tuning to
match mean purity.

[1] A. Montanaro, On the distinguishability of random quantum
states, Commun. Math. Phys. 273, 619 (2007).

[2] A. Hamma, S. Santra, and P. Zanardi, Quantum Entangle-
ment in Random Physical States, Phys. Rev. Lett. 109, 040502
(2012).

[3] F. M. Miatto, K. Piché, T. Brougham, and R. W. Boyd, Re-
covering full coherence in a qubit by measuring half of its
environment, Phys. Rev. A 92, 062331 (2015).

[4] D. Girolami and G. Adesso, Quantum discord for general two-
qubit states: Analytical progress, Phys. Rev. A 83, 052108
(2011).

[5] B. T. Kirby, S. Santra, V. S. Malinovsky, and M. Brodsky,
Entanglement swapping of two arbitrarily degraded entangled
states, Phys. Rev. A 94, 012336 (2016).

[6] X.-M. Lu, J. Ma, Z. Xi, and X. Wang, Optimal measurements
to access classical correlations of two-qubit states, Phys. Rev. A
83, 012327 (2011).

[7] M. Roncaglia, A. Montorsi, and M. Genovese, Bipartite entan-
glement of quantum states in a pair basis, Phys. Rev. A 90,
062303 (2014).

[8] S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen,
D. Zhou, and B. Zeng, Separability-entanglement classifier via
machine learning, Phys. Rev. A 98, 012315 (2018).

[9] S. Lohani, B. T. Kirby, M. Brodsky, O. Danaci, and R. T.
Glasser, Machine learning assisted quantum state estimation,
Mach. Learn.: Sci. Technol. 1, 035007 (2020).

[10] O. Danaci, S. Lohani, B. Kirby, and R. T. Glasser, Machine
learning pipeline for quantum state estimation with incomplete
measurements, Mach. Learn.: Sci. Technol. 2, 035014 (2021).

[11] S. Lohani, T. A. Searles, B. T. Kirby, and R. T. Glasser, On
the experimental feasibility of quantum state reconstruction
via machine learning, IEEE Trans. Quantum Eng. 2, 2103410
(2021).

[12] S. Ahmed, C. S. Muiioz, F. Nori, and A. F. Kockum, Classifi-
cation and reconstruction of optical quantum states with deep
neural networks, Phys. Rev. Research 3, 033278 (2021).

[13] R. Blume-Kohout, Optimal, reliable estimation of quantum
states, New J. Phys. 12, 043034 (2010).

[14] Y.-L. Seah, J. Shang, H. K. Ng, D. J. Nott, and B.-G. Englert,
Monte Carlo sampling from the quantum state space. II, New J.
Phys. 17, 043018 (2015).

[15] C. Granade, J. Combes, and D. G. Cory, Practical Bayesian
tomography, New J. Phys. 18, 033024 (2016).

[16] B. P. Williams and P. Lougovski, Quantum state estimation
when qubits are lost: a no-data-left-behind approach, New J.
Phys. 19, 043003 (2017).

[17] T. T. Mai and P. Alquier, Pseudo-Bayesian quantum tomog-
raphy with rank-adaptation, J. Stat. Plan. Inference 184, 62
(2017).

[18] J. M. Lukens, K. J. H. Law, A. Jasra, and P. Lougovski, A
practical and efficient approach for Bayesian quantum state
estimation, New J. Phys. 22, 063038 (2020).

[19] H.-H. Lu, E. M. Simmerman, P. Lougovski, A. M. Weiner, and
J. M. Lukens, Fully Arbitrary Control of Frequency-Bin Qubits,
Phys. Rev. Lett. 125, 120503 (2020).

[20] W. K. Wootters, Random quantum states, Found. Phys. 20, 1365
(1990).

[21] K. Zyczkowski and H.-J. Sommers, Induced measures in the
space of mixed quantum states, J. Phys. A: Math. Gen. 34, 7111
(2001).

[22] H.-J. Sommers and K. Zyczkowski, Bures volume of the set
of mixed quantum states, J. Phys. A: Math. Gen. 36, 10083
(2003).

[23] K. Zyczkowski and H.-J. Sommers, Average fidelity be-
tween random quantum states, Phys. Rev. A 71, 032313
(2005).

[24] V. Al Osipov, H.-J. Sommers, and K. Zyczkowski, Random
Bures mixed states and the distribution of their purity, J. Phys.
A: Math. Theor. 43, 055302 (2010).

[25] T. T. Mai and P. Alquier, A Bayesian approach for noisy matrix
completion: Optimal rate under general sampling distribution,
Electron. J. Stat. 9, 823 (2015).

043145-13


https://doi.org/10.1007/s00220-007-0221-7
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1103/PhysRevA.92.062331
https://doi.org/10.1103/PhysRevA.83.052108
https://doi.org/10.1103/PhysRevA.94.012336
https://doi.org/10.1103/PhysRevA.83.012327
https://doi.org/10.1103/PhysRevA.90.062303
https://doi.org/10.1103/PhysRevA.98.012315
https://doi.org/10.1088/2632-2153/ab9a21
https://doi.org/10.1088/2632-2153/abe5f5
https://doi.org/10.1109/TQE.2021.3106958
https://doi.org/10.1103/PhysRevResearch.3.033278
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1088/1367-2630/17/4/043018
https://doi.org/10.1088/1367-2630/18/3/033024
https://doi.org/10.1088/1367-2630/aa65de
https://doi.org/10.1016/j.jspi.2016.11.003
https://doi.org/10.1088/1367-2630/ab8efa
https://doi.org/10.1103/PhysRevLett.125.120503
https://doi.org/10.1007/BF01883491
https://doi.org/10.1088/0305-4470/34/35/335
https://doi.org/10.1088/0305-4470/36/39/308
https://doi.org/10.1103/PhysRevA.71.032313
https://doi.org/10.1088/1751-8113/43/5/055302
https://doi.org/10.1214/15-EJS1020

SANJAYA LOHANI et al.

PHYSICAL REVIEW RESEARCH 3, 043145 (2021)

[26] V. Cottet and P. Alquier, 1-bit matrix completion: PAC-
Bayesian analysis of a variational approximation, Mach. Learn.
107, 579 (2018).

[27] N. B. Lingaraju, H.-H. Lu, S. Seshadri, D. E. Leaird, A. M.
Weiner, and J. M. Lukens, Adaptive bandwidth management for
entanglement distribution in quantum networks, Optica 8, 329
(2021).

[28] M. Alshowkan, B. P. Williams, P. G. Evans, N. S. Rao,
E. M. Simmerman, H.-H. Lu, N. B. Lingaraju, A. M.
Weiner, C. E. Marvinney, Y.-Y. Pai, B. J. Lawrie, N. A.
Peters, and J. M. Lukens, A reconfigurable quantum local
area network over deployed fiber, PRX Quantum 2, 040304
(2021).

[29] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.
Horodecki, and L. C. Kwek, Direct Estimations of Linear and
Nonlinear Functionals of a Quantum State, Phys. Rev. Lett. 88,
217901 (2002).

[30] K. Zyczkowski, Volume of the set of separable states. II, Phys.
Rev. A 60, 3496 (1999).

[31] C. A. Fuchs and J. Van De Graaf, Cryptographic distinguisha-
bility measures for quantum-mechanical states, IEEE Trans. Inf.
Theory 45, 1216 (1999).

[32] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States:
An Introduction to Quantum Entanglement (Cambridge Univer-
sity Press, Cambridge, 2017).

[33] J. L. Alonso, J. Clemente-Gallardo, J. C. Cuchi, P. Echenique,
and F. Falceto, Ehrenfest dynamics is purity non-preserving:
A necessary ingredient for decoherence, J. Chem. Phys. 137,
054106 (2012).

[34] M. Telgarsky, Dirichlet draws are sparse with high probability,
arXiv:1301.4917.

[35] R. Bhatia and C. Davis, A better bound on the variance, Am.
Math Mon. 107, 353 (2000).

[36] J. Ginibre, Statistical ensembles of complex, quaternion, and
real matrices, J. Math. Phys. 6, 440 (1965).

[37] H.-J. Sommers and K. Zyczkowski, Statistical properties of
random density matrices, J. Phys. A: Math. Gen. 37, 8457
(2004).

[38] A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko,
M. Tiersch, A. Zeilinger, and H. J. Briegel, Active
learning  machine create new  quantum
experiments, Proc. Natl. Acad. Sci. USA 115, 1221
(2018).

[39] G. Sentis, M. Gutd, and G. Adesso, Quantum learning of coher-
ent states, EPJ Quantum Technol. 2, 1 (2015).

learns to

[40] C. Harney, S. Pirandola, A. Ferraro, and M. Paternostro, Entan-
glement classification via neural network quantum states, New
J. Phys. 22, 045001 (2020).

[41] K. Bharti, T. Haug, V. Vedral, and L.-C. Kwek, Machine learn-
ing meets quantum foundations: A brief survey, AVS Quantum
Sci. 2, 034101 (2020).

[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin et al., TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015,
Software available from tensorflow.org.

[43] D. J. C. MacKay, Information Theory, Inference, and Learning
Algorithms (Cambridge University Press, Cambridge, 2003).

[44] C. P. Robert and G. Casella, Monte Carlo Statistical Methods
(Springer, New York, 1999).

[45] F. Mezzadri, How to generate random matrices from the classi-
cal compact groups, Not. Am. Math. Soc. 54, 592 (2007).

[46] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, MCMC
methods for functions: Modifying old algorithms to make them
faster, Stat. Sci. 28, 424 (2013).

[47] P. A. Lewis, E. McKenzie, and D. K. Hugus, Gamma processes,
Technical Report, Naval Postgraduate School, 1986.

[48] M. S. Anis, H. Abraham, A. Offei, R. Agarwal, G. Agliardi, M.
Aharoni, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander,
M. Amy et al., Qiskit: An open-source framework for quantum
computing, 2021, giskit.org.

[49] J. A. Smolin, J. M. Gambetta, and G. Smith, Efficient Method
for Computing the Maximum-Likelihood Quantum State from
Measurements with Additive Gaussian Noise, Phys. Rev. Lett.
108, 070502 (2012).

[50] NuCrypt, “Quantum optical instrumentation,” available at
http://nucrypt.net/quantum-optical-instrumentation.html

[51] M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, All-
fiber photon-pair source for quantum communications, IEEE
Photonics Technol. Lett. 14, 983 (2002).

[52] S. X. Wang and G. S. Kanter, Robust multiwavelength all-fiber
source of polarization-entangled photons with built-in analyzer
alignment signal, IEEE J. Sel. Top. Quantum Electron. 15, 1733
(2009).

[53] J. B. Altepeter, E. R. Jeftrey, and P. G. Kwiat, Photonic state
tomography, Adv. At. Mol. Opt. Phys. 52, 105 (2005).

[54] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. 16, 1050 (2020).

[55] J. M. Lukens, K. J. H. Law, and R. S. Bennink, A Bayesian
analysis of classical shadows, npj Quantum Info. 7, 113 (2021).

043145-14


https://doi.org/10.1007/s10994-017-5667-z
https://doi.org/10.1364/OPTICA.413657
https://doi.org/10.1103/PRXQuantum.2.040304
https://doi.org/10.1103/PhysRevLett.88.217901
https://doi.org/10.1103/PhysRevA.60.3496
https://doi.org/10.1109/18.761271
https://doi.org/10.1063/1.4737861
http://arxiv.org/abs/arXiv:1301.4917
https://doi.org/10.1080/00029890.2000.12005203
https://doi.org/10.1063/1.1704292
https://doi.org/10.1088/0305-4470/37/35/004
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1140/epjqt15
https://doi.org/10.1088/1367-2630/ab783d
https://doi.org/10.1116/5.0007529
https://www.tensorflow.org/
https://doi.org/10.1214/13-STS421
http://qiskit.org
https://doi.org/10.1103/PhysRevLett.108.070502
http://nucrypt.net/quantum-optical-instrumentation.html
https://doi.org/10.1109/LPT.2002.1012406
https://doi.org/10.1109/JSTQE.2009.2022278
https://doi.org/10.1016/S1049-250X(05)52003-2
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1038/s41534-021-00447-6

