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Uncovering hidden dependency in weighted networks via information entropy
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Interactions between elements, which are usually represented by networks, have to delineate potentially
unequal relationships in terms of their relative importance or direction. The intrinsic unequal relationships of
such kind, however, are opaque or hidden in numerous real systems. For instance, when a node in a network
with limited interaction capacity spends its capacity to its neighboring nodes, the allocation of the total amount
of interactions to them can be vastly diverse. Even if such potentially heterogeneous interactions epitomized
by weighted networks are observable, as a result of the aforementioned egocentric allocation of interactions,
the relative importance or dependency between two interacting nodes can only be implicitly accessible. In this
work, we precisely pinpoint such relative dependency by proposing the framework to discover hidden dependent
relations extracted from weighted networks. For a given weighted network, we provide a systematic criterion to
select the most essential interactions for individual nodes based on the concept of information entropy. The
criterion is symbolized by assigning the effective number of neighbors or the effective out-degree to each
node, and the resultant directed subnetwork decodes the hidden dependent relations by leaving only the most
essential directed interactions. We apply our methodology to two time-stamped empirical network data, namely,
the international trade relations between nations in the world trade web (WTW) and the network of people in the
historical record of Korea, Annals of the Joseon Dynasty (AJD). Based on the data analysis, we discover that the
properties of mutual dependency encoded in the two systems are vastly different. The nations in the WTW show
much more asymmetric dependent relations than its random counterpart, which implies the global economic
inequality in international trades. In contrast, the relationships of people in the AJD are much more mutual than
the nations in the WTW. The difference comes from nontrivial correlations (or lack thereof) in the networks, for
which we provide the relevant network properties and representative example nations in the case of the WTW.
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I. INTRODUCTION

We observe multitudinous emergent phenomena in our
surroundings beyond our expectation: herd behaviors such as
bird flocks [1], fish schools [2], and stock market bubbles
[3], collective intelligence [4,5], fads [6], and so on. The
unexpected and intriguing phenomena stem from collective
behaviors of interacting individuals in systems of interest,
which is the driving motivation of statistical physics in the
first place. In order to elucidate the origins of the phenomena,
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researchers naturally have paid their attention to interaction
structures among the individuals. The interaction among the
individuals describes their interrelationships.

One of the most popular and useful ways to understand
the relationships is to employ the network representation [7].
Each individual or constituent of a system of interest is called
a node or vertex, and pairs of the nodes can be connected via
so-called links or edges representing the interactions them-
selves. The simplest form of network is, of course, composed
of binary edges, i.e., each edge exists or not. Despite its sim-
plicity, even such a (literally) simple network representation
has taught us a lot about interacting systems and their emer-
gent phenomena, symbolized by a number of crucial concepts
such as the degree (the number of neighbors of a node) distri-
bution. Beyond the degree from the act of simply counting the
neighbors, researchers have discovered and developed more
delicate metrics encoding hidden correlations inside networks
for better understanding of interacting systems, such as the
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assortativity (basically the two-point correlation for the degree
between interacting nodes) [8,9], the clustering coefficient
(the three-point correlation for the connectivity among node
triplets) [10,11], and even higher-order structures [12,13]. Un-
derstanding the connectivity structure is important because the
structure itself can govern the resultant emergent pattern for a
given dynamical rule [14,15].

The aforementioned simple representation as the binary
network has led us to a great deal of remarkable discoveries
so far, but we have to note that simple networks utilize limited
information. What we call an edge or a link in a network
corresponds to a rather abstract concept of interaction, which
can be vastly diverse. There are two representative ways to
move on to overcome the limitation: directed networks by
taking the possible asymmetric relation (A → B, but B �→ A)
into account and weighted networks by taking the different
quantity of interactions (A ↔ B versus A ⇔ B) into account
[7]. Imagine a mobile phone call network describing the level
of directionality and intimacy between people. The call data
contain information such as the information about identities
of callers and receivers, the total number or duration of calls
within a given time window, etc. Using the information, we
can construct a directed and/or weighted network that details
the social relationships much more than its binary counter-
part (calling at all or not), where inevitable information loss
occurs.

In particular, the directed network representation enables
us to find the asymmetric relationship between two nodes,
embodied in unidirectional edges. In the above example, we
can detect the explicit asymmetry between a node and her
friend from the call log, if we obtain the log, of course.
However, in the real world, there are many situations where
such explicitly revealed directional relations are just out of
reach for various reasons. Then, is it possible to uncover the
asymmetry or dependency between nodes hidden in networks
of interest? We can in fact generalize this process of extracting
the hidden asymmetry even further, as the asymmetry is one of
the plethora of intrinsic structural correlations in networks. In
other words, it is deeply related to the problem of identifying
the most essential interactions that govern the whole system
that can happen to be asymmetric.

In spreading dynamics, for instance, it plays a crucial
role as the actual substrate network. Network researchers
usually assume the directed network structure to model the
potential asymmetry in spreading dynamics, but the directed
structure is not always transparent. For instance, in an au-
thoritarian society, opinions of more authoritative people are
highly likely to spread to less authoritative people compared
to the opposite case, but the authority is usually implicitly
assumed. In that case, a part of edges (directed subedges)
can participate in the actual spreading dynamics of opinion
as modeled in Ref. [16]. This type of hidden pathway in
spreading processes on networks is extremely important in
epidemic spreading, as demonstrated in the recent coronavirus
disease 2019 (COVID-19) outbreak situation [17,18]. In par-
ticular, the contact tracing [19] is reported to be one of the
most effective ways to prevent the spreading, so identifying
plausible directionality on top of the (undirected) contact net-
work will add much richer information to fight this global
pandemic.

In this paper, we propose a systematic framework to extract
the most meaningful relationships focused on the asymmetry
between connected nodes, i.e., hidden dependency submerged
in weighted networks. It consists of the process of extracting
the most important neighbors for each node via the concept of
the information entropy. This egocentric viewpoint for each
node naturally defines the underlying directionality. We take
two real-world weighted networks for our analysis, one from
economy and the other from history. The network of inter-
national trade between nations and the network of people in
an official historical record of Korea show vastly different
properties in our framework of extracting the hidden direc-
tionality. The effect of concealed asymmetry is much stronger
in the former than the latter, which we detail later in regard to
their other intrinsic network properties. In particular, through
the hidden directionality of the international trade relations,
we not only just find a hidden asymmetry, but also provide
comprehensive trajectories of the changing reciprocal relation
between individual nations over time. We cross-check all of
the results and conclusions with the null-model networks gen-
erated from randomized weights.

The rest of the paper is organized as follows. We present
the procedure of extracting the asymmetric relation and a
subnetwork derived from it via the information entropy in
Sec. II. To evaluate the dependency of the extracted subnet-
work in diverse points of view, we suggest various measures,
and show the relevant results of two empirical data in Sec. III.
We finalize the paper with further discussion is in Sec. IV.

II. EXTRACTION OF DIRECTIONALITY BASED ON THE
INFORMATION ENTROPY

We start to present the structural aspect of networks in
which we are mainly interested. We exemplify two represen-
tatively different cases in Fig. 1. The node i in both panels
has the same degree, 4, and the same strength (the sum of the
weights on the edges connected to the node), 32, but there is
a crucial difference between node i in Fig. 1(a) and that in
Fig. 1(b), which is obviously the weight distributions around
node i. In other words, it refers to the relative proportion
of the same strength, 32, allocated to the edges emanating
from node i, which is essentially the cornerstone of our whole
investigation. Our main idea is that we can utilize the local or
egocentric distribution of the weights to set the quantitative
criterion to pinpoint the most essential neighbors of each
node, e.g., j and m in Fig. 1(a) and all of the neighbors j,
l , m, and n in Fig. 1(b), which will be shown later to be indeed
the case within our framework.

To enlighten the situation a bit more deeply, take a look
at the connected node pairs (i, l ) and (i, m) in Fig. 1(a). In
this example, one can easily guess that the node i has two
important neighbors, j and m, and each of nodes l and m
has only one important (in fact, the only, so indispensable)
neighbor i. There is a crucial difference between the two pairs,
however, because the nodes i and m designate each other as
an important friend, while in the relation between the nodes
i and l , only node l considers node i an important friend and
not vice versa. Through such asymmetry from the important
friends, we can disclose the one-sided (such as i and l) versus
mutual (such as i and m) dependency. In this section, we also
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FIG. 1. In this example illustrating two different weight distri-
butions, the red edges with different widths represent the original
weighted networks and the black directed edges represent the re-
sultant directed subnetwork. Each node i in both (a) and (b) have
the same degree k(i) = 4 and strength si = 32, but the weights are
differently distributed around each node. For node i in (a), only the
two neighbors with the largest and second-largest weights { j, m}
(shaded as the mint color) are chosen as the target nodes because
the effective degree (with α → 1) � 2 (the modified effective degree
κ→ = 2), while for node i in (b), all of the four neighbors { j, l, m, n}
(shaded as the mint color) in the original network are chosen as the
target nodes in the directed subnetwork because the effective degree
(with α → 1) � 4 (the modified effective degree κ→ = 4). In this
hypothetical example, node j keeps the edge j → i, and node n does
not keep the edge n → i in (a), while it is the opposite case in (b).

present our step-by-step procedure to quantify this concept of
essential neighbors and mutual importance.

A. Normalized weight

Let us consider an undirected and weighted network with
N nodes and L edges. For each node, denoted by i, there exists
a set of weights on edges connected to its own neighboring
nodes {wi j | j ∈ ν(i)} where ν(i) is the set of the neighbors
of i, and then the cardinality of ν(i) is the number of the
neighbors, or the well-known degree k(i) [k(i) = |ν(i)| and
2L = ∑N

i=1 k(i)]. The weighted adjacency matrix W (with its
elements wi j for the node pair i and j) is symmetric, i.e.,
wi j = w ji where wi j > 0 if nodes i and j are connected,
and wi j = 0 otherwise. The weight wi j usually represents the
quantified level of interaction between i and j, so the fraction
of such interaction between i and j in the viewpoint of i
corresponds to

w̃i j = wi j

s(i)
, (1)

where s(i) = ∑
j wi j is called the strength of node i in net-

work terminology. We call the weight in Eq. (1) a normalized
weight that satisfies

∑
j w̃i j = 1 [20].

Let us regard the strength as the total amount of a node’s
resources to interact with other. Then the normalized weight
implies how much fraction of the interaction level the node
partitions to its neighbors for given limited “resources” of
interactions. In other words, the normalized weight w̃i j quan-
tifies the importance of node j from the viewpoint of node
i. Note w̃i j �= w̃ ji in general even if wi j = w ji due to the
different strengths s(i) �= s( j), which is a conceptual leap
presented in this work. Accordingly, the symmetric weighted

adjacency matrix W is cast into the asymmetric matrix W̃ with
its element w̃i j . Therefore, the inequality w̃i j > w̃ ji implies
that the node j is more important to node i than the other way
around.

In the context of random walk [21] or more general types of
dynamical processes [22] on networks, the normalized weight
w̃i j represents the probability of a random walker at node i
to hop to an adjacent node j [21]. Not only the transition
probability but also the actual flow of walkers may be captured
by w̃i j ; In case the same number nw of walkers are located
at every node, the expected number of walkers fi j = nww̃i j

hopping from node i to node j is proportional to w̃i j . It will
be the case for the systems and processes where every node
has the same finite amount of resource for interaction, and
the network with the weighted adjacency matrix W̃ reveals
the global organization of the directed flow of walkers or
information along links in them, which is not obvious but
hidden in the original adjacency matrix W. Yet we should
remark that the normalized weight w̃i j cannot explain all
types of information flow in all systems. Even in the random
walk, the accumulation of such heterogeneous directed flow of
walkers along edges over time eventually leads the number of
walkers at a node i to be proportional to its strength s(i) in the
stationary state such that the flow of walkers fi j becomes pro-
portional to the original weight wi j . Such a steady-state limit
of random walkers also applies to the systems and processes in
which every node’s resource for interaction is heterogeneous
or proportional to its strength, e.g., in the case of “retweeting”
in social networking services where expansive spreading is
possible. Therefore, our study based on the normalized weight
in Eq. (1) is limited to the systems with equal resources as-
signed to every node and thereby link heterogeneity emerging,
such as the contact process and the transient-period random
walks.

B. Effective out-degree

Based on the normalized weight defined in the previous
section, we are ready to set up the scheme to extract the most
essential interactions for each node. Note that the normalized
weight w̃i j values for node i in Fig. 1(a) are more hetero-
geneous than that in Fig. 1(b). Suppose that there are a few
dominant neighbors of node i whose w̃i j values comprise most
of the interactions of node i [Fig. 1(a)]. In that case, we may
suggest node i to keep only those dominant neighbors and
disregard the rest of less essential neighbors. In contrast, when
all of the w̃i j values are similar [Fig. 1(b)], we can see that
all of the neighbors of node i are almost equally important to
node i, so it is natural to keep all of its neighbors. Combining
the heterogeneity of w̃i j distribution with the fact that w̃i j

is a probability unit, we employ the information entropy for
extracting the most essential neighbors. In Ref. [20], some of
the authors of this paper originally introduced such a basic
concept of extracting them in weighted networks, and in this
paper we rigorously formulate the framework and apply it to
real networks to demonstrate its utility.

The normalized weight w̃i j is basically a probability unit
in the set {w̃i j | j ∈ ν(i)} around node i (e.g., the probability
of choosing j out of all of the neighbors of node i if wi j

represents the unnormalized proportion of the importance of
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j to i), so we employ the concept of information entropy to
quantify the heterogeneity of the units allocated to each edge
attached to the node. In this work, we use the Rényi entropy
[23], which is a generalized version of information entropy
with a tunable parameter to control the overall sensitivity. The
Rényi entropy [23] for node i with the parameter α is given by

Sα (i) = 1

1 − α
ln

( ∑
j∈ν(i)

w̃α
i j

)
. (2)

The thermodynamically relevant (satisfying the additivity)
Shannon entropy corresponds to the case of α → 1 [24].
The Rényi entropy Sα (i) in Eq. (2) approaches ln k(i) if all
of the w̃i j values are similar, while Sα (i) � 0 if there exists
a single neighbor k dominating the interactions from (note
that we emphasize the preposition “from” here—we reveal its
importance soon) node i, i.e., w̃ik � 1. Therefore, we define
the effective out-degree (again, note the prefix “out” and “→”
in superscript on the symbol in the following formula) of node
i by exponentiating Sα (i) as

k̃→
α (i) = exp [Sα (i)] =

( ∑
j∈ν(i)

w̃α
i j

)1/(1−α)

, (3)

which is also known as the Hill number [25] to quantify a
diversity of order α or the effective number of species in ecol-
ogy [26,27]. For the case of the Shannon entropy (α → 1), the
effective out-degree becomes

k̃→
α→1(i) = exp

[
−

∑
j∈ν(i)

w̃i j ln w̃i j

]
=

∏
j∈ν(i)

w̃
−w̃i j

i j . (4)

In Fig. 1, we provide the calculated effective out-degree values
below the corresponding cases.

As a result of exponentiating, Eq. (3) scales as k̃→
α (i) �

k(i) for a homogeneous weight distribution and k̃→
α (i) � 1

when there exists a single dominant neighbor of i. Using the
effective out-degree, we extract the most essential edges by
taking the top k̃→

α (i) number of neighbors in the order of
w̃i j . Most importantly, those essential edges are essential in
the viewpoint of i, so the relative importance of w̃i j is solely
determined from i. This egocentric approach naturally induces
the concept of directionality, which was hidden in the original
weighted networks, and we detail on the core concept of this
paper from it in Sec. II C. In other words, one might take the
normalized weight w̃i j in Eq. (1) just as a local contribution of
node i to its neighbors, but the effective out-degree k̃→

α (i) in
Eq. (3) resulting from the nontrivially interwoven structure of
the local heterogeneity in {w̃i j} possesses the ability to extract
a whole new type of information: not all of the edges, even in
the case of the same weight they carry, are equally important
to each of the nodes, and we can pinpoint the most significant
interactions among mundane ones. This rather unexpected
piece of information revealed by the effective out-degree is
our main interest.

The effective out-degree depends not only on the hetero-
geneity of w̃ distribution but also on the parameter α for a
given distribution of w̃. It is known that the Rényi entropy
is a nonincreasing function of α regardless of the probability
distribution [28], so as a result its exponentiated version, the

effective out-degree is also non-increasing as α increases.
In particular, k̃→

α (i) = k(i) (it recovers the original degree
regardless of the w̃i j distribution, except for the case w̃i j = 0
that usually corresponds to the absence of the edge between
i and j) for α = 0, whereas k̃→

α→∞(i) = 1/ max j{w̃i j}, and it
satisfies the inequality 1 � k̃→

α→∞(i) � k(i) from 0 < w̃i j �
1 and |{wi j}| = k(i). This behavior upon the parameter α

together with the scaling behavior with respect to the het-
erogeneity of local weight distribution guarantees that every
unisolated node has at least one essential edge in any cases.

In particular, the case of α = 2 is widely used to quantify
the heterogeneity [29–35]. The authors of Ref. [35] actually
use 1/k̃→

2 (in our formalism) to describe the local homogene-
ity of weights in networks. Yet they focus on extracting the
backbone structure by quantifying how peculiar the existence
of each weight is compared to the null model, under the
assumption of keeping the functional form of original de-
gree distribution. As a result, their approach leads the polar
opposite point to ours in the case of uniformly distributed
local weights—we keep all of the neighbors because they
are equally important, while Ref. [35] does not because they
are equally statistically insignificant. This is just a matter of
different perspectives, and besides the fact that we use more
general values of α in the Rényi entropy, most importantly,
we proceed one step further from here to discover the hidden
directionality of weighted networks from the next section. In
Appendix B, we compare the results from our method to those
from theirs in details for interested readers.

C. Construction of a subnetwork with hidden dependency

As we already introduced in Sec. II B, to extract the es-
sential neighbors from the viewpoint of each individual node,
we choose only the top k̃→

α (i) neighbors, in the order of w̃.
We illustrate the process in Fig. 1. Because the calculated
effective out-degree is a real number, to practically use it (we
need to “cut” the neighbors somewhere) we round off k̃ to the
nearest integerK→

α ≡ 
k̃→
α + 0.5�. However, a practical issue

can arise if we just apply the K→
α without actually looking

at the wi j values. Suppose there exist ζ additional neighbors
with the same weight as the K→

α -th weight in the descending
order. Then, it would be unfair if we blindly take only up to the
K→

α -th weight, because some of the neighbors with exactly
the same weights are taken, and the others are not from pure
luck. In that case, we decide to keep all of such neighbors.
Formally, therefore,

κ→
α ≡ 
k̃→

α + 0.5� + ζ . (5)

In the examples in Fig. 1, ζ = 0 so the final integer-valued
effective out-degree with α → 1 become κ→

α = 2 and 4, re-
spectively. From now on, we refer to this particular integer
version of effective out-degree κ→

α in Eq. (5).
Now it is time to apply this effective out-degree from all of

the nodes in a network. In other words, each individual node
takes only the neighbors with the top κ→

α values of weight
from the local weight distribution from the node. Then, we
obtain the subnetwork composed of the most essential edges.
A crucial phenomenon in this procedure is that for a pair of
originally connected nodes i and j, node j may belong to the
top κ→

α (i) neighbors of node i, but node i may not. In this case,
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the resultant subnetwork includes the unidirectional edge i →
j, but not j → i. This hidden directionality emerges as a result
of our local threshold scheme based on information theory,
which corresponds to the central theme of this paper.

Mathematically speaking, the subnetwork is represented by
the asymmetric binary adjacency matrix Ãα for given α, which
gives

κ→
α (i) =

∑
j

Ãα,i j . (6)

From the adjacency matrix, the effective in-degree coming
from other nodes to node i is also naturally defined as

κ←
α (i) =

∑
j

Ãα, ji. (7)

The effective out-degree sets a local threshold assigned to
every node to extract a directed backbone structure. In contrast
to the global threshold in terms of weight to obtain essential
subnetworks for instance, extracting the essential edges with
κ→

α ensures that not a single node is left out because every
node has at least one effective out-degree, as discussed in
Sec. II B. Another popular method for backbone extraction
is the maximum (or minimum, depending on the definition
of the weight) spanning tree (MST) [36] which suffers from
the severe restriction of (by definition) tree structure with
fixed numbers of edges (one less than the number of nodes).
In addition, both the global thresholding and MST cannot
extract any directional information that our method naturally
yields. Compared to those conventional methods, therefore,
our framework of extracting the most essential and potentially
directional interactions achieves the goals of finding hidden
types of information and not ignoring any nodes’ local char-
acteristics at the same time. We use the Shannon entropy as
a representative case in the remaining of this paper, so we
drop the subscript α → 1 for all the measures from now on,
e.g., κ→ ≡ κ→

α→1. Note that the statistical method in Ref. [35]
can also be used to yield directionality in principle, although
Ref. [35] does not actually utilize it, but as we discussed in
the last paragraph of Sec. II B, their point of view is different
from ours.

D. Mutuality from the normalized weight

One may notice that even before extracting the directed
subnetwork, the asymmetry between the normalized weights
w̃i j �= w̃ ji already insinuates the hidden directionality, which
is precisely the topic of this section. The simplest measure to
quantify the (a)symmetry would be to calculate the Pearson
correlation between the normalized weights for opposite di-
rections, which we call mutuality. The mutuality M is thus
defined as

M ≡
∑N

i=1

∑
j∈ν(i) (w̃i j − μ)(w̃ ji − μ)∑N

i=1

∑
j∈ν(i) (w̃i j − μ)2

, (8)

where μ = N/(2L) is the averaged value of w̃i j over all of the
connected nodes pairs because each node contributes exactly
unity (by the definition of normalized weights) to the total
summation composed of 2L connected node pairs. Note that
μ = 1/〈k〉, where the mean degree 〈k〉 = 2L/N , which we

will use in the forthcoming section. Therefore, Eq. (8) can be
recast as

M =
∑N

i=1

∑
j∈ν(i) (w̃i jw̃ ji − μ2)∑N

i=1

∑
j∈ν(i)

(
w̃2

i j − μ2
)

=
∑N

i=1

∑
j �=i w̃i jw̃ ji − N2/(2L)∑N

i=1

∑
j �=i w̃

2
i j − N2/(2L)

, (9)

which is more practical because one only needs to calculate
the pairwise correlation between the normalized weights for
opposite directions and the second moment of normalized
weights.

The mutuality can be strongly subordinated to the un-
derlying network structure, of course. From the definition
of normalized weights, wi j = w̃i j s(i) = w̃ jis( j) in Eq. (1),
the inequality between the normalized weights w̃i j > w̃ ji is
equivalent to s(i) < s( j). The strength tends to increase as
the degree increases statistically if we assume the absence
of intrinsic nontrivial correlations, so k(i) < k( j) under the
same assumption. Thus, one has to note that the mutuality is
subject to the “baseline” structural network properties such as
the strength-strength correlation and the degree-degree corre-
lation called the assortativity [8,9], so we already present the
mutuality with those baseline measures.

III. RESULTS

A. Empirical data

We apply the suggested methods to two sets of empiri-
cal network data: the world trade web (WTW) [37–40] and
the Annals of the Joseon Dynasty (AJD) [41,42]. Both are
time-series data between 1962 and 2014, and 1392 and 1872,
respectively. First, the WTW data is annually recorded and
contains the total amount wi→ j of export from a nation i to
another nation j, which in turn corresponds to the total amount
of import for nation j. We regard each nation as a node and
the total amount of export as a weight on the edge from one
nation to another. In other words, the WTW is orignially a
directed network as wi→ j �= w j→i in general. As the purpose
of the current paper is to reveal the hidden directionality from
originally undirected weighted networks, we intentionally
construct the undirected (but weighted) version of WTW by
assigning an undirected edge with the weight wi j ≡ wi→ j +
w j→i as the “trade volume” between two nations. The AJD
network data is composed of the relationships between people
appearing in a collection of records for historical events in
Joseon Dynasty, which is a Korean dynastic kingdom that
lasted for approximately five centuries (1392–1897). The net-
work is basically a cooccurrence network, where two people
are connected with the weight corresponding to the number
of sentences mentioning them together within a ten-year time
window. We describe more details in Appendix A.

We select the WTW and AJD network data as represen-
tative examples that enable us to investigate the temporal
evolution of congeneric data. First, let us brief on the most
basic constituents of these weighted networks: the distribution
of weights themselves and their normalized version. The time-
stamped distributions of weight and the normalized weight
defined in Sec. II A are shown in Fig. 2 (for the readers
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FIG. 2. Data description of [(a) and (b)] WTW and [(c) and (d)]
AJD characterized by percentiles of the distributions of the weight
w and the normalized weight w̃. For each panel, the upper subpanel
shows the boxplot of corresponding quantities along with the mean
values. The vertical length of boxplot indicates the interquartile range
(IQR): Q3–Q1, the black solid line represents the median (Q2),
and the filled circles represent the mean value. The lower subpanel
for each panel shows the fraction of outliers, which are defined as
values > Q3 + 1.5 IQR. As there is no value < Q1 − 1.5 IQR for
both data, so we only show the upper whisker indicating the outlier
criterion Q3 + 1.5 IQR. Most of Q1, Q3, and Q3 + 1.5IQR in w in
AJD are the same as each other. Note that in the AJD, Q1, Q3, and
Q3 + 1.5IQR of w values in (c) coincide as unity in most of the time
periods.

interested in more basic network measures, we show the de-
gree and strength distributions in Appendix A). Due to the
heavy-tailed nature, we show the distributions by means of
percentiles as the lower quartile Q1, the median Q2, and the
upper quartile Q3, as well as the mean value. Both data show
right-skewed distributions, reflected by the large fraction of
outliers (the criterion of outliers is defined in the caption of
Fig. 2) and the fact that the mean values are always larger
than the upper quartiles except for w distributions in the AJD,
let alone the median. The distributions of w and w̃ of WTW
are broader and more skewed [Figs. 2(a) and 2(b)] than those
of AJD [Figs. 2(c) and 2(d)], supported by the large deviation
of means from medians.

As one can clearly see from Fig. 2, the temporal change
of the normalized weight w̃(t ) looks almost independent of
that of the original weight w(t ). The temporally decreasing
tendency of w̃(t ) in WTW and fluctuating behavior of that in
AJD are determined by the mean degree 〈k〉 = 2L/N because
the mean value of normalized weight μ = N/(2L) = 1/〈k〉
(as presented in Sec. III E), and the reciprocal relation is
visible if one compares Figs. 2(b) and 2(d) with Figs. 3(b)
and 3(d). In addition, in the AJD, the distribution of w̃ looks

FIG. 3. The average distributions of normalized weights and the
mean effective out-degrees based on the Rényi entropy (the Shannon
entropy in this case, as we take the α → 1 case). In the left panels, we
show the average curves of the probability density function ‖pi(z)‖
of the rescaled normalized weight z = (w̃i j − λi )/σi defined in the
main text with the standard error of ‖pi(z)‖ represented by the shaded
area, for (a) WTW and (c) AJD, snapshots of which (one from an
early period and the other from a late period) are shown. In the
right panels, we show the mean values of the original degree 〈k〉,
the effective out-degree 〈κ→〉, and their standard deviations marked
with the shaded area for (b) WTW and (d) AJD. For comparison, we
plot the mean values of effective out-degrees from 100 null-model
networks with shuffled weights, denoted by [〈κ→

ran〉] with the standard
error marked with the shaded area.

more heterogeneous than that of w. We believe that a par-
ticular characteristic of these data is responsible for it; most
w values are concentrated on 1 (i.e., most pairs of people
appear only once in the 10-year time windows of AJD: around
80% throughout the entire period) [Fig. 2(c)], but its normal-
ized version w̃ is split into different values w̃i j = 1/s(i) and
w̃ ji = 1/s( j) from various values in {s(i)}. Most of all, the
overall or averaged-out distributions of w and w̃ investigated
at a global (network) level do not offer the hidden directional
information we would like to discover, so let us move on to the
local distribution in the next section, from which we present
our core results.

B. Local distribution of the normalized weight and effective
out-degree

In Sec. II B, we have introduced the concept that the local
distribution of the normalized weight around node i denoted
by pi(w̃i j ) yields how many neighbors, i.e., κ→

α (i) neighbors
defined as Eq. (5), of i are essential among the total k(i)
number of neighbors. In other words, the distribution pi(w̃i j )
determines the effective out-degree κ→

α (i), so the overall
shape of pi(w̃i j ) in a network provides an informative clue
to predict the κ→

α distribution. First, we observe that the two
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networks show remarkably different distributions of normal-
ized weights. As the degree, which determines the overall
scale of w̃i j for each i, is inherently heterogeneous [7],
we have to rescale w̃i j first for the overview in an entire
network. The left panels of Fig. 3 illustrate the represen-
tative distribution ‖pi(z)‖ for each data, where z = (w̃i j −
λi )/σi is the rescaled variable with respect to the mean λi =∑

j w̃i j/k(i) = 1/k(i) and the standard deviation σi, by aver-
aging the nonzero values of pi(z) over all of the nodes. In other
words, for each z value, the normalized weight distributions in
Figs. 3(a) and 3(c) are given by ‖pi(z)‖ = [

∑
i
′ pi(z)]/N (z)

where
∑′ is the restricted sum for nonzero pi(z) values,

the total number N (z) of which is the normalization factor.
The normalized weight distribution of WTW is a typical
heavy-tailed distribution observed in many complex interact-
ing systems, while the distribution for AJD is unimodal and
well-characterized by its mean λi and standard deviation σi.
This contrast indicates that the local distribution of weights
around individual nodes in WTW is usually much more het-
erogeneous than that in AJD, as in the situations described in
Fig. 1(a) versus 1(b), respectively.

Therefore, one can expect that κ→
α (i) of most nodes in the

WTW will be smaller than their original degree k(i), while
most nodes in the AJD will recover their original degrees as
the effective out-degrees. The right panels of Fig. 3 confirm
such distinct scales of effective out-degrees with respect to
the original degrees. The effective out-degrees in the WTW
is much more smaller than the original degrees on average
[Fig. 3(b)], while they are almost indistinguishable for the
AJD [Fig. 3(d)]. More specifically, in the WTW even though
the number of trading partners of nations usually increases
and sometimes fluctuates in time, most nations keep a few
important trading partners throughout the period. On the other
hand, in the AJD, the average effective out-degree and the
average original degree are almost indiscernible throughout
the five centuries of Joseon Dynasty. This result verifies the
expectation drawn from the local distribution of w̃ in the left
panels of Fig. 3 that there are disproportionately small num-
bers of essential neighbors compared to the original degree in
the WTW and that most neighbors are similarly important (so
they are all essential according to our framework) in the AJD.

To investigate the implication of the normalized-weight
distribution and the effective out-degrees in the two data fur-
ther, we generate 100 null-model networks by shuffling the
weight wi j in original networks (redistributing the weights
uniformly at random to all of the existing edges) and then
extract the essential edges according to the procedure de-
scribed in Sec. II. This shuffling process preserves the degree
k(i) for every node but randomizes everything related to the
weight information including the original weight wi j , the
strength s(i), and the normalized weight w̃i j for all of the
nodes. We measure the mean effective out-degree of the null-
model networks, computed as [〈κ→

ran〉] that denotes the mean
effective out-degrees for each null-model network, which are
in turn averaged over the 100 null-model networks. As one
can clearly see from Fig. 3, the AJD shows no noticeable
difference between 〈κ→〉 and [〈κ→

ran〉], while they are sys-
tematically different ([〈κ→

ran〉] is always smaller than 〈κ→〉)
in the WTW. Again, shuffling the relatively homogeneous
normalized-weight distribution of the AJD does not affect

the effective out-degrees of the nodes in the AJD much, be-
cause the nodes will retrieve most of their original neighbors
anyway. In contrast, the fact that the effective out-degrees of
randomized version of the WTW are systematically smaller
than the real effective out-degrees indicates, as discussed in
Fig. 1, that the heterogeneity of link weights around a node
is weaker in the real WTW than in the randomized WTW.
The shuffling process wipes out any correlation of the link
weights around a node and equate the local heterogeneity of
link weights with the global-level heterogeneity delineated in
Fig. 2(a).

C. Evaluation of dependency

So far, we have investigated the hidden directionality by
observing the averaged quantities of the most elementary mea-
sures. In this section, we take a step further into the systems of
interest and suggest a few derivative measures in both global
and local levels, to demonstrate the utility of our framework.
As illustrative examples, we show parts of the subnetworks
constructed by the procedure in Sec. II C, from the oldest
[Figs. 4(a) and 4(b)] and latest [Figs. 4(c) and 4(d)] WTW data
(with nontrivial hidden dependency as revealed in previous
sections); in particular, we take egocentric view of the subnet-
work from two characteristic nations, which are China (CHN)
[Figs. 4(a) and 4(c)] and the United States of America (USA)
[Figs. 4(b) and 4(d)]. One can see the κ→ outgoing edges
(pink) and the κ← incoming edges (gray or green, depending
on the reciprocity detailed soon), as defined in Eqs. (6) and
(7), respectively. The outgoing and incoming edges here refer
to the interaction to trading partner nations that a nation con-
siders essentially important and the interaction from trading
partner nations that considers the nation as such, respectively.
The intersection of outgoing and incoming edges corresponds
to the reciprocal edges (green) that represent the mutually
important relations. The effective reciprocal degree κ↔(i) =∑

j Ãi j Ã ji denotes the number of the reciprocal edges attached
to node i, where Ãi j is an element of the asymmetric binary
adjacency matrix in Sec. II C.

Not surprisingly, the enormous growth of the Chinese
economy is reflected in the growth in the number of trading
partner nations of China (60 → 211) over the decades be-
tween 1962 and 2014. In particular, compared to its doubled
effective out-degree growth (17 → 34), its effective in-degree
has been increased by more than 15 times (12 → 201). As
the latter indicates other nations’ dependency on China, the
dramatic change in κ← captures each nation’s genuine influ-
ence to the global economy more accurately than the change
in the number of trading partner nations (the original degree).
In the case of USA, as expected, it was already one of the
most influential nations in 1962 already and is still the case,
and the numbers of its trading partner nations and its effec-
tive in-degree are increased supposedly due to the overall
economic growth globally. However, at the same time, the
effective out-degree of USA has been decreased (33 → 24)
during the period. In other words, despite the global economic
growth, the international trade of USA has become more
heterogeneous among its trading partner nations, which may
suggest the global economic inequality. Again, we would like
to emphasize that this type of distinct analyses is not possible
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FIG. 4. The parts of subnetworks of WTW in [(a) and (b)] 1962 and [(c) and (d)] 2014, in the cases of [(a) and (c)] CHN- and [(b) and (d)]
USA-centric viewpoint (only their adjacent neighbors with at least a type of edge in the subnetwork are shown), so CHN and USA are at the
center of each panel. Nodes are colored by their original degree values k(i). In each panel, a subnetwork in the left is the entire corresponding
nation-centric network, where the directed edges are classified as outgoing (orange), reciprocal incoming (mint), and non-reciprocal incoming
(gray) ones. On the right in each panel, only the outgoing part (ignoring the non-reciprocal incoming edges) is shown.

if we only look at the conventional network measures such
as degree, strength, and weight distribution without taking the
hidden dependency into account.

To characterize the properties of directed subnetworks
from effective out-degrees in more details, we calculate the
measures called the relative edge density e and the reciprocity
r, defined as

e ≡
∑N

i=1 κ→(i)∑N
i=1 k(i)

, (10)

r ≡
∑N

i=1 κ↔(i)∑N
i=1 κ→(i)

, (11)

respectively. The relative edge density e indicates the frac-
tion of essential neighbors for the nodes in a network on
average, or the homogeneity of the local weight distribu-
tion. Dividing both the numerator and the denominator in
Eq. (10) by N , the effective edge density can be rewritten as
e = 〈κ→〉/〈k〉, or the ratio of the mean effective out-degree to
the mean degree in the right panels of Fig. 3. The reciprocity
r is the fraction of the bidirectional edges among the essen-
tial edges. It quantifies the fraction of edges in a weighted
network representing the mutually (essentially) dependent
relation.

We show the temporal changes of e and r for the WTW
in the upper panels of Fig. 5 and for the AJD in the lower
panels of Fig. 5. For comparison, we also plot the correspond-
ing measures obtained from the weight-shuffled null-model
networks introduced in Sec. III B. The relative edge density
e in WTW stays at quite a low level roughly between 0.1
and 0.2 [Fig. 5(a)] with a decreasing trend over time, and
the reciprocity r stays around 0.3 [Fig. 5(b)]. As already
mentioned in the previous paragraph, the decreasing values
of e is equivalent to the overall increasing trend of 〈k〉 and
the relatively flat 〈κ→〉 shown in Fig. 3(b). We can interpret
this in such a way that nations take part in the international
trade more and more as the world trade expands as time goes
by (increasing 〈k〉 over time), but their lion’s share of trade is
usually dominated by a few number of trading partner nations
(the relatively flat 〈κ→〉 over time), yielding the decreasing
trend of e.

We clarify the implication of e and r by comparing them
with those from the null-model networks. The relative edge
density e is larger than that from the null-model networks
denoted by [eran], but the reciprocity r is smaller than that
from the null-model networks denoted by [rran], as shown in
Fig. 5 (again, [· · · ] indicates the ensemble-averaged quantity).
The former is expected because [〈κ→

ran〉] < 〈κ→〉 (Fig. 3) and
e = 〈κ→〉/〈k〉, so [eran] < e. The latter (r < [rran]) indicates
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FIG. 5. The temporal changes of relative edge density e and
reciprocity r are shown for [(a) and (b)] the WTW and [(c) and (d)]
the AJD. On the left panels, we plot the relative edge density e for
the real data and [eran] for the weight-shuffled null models. On the
right panels, we plot the reciprocity r for the real data and [rran] for
the weight-shuffled null models.

that the mutually essential reactions happen less likely than a
chance. The rank of the weight of a link—trade volume—may
be high enough to be counted as effective for one end node but
may not for the other, probably caused by the severe disparity
in their overall link weights related to the national economic
scales. In the randomized version, on the contrary, the links
of every node are assigned weights randomly on equal foots,
except for statistical fluctuation, and therefore a link assigned
a high weight is likely to be counted as effective for both end
nodes.

In contrast, as we have already repeatedly checked, the
AJD recovers most of its original interactions as essential
ones, i.e., e � 1, as shown in Fig. 5(c), which is consis-
tent with the result 〈κ→〉 � 〈k〉 in Fig. 3(d). Moreover, the
property that most original interactions are recovered in the
subnetwork also means that interactions are retrieved in both
directions, so the reciprocity r � 1 as well, as shown in
Fig. 5(d). Simply put, the weights in AJD do not play any
significant role due to their near uniformity, which is also
confirmed by the observation that the average relative edge
density [eran] and the average reciprocity [rran] of their null-
model networks are quite similar to e and r from the real AJD
network, as shown in Figs. 5(c) and 5(d). In other words, the
weight-shuffling process does not affect the properties of AJD
notably, as long as the substrate (binary) network is preserved.

From now on, we apply the concept of the reciprocity
learned from the global-level analysis back to the individual-
node level, where all of our framework begins in fact. As the
“global” version of the reciprocity in Eq. (11) is from the
averaged measures, we can define its “local” version as

ρ(i) ≡ κ↔(i)

κ→(i)
, (12)

which we call the local reciprocity (LR), and it represents
how many of essential neighbors of node i also consider node
i as their essential neighbor. There is one more thing we

introduce as another meaningful measure in the local level,
corresponding to the ratio of the effective in-degree to the
effective out-degree as

τ (i) ≡ κ←(i)

κ→(i)
, (13)

which we call the attraction ratio (AR) and describes how
attractive node i is to its neighbors, relative to the number of
attractive neighbors to node i. Note that there is no global mea-
sure corresponding to AR as

∑
i κ

←(i) = ∑
i κ

→(i) trivially,
and they always satisfy the inequalities

0 � ρ(i) � min[1, τ (i)], (14)

ρ(i) � τ (i) � k(i)/κ→(i). (15)

We solely focus on the WTW data here, as not surprisingly
for most nodes in the AJD network ρ(i) � 1 and τ (i) � 1. We
show the scatter plot of the local measures defined above from
the WTW network in Figs. 6(a) (1962) and 6(b) (2014), where
each point represents each nation, and one can easily check
the inequality in Eq. (14). The ρ and τ for CHN and USA
depicted in Fig. 4 are highlighted by the black empty circles
and the arrows. From the scatter plot where the nodes are
color-coded with their original degree, one can recognize that
nations with many trading partners tend to have large values
of ρ and τ , and ρ and τ are positively correlated [Fig. 6(c)]
partly because of the upper bound of ρ for given τ values in
Eqs. (14) and (15), we suppose. Naturally, larger values of
τ increase the chance for the corresponding trading partner
nations that consider the nation as an essential partner to be
reciprocal. The correlation is significant throughout the entire
period of the data we have examined, as shown in Fig. 6(c).

The locations of nations in this ρ–τ space throughout the
time provide an overview of the nations’ status in the inter-
national trade in terms of their mutual importance to other
nations. We take four nations in particular to demonstrate it:
CHN, USA, India (IND), and Canada (CAN) and show their
temporal changes of LR and AR in Figs. 6(d) and 6(e), respec-
tively. As we have checked in Fig. 4, USA has maintained
its theoretically maximum level of LR (ρ = 1: all of USA’s
essential nations take USA as an essential trading partner all
the time) throughout the entire period of the data and its status
of the “attractive” (τ > 1) trading partner to other nations
with an increasing trend from τ � 3.8 to τ � 8.0. In the case
of CHN, as we have observed in Fig. 4, both AR and LR
have been significantly increased for the past few decades,
signifying its dramatic economic growth during the period,
and one can check that the effect is more substantial for AR
(proportional to the number of nations that take China as an
important partner).

In particular, the AR seems to augment the distinction be-
tween the trading relations in the case of similar values of the
LR; For instance, both USA and CAN maintain ρ = 1 (except
for the small dip in 1979 for CAN), but the AR for CAN is
significantly larger than that for USA throughout the period,
i.e., CAN is a much more “attractive” trading partner than
USA, relative to the number of nations they respectively take
seriously. Taking the different baseline values into account,
the temporal trends of AR for the two nations are similar, as
they belong to the same geopolitical economic block such as
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FIG. 6. Individual-node level LR and AR measures in WTW. [(a) and (b)] Scatter plots in the AR-LR space, where individual nations are
the points, in 1962 and 2014. The nodes are colored with their original degree values. The black dashed lines indicate ρ = τ , which is the
upper bound of ρ for a given τ as in Eq. (15). (c) The temporal change of Pearson correlation coefficient between ρ and τ , with the p values
<10−27 throughout the period. [(d) and (e)] The temporal changes of ρ and τ for four representative nations mentioned in the main text. The
solid curves represent the average values of 〈ρ〉 and 〈τ 〉 (note that 〈ρ〉 �= r because 〈x/y〉 �= 〈x〉/〈y〉), where the shaded upper areas indicate the
standard deviations σρ and στ (we only show the upper areas because 〈ρ〉 − σρ < 0 and 〈τ 〉 − στ < 0). The horizontal dotted line τ = 1 in (e)
indicates the baseline AR with κ←(i) = κ→(i).

the North American Free Trade Agreement (NAFTA) with the
large bilateral trade volume [43].

Another characteristic nation is IND, which shows a de-
creasing (up to 1980s) and then increasing trend for both
LR and AR measures consistent with its recent history of
industrial growth [44]. The large rearrangement in the overall
international trade in the early 1980s is in fact also observed in
the structural change itself, e.g, the connectivity significantly
shrank, as shown in Figs. 3(b) and 5(a), which may explain the
small dip in CAN as well. The second oil shock [45] occurred
during this time may be responsible for this overall reorgani-
zation of WTW. In other words, the overall trading capacity
was temporarily lowered. Particularly, IND suffered from the
reduction of the overall trade volume by the international debit
crisis [46]

Albeit anecdotally, these examples demonstrate that our
method of extracting the hidden dependency provides a
unique viewpoint on intricate networked systems. We expect
that the effect of the current COVID-19 outbreak on the in-
ternational trade and global economy can also be analyzed
with this type of dependency analysis in the future. Finally,
we would like to remark that the weight-shuffled version
of the null-model networks is used in this section, but one
can try different levels of null models, e.g., synthetic model
networks for baseline properties of the various measures, as
we demonstrate in Appendix C.

D. Inference to originally directed networks

Let us recall that the original WTW data is composed of di-
rected trade relations: imports and exports for bilateral trading
nations, denoted by wi→ j �= w j→i in general. So far, we have
intentionally aggregated the weights as wi j ≡ wi→ j + w j→i

regarded as a trade volume between two nations i and j, as
a test bed to extract directional information as described in

Sec. III A. In this section, we finally check if our method has
successfully uncovered the genuine directional information by
comparing the result to the original data. To recap, there exist
the original amount of export from nation i to nation j denoted
by wi→ j and the normalized weight from i to j denoted by
w̃i j = wi j/s(i) representing the inferred dependency of i on j.
We calculate the Pearson correlation coefficient between wi→ j

and w̃i j when there is the directed edge from i to j in both
the original directed network and the directed subnetwork
extracted from our method, i.e., when wi→ j �= 0 and node j
belongs the top κ→(i) neighbors of i in terms of weights. From
Fig. 7, we can see that the inferred weights in the extracted
subnetwork and the real weights in the original directed net-
work are highly correlated, which verifies the validity of our
method in estimating the mutual dependency.

FIG. 7. The Pearson correlation coefficient between the normal-
ized weight w̃i j and the original weight wi→ j in the WTW, for all
of the existing directed edges in the subnetwork from the WTW.
As a comparison, we also present the correlation coefficient for the
randomized directed WTW networks, where the error bars indicate
the standard deviation from 10 randomized samples for each year.

043136-10



UNCOVERING HIDDEN DEPENDENCY IN WEIGHTED … PHYSICAL REVIEW RESEARCH 3, 043136 (2021)

The accuracy of this estimation is compared to the case of
randomized directed weights wi→ j,ran from the original WTW
data, as shown in Fig. 7, where the correlation coefficients
represent the comparison between the randomized directed
weights wi→ j,ran and the normalized weights w̃i j,ran from
their own undirected networks by taking the same merging
procedure wi j,ran = wi→ j,ran + w j→i,ran. Note that our method
regenerates the directional information (the correlation coeffi-
cient >0.4) even in that randomized version to a degree due to
the fact that wi j,ran includes the original information wi→ j,ran.
However, the correlation is much weaker than the original
WTW networks, which implies the randomization process
destroys the intrinsic crucial information that our method uses
to recover the directionality. Therefore, it indicates both the
effectiveness of our method and the amount of hidden infor-
mation available.

E. Mutuality

As the final analysis, we present the mutuality M in Eq. (8)
and compare it with other pairwise correlation measures for
structural properties. We have already argued that the mutu-
ality can be subordinated to the underlying network structure
in Sec. III E—because the normalized weight is inversely pro-
portional to the degree or the strength when the weights are
homogeneous enough or random, the mutuality is expected to
be correlated with the degree-degree (D-D) correlation [8,9]
or the strength-strength (S-S) correlation. In Fig. 8, we show
the temporal changes of those correlation measures for the
WTW and the AJD, along with those for their aforementioned
null-model networks with randomized weights.

First of all, in the case of WTW shown in Fig. 8(a), one
can check that the fluctuation of M is much less severe than
that of other correlations, in particular, compared to the large
fluctuation of the D-D correlation in the late 70s to the early
80s when the substantial reorganization of international trade
relations happened as discussed in Sec. III C. In spite of the
large structural changes reflected in the large fluctuation in
the D-D correlation, the bilateral dependency reflected in M
has not been disrupted as severely as the network structure
itself, so we speculate the situation as the following: in spite of
turmoil in international trades caused by various geopolitical
reasons, nations might have tried their best to quickly mitigate
the shock and maintain the overall mutual dependence in
response.

The implication of mutuality values themselves becomes
clear when we compare them with the results from the null-
model networks. Again, we generate 100 null-model networks
with completely shuffled weights on the original network
structure, calculate the mutuality and the S-S correlation (the
D-D correlation would be the same because the network struc-
ture itself is not altered), and plot their ensemble-averaged
values in Fig. 8 in addition to the correlation values from the
original networks. The most prominent difference between
the original network and its null model is observed in the
case of mutuality of the WTW in Fig. 8(a), and in partic-
ular, the mutuality of the WTW is much smaller than that
of its null model. This again confirms our previous conclu-
sion that the international trade is less mutual, as discussed
in Sec. III C and Fig. 5(b). The positive values of M in

FIG. 8. Three types of correlations: the mutuality M, the degree-
degree (D-D) correlation, and the strength-strength (S-S) correlation
for (a) the WTW and (b) the AJD, and their null-model networks
with shuffled weights, denoted by “shuffled” in the legends.

the case of null models have the same origin as the larger
reciprocity discussed in Sec. III B. The average and variance
of local link weights are not distinguishable between the
two end nodes of a link in the null models. Thus a link
with high (low) weight is likely to have similar normalized
weights commonly larger (smaller) than the average μ. It
does not hold for the real WTW, in which the scales of the
link weights of two connected nodes may be quite different,
and thus the normalized weight of a link from the viewpoint
of one end node may be much different from the other, re-
ducing mutuality. For more discussions and examples, see
Appendix D.

The absence of significant effects of weights and the results
from it in the AJD is reconfirmed with the mutuality and other
correlations as well, as shown in Fig. 8(b). As expected, the
mutuality of the AJD is quite similar to that of the correspond-
ing null-model networks, not surprisingly because of their
relatively uniform weights, the details of which are already
discussed in Sec. III C.

IV. SUMMARY AND DISCUSSION

We have proposed the framework for constructing a di-
rected subnetwork composed of the most essential edges via
the concept of information entropy, based on heterogeneity
of local distributions of weight around each node. We call
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the number of such essential neighbors of a node the effec-
tive out-degree, which plays the role of a local or egocentric
threshold of extracting the most important neighbors from the
node. This naturally appearing but initially hidden direction-
ality from each of individual nodes is the cornerstone of our
framework. Although we have focused on the case of the
Shannon entropy (α → 1) almost exclusively in our work, by
tuning the parameter α one can control the overall sensitivity
of the threshold. To demonstrate the utility of our method,
we have compared two series of real networks composed
of temporal snapshots: the WTW and the AJD, followed by
the comparison with their weight-randomized version as the
null model. We have analyzed the hidden dependency within
the networks by taking both the global- and the local-scale
properties and concluded that the WTW has intrinsically less
mutual or unequal bilateral dependency between the nations,
while people in the AJD are connected with more mutual de-
pendency from their narrowly distributed weights. In addition,
we have verified that our method extracts the most essential
directed relation by comparing the result with the original
directional information (export and import) in the WTW.

We can apply the extracted directed subnetwork to various
purposes, depending on the context. In general, the direction-
ality from i to j in our framework indicates the dependency
of i on j, so it effectively captures the flow from less influ-
ential nodes to more influential nodes, roughly speaking. In
social relations, for instance, the directionality may insinuate
the hidden authoritative relations among nominally mutual
“friendship.” Another example is various types of biochemical
networks, where seemingly “related” chemical/metabolic re-
actions or genetic entities could in fact hide their true identity
of asymmetric dependency, which would enable us to prior-
itize a part of networks to engineer the system better, e.g.,
when we try to find a new drug target. Beyond the inference
to the directionality in static networks, we may utilize the
fact that the directional information connotes the temporal
information as any type of interaction takes time. Therefore,
albeit not perfectly, the directionality may help us to deduce
the temporal order from temporally accumulated networks as
well, which would be of great importance when it comes to
reconstruction of causality or the Bayesian formulation [47].
In the viewpoint of dynamical processes on networks, the
cascading effect from concatenation of such a directionality
may provide a crucial hint to infer the long-range effective
flow in networks [22].

Finally, to take a more concrete example, our analysis of
the WTW has demonstrated the potential of our method to
applications to economic and other sectors dealing with global
problems as well, we believe. We would like to emphasize
that pointing out specific nations with characteristic properties
in terms of LR and AR is much more meaningful than just
providing interesting anecdotal examples, because each of the
interrelationships in the WTW actually affects our daily life.
The hidden directionality in epidemic spreading processes can
be crucial to detect superspreaders or superblockers, which
is tightly related to the global economy as now all of us
know. For example, one can measure conventional centrality
measures such as the closeness or perform community de-
tection or k-core decomposition in the directed subnetwork
from an original network, compared with those in the original

network. In the case of closeness centrality, the average close-
ness from a node to other nodes in the directed subnetwork
indicates the node’s effective long-range proximity by consid-
ering the most relevant paths. We hope to sharpen our tool
more to prepare for more practical applications on top of a
more solid theoretical background in the future.
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APPENDIX A: MORE DETAILED DESCRIPTION
OF THE EMPIRICAL DATA

1. The world trade web

The world trade web (WTW) [37–40] is historically
recorded for 53 years from 1962 to 2014, and we use the
annually aggregated networks (so 53 networks in total) in
our analysis. The nations participating in the international
trade are the nodes, and the trade relations are the edges with
the weights corresponding to trade volumes. There were 152
nations in 1962, and the number of nations had increased to
233 in 2014. The trade data contains the import and export
amount of the products in the unit of United States (US)
dollars. The exported or imported products are classified by
the international standard. More specifically, for the data from
1962 to 2000, the trades are classified with Standard Inter-
national Trade Classification (SITC). For more recent data
(2001–2014), the data is provided by United Nations (UN)
Comtrade Database. As we have explained in Sec. III A, we
first merge the export and import sides and treat them as
undirected weighted edges to test our method and then com-
pare the result with the real directional trade information in
Sec. III D.

2. The Annals of the Joseon Dynasty

The Annals of the Joseon Dynasty (AJD) is a historical
record written in classical Chinese, ordered chronologically.
It covers the 472 years (1392–1863) corresponding to the
reigns of 25 kings. The AJD provides plentiful information
about not only political activities at the royal court, but also
economic, social, and cultural events of the Joseon Dynasty.
The National Institute of Korean History runs a web service
that offers both the original Chinese text and its translated
version in Korean. The structure of the AJD is as follows:
each reign is composed of the record of years, the record
of each year comprises the record of months, the record of
each month comprises the record of days, and the record of
each day contains articles. The data consists of 6992 months,
143 066 days, and 380 009 articles. The entire data set was
extracted from the official website [41,42]. In the AJD, there
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FIG. 9. The temporal changes of the degree and strength distributions of the WTW (top) and the AJD (bottom), with the same format as
in Fig. 2. The distributions of [(a) and (d)] the degree k, [(b) and (e)] the strength s are shown, and we also present [(c) and (f)] the Pearson
correlation coefficient between them.

are 54 526 number of people manually tagged by modern his-
torians, and they are the nodes in the network. As described in
Sec. III A, the edges between node pairs represent the number
of sentences mentioning the pair together within a ten-year
time window.

3. Basic local properties of the networks

As mentioned in Sec. III A, we add the distributions of the
basic local network properties: the degree k and the strength
s, followed by the correlation between them. In Fig. 9, we
show the temporal changes of k and s in the same format
(the mean, the median, the IQR, and the outliers) as in Fig. 2,
and their correlation. The degree distributions of the WTW
shown in Fig. 9(a) are relatively homogeneous characterized
by their well-defined representative mean values, judged by
their similarity to the median and the (almost) absence of
outlier. Except for that, all of the other distributions (the
strength distributions of the WTW and the degree and strength
distributions of the AJD) are quite heterogeneous; they are
severely right-skewed with non-negligible outliers, as shown
in Figs. 9(b), 9(c), and 9(d). They are right-skewed distribu-
tions inferred by mean values larger than medians with the
large fraction of outliers. Overall, the temporal fluctuations

of the degree and the strength resemble each other for the
given data, which is also consistent with the large correlation
coefficients between them in Figs. 9(c) and 9(f). Note that we
calculate the correlation between k and log(s), because the
correlation is larger than that between k and s itself, which
means the strength exponentially (or at least superlinearly)
increases with the degree k, roughly speaking. In the AJD,
the correlation between k and s is close to linear, which is also
reflected in the similarity between Figs. 9(d) and 9(e).

APPENDIX B: COMPARISON WITH THE MULTISCALE
BACKBONE METHOD

In this Appendix, we compare our method to another ex-
traction method. We have mentioned the methods such as the
minimum (maximum) spanning tree, global threshold, and the
multiscale backbone method (MBM) [35] in the main text.
The most important aspect in our extraction method is to
excavate the hidden directionality from originally undirected
networks. As the spanning tree and global thresholding are in
principle unable to do that, we focus on the MBM for com-
parison. In fact, we would like to emphasize that the original
paper introducing the MBM [35] did not extract the directional
information, by accepting statistically significant edges from

043136-13



LEE, LEE, LEE, JEONG, LEE, AND LEE PHYSICAL REVIEW RESEARCH 3, 043136 (2021)

FIG. 10. Global measures for the directed subnetwork by the MBM [35], compared with our method, for [(a)–(c)] the WTW and for
[(d)–(f)] the AJD. (a) and (d) show the survival fraction Nb/N of nodes from the MBM with β = 0.001, 0.01, 0.1, and 0.5. In our method,
Nb/N = 1 always by definition. The ratio of the number Nb of survival nodes in the original network to the average number [Nb,ran] of the
survival nodes in the weight-shuffled networks is plotted in the insets. (b) and (e) show the relative edge density e, and (c) and (f) show the
global reciprocity r. The results from our method represented by the orange open circles and purple filled squares are taken from Fig. 5. The
smaller filled symbols represent the results from the MBM with given threshold values β = 0.1, 0.2, 0.3, or 0.5. For each case, the results
from the weight-shuffled null-model networks for each given value of β are shown with the solid or dashed curves characterized by the same
color taken from the same β value for the real data.

either direction; therefore, we modify the original MBM to
allow extraction of directional information in an intuitive way
for fair comparison.

The MBM [35] first utilizes the normalized weight w̃i j in
Eq. (1) as well. Then, for an edge between nodes i and j,
one computes the probability βi j

1 for the normalized weight
from node i to node j under the assumption that randomly
distributed weights are larger than the original weight wi j .
If βi j < β or β ji < β with β being the significance level,
one considers that the edge is significant and keeps it as a
component of the network backbone. Otherwise, the edge
is removed at the backbone. The value of β here controls
the level of stringency as small values of β indicate stricter
criteria for an edge to survive in the backbone. We can simply
modify the MBM by treating βi j < β and β ji < β as separate
conditions to extract the directed backbone as our method.
Before we present the results using this modified version for
the network data we presented in the main text, we remark
on an important difference of the MBM compared with our
method to highlight their contrasting viewpoints. First, as we
already discussed in the last of Sec. II B, for the uniform
weight distribution w̃i j = 1/k(i), all edges connected to node
i are deemed as equally important edges in our method (so
all of them are retrieved) but they are equally insignificant

1The original paper [35] uses the symbol α, but we modified it to
β to avoid the possible confusion with the parameter α used in this
paper for the Rényi entropy.

edges in the MBM (so all of them are removed). In such a
case, the node with the locally uniform weight distribution is
isolated one in the backbone in the MBM and removed ac-
cordingly. This can happen even for nodes with non-uniform
local weight distributions in the MBM, depending on β.

1. Global measures for the WTW and the AJD

First, we present representative global measures of the di-
rected subnetwork using the aforementioned modified version
of MBM with various threshold values applied to the WTW
and AJD data in Fig. 10, along with those measures from our
method (taken from Fig. 5, in other words), in comparison to
the corresponding weight-shuffled null models. The upper and
lower panels correspond to WTW and AJD, respectively. As
the MBM removes a fraction of nodes once they are isolated
as described before, we first plot the number Nb of remaining
node in the directed subnetwork as their fraction with respect
to the number N of original nodes [Figs. 10(a) and 10(d)].
Most nodes are retrieved in the directed subnetwork of WTW,
as long as the threshold β for the MBM is not too small. In
sharp contrast, large fractions of nodes are discarded in the di-
rected subnetwork of AJD, which dramatically demonstrates
the difference between our method and the MBM—the MBM
tends to filter out the edges with similar w̃i j because they
are equally unimportant as previously discussed. A similar
level of node survival to the WTW is achieved for β � 0.5
in the case of AJD, which will correspond to rather too gen-
erous a criterion as the significance level. The ratio of the
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FIG. 11. Parts of subnetworks of the WTW in the CHN-centric viewpoint obtained from the MBM in [(a) and (b)] 1962 and [(d) and (e)]
2014 with the confidence level [(a) and (d)] β = 0.1 and [(b) and (e)] 0.5. The colors of nodes and edges are selected in the same way as in
Fig. 4. The changes of the AR τ and the LR ρ are shown in (c) and (f). The case of α = 1 corresponds to our method, and β = 0.1 and β = 0.5
represent the MBM with those values of β.

surviving nodes in the original network to that for the 100
weight-shuffled null-model networks is plotted in the insets
of Figs. 10(a) and 10(d). Based on the observation that Nb for
the AJD is notably smaller than the value for their randomized
counterparts when β < 0.5, we can see that the small survival
rate of the nodes in the AJD is caused by their intrinsic local
correlation between the normalized weights.

The relative edge density e and the global reciprocity r for
the directed subnetworks from the MBM with various values
of the confidence level β [Figs. 10(b), 10(c), 10(e), and 10(f)]
show similar behaviors to those from our method presented in
Fig. 5. For direct comparison, the results from our method are
also plotted (with the same symbols and colors as in Fig. 5) in
addition to the MBM results there. As expected, the relative
edge density e calculated for the MBM-based directed sub-
network becomes smaller as more strict criteria for selecting
edges (larger β values) are applied [Figs. 10(b) and 10(e)]
for both data, but the amount of decrement is much larger
for the AJD. The trend is not surprisingly understandable
from the same argument presented in the case of Nb/N—the
MBM filters out “equally unimportant” edges. In comparison,
the directed subnetwork from our method for the WTW has
roughly similar values of e to the ones from the MBM with
0.3 � β � 0.5 in the early period and later to the ones with
β = 0.3 as shown in Fig. 10(b). The relative edge density for
the directed subnetwork of the AJD with the MBM clearly
suffers from the significantly reduced number of nodes as
shown in Fig. 10(e). Despite the sharp contrast in treating
edges with locally homogeneous weights, our method and the
MBM share a similar behavior of e when it comes to the
comparison with the weight-shuffled null models. As in our
method in Fig. 5 [and Figs. 10(b) and 10(e) again], the average

e values from 100 weight-shuffled null-model networks for
the MBM are also depicted for each value of β, represented
by a solid or dashed curves with the same color used to plot
e values for the real data with the same β value. Similar to
the result from our method, in the case of MBM as well, the
e values are systematically larger for the real data than the
weight-shuffled null models for the WTW, and the real data
and null models are similar for the AJD. In other words, the
fact that the WTW harbors more intricate directional correla-
tions than the AJD (discussed in Sec. III C) is cross-checked
with the MBM.

In Figs. 10(c) and 10(f), the global reciprocity r with
β = 0.1 and β = 0.5 for the WTW and β = 0.3 and β = 0.5
for the AJD is plotted in the same way as the relative edge
density e. In the WTW, the value of r for β = 0.1 is lower
than that for β = 0.5 [Fig. 10(c)], and the reciprocity from
our method across different years lies between the two cases
of the MBM. Note that the reciprocity values for the real
WTW data are significantly lower than their weight-shuffled
null models, both in our method and the MBM. In contrast,
the reciprocity values are similar for the real AJD data and
their weight-shuffled null models both in our method and
the MBM. Therefore, this again cross-checks the fact that
the WTW is composed of intrinsically unequal relationships
between trading nations, as discussed in Sec. III C.

2. Local properties of the directed subnetwork of the WTW

In the main text, we have explored the local properties
of the directed subnetwork of the WTW generated from our
method. We take the MBM to perform the same type of anal-
ysis for the WTW as comparison. As depicted in Fig. 6, we
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FIG. 12. Parts of subnetworks of the WTW in the USA-centric viewpoint obtained from the MBM in [(a) and (b)] 1962 and [(d) and (e)]
2014 with the confidence level [(a) and (d)] β = 0.1 and [(b) and (e)] β = 0.5. See the caption of Fig. 11 for details.

choose the years 1962 and 2014 and present the results for the
CHN-centric and USA-centric subnetworks using different
values of confidence level β = 0.1 and 0.5 for the MBM in
Figs. 11 and 12. As expected, smaller numbers of edges are
kept at a more strict criterion (β = 0.1) for a significant link
than at a less strict criterion (β = 0.5).

In Figs. 11(c), 11(f), 12(c), and 12(f), the local properties:
the AR τ and the LR ρ values of CHN and USA are compared
with those in the main text. The label α = 1 stands for the
case of our method using the Shannon entropy, and the labels
β = 0.1 and β = 0.5 indicate the case of the MBM with those
values of confidence level. Notably, τ < 1 for CHN in 1962
from both our method and the MBM with two different β

values, and τ > 1 for CHN in 2014 and for USA in both
1962 and 2004. Accordingly, it is consistently confirmed by
both methods that the CHN becomes an overwhelming trading
partner than the past over a few decades and that the USA has
always been an important trading partner in the world trade.

As the final analysis with respect to the local property,
we show the time series of ρ and τ values for four selected
nations [as shown in Figs. 6(d) and 6(e)] in Fig. 13. The
results from our method as in Fig. 6 are replotted for direct
comparison. The overall temporal trends are similar for the
results from the MBM with different β values. The τ values
are almost always close to unity for USA and CAN, and they
are approaching unity as time goes by for CHN and IND.
For the case when τ � 1, the ρ values are close to 1. IND
has a larger gap between ρ and τ than the cases of the other
nations, and for β = 0.1 there are years when ρ = 0 and
τ > 1 for IND. It represents the non-existence of reciprocal
important trading partners among its incoming friends, which
corresponds to totally asymmetric trading relationships. Such
a striking case is not observable from our method or the
MBM with large β values, so it demonstrates the impor-

tance of trying different methods to analyze this type of
data.

APPENDIX C: UNDERSTANDING THE NULL-MODEL
NETWORKS VIA SYNTHETIC NETWORKS

In the main text, we have used the weight-shuffled ver-
sion of empirical network data as the null-model counterpart.
The weight-shuffled networks are effective at comparing the
original networks’ intrinsic correlation between weights with
the case of completely destroyed version, with the (binary)

FIG. 13. The time series of the LR ρ and AR τ values for se-
lected countries: (a) CHN, (b) USA, (c) IND, and (d) CAN. The open
and filled symbols indicate the result obtained from our method and
the MBM, respectively. The diamond and circle symbols indicate ρ

and τ , respectively. Note that we only show the point with κ→ �= 0.
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FIG. 14. The results for 100 model networks with given degree
and weight distributions in Eqs. (C1) and (C2), respectively. The
shade of each point indicates the values of (a) the average relative
edge density e, (b) the global reciprocity r, (c) the mutuality M, and
(d) the correlation between the LR ρ and the AR τ .

connection structure intact. There can be different levels of
a null model, of course, due to a number of different net-
work parameters. In this Appendix, we take perhaps the most
elementary version of null-model networks: model networks
only characterized by independently distributed degrees on
nodes and weights on edges, to deduce the most basic property
of such distributions in the scheme of our analysis.

For the model networks, the only assumption is based on
the fact that many real-world networks are arguably2 close to
scale-free with heterogeneous weight distributions, with the
power-law form of distribution, i.e.,

Pd (k) ∼ k−γ , (C1)

Pw(w) ∼ w−λ, (C2)

where k and w are the degree and the weight, respectively.
Thus the degree and weight exponents, γ and λ, respectively,
adjust the heterogeneity of the corresponding quantities. We
first construct our model scale-free networks using the con-
figuration model [50] with the number of nodes N = 10 000
and the fixed mean degree 〈k〉 = 2, for various values of the
exponents γ = 2.5, 3.5, 5.5, 9.5 (for different levels of het-
erogeneity), and 100.0 (for the extreme case of homogeneity).
On top of such substrate structures, we assign weights on
each edge independently from the power-law distribution in
Eq. (C2) with λ = 1.2, 2.0, 3.0, 5.0, and 10.0. For different
combinations of these exponents, we take the same proce-
dure of calculating the normalized weights in Eq. (1) and
extract the directed subnetworks with the effective out-degree
in Eq. (4). From the procedure and resultant directed subnet-
works, we show the measures of our main interest: the global
relative edge density e in Eq. (10), the global reciprocity r
in Eq. (11), the mutuality M in Eq. (8), and the correlation
between local reciprocity ρ in Eq. (12) and the attraction ratio

2We invite interested readers to check Refs. [48,49] and judge the
situation themselves.

τ in Eq. (13) for the individual nodes, introduced in the main
text3 in Fig. 14.

The relative edge density [e] in Eq. (10) and the global reci-
procity [r] in Eq. (11), averaged over 100 networks generated
for each of the aforementioned (γ , λ) combinations, become
notably larger for larger values of λ (more homogeneous
weights) up to the point where the values approach unity as
shown in Figs. 14(a) and 14(b). The result is straightforward
to understand as the overall homogeneity in weights just in-
creases the chance for each of the (i, j) and ( j, i) pairs for
the original edges (i, j) to be taken in the directed subnetwork
according to our entropy-based effective out-degree in Eq. (3).
The heterogeneity in degree, by contrast, cannot play any role
here because they just control the topological position of each
edge.

The mutuality M in Eq. (8) and the correlation between
the LR values ρ and the AR values τ in Eqs. (12) and (13),
however, are affected by both γ and λ values, as shown in
Figs. 14(c) and 14(d). As described in the last paragraph of
Sec. III E, the mutuality stronglyanchor depends on the un-
derlying network structure (assortativity, for instance) and of
course on the weight distribution as in the case of the relative
edge density and the global reciprocity. The overall trend of
mutuality shown in Fig. 14(c) indicates that more homoge-
neous degree distributions and more heterogeneous weight
distributions (the lower right part of the plot) induce larger
values of mutuality. The effect of weight distribution is under-
standable by first noting that the pair of normalized weights
w̃i j and w̃ ji stem from the same original weight wi j , so with-
out the nontrivial correlation between s(i) and s( j) it is likely
that w̃i j and w̃ ji are positively correlated in general. The level
of the correlation is then determined by the overall variance
in the weight distribution, and larger “background” variance
of the weights (corresponding to small values of λ) makes the
baseline correlation between w̃i j and w̃ ji more prominent. The
heterogeneity in degree (smaller γ values) seems to weaken
the baseline correlation between w̃i j = wi j/s(i) and w̃ ji =
wi j/s( j) = w̃i j s(i)/s( j) by imposing heterogeneous values of
s(i) and s( j). In the most extreme of the degree heterogeneity
such as γ < 3, the negative degree-degree correlation causes
the anticorrelation between s(i) and s( j) [51], so the mutuality
can actually be negative if the effect of such anticorrelation
dominates [most notably, when the weight distribution is
homogeneous—the upper left part of Fig. 14(c)].

The correlation between LR values ρ and AR values τ

shows a more intricate behavior than the others, as depicted
in Fig. 14(d). One should first note that the correlation is de-
termined by the correlation between the number of reciprocal
edges emanating from a node in Eq. (12) and the effective
in-degree value of the node in Eq. (13), in the directed sub-
network. Large values of both γ and λ (homogeneous weight
distributions on top of networks with homogeneous degree
distributions—the upper right part of the plot) tend to con-
serve most of the original edges bidirectionally as in the case
of AJD. In that case, there is not enough variability in the
values of ρ and τ , both of which approach unity for most of

3They correspond to Figs. 5, 6(c), and 8 for the empirical data and
their weight-shuffled versions.
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FIG. 15. Scatter plots representing the mutuality M and the reci-
procity r in (a) the WTW and (b) the AJD, where each point
corresponds to (M, r) of each network.

the nodes, so the correlation itself becomes meaningless. As
the values of γ are decreased, however, the hub nodes with
large values of degree dominate the system, and their effective
in-degree and reciprocity start to increase simultaneously—
they are positively correlated because large values of effective
in-degree naturally increase the candidate for reciprocal edges
[see Eqs. (12) and (13)]. Similarly, the decreased value of λ

(heterogeneous weight distributions) increases the correlation
by providing meaningful amount of variability in the values
of ρ and τ for different nodes, based on the same argument as
in the small γ values—large effective in-degree values mean
large numbers of candidates for reciprocal edges.

Our scale-free model networks with uncorrelated power-
law distributed weights admittedly lack many aspects of
real-world networks, but we hereby provide the corresponding
results for various measures presented in the main text as
a guideline providing the baseline properties in unstructured
networks. There can be different types of null-model networks
and further analyses based on them, of course, and we believe
that the results we present in this Appendix are the first step to
figure out the landscape of the quantities of interest in the con-
text of networks characterized by heavy-tailed distributions.

APPENDIX D: INTRICATE RELATION BETWEEN
MUTUALITY AND RECIPROCITY

Both the mutuality M and the reciprocity r introduced
in the main text are the measures to evaluate the mutual
importance for a given network by utilizing the normalized
weights as a starting point. However, they capture the con-
cept of mutual importance in rather different perspectives.
For an illustrative example for demonstration, let us consider
a star network composed of N nodes with (N − 1) edges
that connect the central node c to all of the other peripheral
nodes. If all of the weights on the (N − 1) edges are the
same, w̃ci = 1/(N − 1) and w̃ic = 1 for all of the periph-
eral nodes i. In this case, M = −1 because the normalized
weights in the opposite direction are always anticorrelated
(or completely disassortative [8,9], as they are equivalent
here), but r = 1 because the subnetwork retains all of the
original edges bidirectionally due to the completely uniform
weight values. If we look closely into the situation, we
can see that the mutuality solely takes the bilateral relation,
while the reciprocity contains the information on the overall
weight distributions around each node used to extract the
subnetwork.

Therefore, although the mutuality may look intuitive and
convenient to use (we need not calculate the entropy mea-
sures and others), it is not able to capture a more nuanced
concept of mutual dependency: if we take the star network
in the previous paragraph again, even if the central node is
dominant in the structural aspect (captured by M = −1), all
of the peripheral nodes are equally important to the central
node as well (captured by r = 1). Of course, there are cases
where the former is more relevant depending on the context,
so we claim to use both measures to fully characterize a given
networked system with weights. We show both measures for
our data in Fig. 15, and one can observe that the relation-
ship between two measures is not simple with quite scattered
points.
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