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Unifying framework for information processing in stochastically driven dynamical systems
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A dynamical system is an information processing apparatus that encodes input streams from the external
environment to its state and processes them through state transitions. The information processing capacity
(IPC) is an excellent tool that comprehensively evaluates these processed inputs, providing details of unknown
information processing in black box systems; however, this measure can be applied only to time-invariant
systems. This paper extends the applicable range to time-variant systems and further reveals that the IPC is
equivalent to coefficients of polynomial chaos (PC) expansion in more general dynamical systems. To achieve
this objective, we tackle three issues. First, we establish a connection between the IPC for time-invariant systems
and PC expansion, which is a type of polynomial expansion using orthogonal functions of input history as bases.
We prove that the IPC corresponds to the squared norm of the coefficient vector of the basis in the PC expansion.
Second, we show that an input following an arbitrary distribution can be used for the IPC, removing previous
restrictions to specific input distributions. Third, we extend the conventional orthogonal bases to functions of both
time and input history and propose the IPC for time-variant systems. To show the significance of our approach,
we demonstrate that our measure can reveal information representations in not only machine learning networks
but also a real, cultured neural network. Our generalized measure paves the way for unveiling the information
processing capabilities of a wide variety of physical dynamics which have been left behind in nature.
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I. INTRODUCTION

Dynamical systems driven by external stimuli can be uni-
versally found in nature, especially in biology. The dynamical
aspects of information processing found in biology have long
been a source of inspiration for researchers who wish to
create a high-speed, energy efficient, and robust real-time
information processing device, which resolves a von Neu-
mann bottleneck [1]. Reservoir computing (RC) [2–5] is a
bioinspired information processing paradigm that capitalizes
on this dynamical perspective and has been widely utilized
in various fields in recent years [6–13]. It consists of a type
of learning framework for recurrent neural networks (RNNs),
whose intermediate layer is referred to as the reservoir. Let the
number of nodes in a reservoir and its external input be N and
ut , respectively, and the ith (i = 1, 2, . . . , N ) node state xi,t at
the t th time step updates as follows:

xi,t+1 = f

(
N∑

j=1

wi jx j,t + win,iut

)
, (1)

where f is the activation function, and wi j and win,i are the
internal and input weights, respectively. To emulate the target
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output zt , we use linear regression to obtain an estimate of zt ,
z̃t , as follows:

z̃t = w̃�
out · xt , (2)

w̃out = arg min
wout

T∑
t=1

(
zt − w�

out · xt
)2

, (3)

where xt = [x1,t · · · xN,t ]� and wout and w̃out ∈ RN are the
weight and solution vector for the target output, respectively.
zt is a function of certain variables, which are expected
to include the delayed inputs {ut−1, ut−2, . . .}. If the state
also depends on the input history, the linear combination of
states emulates the target well. Therefore this learning method
places a constraint on xt . RC was proposed by integrating an
echo state network (ESN) and a liquid state machine (LSM),
which were independently developed by Jaeger [2] and Maass
[3], respectively. The prerequisites for xt differ between the
ESN and the LSM.

The ESN is often represented by using a hyperbolic tangent
activation function and fixed internal weights, as in Eq. (1).
It requires xt to be an echo function, which is a function of
only the past input time series ut = {ut−s}t

s=1. This dynam-
ical property is referred to as the echo state property (ESP)
[14–16]. We can examine this feature by giving the same input
time series to two systems with different initial values and by
checking whether the two states coincide after a sufficiently
long time. If the input is noise, the resultant phenomenon
is called noise-induced synchronization [17,18]. In the case
where the input is generated from a deterministic system, the
phenomenon, wherein the state is synchronized with the input,
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is called generalized synchronization [19,20]. Thus the ESP
is related to the synchronization phenomenon of nonlinear
dynamical systems.

In addition, the LSM uses a spiking neuron model as
an activation function and its internal weights are updated
by a synaptic plasticity rule (e.g., a leaky integrate-and-fire
model with short-term plasticity). It imposes a prerequisite on
the power series expansion of states. If the system is time-
invariant—the state does not depend on time—and retains
decaying inputs, its state can be approximated by the Volterra
series [21], which is a series expansion with nonorthogonal
bases. Accordingly, the Volterra series operator [22] can be
expanded in a nonorthogonal power series basis as follows:

xt =
∞∑

n=1

∞∏
s1=1

∞∏
s2=s1

· · ·
∞∏

sn=sn−1

hs1···sn ut−s1 · · · ut−sn ,

where hs1···sn ∈ RN is the nth Volterra kernel. Such a memory
decay feature is called the fading memory property (FMP)
[3,23,24] and has been considered a prerequisite for LSMs.

The above properties suggest that xt is limited to states
that are independent of time and hold past input time series.
As long as the reservoir satisfies these prerequisites, vari-
ous activation functions can be used for the reservoir node.
Furthermore, as the reservoir is not limited to a computer-
generated system in Eq. (1), it can be replaced with a real
physical system—for example, quantum systems [25–27],
analog circuits [6], opto-electronic architectures [28], carbon
nanotubes [29], soft robotic systems [30–32], and other dy-
namical systems [26,33–37]. A reservoir using such a physical
system is called a physical reservoir [38] and its scheme is
termed physical reservoir computing. These schemes leverage
not only RNNs but also physical systems as computational
resources for machine learning.

In the literature, a measure called information process-
ing capacity (IPC) [39] has been proposed to quantify the
information processing capability of dynamical systems that
have ESPs or FMPs. The IPC measures the type and quan-
tity of input history that is handled and held in the system
by decomposing the system state into an orthogonal basis
[40–42]. Using the N-dimensional state xt ∈ RN and the one-
dimensional stochastic input ζt ∈ R at the t th (t ∈ Z) time
step, the input-driven dynamical system (IDS) determines the
next state, as shown below:

xt+1 = f (xt , ζt ), (4)

where f maps RN × R → RN . According to the ESP and
FMP, xt is a function of input history {ζt−1, ζt−2, . . .}. If the
system holds delayed, processed inputs (i.e., an expanded
state xt consists of polynomials such as ζt−1, ζ 2

t−1, and
ζt−1ζt−2), we should be able to emulate the polynomials by
the linear regression of xt . The IPCs evaluate the emulation
abilities of the multivariate polynomials of {ζt−1, ζt−2, . . .},
which are orthogonal from each other to avoid overlapping
abilities.

The multivariate polynomial is obtained from a product
of the univariate polynomials. Let the nth-order univariate
orthogonal polynomial of ζ be Fn(ζ ), which is determined
by the distribution of ζ—for example, a Legendre polyno-
mial of a uniform random variable and a Hermite polynomial

of a Gaussian random variable are proposed [39]. Using
the univariate polynomials, the ith target polynomial z(i)

t (i =
1, 2, . . .) is represented by the product of the n(i)

s -th order
univariate polynomials of the random variable delayed by s
steps, ζt−s,

z(i)
t =

∞∏
s=1

Fn(i)
s

(ζt−s), (5)

where i denotes the index for an infinite family of sets of
degrees and delays {{n(i)

s , s}}∞s=1. As shown in Table I, the
infinite set is truncated to numerically compute the IPCs us-
ing a maximum delay smax,di for each degree of z(i)

t , di =∑
s n(i)

s (> 0). The example set uses the Legendre polynomials
with {{di, smax,di}} = {{1, 3}, {2, 2}}.

From Eqs. (2) and (3), we obtain an estimate of z(i)
t , z̃(i)

t .
When zt is an orthogonal function of the independent variables
{ζt−s}∞s=1, the IPC is defined using a normalized emulation
error of the reservoir, as follows:

C(X , z(i) ) = 1 − minw

∑T
t=1

(
z(i)

t − w�xt
)2

∑T
t=1

(
z(i)

t

)2

= z(i)�XX+z(i)

z(i)�z(i)
, (6)

where w ∈ RN , X = [x1 · · · xT ]� ∈ RT ×N , and z(i) =
[z(i)

1 · · · z(i)
T ]� ∈ RT are the weight vector, state, and target

output, respectively, while X+ ∈ RN×T is the Moore-Penrose
inverse of X . Therefore the IPC is a measure used to evaluate
the input information held by the state with the emulation
ability of the orthogonal basis.

In this connection, there is a theory about a deterministic
dynamical system with a stochastic input ζt in a different
context. The system can be described as an operator of
{ζt−s}∞s=1 according to the polynomial chaos expansion [43],
which is a series expansion using the target outputs of IPC
as the bases—i.e., multivariate orthogonal polynomials of the
random variables, z(i)

t , described in Eq. (5). The polynomial
chaos expansion has been frequently utilized to determine the
evolution of uncertainty in a dynamical system when there
is probabilistic uncertainty in the system parameters [44,45].
These multivariate polynomials are referred to as polynomial
chaoses (PCs), and the Hilbert space spanned by PCs is called
homogeneous chaos [43,60] expressed as

xt =
∞∑

i=1

ciz
(i)
t , (7)

where ci ∈ RN is the ith coefficient vector.
The PCs are obtained from the univariate polynomials and

the Cameron-Martin theorem. The univariate polynomials are
determined such that they are orthogonal. If a weighting func-
tion w(ζt ) specific to ζt —which is the same as a probability
density function of ζt for some polynomials—exists, the en-
semble average of the inner product in the space

〈Fn(ζt )Fm(ζt )〉 =
∑
ζt

w(ζt )Fn(ζt )Fm(ζt )(n, m = 0, 1, . . .)

(8)
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TABLE I. An example set of orthogonal polynomials, which is truncated with {{d, smax,d}} = {{1, 3}, {2, 2}}. Note that Fn(ζ ) denotes the
nth-order Legendre polynomial [F0(ζ ) = 1, F1(ζ ) = ζ , and F2(ζ ) = (3ζ 2 − 1)/2].

Family of sets of degrees and delays Degree Maximum delay Polynomial
i {{n(i)

s , s}} di = ∑
s n(i)

s smax,di z(i)
t = ∏

s Fn(i)
s

(ζt−s )

1 {{1, 1}, {0, 2}, {0, 3}} 1 3 ζt−1

2 {{0, 1}, {1, 2}, {0, 3}} 1 3 ζt−2

3 {{0, 1}, {0, 2}, {1, 3}} 1 3 ζt−3

4 {{2, 1}, {0, 1}} 2 2
(
3ζ 2

t−1 − 1
)
/2

5 {{0, 1}, {2, 2}} 2 2
(
3ζ 2

t−2 − 1
)
/2

6 {{1, 1}, {1, 2}} 2 2 ζt−1ζt−2

satisfies the following relation:

〈Fn(ζt )Fm(ζt )〉 =
{〈Fn(ζt )Fn(ζt )〉 (n = m)

0 (n �= m) (9)

in the case of discrete input. If ζt is continuous, Eq. (8) is re-
placed by 〈Fn(ζt )Fm(ζt )〉 = ∫

S w(ζt )Fn(ζt )Fm(ζt )dζt , where
S denotes the support of ζt . According to the Cameron-Martin
theorem, the multivariate orthogonal polynomial is expected
to be the product of univariate orthogonal polynomials as in
Eq. (5) [46–48]. Let ζt = {ζt−1, ζt−2, . . .} and represent the
ith PC as z(i)

t = z(i)(ζt ). In the same manner as the univariate
case, if a weighting function specific to ζt , W (ζt ), exists, the
ensemble average of the inner product in the space

〈z(i)(ζt )z
( j)(ζt )〉 =

∑
ζt

W (ζt )z
(i)(ζt )z

( j)(ζt ) (10)

satisfies the orthogonality relations

〈z(i)(ζt )z
( j)(ζt )〉 =

{〈z(i)(ζt )z
(i)(ζt )〉 (i = j)

0 (i �= j)
(11)

in the case of discrete input of ζt . If ζt is con-
tinuous, Eq. (10) is replaced by 〈z(i)(ζt )z

( j)(ζt )〉 =∫
S×S×··· W (ζt )z

(i)(ζt )z
( j)(ζt )dζt−1dζt−2 · · · , where S denotes

the support of ζt .
The PC expansion can use various combinations of input

and polynomials. Generalized polynomial chaos (gPC) [44]
supplies eight combinations of input distribution and uni-
variate polynomial included in the Askey scheme—e.g., the
Hermite polynomial for Gaussian distribution, the Legendre
polynomial for uniform distribution, and the Charlier poly-
nomial for Poisson distribution are available as Fn(ζ ) (see
Appendix A for details). We distinguish polynomial chaoses
by the combination of the univariate polynomial name plus

TABLE II. Generalized polynomial chaoses.

Support of Random variable Polynomial chaos
random variable ζt z(i)

t

(−∞, ∞) Gaussian Hermite chaos
[0, ∞) Gamma Laguerre chaos
[a, b] Beta Jacobi chaos
[a, b] Uniform Legendre chaos
{0, 1, . . .} Poisson Charlier chaos
{0, 1, . . . , N} Binomial Krawtchouk chaos
{0, 1, . . .} Negative binomial Meixner chaos
{0, 1, . . . , N} Hypergeometric Hahn chaos

chaos—e.g., Hermite, Legendre, and Charlier chaoses. The
gPCs are summarized in Table II. Furthermore, arbitrary poly-
nomial chaos (aPC) [45] denotes the PC for random variables
following an arbitrary probability distribution. We can com-
pute univariate polynomials by applying the Gram-Schmidt
orthogonalization procedure. The nth Gram-Schmidt polyno-
mial Fn(ζt ) is obtained from the following equations:

Fn(ζt ) = ζ n
t −

n−1∑
i=0

c(n)
i Fi(ζt ), (12)

c(n)
i = 〈Fi(ζt )ζ n

t 〉
〈Fi(ζt )Fi(ζt )〉 , (13)

where F0(ζ ) = 1; Fn(ζ ) (n = 0, 1, . . .) satisfies Eq. (9). Us-
ing these polynomials and Eq. (5), we can calculate the
polynomial chaos for an arbitrary input distribution, called
Gram-Schmidt polynomial chaos, which is expected to satisfy
the orthogonality in Eq. (11).

As previously described, the IPC and PC expansion have
a number of similarities. Both schemes use the IDS with
stochastic inputs and multivariate orthogonal polynomials,
whereas the types of input distributions and orthogonal poly-
nomials are not as limited in the IPC as they are in the PC. One
objective of this paper is to establish a connection between
the IPC and the PC-expanded IDS. Thus we first aim to reveal
this relationship by deriving the IPC from the PC-expanded
state. Second, to enlarge the applicable range of the IPC, we
extend this relationship for time-variant systems. So far, the
IPC has assumed that the system is a function of only the input
time series. However, a solution of the dynamical system in
Eq. (4) is a function of the input time series and time with
a given initial state. By introducing time-dependent orthogo-
nal bases to PCs, we aim to derive the IPC for time-variant
systems and illustrate that input information processing is
performed by products of a time-varying basis and PC. Fi-
nally, to demonstrate the potential of our approach, we apply
our theory to three cases—a model frequently used as a bench-
mark task in the context of temporal machine learning, an
artificial neural network, and a real, cultured neural network,
which is a typical time-dependent physical reservoir—to re-
veal their information processing performed in the systems.

II. THEORETICAL FRAMEWORK

A. The equivalence of the IPC and coefficient in PC expansion

To show the relationship between the IPC and PC expan-
sion, we derive the IPC from the state expanded in terms of
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PCs. First, to prepare for the derivation, we define the inner
product and norm for x = [x1 · · · xM]� and y = [y1 · · · yM]�
as follows:

xiyi =
M∑

i=1

xiyi,

||x|| =
√

xixi.

Using this inner product, we assume the ergodicity in the ho-
mogeneous chaos—i.e., the inner product of the time average

z(i)(ζt )z( j)(ζt ) =
T∑

t=1

z(i)(ζt )z
( j)(ζt ) (14)

and the ensemble average in Eq. (10) are equivalent as fol-
lows: 〈

z(i)(ζt )z
( j)(ζt )

〉 = z(i)(ζt )z( j)(ζt ). (15)

This assumption allows the PCs in the time direction to be
orthogonal bases in the homogeneous chaos.

Next, we transform the IPC into a simpler form using sin-
gular value decomposition (SVD), which reduces the N-state
time series to r(�N )-normalized, linearly independent time-
series vectors p j = [p j1 · · · p jT ]� ∈ RT ( j = 1, . . . , r)—i.e.,
p jt pkt = 0 ( j �= k) and ||p j || = 1. SVD breaks down state
X ∈ RT ×N into

X = P�Q�, (16)

where P = [p1 p2 · · · pr] ∈ RT ×r and Q ∈ RN×r are matrices
whose column vectors are left singular vectors p j and right
singular vectors, respectively; � ∈ Rr×r is a diagonal matrix
containing the singular values; and r(� N < T ) is the matrix
rank of X�X . Note that, to remove a capacity that originated
from a constant term, we subtracted time average

∑T
t=1 xt/T

from xt before performing SVD. According to the decom-
posed state in Eq. (16), X+ = Q�−1P� and we can rewrite
Eq. (6) as

C(X , z(i) ) = z(i)�

||z(i)||PP� z(i)

||z(i)||
= ||P�φ(i)||2, (17)

where φ(i) = [φ(i)
1 · · ·φ(i)

T ]� = z(i)/||z(i)|| ∈ RT is the normal-
ized output (||φ(i)|| = 1).

Furthermore, assuming that xt can be expanded with the
normalized PCs, the state xt in Eq. (7) is described as

xt =
∞∑

i=1

φ
(i)
t ĉi,

where ĉi ∈ RN is the coefficient vector of the ith normalized
basis φ

(i)
t . Therefore the state matrix X is described as

X =
∞∑

i=1

φ(i) · ĉ�
i = lim

M→∞
�Ĉ

�
, (18)

where � = [φ(1) · · ·φ(M )] ∈ RT ×M and Ĉ = [ĉ1 · · · ĉM] ∈
RN×M are the basis matrix and coefficient matrix, respectively.
Comparing Eqs. (16) and (18), we obtain the matrix

P = lim
M→∞

���, (19)

where � = [λ1 · · · λM] = �−1Q�Ĉ ∈ Rr×M is a constant ma-
trix, and λi ∈ Rr . With Eqs. (17) and (19), the IPC becomes

C(X , z(i) ) = ||λi||2. (20)

Let the normalized, linearly independent state vector at the
t th step be x̂t ∈ Rr , and P = [x̂1 · · · x̂T ]�. From Eq. (19), P =∑∞

i=1 φ(i) · λ�
i , and thus x̂t is written as

x̂t =
∞∑

i=1

φ
(i)
t λi. (21)

According to Eq. (21), Eq. (20) illustrates that the computa-
tion of the ith IPC is equivalent to expanding the normalized,
linearly independent state x̂t with the PCs {φ(i)

t } and calcu-
lating the squared norm of the coefficient vector of the ith
normalized PC λi.

In addition, the IPC has an important property of summa-
tion. The total capacity is described as

Ctot =
∞∑

i=1

C(X , z(i) ). (22)

Using the vector notation P = [p1 · · · pr], Eq. (17) is rewritten
as

C(X , z(i) ) =
r∑

j=1

(p�
j φ(i) )2. (23)

From Eq. (23), Eq. (22) becomes

Ctot =
∞∑

i=1

r∑
j=1

(p�
j φ(i) )2

= lim
M→∞

r∑
j=1

||�� p j ||2. (24)

Equation (24) yields the sum of the squared norm of p j ( j =
1, . . . , r) projected into an infinite-dimensional space that
contains the orthogonal vectors φ(i) (i = 1, 2, . . .); therefore,
if every p j is a function of only input history—i.e.,

p j = p j (ζt−1, ζt−2, . . .) ( j = 1, . . . , r),

then limM→∞ ||�� p j || = 1, and Eq. (24) becomes

Ctot = r. (25)

We call this property a completeness property. Under the
assumption that the state is a function of only past input
history, IPCs hold the completeness property in information
processing.

To clearly demonstrate these relations, we show an exam-
ple of IPC using the Legendre chaoses in Table I. If an input
ζt follows the uniform distribution in the range of [−1, 1] and
produces the solution of a state equation of xt = ζt−1 + ζ 2

t−2
whose rank is r = 1, the expanded state x̄t is represented as
follows:

x̄t = ζt−1 + 2

3

3ζ 2
t−2 − 1

2

= z(1)
t + 2

3
z(5)

t

=
√

T

3
φ

(1)
t + 2

3

√
T

5
φ

(5)
t ,
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FIG. 1. The classification of IDSs with stochastic inputs based
on two conditions: the finiteness of the second moment in Eq. (27)
and the time-invariance in Eq. (28). Let ζt = {ζt−s}∞

s=1, and the ho-
mogeneous chaos and heterogeneous chaos are the spaces spanned
by z(i)

t = z(i)(ζt ) and ξ(k)
t = ξ(k)(t, ζt ), respectively.

where φ
(i)
t = z(i)

t /||z(i)||, ||z(1)|| = √
T/3, and ||z(5)|| =√

T/5, and a constant term
∑T

t=1 xt/T = 1/3 is subtracted
from xt before expansion. Let x̄ = [x̄1 · · · x̄T ]�, and
||x̄|| = √

19T/45. Dividing x̄t by ||x̄||, we obtain the
normalized state x̂t and capacities as follows:

x̂t = x̄t

||x|| =
√

15

19
φ

(1)
t +

√
4

19
φ

(5)
t ,

C(X , z(i) ) =

⎧⎪⎨
⎪⎩

15
19 (i = 1)
4
19 (i = 5)

0 (i = 2, 3, 4, 6)

.

Accordingly, Ctot = 1, which is equivalent to the rank of
r = 1.

Under the ergodicity condition, the IPC is equivalent to the
square norm of the coefficient vector of the PC. These results
provide a new perspective that the coefficient of PC expansion
represents the amount of processed input.

B. Extending the completeness in information processing
to a time-variant domain

The information processing completeness shown so far
holds only if the system is a function of a past input series.
Here, using the derived relationship between the IPC and PC
expansion, we extend the application range of IPC to time-
varying IDSs.

First of all, we must introduce a classification of PC-
expanded IDSs based on the conditions imposed on the
solution of Eq. (4). From the connection between the IPC and
PC, prerequisites for PC expansion are similarly imposed on
the time series to compute the IPC. The PC expansion extracts
a nondiverging process xt in the 1 � t � T range from the
original sequence, which is obtained according to Eq. (4). By
recursively using Eq. (4) from t = 0, the solution is clearly
determined from the time t , input sequence ζt = {ζt−s}t

s=1,
and initial state x0, as follows:

xt = g(t, ζt ; x0), (26)

where g is determined by f in Eq. (4). However, the state
is described as an operator of only {ζt−s}, showing that the
PC expansion assumes that xt is time-invariant. Therefore, as
shown in Fig. 1, the PC expansion imposes two conditions on
the time series. First, every ith (i = 1, . . . , N ) state time series

xi,t (t = 1, . . . , T ) must be a second-order process. We say xi,t

to be the second-order process if the second moment of xi,t is
finite:

1

T

T∑
t=1

(xi,t − x̄i )
2 < ∞ (i = 1, . . . , N ), (27)

where xi,t is the ith element of xt and x̄i = ∑T
t=1 xi,t/T .

Finiteness is a prerequisite for expansion convergence in the
sense of L2 due to the Cameron-Martin theorem [46–48],
which guarantees that, as shown in Eq. (5), the multivariate
orthogonal polynomial is obtained by the product of univariate
orthogonal polynomials. Second, the solution g should be
time-invariant. The extracted time series must be described
only with the input time series ζt . Thus xt = g(t, ζt ; x0) is
time-invariant if

g(t − τ, ζt−τ ) = g(t, ζt−τ ) for τ ∈ Z, (28)

where τ � t and g is independent of x0. Therefore the PC
expansion assumes the nondivergence and time-invariance of
the system.

On the other hand, if the state depends not only on input
history but also on time, the homogeneous chaos is no longer
a complete orthogonal system. We say xt is time-variant if the
state depends on both time and input history as in Eq. (26)—
i.e., xt = g(t, ζt ; x0) (t � τ ), which satisfies

g(t − τ, ζt−τ ; x0) �= g(t, ζt−τ ; x0) for τ ∈ Z (29)

and

g(t − τ, ζt−τ ; x0) �= g(t − τ, ζt ; x0) for τ ∈ Z. (30)

To expand the time-variant state with orthogonal bases, we
introduce a time-dependent polynomial chaos (TDPC), which
is an orthogonal polynomial dependent on both input history
and time. Let the ith PC (the degree di = ∑

s n(i)
s � 0) and

the jth time-dependent basis be z(i)
t and ψ

( j)
t , respectively,

and assume that both the types of bases satisfy the following
orthogonality of time average:

z(i)
t z( j)

t =
{

z(i)
t z(i)

t (i = j)
0 (i �= j)

, (31)

ψ
(i)
t ψ

( j)
t =

{
ψ

(i)
t ψ

(i)
t (i = j)

0 (i �= j)
, (32)

z(i)
t ψ

( j)
t = 0. (33)

For example, the Fourier series expansion uses
an orthogonal set of time-dependent bases ψ

( j)
t ∈

{1, cos �t, sin �t, cos 2�t, sin 2�t, . . . , cos T
2 �t, sin T

2 �t}
(� = 2π/T ), which are expected to satisfy Eqs. (31)–(33)
with an arbitrary type of PCs because z(i)

t and ψ
( j)
t are

independent of each other, except with the combination
of constant terms z(1)

t = 1 and ψ
(1)
t = 1. By removing this

combination, the time-variant state xt is expanded with the
bases as follows:

xt =
∑
i, j

{i, j} �= {1, 1}

ci j (x0)z(i)
t ψ

( j)
t

=
∞∑

k=1

γk (x0)ξ (k)
t , (34)
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TABLE III. An example set of TDPCs {z(i)
t ψ

( j)
t }, which has

been truncated with {{d, smax,d}} = {{0, 1}, {{1, 1}, {2, 1}} and ψ
( j)
t ∈

{1, cos �t, sin �t}. Note that Fn(ζ ) denotes the nth-order Legendre
polynomial [F0(ζ ) = 1, F1(ζ ) = ζ , and F2(ζ ) = (3ζ 2 − 1)/2].

Family of sets of Polynomial Time-dependent
degree and delay chaos basis

k {{n(i)
s , s}} z(i)

t = ∏
s Fn(i)

s
(ζt−s ) ψ

( j)
t

1 {{1, 1}} ζt−1 1
2 {{2, 1}} (

3ζ 2
t−1 − 1

)
/2 1

3 {{0, 1}} 1 cos �t
4 {{1, 1}} ζt−1 cos �t
5 {{2, 1}} (

3ζ 2
t−1 − 1

)
/2 cos �t

6 {{0, 1}} 1 sin �t
7 {{1, 1}} ζt−1 sin �t
8 {{2, 1}} (

3ζ 2
t−1 − 1

)
/2 sin �t

where ci j (x0), γk (x0) ∈ RN are the coefficient vectors de-
pending on x0, and ξ

(k)
t denotes the kth TDPC, as long

as there is a one-to-one correspondence between z(i)
t ψ

( j)
t

and ξ
(k)
t . Table III shows an example of TDPCs in which

families of sets of degrees and delays are prepared from
{{di, smax,di}} = {{0, 1}, {1, 1}, {2, 1}} and time-varying bases
are ψ

( j)
t ∈ {1, cos �t, sin �t}. The TDPCs satisfy the follow-

ing orthogonality:

ξ
(i)
t ξ

( j)
t =

{
ξ

(i)
t ξ

(i)
t (i = j)

0 (i �= j)
. (35)

In this paper, we call the space spanned by the TDPCs as
heterogeneous chaos.

The IPCs of xt in the heterogeneous chaos can be estimated
by replacing the target output z(i)

t in Eq. (6) with the TDPC
ξ

(i)
t . As with the IPC of a time-invariant system, the capac-

ity of a time-variant system is equivalent to expanding the
r-normalized, linearly independent state time series x̂t ∈ Rr

with normalized TDPCs and calculating the squared norm of
the coefficient vector. If we let the ith TDPC vector and nor-
malized TDPC be ξ(i) = [ξ (i)

1 · · · ξ (i)
T ]� and η

(i)
t = ξ

(i)
t /||ξ(i)||,

respectively, we can describe the normalized, linearly inde-
pendent state and the capacity as

x̂t =
∞∑

i=1

η
(i)
t λi, (36)

C(X , ξ(i) ) = ||λi||2. (37)

We call the capacity with the target TDPCs in Eq. (37) tempo-
ral information processing capacity (TIPC). As with the total
IPC in Eq. (24), the total TIPC is described by replacing the
PC z(i) with the TDPC ξ(i) as follows:

Ctot =
∞∑

i=1

r∑
j=1

(
p�

j η(i)
)2

= lim
M→∞

r∑
j=1

||H� p j ||2, (38)

where η(i) = [η(i)
1 · · · η(i)

T ]� ∈ RT and H = [η(1) · · · η(M )] ∈
RT ×M . Equation (38) yields the sum of the squared norm of
p j ( j = 1, . . . , r) projected into an infinite-dimensional space
that contains the orthogonal vectors η(i) (i = 1, 2, . . .). There-
fore, if every p j is a function of time and input history, i.e.,

p j = p j (t, ζt−1, ζt−2, . . .) ( j = 1, . . . , r), (39)

then limM→∞ ||H� p j || = 1, and Eq. (38) becomes

Ctot = r, (40)

indicating that the TIPCs provide complete information pro-
cessing even if the system is time-variant.

The TIPC comprehensively examines information process-
ing in a wide range of input-driven, time-variant dynamical
systems because only two assumptions are imposed on the
bases and the dynamical system. In the above derivation of
Eq. (40), the ergodicity condition is imposed on the polyno-
mial chaoses, which is expected to be satisfied if the time
series are long enough. The other limitation is that the state
is a function of time and input history, as in Eq. (39). If the
state includes other independent variables, the completeness
property will break down. These conditions are expected to be
satisfied by various input-driven time-variant systems running
for a long time whether the system is stationary (e.g., a limit
cycle with input) or nonstationary (e.g., a drifting state with
input). Therefore the extension of the IPC to the time-variant
domain can reveal aspects of the information processing per-
formed by various time-variant systems.

C. Demonstration of comprehensive computational capabilities
using a general input distribution

To illustrate that various orthogonal polynomials can
be used as target outputs for the IPC, we examine
the total capacities for eight target gPCs and four target aPCs
using a one-dimensional ESN. The ESN is described as

xt+1 = tanh(ρxt + ut ), (41)

ut = μ + σζt , (42)

where xt , ut , and ζt are the state, input, and random variable
at the t th step, respectively, while ρ, μ, and σ are the internal
weight, mean of input, and input intensity, respectively. Based
on Fig. 1, we chose ρ = 0.95 and μ = 0 to treat the bounded
and time-invariant state.

To visualize the capacities, we define the nth-order IPC de-
composition as the sum of the nth-order capacities as follows:

Ctot,n =
∑

{i|di=n}
C(X , z(i) ), (43)

where di = ∑
s n(i)

s and denotes the degree of the ith PC z(i).
Figure 2(a) shows the IPC decomposition with eight types
of gPCs in the Askey scheme. The selected gPCs are the
Hermite, Laguerre, Jacobi, Legendre, Charlier, Krawtchouk,
Meixner, and Hahn chaoses. The total IPCs are all 1, suggest-
ing that the gPCs form complete orthogonal systems with any
combination of distributions and orthogonal polynomials and
thus can be used for the IPC.

043135-6



UNIFYING FRAMEWORK FOR INFORMATION PROCESSING … PHYSICAL REVIEW RESEARCH 3, 043135 (2021)

FIG. 2. Demonstration of theories. (a) IPC decomposition of a one-dimensional ESN with eight types of target generalized and four
types of target arbitrary PCs of a random variable ζt : Hermite chaos with Gaussian random variables, Laguerre chaos with gamma random
variables, Jacobi chaos with beta random variables, Legendre chaos with uniform random variables, Charlier chaos with Poisson random
variables, Krawtchouk chaos with binomial random variables, Meixner chaos with negative binomial random variables, Hahn chaos with
hypergeometric random variables, and Gram-Schmidt chaos with mixed-Gauss, Pareto, Zipf, and Bernoulli random variables. The nth-order
capacities (n = 1, . . . , 8) in the total capacity Ctot are summarized as in Eq. (43). The variable p represents the probability distribution of ζt .
(b) The TIPC of the limit cycle system in Eqs. (44)–(46). First, the phase plane of xt and yt in the system (upper panel): the systems without input
(μ = σ = 0; red line) and with input (μ = 0.2, σ = 1.5; black line) are shown. Second, the first-order capacities of P1(ζt−s1 ) cos(ωτ t + α1,s1 )
with the delay step s1 (middle panel). Third, the second-order capacities relative to delay steps s1 and s2 (lower panel). The dots of the
diagonal (s1 = s2) and upper left triangle (s1 < s2) show the capacities of P2(ζt−s1 ) cos(ωτ t + α2,s1 ) and P1(ζt−s1 )P1(ζt−s2 ) cos(ωτ t + α2,s1,s2 ),
respectively. In the white area, the TIPC calculation has been omitted.

Furthermore, to demonstrate that aPCs can also be used
as the target outputs for the IPC, we estimated the IPCs
when the ESN was given four types of inputs that followed
a mixed Gaussian, Pareto, Zipf, or Bernoulli distribution, all
of which do not follow the Askey scheme. To investigate the
IPC of the ESN, we built Gram-Schmidt chaoses. As shown
in Fig. 2(a), the total IPCs were 1, indicating that the aPCs
formed complete orthogonal systems with the input distribu-
tions and Gram-Schmidt chaoses and can be used for the IPC.

These results suggest that both the gPC and aPC are suit-
able as target outputs of the IPC. The extended IPCs provided
complete computational capabilities of systems, which, unfor-
tunately, have not been examined to date due to the limitation
of input type.

D. Demonstration of complete computational capabilities
in a time-variant system

To demonstrate the extension of the IPC, we offer the TIPC
of a two-dimensional limit cycle system. The simple limit
cycle system with radius r and azimuth θ in polar coordinates
[49] is discretized as follows:

rt+1 = (1 + τ )rt − τ r3
t + τut , (44)

θt+1 = θt + τω, (45)

ut = μ + σζt , (46)

where ω = 2π/3 and τ = 0.1 are the angular velocity and
time step width, respectively, and ζt is the uniform random
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number in the [−1, 1] interval. Therefore the input ut fol-
lows the uniform distribution in the [μ − σ,μ + σ ] range
(μ = 0.2; σ = 1.5) and is applied in the radial direction.
The Cartesian coordinates are given by xt = rt cos θt and
yt = rt sin θt .

As shown in Fig. 2(b), input that follows a uniform
distribution forces the system to fluctuate around the noninput
state. Using this time-variant system, we calculated the
TIPCs whose TDPCs were constructed using the PCs {z(i)

t }
for ns (

∑
s ns < 5), s < 10, and the time-varying bases ψt ∈

{cos �t, sin �t, cos 2�t, sin 2�t, . . . , cos T
2 �t, sin T

2 �t},
where � = 2π/T . Note that, to focus on only the input
processing, we removed time-varying terms from the
state—i.e., An cos(2π fnt + θn) (n = 1, 2, . . .) are subtracted
from xt and yt , where the amplitude An, frequency fn, and
phase θn are estimated by the Fourier transform. Since the
time-varying bases are orthogonal to the products of the
time-varying basis and PC, this process does not affect
the existence of the products. From the estimated TIPCs, the
state on the Catersian plane xt = [xt yt ]� can be expressed as
follows:

xt =
18∑

s1=1

ps1
P1(ζt−s1 ) cos (ωτ t + α1,s1 )

+
∑
s1,s2

qs1,s2
P1(ζt−s1 )P1(ζt−s2 ) cos (ωτ t + α2,s1,s2 )

+
8∑

s1=2

qs1
P2(ζt−s1 ) cos (ωτ t + α2,s1 ), (47)

where Pn(ζ ) represents the nth-order Legendre polynomial
and the phases α1 and α2 depend on the initial values. Note
that although TIPCs depend on the initial values of the sys-
tem in general, the final outcome of the TIPCs is the same
in this case because the choice of the initial values affects
not the coefficient vectors, but the phases, in Eq. (47). The
coefficient vectors for the first and second-order terms are
p and q ∈ R2, respectively, indicating that the TIPCs of
the system are composed of the capacities of the product
of the time-varying basis ψt ∈ {cos ωτ t, sin ωτ t} and PC
{{P1(ζt−s)}, {P1(ζt−s)P1(ζt−s2 )}, {P2(ζt−s)}}.

Moreover, in the case of using a conventional IPC, the total
IPC saturates at the rank of the state matrix, r, only with the
state that is a function of input history [39] characterized by
the ESP. In the limit cycle system we adopted, the Lyapunov
exponents of Eqs. (44)–(46) are zero in the azimuthal and
negative in the radial directions; therefore, the maximum Lya-
punov exponent is zero (see Appendix C for further details)
and the system does not satisfy the ESP. However, even if the
system does not satisfy the conventional condition, the total
TIPC becomes Ctot = 1.987, saturating at the rank r = 2, as
shown in Fig. 2(b). Note that the total TIPC is composed of
Ctot,1 = 1.952 and Ctot,2 = 3.45 × 10−2, which are computed
from Eq. (43) by replacing the PC z(i) to the TDPC ξ(i).

These results suggest that the information processing that
was lacking with conventional IPC can be measured by adding
time-varying bases, and the total TIPC can reach the rank even
if the system does not hold the ESP.

III. APPLICATIONS

To illustrate the usefulness of our theory, we demonstrate
the information processing capabilities of three systems.

A. The benchmark task

First, we analyze the computational capabilities required
to predict a simple model for a time-series benchmark test,
which is a well-known nonlinear autoregressive moving av-
erage (NARMA) model called the NARMA10 [50]. The
NARMA10 task is widely utilized to evaluate the computa-
tional capabilities of dynamical systems [4,6,25–37,51–57],
but the meaning of predicting this model is unknown. As
mentioned earlier, a target output is expected to be a function
of the input history, which can be examined by the IPC.

Let the state and input at the t th step be yt and ut , respec-
tively. The NARMA10 model is expressed by

yt+1 = αyt + βyt

9∑
s=0

yt−s + γ ut ut−9 + δ, (48)

ut = μ + κζt , (49)

where the default constant parameters (α, β, γ , δ) are set to
(0.3, 0.05, 1.5, 0.1); ζt is the random variable at the t th
step and follows a uniform distribution in the [−1, 1] interval;
and μ and κ are the mean of ζt and the input intensity pa-
rameter, respectively. This paper uses two ranges: ut ∈ [0, σ ]
(μ = κ = σ/2) and ut ∈ [−σ, σ ] (μ = 0, κ = σ ).

According to Fig. 1, we classified the model with cer-
tain parameter regions as time-invariant (see Appendix D).
In Fig. 3, p expresses the probability of not diverging as a
function of σ for different random series {ζt }, and the model is
stable with certain parameters. Using the nondivergent model,
we estimated its IPCs for the target Legendre chaoses with
delayed time step s(< 16) and degree ns (

∑
s ns < 9).

Since the NARMA10 model is a one-dimensional sys-
tem, the total capacity is 1, but the decomposition of the
IPC changes with some parameters. Figure 3(a) and 3(b)
show that the capacities using the uniform random variable
in an asymmetric range ut ∈ [0, σ ] differ significantly from
those using the input in a symmetric range ut ∈ [−σ, σ ]. The
capacity decomposition with the symmetric input includes
only the second-order capacities (

∑
s ns = 2). In contrast,

the capacities with the asymmetric input contain those of
the first-order because the input term emerges as ut−9ut =
σ 2/4(P1(ζt )P1(ζt−9) + P1(ζt ) + P1(ζt−9) + 1) in Eq. (48), in-
cluding the first-order terms of ζ . Hence, in the case of using
an asymmetric input, we can regard the model as the sys-
tem receiving the first-order inputs, which are retained for
a few steps. These results suggest that the input should be
changed according to the dynamical system when one uses
the NARMA10 task; for example, as the nodes of an ESN are
represented by an odd function, such as a hyperbolic tangent,
the ESN has only odd capacities [39]. From this property and
our results, the ESN with ut ∈ [0, σ ] emulates the NARMA10
model, whereas the one with ut ∈ [−σ, σ ] does not predict it
at all.
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FIG. 3. The IPC decomposition of the NARMA10 model as a
function of the input intensity σ and the probability p that yt does not
diverge. The labels indicate representative combinations of {{ns, s}},
where ns is the degree of the polynomial, s is the delayed time step of
the input, and the desired output is

∏
s Pns (ζt−s ). The labels for other

combinations have been omitted. The probability p represents the
proportion of yt values that do not diverge to infinity and is calculated
using 100 input time series ζt generated from 100 random seeds. In
all the figures, the capacities are not stacked if the output diverged
or if σ = 0. Here, ut follows the uniform distribution in the ranges
(a) [−σ, σ ] and (b) [0, σ ].

B. The machine learning network

Second, we analyzed the performance of a machine learn-
ing network that solved the NARMA10 task using ESNs. We
used three types of ESNs with different activation functions.
Let the ith (i = 1, 2, . . . , N ) state of the ESN at the t th step be
xi,t . The state equations using linear, hyperbolic tangent, and
analog integrator functions are as follows:

xi,t+1 = ρ

N∑
j=1

wi jx j,t + ιwin,iζt , (50)

xi,t+1 = tanh

(
ρ

N∑
j=1

wi jx j,t + ιwin,iζt

)
, (51)

xi,t+1 =
(

1 − 1

τ

)
xi,t

+ 1

τ
tanh

(
ρ

N∑
j=1

wi jx j,t + ιwin,iζt

)
, (52)

where wi j was initialized with a uniform random number in
the range of [−1, 1] and multiplied by a constant so that the
maximum eigenvalue of the matrix W = [wi j] was 1. The
input weight win,i was also set to a uniform random number in
the range of [−1, 1]; and ρ, ι(= 0.1), and N (= 50) represent
the spectral radius of ρW , input intensity, and the number of
nodes, respectively. In Eq. (52), τ was set to 1.25.

As shown in Fig. 4(a), we also emulated the target
NARMA10 model using 50-node ESNs with three acti-
vation functions and compared the output of the ESN ŷt

and the target yt with the normalized root-mean-square
errors (NRMSEs). For all the functions, the NRMSEs de-
creased with an increase in ρ and increased when ρ � 1.
To analyze the outputs of the ESNs training with the
NARMA10 model, the IPCs of the output ŷt were estimated.
Figure 4(b)–4(d) shows the change in IPC decomposition
of the output yt with an increase in the spectral radius ρ

of the ESN with the linear, hyperbolic tangent, and analog
integral functions, respectively. To emulate the NARMA10
model, whose IPC decomposition is shown in Fig. 4(e), the
nine types of Legendre chaoses {P1(ζt−s)}s=1,2,3,10,11,12 and
{P2(ζt−s)}s=1,2,3 are mainly required in a certain ratio. Accord-
ing to Fig. 4(b)–4(d), for any activation function, as ρ(< 1)
increases, {P1(ζt−s)}s=1,2,3,10,11,12 approaches the required
rate. On the other hand, the three types of second-order IPCs
{P1(ζt−s)P1(ζt−s−9)}s=1,2,3 are almost zero in ESNs with an
activation function. Therefore, in the NARMA10 task with
ESNs, performance is compared using only the first-order
IPCs.

To investigate why the second-order IPCs did not appear in
the decomposition, we estimated the IPCs from ESN states.
Figure 4(f)–4(h) shows the change in IPC decomposition
with the increase in the spectral radius ρ in the ESNs with
linear, hyperbolic tangent, and analog integral functions, re-
spectively. The rank r of the ESN state increases with ρ(� 1)
and corresponds to Ctot. As these three systems have small
amounts of target, second-order IPCs (each is less than 0.2),
the ESNs cannot emulate the target, second-order Legendre
chaoses.

The above results demonstrate that our method is capable
of decomposing the computational capability of the machine
learning network before and after training, as well as clarify-
ing whether the computational components required for the
task have been extracted through learning and exist in the
original network.

C. The real neural network

Finally, to demonstrate the broad applicability of our
theory, we prepared a dissociated culture of neurons for a
physical reservoir, which is an open, nonequilibrium system
that fluctuates due to external inputs and has parameters that
can be considered time-dependent. Real neurons extracted
from the cortices of rat embryos were pharmacologically and
mechanically isolated and then seeded on an electrode array.
After the culture matured [Fig. 5(a)], we constructed a phys-
ical reservoir using electrodes with active neurons [Fig. 5(b);
see Appendix F]. We repeatedly applied bipolar waves with
10, 20, or 30 ms interpulse intervals (IPIs) to 29 stimulus
electrodes: their amplitudes ζt followed a Gaussian distri-
bution with mean μ = 200, 300, or 400 mV and standard
deviation σ = 50 mV [Fig. 5(c)]. Furthermore, we computed
the number of spikes in an IPI-width bin from N = 792 mea-
surement electrodes as the reservoir states [Fig. 5(d)]. As a
result, we obtained a long, single trajectory of the activation of
the electrodes according to the input stream, which consisted
of 20,000 time steps and was used for our TIPC analysis. Note
that in the following analysis, we assumed that the initial value
for the time-variant system was given and fixed.

Using these data, we computed the TIPCs of the physical
system. Figure 5(a) shows the first-order TIPCs of the delay
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FIG. 4. The performance decomposition of NARMA10-trained ESNs with the IPC. (a) shows the NRMSEs of the NARMA10 task relative
to the spectral radius ρ of ESNs composed of linear, hyperbolic tangent, or analog integrator functions. (b), (c), and (d) display the relationships
between ρ and the IPC decomposition in the outputs from the NARMA10-trained ESNs with linear, hyperbolic tangent, and analog integrator
functions, respectively. The labels indicate representative combinations of {{ns, s}}, where ns is the degree of the polynomial, s is the delayed
time step of the input, and the desired output is

∏
s Pns (ζt−s ). In the case of the first-order IPCs, the representative combinations—{{1,1}},

{{1,2}}, {{1,3}}, {{1,10}}, {{1,11}}, and {{1,12}}—are shown; the other combinations are summarized as “Rest of the first order.” The
representative combinations of the second-order IPCs—{{1,1},{1,10}}, {{1,2},{1,11}}, and {{1,3},{1,12}}—are barely held by the ESN;
thus, other combinations are summarized as “Rest of the second order.” (e) shows the IPC decomposition of the target NARMA10 model with
input in the [0,0.45] range. (f), (g), and (h) represent the relationships between ρ and the IPC decomposition of the ESN state using linear,
hyperbolic tangent, and analog integrator functions, respectively. The red line denotes the rank of state r, which corresponds to the total IPC
in the time-invariant domain.

step s; they contain the memory function (MF) [58,59] and
the four temporal memory functions (TMFs) whose targets
were the products of the time-varying basis and PC zt =
P1(ζt−s) cos(nωt ) or zt = P1(ζt−s) sin(nωt ) (n = 1, 2). Note
that nω = 2πn/T (n = 1, . . . , T/2) denotes the frequency.
The MFs and TMFs monotonically decay with an increase
in s. Since the PCs and the products are orthogonal, the
dissociated culture held the old inputs not only by delaying
them but also by multiplying them by time-varing terms. In
addition, the time-variant IPC in the dissociated culture had a
fading-memory-like property that the input history encoded

in the product terms and it decayed as an increase in the
delay.

Next, to investigate the frequency characteristics of the
TIPC, we plotted it with s = 1. Figure 5(b) and 5(c) show the
relationships between frequency and TIPCs with time-varying
cosine and sine targets, respectively. We term such a graph
the TIPC spectrum. Both spectra have larger TIPCs at lower
frequencies. Therefore the input was processed by the prod-
ucts of the low frequency sinusoidal wave and the past inputs,
suggesting that the superposition of these waves represents a
gradual trend which may be caused by nonstationary changes

043135-10



UNIFYING FRAMEWORK FOR INFORMATION PROCESSING … PHYSICAL REVIEW RESEARCH 3, 043135 (2021)

FIG. 5. TIPCs of the dissociated culture of neurons. (a) shows the dissociated culture of neurons on the electrode array. (b) shows the
spontaneous firing rate of the culture on the electrode array, where (x, y) denotes the position of the electrode. The rate is filtered by the
Gaussian kernel. The red dots represent the 29 stimulation electrodes. (c) and (d) represent the amplitude of stimulus ζt , which follows a
Gaussian distribution (μ = 200 mV), and the spike count of each electrode xt (μ = 200 mV and IPI = 10 ms), respectively. (e) illustrates
the temporal memory functions (TMFs) of delay step s, and (e)–(g) show the TMFs when the IPI = 30 ms and μ = 400 mV. TMFs with the
time-invariant target zt = P1(ζt−1) and four time-variant targets—i.e., zt = P1(ζt−1) cos(nωt ) and P1(ζt−1) sin(nωt ) (n = 1, 2)—are plotted. (f)
and (g) show the first-order TIPC spectrum with the cosine ζt = P1(ζt−1) cos(nωt ) and sine ζt = P1(ζt−1) sin(nωt ) targets, respectively. (h), (i),
and (j) depict the total capacity of the culture when the IPI = 10, 20, and 30 ms, respectively, and the horizontal axis is the mean of amplitude
μ. The hatched bar represents the total capacity using time-varying nth-order polynomials.

in the neural activities. For example, as the stimuli were re-
peatedly applied, the spike rates decreased (neural adaptation)
and the intensity of the interaction between neurons changed
(synaptic plasticity), which further changed the activities.
Therefore the obtained time series was nonstationary, which
embedded the time-dependent information processing of the
dissociated culture of neurons.

Figure 5(d)–5(f) illustrates the total capacities Ctot with
different μ and IPIs. Every Ctot contained time-varying IPCs,
and as the IPIs decreased, the ratio of time-varying IPCs to Ctot

increased. As with the time-invariant case, the time-variant
IPC increased as the degree decreased. Therefore the total
capacity of the dissociated culture of neurons contained time-
varying IPCs in all cases.

In summary, the above results reveal that the dissociated
culture of neurons had not only the time-invariant IPC but also

the time-variant IPC, indicating that this system processed
inputs through the products of the time-varying basis and PC
in addition to the functions of past input series. Thus the
TIPC demonstrated time-dependent information processing
that could not be handled to date.

IV. DISCUSSION

A. The relationship between an attractor
and information processing

In the present paper, random variables were used as input
in the time-invariant systems whose states were represented
by echo functions, which depend, not on the time t , but on the
past input time series. In a situation where the system with
no input converges into a fixed point (e.g., the intersection
point of the NARMA10 system), this function illustrates that
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the system stays a fixed-point attractor and fluctuates around
the fixed point due to the input. A conventional IPC targets
time-invariant systems and quantifies the input processing of
a state that depends only on the input time series. Therefore a
conventional IPC sometimes represents the input information
processing performed around a certain fixed-point attractor.

In addition, the IPC is equal to the squared norm of
the coefficient vector of the temporal basis vectors ex-
panded with PCs. Since these coefficient vectors obviously
change depending on the fixed point, different types of in-
formation processing are performed at different fixed points.
However, an IPC extended for time-variant systems was
applied to the limit cycle system, which does not satisfy
the prerequisites for RC. From the TIPC estimates, the ex-
panded solution contains the products of the time-varying
basis and PC, P1(ζt−s1 ) cos(ωτ t + α1,s1 ), P2(ζt−s1 ) cos(ωτ t +
α2,s1 ), and P1(ζt−s1 )P1(ζt−s2 ) cos(ωτ t + α2,s1,s2 ), revealing
that the processed input represents the amplitude scale of the
sinusoidal. Therefore the fluctuation of a periodic attractor
determined by input can be processed around the limit cycle.

Based on these findings, we can conclude that a conven-
tional IPC can evaluate computational capabilities around a
fixed point, while the TIPC can also evaluate capabilities
around a periodic attractor. Since the recent RC framework
exploits not only fixed points or periodic attractors but also
deterministically chaotic ones [60–64], future work should
examine the relationship between various attractors and in-
formation processing.

B. Methods to utilize a time-variant system
as a computational resource

In calculating the TIPCs for a limit cycle system, we
demonstrated that the state of the system can include prod-
ucts of a time-varying basis and PC. Since the product is
represented by the time-varying basis ψt and PC φt , the con-
ventional IPC for time-invariant terms cannot quantify their
amount of information. The TIPC indicates that even in a
time-variant system, information can be processed by the PC
φt in the product. In addition, to date, RC has trained a static
readout weight by linear regression, assuming that the ESP or
FMP is satisfied; the state in the reservoir is a function of the
input time series. Since the target output is described by the
input history, performance decreases when a time-dependent
reservoir (e.g., an ESN with a spectral radius of ρ � 1) is
used. As the number of input history terms in the expanded
state decreases, the performance drops, while the number of
product terms increases. The input information in a product
term can be used for the task and extracted by giving a readout
weight that cancels out φt in the product term (e.g., a time-
varying weight). Therefore, even in a reservoir where the ESP
or FMP does not hold, the input time series may be processed
by TDPCs and the task can be successfully solved by using
new types of readout.

In this way, a method already exists for exploiting periodic
systems as computational resources. As shown in Fig. 6(a)
and 6(b), the time-multiplexing technique [6] switches the
input u(t ) with the time width τ and extracts N nodes x(t ) =
[x(t ), x(t + τ

N ), x(t + 2τ
N ), . . . , x(t + (N−1)τ

N )]� from a single
node. This method virtually increases the number of nodes

FIG. 6. The time-multiplexing method transforms a periodic sys-
tem into a time-invariant one. (a) The input u(t ) is switched with
time width τ . (b) and (c) show a periodic state time series whose
frequency is and is not consistent with that of the input, respec-
tively. In (b), the circles represent the virtual nodes x1(t ) = [x1(t ),
x1(t + τ

N ), . . . , x1(t + (N−1)τ
N )]�.

in the reservoir to improve its computational capabilities. If
x(t ) is a periodic function and oscillates with a period specific
to u(t ) [Fig. 6(b)], applying an input with the same width τ

as the period can extract time-invariant virtual nodes because
the ith virtual node always corresponds to x(t ) at a certain
phase and is not affected by the periodic fluctuation. However,
if the period does not match τ [Fig. 6(c)], the phase shifts,
and the scheme cannot exploit the computational capabilities
of the periodic system. Therefore time multiplexing can be
interpreted as a method capable of extracting a computational
resource by transforming a time-varying system into a time-
invariant system.

From the above discussion, a time-variant system can pro-
cess input information through product terms, and rich input
information can be extracted from time-variant systems by
designing readouts for the systems. In the future, information
processing using a time-varying reservoir and novel design
methods for readouts will be investigated.

C. Extension to TIPC with multiple input variables

In the present paper, the TIPC assumes that the input di-
mension is one, but this can easily be extended to a multiple
input version. Let M independent stochastic inputs that follow
multiple arbitrary distributions be ζ

(1)
t , . . . , ζ

(M )
t ∈ R, and the

state equation in Eq. (4) is modified to

xt+1 = f
(
xt , ζ

(1)
t , . . . , ζ

(M )
t

)
,
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TABLE IV. An example set of PCs {z(i)
t } with two inputs, which

has been truncated with {{d, smax,d}} = {{1, 2}, {2, 2}}. Note that
F (m)

n (ζ (m) ) denotes the nth-order Legendre polynomial for the mth
input [F (m)

1 (ζ (m) ) = ζ (m) and F (m)
2 (ζ (m) ) = {3(ζ (m) )2 − 1}/2].

Family of sets of Polynomial
index, degree, and delay Degree chaos

i {{mi j, ni j, si j}} di = ∑
j ni j z(i)

t

1 {{1, 1, 1}} 1 ζ
(1)
t−1

2 {{2, 1, 1}} 1 ζ
(2)
t−1

3 {{1, 1, 2}} 1 ζ
(1)
t−2

4 {{2, 1, 2}} 1 ζ
(2)
t−2

5 {{1, 2, 1}} 2
{
3
(
ζ

(1)
t−1

)2 − 1
}
/2

6 {{2, 2, 1}} 2
{
3
(
ζ

(2)
t−1

)2 − 1
}
/2

7 {{1, 1, 1}, {2, 1, 1}} 2 ζ
(1)
t−1ζ

(2)
t−1

8 {{1, 1, 1}, {2, 1, 2}} 2 ζ
(1)
t−1ζ

(2)
t−2

9 {{2, 1, 1}, {1, 1, 2}} 2 ζ
(2)
t−1ζ

(1)
t−2

10 {{1, 2, 2}} 2
{
3
(
ζ

(1)
t−2

)2 − 1
}
/2

11 {{2, 2, 2}} 2
{
3
(
ζ

(2)
t−2

)2 − 1
}
/2

12 {{1, 1, 2}, {2, 1, 2}} 2 ζ
(1)
t−2ζ

(2)
t−2

whose solution is described as

xt = g
(
t, ζ(1)

t , . . . , ζ
(M )
t

)
,

where ζ
(m)
t = {ζ (m)

t−s }t
s=1 (m = 1, . . . , M ). Under the assump-

tion that the state is a second-order process in Eq. (27) and
time-invariant for a version of multiple inputs in Eq. (28)—
i.e.,

g
(
t − τ, ζ

(1)
t−τ , . . . , ζ

(M )
t−τ

) = g
(
t, ζ(1)

t−τ , . . . , ζ
(M )
t−τ

)
for τ ∈ Z,

xt can be expanded by aPCs with multiple input variables
[65]. Let the nth univariate polynomial for the mth input be
F (m)

n (ζ (m)
t ), and the ith PC is described by

z(i)
t =

∏
j

F (mi j )
ni j

(
ζ

(mi j )
t−si j

)
, (53)

where mi j , ni j , and si j denote the index of input, degree,
and delay, respectively, of the jth element for the ith PC.
Table IV provides an example of PCs with two inputs, which
are truncated with {{di, smax,di}} = {{1, 2}, {2, 2}}. As all of
these aPCs are orthogonal in the meaning of ensemble aver-
age, their orthogonality is defined by the same inner product
as Eqs. (10) and (11). Under the ergodicity assumption in
Eq. (15), the PCs in the time direction compose a complete
orthogonal system of multiple input histories {ζ(1)

t , . . . , ζ
(M )
t }.

On the other hand, if the state is time-variant, xt can be ex-
panded by TDPCs of multiple inputs. As with the TDPC with
a single input, the TDPC with multiple inputs is expected to be
orthogonal, as in Eq. (35), using the PCs z(i)

t in Eq. (53) and
time-varying bases ψ

( j)
t that meet Eqs. (31)–(33). Using the

TDPCs, we can expand the normalized, linearly independent
state in Eq. (36) and define its TIPCs in Eq. (37). The total
TIPC is described by Eq. (38). If all of the normalized states

are functions of time and multiple input histories—i.e.,

p j = p j

(
t, ζ(1)

t , . . . , ζ
(M )
t

)
( j = 1, . . . , r),

the total TIPC becomes Ctot = r.
Physical systems often receive various inputs from the

external environment, resulting in such multiple input-driven
systems. For example, in the dissociated culture of neurons,
the ranks of the state are 724–792, but the total capacities is
less than 3.5 [Fig. 5(c)], which are much smaller than their
ranks. One possible speculation regarding this issue is that
in our scheme, the state may be expressed as a function of
multiple stochastic inputs, including the one we gave (e.g.,
electrical noise, synaptic noise, thermal noise, and shot noise
[66]). Of all the inputs, the ones we could observe were
limited, and the total capacity computed only from the inputs
did not reach the rank. Therefore physical systems can receive
unobservable inputs, which disturb the examination of all
capacities.

D. A complete orthogonal system with PCs for a finite data set

This paper demonstrated that the total IPCs with various
types of PCs reach the ranks in the time-invariant systems.
According to the interconvertibility between the IPC and the
PC expansion, these results imply that the PC expansion ap-
proximates the original time series with high accuracy, which
is achieved by a complete orthogonal system of the PCs. In
this paper, we adopted the following settings to satisfy the
orthogonality and the completeness of the PCs.

From the perspective of the numerical computation, the
orthogonality imposed on the PCs is decomposed into two
parts: (i) the independence between different order polynomi-
als Fn(ζ ),Fm(ζ ) (n �= m) in Eq. (9), and (ii) the independence
between inputs with different delays ζt−s1 , ζt−s2 (s1 �= s2).
The first condition is expected to be met by the sufficiently
long length of time series in the case of gPC. Since Fn(ζ )
is given based on the theoretical distribution of ζ , the or-
thogonality will be satisfied if the distribution of sampled
ζ approaches the ideal one. In addition, the first condition
for aPC is satisfied through the Gram-Schmidt procedure in
Eqs. (12) and (13) regardless of the length of time. The first
condition is not sufficient to guarantee all of the orthogo-
nal relations—for example, the orthogonality of univariate
polynomials with different delays Fn(ζt−s1 ),Fn(ζt−s2 ) (s1 �=
s2) and the orthogonality of products of univariate poly-
nomials F1(ζt−s1 )F1(ζt−s1−1),F1(ζt−s2 )F1(ζt−s2−1) (s1 �= s2)
are not satisfied. These orthogonalities are achieved by the
independence of the inputs with different delays ζt−s1 , ζt−s2 .
Their inner products approach zero as the lengths of time
series become long enough. In summary, in both the cases of
gPC and aPC, the orthogonality depends on the length of time
series T , which was set to 106–107 in this paper.

Furthermore, the search range of the PCs is important to
construct a complete orthogonal system of a target dynamical
system. Some systems have first-order capacities with over
1000 delays, and others have a first-order capacity with only
one delayed step. Additionally, as the order of capacity in a
system becomes high, the maximum delay tends to be shorter.
For example, if the first-order capacities are up to 50 delay
steps, the second-order ones are within 10 steps; thus, the
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third-order ones are within five steps. By leveraging these
properties and examining a sufficiently wide range of the
family of sets of degrees and delays, the completeness can
be achieved.

Therefore, to numerically construct the complete orthogo-
nal system, we adopted the long enough lengths of time series
and the large enough families of sets of degrees and delays. By
building a sufficiently large model with a sufficient amount of
data, we can build a highly accurate system.

V. CONCLUSION

This paper attempted to clarify the unknown relationship
between the PC expansion and IPC by deriving the IPC
from the PC-expanded system. To illustrate this relation, we
showed that the IPC can be measured using gPCs and aPCs.
In addition, using the NARMA10 model and ESNs, we con-
cretely described the relationship and showed the usefulness
of our theory. Next, taking into account the characteristics
of the general solution of the input-driven dynamical system,
we proposed the IPC for time-variant systems—the TIPC. To
demonstrate that a time-variant system has such TIPCs, we
investigated the TIPC decomposition of a limit cycle system
and a cultured neural network. The primary results are sum-
marized as follows.

(1) Using SVD, we can obtain the orthogonal temporal
basis vectors from the state time series. These vectors can
be expanded with PCs to obtain the coefficient vector of
each basis. The IPC is equivalent to the squared norm of
the coefficient of the PC used as the target output. Therefore
the expanded basis coefficients represent the amount of input
processing information.

(2) Using eight types of polynomials in the Askey scheme
and Gram-Schmidt PCs, we estimated the IPCs of a one-
dimensional ESN, whose total IPCs were equal to one. These
results indicate that various types of PCs within the Askey
scheme and Gram-Schmidt orthogonalization are suitable for
the target output of the IPC.

(3) We calculated the TIPC of a time-variant system using
a simple limit cycle and revealed that the input information
processing is performed by the products of the time-varying
basis and PC.

(4) IPC analysis revealed that the NARMA10 model
is mainly composed of P1(ζt−s) (s = 1, 2, 3, 10, 11, 12) and
P1(ζt−s)P1(ζt−s−9) (s = 1, 2, 3). The NARMA10 benchmark
task can be solved by holding the nine types of input informa-
tion in a reservoir. Consequently, combining the IPC and PC
expansion provides a clear and concise picture of information
processing.

(5) The dissociated culture of neurons had not only the
time-invariant IPC but also the time-variant IPC. These results
suggest that the neural system processes inputs with a trended
state which varies over time (due to the synaptic plasticity and
neural adaptation). To date, such nonstationary information
processing has been left behind; however, we revealed that this
type of processing is performed in the real neural network.

The above results suggest that the connection between the
IPC and PC expansion allows for a simpler description of
information processing in dynamical systems. In the future,
information processing using time-variant systems should

also be researched. This scheme can be applied to nonsta-
tionary systems and thus may be suitable for elucidating
information processing in neural circuits, a topic which has
been overlooked so far. In addition, it can be applied not only
to neural systems but also to other physical systems that can
be time-variant, such as quantum, spintronics, optical systems,
and fluid. For example, it is reported recently that some types
of vortex have been generated when a fluid flows passed a
bluff body, which can be used as an information processing
device [67]. In the analysis, it was found that near the critical
Reynolds number where the flow exhibits a twin vortex before
the onset of the Kármán vortex shedding associated with the
Hopf bifurcation (i.e., transition from a fixed point to a limit
cycle), the information processing capability was maximized.
This was also characterized by the breakdown of the ESP
due to the periodic attractor. According to our results, it may
be possible to evaluate the type and amount of information
processing even in the Kármán vortex shedding, which would
be a topic for future work.
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APPENDIX A: GENERALIZED POLYNOMIAL CHAOS

The generalized polynomial chaos (gPC) [44] is PC com-
posed of the univariate polynomial Fn(ζ ) included in the
Askey scheme [68] tree (Fig. 7). The Askey scheme repre-
sents various orthogonal polynomials (e.g., Hermite, Jacobi,
Laguerre, and Charlier) using the hypergeometric series rFs

of x, along with parameters a1, . . . , ar and b1, . . . , bs:

rFs

(
x;

a1, . . . , ar

b1, . . . , bs

)
=

∞∑
k=0

(a1)k · · · (ar )k

(b1)k · · · (bs)k

xk

k!
,

(a)n =
{

1 (n = 0)
a(a + 1) · · · (a + n − 1) (n = 1, 2, . . .) ,

where (a)n is the Pochhammer symbol. For example, the La-
guerre polynomial with a parameter α, L(α)

n (ζ ) can be written
as

L(α)
n (ζ ) = (α + 1)n

n!
1F1

(
ζ ;

−n
α + 1

)
.

Note that in Fig. 7, an upper polynomial with the limit of a
certain parameter or parameters becomes a lower polynomial
connected with a line; for example, the Laguerre polynomial
becomes the Hermite polynomial Hn(ζ ) by taking the follow-
ing limit of α:

lim
α→∞

(
2

α

)n/2

L(α)
n

(
(2α)1/2ζ + α

) = (−1)n

n!
Hn(ζ ).
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FIG. 7. The relationship between polynomials in the Askey
scheme. Each polynomial is represented with the hypergeometric se-
ries rFs(p), where p represents the number of parameters substituted
in ai (i = 1, 2, . . . , r), bi (i = 1, 2, . . . , s), or z. An upper polynomial
with the limit of a certain parameter or parameters becomes a lower
polynomial connected with a line.

The ith PC z(i)
t is represented by the product of the n(i)

s -th
order polynomial of ζt delayed by s steps, Fn(i)

s
(ζt−s). When

the sets of degree ns and delay step s are given by the ith
family of sets Ni = {{n(i)

s , s}}, z(i)
t is represented as

z(i)
t =

∏
s

Fn(i)
s

(ζt−s).

Using the hypergeometric series rFs(ζ ), Fn(ζt−k ) can be ap-
plied to the following eight types of orthogonal polynomials.

1. The Hermite polynomial and a Gaussian distribution

The nth (n = 1, 2, . . .)-order Hermite polynomial Hn(ζ ) is
given by

Hn+1 = ζHn − nHn−1,

where H0 = 1, and H−1 = 0. ζ follows the standard normal
distribution

f (ζ ) = 1√
2π

exp

(
ζ 2

2

)
.

2. The Laguerre polynomial and a gamma distribution

The nth (n = 1, 2, . . .)-order Laguerre polynomial L(α)
n (ζ )

is given by

L(α)
n (ζ ) =

n∑
i=0

(−1)i

(
n + α

n − i

)
ζ i

i!
,

where ζ follows the gamma distribution

f (ζ ) = 1

�(α + 1)βα+1
ζ αe−ζ/β .

The parameter α > −1, β = 1, and �(·) is the gamma func-
tion. In Fig. 2(a), the parameter α was set to 1.

3. The Jacobi polynomial and a beta distribution

The nth (n=1, 2, . . .)-order Jacobi polynomial P(α,β )
n (ζ ) :=

Pn is given by

Pn+1 = (γn + 1)(γn(γn + 2)ζ + α2 − β2)Pn

2(n + 1)(γn − n + 1)γn

− 2(n + α)(n + β )(γn + 2)

2(n + 1)(γn − n + 1)γn
Pn−1,

where γ = 2n + α + β and ζ follows a beta distribution in
the range of [−1, 1]:

f (ζ ) = 1

B(α, β )
ζ α−1(1 − ζ )β−1,

B(α, β ) =
∫ 1

0
tα−1(1 − t )β−1dt .

In Fig. 2(a), the parameters (α, β ) were set to (−0.25,−0.25).

4. The Legendre polynomial and a uniform distribution

The nth (n = 1, 2, . . .)-order Legendre polynomial Pn(ζ ) is
given by

Pn(ζ ) =

n/2�∑
k=0

(−1)−k

2n

(
n
k

)(
2n − 2k

n

)
ζ n−2k,

where 
·� represents the floor function and ζ follows a uni-
form distribution in the range of [−1, 1]:

f (ζ ) = 1
2 .

5. The Charlier polynomial and a Poisson distribution

The nth (n = 1, 2, . . .)-order Charlier polynomial Cn(ζ ; a)
is given by

Cn(ζ ; a) =
n∑

i=0

(
n
i

)(
ζ

i

)
i!(−a)n−i,

where ζ follows the Poisson distribution

f (ζ ) = e−aaζ

ζ !
.

In Fig. 2(a), the parameter α was set to 6.

6. The Krawtchouk polynomial and a binomial distribution

The nth (n = 1, 2, . . .)-order Krawtchouk polynomial
Kn(ζ ; p, N ) is given by

Kn(ζ ; p, N ) =
n∑

i=0

(−1)n−i

(
N − ζ

n − i

)(
ζ

i

)
pn−i(1 − p)i,

where ζ follows the binomial distribution

f (ζ ) =
(

N
ζ

)
pζ (1 − p)N−ζ .

In Fig. 2(a), the parameters (p, N ) were set to (0.5,10).
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7. The Meixner polynomial and a negative binomial distribution

The nth (n = 1, 2, . . .)-order Meixner polynomial
Mn(ζ ; β, c) := Mn is given by

Mn+1 = {(c − 1)ζ + n + c(n + β )}Mn − nMn−1

c(n + β )
,

where M0 = 1 and M−1 = 0. ζ follows the negative binomial
distribution

f (ζ ; β, c) =
(

ζ − 1
β − 1

)
(1 − c)βcζ−β.

In Fig. 2(a), the parameters (c, β ) were set to (0.2,10).

8. The Hahn polynomial and a hypergeometric distribution

The nth-order Hahn polynomial Qn(ζ ; α, β, N ) := Qn is
given by

Qn+1 = An + Cn − ζ

An
Qn − Cn

An
Qn−1,

An = (n + α + β + 1)(n + α + 1)(N − n)

(2n + α + β + 1)(2n + α + β + 2)
,

Cn = n(n + α + β + N + 1)(n + β )

(2n + α + β )(2n + α + β + 1)
,

where Q0 = 1 and Q−1 = 0. ζ follows a hypergeometric dis-
tribution with m = −α − 1 and n = −β − 1:

f (ζ ; m, n, N ) =
(

m
ζ

)(
n

N − ζ

)
pζ (1 − p)N−ζ .

In Fig. 2(a), the parameters (m, n, N ) were set to (100,50,20).

APPENDIX B: THRESHOLD OF IPC

To remove the estimation error, C(X , z) was set to zero
if it was smaller than the threshold ε. The modified capacity
Cε (X , z) is represented by

Cε (X , z) =
{

C(X , z) (if C(X , z) � ε)
0 (otherwise) .

The threshold is determined using random shuffle surrogates.
We prepared N (= 200) input time series that were shuffled
in the time direction and calculated IPCs using the shuf-
fled inputs to obtain N capacities. Furthermore, we let the
significance level be α(= 1)% and chose the original IPC,
which exceeded 1.2–3 times the value in the top α/2% of N
capacities. The above operation was performed for each zt ,
and significant IPCs were obtained.

APPENDIX C: LYAPUNOV EXPONENTS
OF THE LIMIT CYCLE SYSTEM

According to Eqs. (44)–(46), the Jacobian matrix Jt of r =
[r θ ]� is represented by

Jt = ∂rt+1

∂rt
=
[

1 + τ − 3τ r2
t 0

0 1

]
,

where τ = 0.1. Since Jt is the diagonal matrix, the eigen-
values of J�

t Jt for r and θ are ρr = (1 + τ − 3τ r2
t )2 and

ρθ = 1, respectively. Using these eigenvalues, the Lyapunov
exponents for r and θ , λr and λθ , are obtained as follows:

λr = 1

2T

T∑
t=1

ln ρr, (C1)

λθ = 1

2T

T∑
t=1

ln ρθ , (C2)

where T (= 1.5 × 106) denotes the total time. Using Eq. (C1)
and rt (t = 1, . . . , T ) computed from Eqs. (44)–(46), we ob-
tained λr = −0.577. In addition, according to ρθ = 1 and
Eq. (C2), we obtained λθ = 0. From the above results, we
concluded that the maximum Lyapunov exponent of the limit
cycle system was zero.

APPENDIX D: CLASSIFICATION
OF THE NARMA10 MODEL

1. Attractor analysis

To classify the NARMA10 model based on Fig. 1, we stud-
ied the divergence and time-dependence of the NARMA10
model. First, we analyzed an attractor of the model without
input. We defined new variables for a time-delay system as
z(s)

t ≡ yt+1−s (s = 1, 2, . . . , 10), and the model without input
(μ = κ = 0) was rewritten as follows:

z(1)
t+1 = αz(1)

t + βz(1)
t

10∑
i=1

z(i)
t + δ, (D1)

z(s)
t+1 = z(s−1)

t (s = 2, 3, . . . , 10). (D2)

Equation (D1) makes use of z(1)
t and

∑10
i=1 z(i)

t ; thus, we
defined w

(1)
t = z(1)

t and w
(2)
t = ∑10

i=1 z(i)
t , and the discrete

derivatives �w
(1)
t (= w

(1)
t+1 − w

(1)
t ) and �w

(2)
t (= w

(2)
t+1 − w

(2)
t )

were derived from Eqs. (D1) and (D2) as follows:

�w
(1)
t = (α − 1)w(1)

t + βw
(1)
t w

(2)
t + δ, (D3)

�w
(2)
t = αw

(1)
t + βw

(1)
t w

(2)
t + δ − z(10)

t . (D4)

From Eqs. (D3) and (D4), the nullclines can be obtained:

w
(2)
t = 1 − α

β
− δ

βw
(1)
t

,

w
(2)
t = −α

β
+ z(10)

t − δ

βw
(1)
t

.

Note that the intersection point of the nullclines is a sad-
dle point (w(1)

t ,w
(2)
t ) = (z(10)

t , (1 − α)/β − δ/βz(10)
t ). Fur-

thermore, we plotted the nullclines on the w
(1)
t –w

(2)
t plane to

examine the increase and decrease in w
(1)
t and w

(2)
t [Fig. 8(b)

and Table V]. Since z(10)
t depends on the time step t , the

nullcline changes over time and three regimes can be distin-
guished: z(10)

t < δ, z(10)
t = δ, and z(10)

t > δ [Figs. 8(b) and 9].
The signs of �w(1) and �w(2) are shown in Tables V–VII.
From the above results, we found that the model with no input
has a fixed-point attractor.

2. Divergence

Next, we examined the conditions under which
the NARMA10 model diverges. Since the nullclines
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TABLE V. The derivative table of �w
(1)
t and �w

(2)
t in the stability diagram [z(10)

t > δ; Fig. 8(b)].

# area �w
(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t

(i) − − (iii) + + (v) − + (vii) + +
(ii) + − (iv) − − (vi) + −

FIG. 8. Properties of the NARMA10 dynamical system with (α, β, γ , δ) = (0.3, 0.05, 1.5, 0.1). (a) shows the time series of Eq. (48) with
ut ∈ [0, 0.01] (black) and ut ∈ [−0.01, 0.01] (red), and (b) the stability diagram of w

(1)
t = z(1)

t and w
(2)
t = ∑10

i=1 z(i)
t as z(10)

t > δ. The two

nullclines, w
(2)
t = 1−α

β
− δ

βw
(1)
t

(solid black) and w
(2)
t = − α

β
+ z(10)

t −δ

βw
(1)
t

(solid red), are displayed. The signs of �w
(1)
t and �w

(2)
t are shown in

Table V. Note that the point (z(10)
t , (1 − α)/β − δ/βz(10)

t ) is a saddle point. (c) and (d) show the basins of attraction of Eq. (48) relative to w
(1)
0

and w
(2)
0 with ut = 0 and ut ∈ [0, 0.4], respectively, as well as the two nullclines from (b). In (c), (d), and (f), each dot shows the time step at

which yt diverges to infinity, and the white dot represents the initial values for which yt does not do so. (e) illustrates the bifurcation diagram
of Eq. (48), while (f) shows the basin of attraction of Eq. (48) relative to σ and ψ , where the initial values were yi = ψ (i = 0, 1, . . . , 9). The
three largest Lyapunov spectra λi (i = 1, 2, 3) relative to σ are shown in (g).

TABLE VI. The derivative table of �w
(1)
t and �w

(2)
t in the stability diagram [z(10)

t = δ; Fig. 9(a)].

# area �w
(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t

(i) − − (iii) + + (v) − + (vii) + +
(ii) + − (iv) − − (vi) + −
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FIG. 9. Stability diagrams. The solid black and solid red lines represent �w
(1)
t = 0 and �w

(2)
t = 0, respectively. The signs of �w

(1)
t and

�w
(2)
t in (a) and (b) are shown in Tables VI and VII, respectively. In (a) and (b), the stability diagrams of w

(1)
t and w

(2)
t when z(10)

t = δ and
z(10)

t > δ, respectively, are shown. Note that the intersection point of the nullclines is (w(1)
t , w

(2)
t ) = (z(10)

t , (1 − α)/β − δ/βz(10)
t ).

are time-varying due to z(10)
t , the increase or decrease of

w
(1)
t and w

(2)
t in each area indicated by Fig. 8(b) and Table V

can change. Thus, in the case of no input (μ = κ = 0),
we examined the time step at which yt diverges with the
initial values of w

(1)
0 and w

(2)
0 . The initial values of yt were

set as y0 = w
(1)
0 and y1 = y2 = · · · = y9 = (w(2)

0 − w
(1)
0 )/9.

As shown in Fig. 8(c), the combination of initial values
(w(1)

0 ,w
(2)
0 ) where yt does not diverge is distributed in a

complex manner. We attribute the difference between the
theoretical and numerical basins of attraction to the change
in z(10)

t , which produced a complicated distribution of the
nullclines [see Figs. 8(b) and 9, and Tables V–VII].

In the presence of input, yt diverges due to the initial condi-
tion. As shown in Fig. 8(d), the model with input ut ∈ [0, 0.4]
(μ = κ = 0.2) diverges at an initial value similar to the one
with no input. Figure 8(e) shows the bifurcation diagram of yt

given an initial value at which yt converges to the fixed point.
Since the fixed point around which yt fluctuates is the saddle
point, yt can diverge with the given input. To investigate the
divergence conditions caused by the input, we ran the model
over 106 time steps and examined the time step at which yt

diverges by altering the initial values y0 = · · · = y9 = ψ and
input intensity σ . Figure 8(f) shows that yt diverges to infinity
when ψ or σ exceeds three thresholds: (i) ψ < −5.15, (ii)
1.239 < ψ , and (iii) σ > 0.45. In the (i) and (ii) cases, yt

diverges at a shorter time step (t < 100) than (iii) because
the divergence is caused by the initial value ψ . However, in
case of (iii), yt diverges according to the input. After con-
verging to the fixed point, yt can diverge when successively
receiving large positive inputs. According to the time steps in
Fig. 8(f), when yt diverges as the runtime becomes longer, yt

diverges with a smaller σ . Consequently, the threshold (iii)
is the boundary that depends on the input time series. These
results suggest that yt , in the vicinity of the fixed point, can
diverge, depending on the input.

In Fig. 3, p expresses the probability of not diverging as
a function of σ for different random series {ζt }. As previ-
ously shown, once yt converges to the fixed point, the model
stochastically diverges due to the input, and the probability
p depends on σ ; thus, even though p is high, yt can poten-
tially diverge. For example, two typical ranges of input, ut ∈
[0, 0.5] and [0,1], have been used for the NARMA10 task;
however, yt diverges in both cases [Fig. 3(b), σ = 0.5, 1.0]
because σ is relevant to the average time until divergence,
and the runtime, 106 time steps, is much longer than the time
used for the benchmark task. Consequently, the divergence
probability of yt , p, changes depending on the parameter
σ . Therefore, although the NARMA10 model produces the
fixed-point attractor, it can potentially diverge depending on
the initial values, input time series, and parameter settings.

3. Time-variance analysis

Finally, we investigated the time dependence of the
NARMA10 model. The state of a dynamical system receiving
noise input can transit from order to stochastic chaos [60],
an effect referred to as noise-induced chaos [69]. As chaotic
behavior is exhibited by a time-variant system, we investi-
gated whether the system is chaotic or ordered by calculating
the maximum Lyapunov exponent λ1. Thus we derived the
Lyapunov spectrum of the model λi (i = 1, 2, . . . , 10) based
on the ten-dimensional time-delay system in Eqs. (D1) and
(D2). When we expressed z(s)

t (s = 1, . . . , 10) as a vector zt =
[z(1)

t · · · z(10)
t ]�, the Jacobian matrix of Eq. (48) Jt ∈ R10×10

with respect to zt can be written as follows:

Jt = ∂zt+1

∂zt
=

⎡
⎢⎢⎢⎢⎣

Xt Yt · · · Yt Yt

1
1

. . .

1

⎤
⎥⎥⎥⎥⎦, (D5)

TABLE VII. The derivative table of �w
(1)
t and �w

(2)
t in the stability diagram [z(10)

t < δ; Fig. 9(b)].

# area �w
(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t # area �w

(1)
t �w

(2)
t

(i) − − (iii) − + (v) − − (vii) + +
(ii) + − (iv) + + (vi) + −
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where Xt = α + 2βz(1)
t + β

∑10
i=2 z(i)

t and Yt = βz(1)
t . Using

Eq. (D5), the Lyapunov spectrum was computed as follows:

λi = 1

2T

T∑
t=1

ln ρi(Jt+M−1Jt+M−2 · · · Jt )

(i = 1, 2, . . . , 10),

where ρi(Jt+M−1Jt+M−2 · · · Jt ) is the ith singular value of ma-
trix Jt+M−1Jt+M−2 · · · Jt , while T and M were set to 6000 and
40, respectively. Figure 8(g) shows the three largest Lyapunov
spectra, λ1, λ2, and λ3, all of which are negative relative to
σ , indicating that the system does not demonstrate stochastic
chaos. Therefore the NARMA10 model is neither a stochasti-
cally chaotic nor a time-variant system.

The divergence and time-invariance analysis results re-
vealed that the NARMA10 model converges to the fixed point
and varies in the vicinity of the point. We considered the yt

fluctuating around the fixed point to be time-invariant.

APPENDIX E: INTERCONVERTIBILITY
OF THE PC EXPANSION AND IPC

To clearly demonstrate that the PC expansion and IPC
are interconvertible, we derived an approximate model that
has nearly the same decomposition of the IPC as the origi-
nal decomposition using Legendre chaoses. From the above
capacity analysis, we narrowed the polynomial terms to
P1(ζt−s) (s = 1, 2, . . .) and P1(ζt−s)P1(ζt−s−9) (s = 1, 2, . . .),
which yielded significantly greater capacities. The expanded
state of yt in Eqs. (48) and (49) is expressed as follows:

yt = p +
∑
s∈N1

qsP1(ζt−s) +
∑
s∈N2

rsP1(ζt−s)P1(ζt−s−9), (E1)

where p, qs, and rs are coefficients for the Legendre chaoses
P0 = 1, P1(ζt−s), and P1(ζt−s)P1(ζt−s−9), respectively, while
P1(ζ ) = ζ . ζt follows a uniform distribution in [−1, 1], and
N1 and N2 represent the sets of delayed time steps s for
P1(ζt−s) and P1(ζt−s)P1(ζt−s−9), respectively. Let the normal-
ized Legendre chaoses be φ0 = 1√

T
, φ

(s)
1,t = P1(ζt−s )√∑T

t=1 P(ζt−s )2
, and

φ
(s)
2,t = P1(ζt−s )P1(ζt−s−9 )√∑T

t=1{P(ζt−s )P(ζt−s−9 )}2
, and the state in Eq. (E1) is rep-

resented as follows:

yt = p̂φ0 +
∑
s∈N1

q̂sφ
(s)
1,t +

∑
s∈N2

r̂sφ
(s)
2,t , (E2)

where p̂ = p
√

T , q̂s = qs

√∑T
t=1 P(ζt−s)2, and r̂s =

rs

√∑T
t=1{P(ζt−s)P(ζt−s−9)}2 are the modified coefficients for

p, qs, and rs, respectively.
Debiasing the state in Eq. (E2) and using Eq. (6), the IPCs

for φ
(s)
1,t and φ

(s)
2,t become

C = q2
s∑

s∈N1
q2

s +∑
s∈N2

r2
s

(E3)

and

C = r2
s∑

s∈N1
q2

s +∑
s∈N2

r2
s

, (E4)

respectively. Therefore Eqs. (E3) and (E4) show that each
IPC is the normalized squared coefficient in the polynomial
chaos expansion. To demonstrate this model, we employ
N1 = {1, 2, 3, 10, 11, 12} and N2 = {1, 2, 3}. As shown in
Fig. 10(a) and 10(b), for ut ∈ [−σ, σ ] and [0, σ ], respectively,
the approximate model successfully reproduced the original
NARMA10 model. Furthermore, as in Fig. 10(c) and 10(d),
we confirmed that the IPC decomposition of the approximate
model reproduced the original decomposition.

1. Derivation

Here, we derive the following equations:

yt = p +
∑
s∈N1

qsP1(ζt−s)

+
∑
s∈N2

rsP1(ζt−s)P1(ζt−s−9), (E5)

p = 1 − α

20β
−
√(

1 − α

20β

)2

− γμ2 + δ

10β
, (E6)

qs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γμκ (s = 1)
(α + 10βp)qs−1 +∑s−2

j=0 βpqs− j−1

(s = 2, 3, . . . , 9)
γμκ + (α + 10βp)qs−1 +∑s−2

j=0 βpqs− j−1

(s = 10)
(α + 10βp)qs−1 +∑9

j=0 βpqs− j−1

(s = 11, 12, . . .)

, (E7)

rs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ κ2 (s = 1)
(α + 10βp)rs−1 + βqs−1

∑9
j=0 qs+8− j

+β
∑s−2

j=0(prs− j−1 + qs+8qs− j−1)
(s = 2, 3, . . . , 10)
(α + 10βp)rs−1 + βqs−1

∑9
j=0 qs+8− j

+β
∑9

j=0(prs− j−1 + qs+8qs− j−1)
(s = 11, 12, . . .)

, (E8)

where N1 and N2 represent the sets of delayed time steps s ∈
N for P1(ζt−s) and P1(ζt−s)P1(ζt−s−9), respectively.

First, yt in Eq. (48) is expanded using the Legendre chaoses
of input time series ζt−s (s = 1, 2, . . . , t ) with time-varying
coefficients, as follows:

yt = pt +
t∑

s=1

qt,sP1(ζt−s)

+
t∑

s=1

rt,sP1(ζt−s)P1(ζt−s−9) + · · · , (E9)

where pt denotes a time-varying term independent of ζt−s (s =
1, 2, . . . , t ), and qt,s and rt,s are the sth coefficients of P1(ζt−s)
and P1(ζt−s)P1(ζt−s−9), respectively. The NARMA10 model
with ζt can be expressed as

yt+1 = αyt + βyt

9∑
j=0

yt− j

+ γ (μ + σζt )(μ + σζt−9) + δ. (E10)
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FIG. 10. The proposed model for the benchmark task. (a) and (b) show the time-series data with ut ∈ [−σ, σ ] and [0, σ ], respectively. The
solid black and solid red lines represent the output of the NARMA10 and our models, respectively. (c) and (d) show the IPC with ut ∈ [−σ, σ ]
and [0, σ ], respectively. The labels represent combinations of {{ns, s}}, where ns is the degree of the polynomial and s is the delayed time step
of the input. Here, the desired output is

∏
s Pns (ζt−s ).

According to Eqs. (E9) and (E10), yt+1 is rewritten as

yt+1 =
(

αpt + βpt

9∑
j=0

pt− j + γμ2 + δ

)

+ γμκ (P1(ζt ) + P1(ζt−9))

+α

t∑
s=1

qt,sP1(ζt−s)

+βpt

9∑
j=0

t− j∑
s=1

qt− j,sP1(ζt−s− j )

+β

9∑
j=0

pt− j

t∑
s=1

qt,sP1(ζt−s)

+ γ κ2ζtζt−9

+α

t∑
s=1

rt,sP1(ζt−s)P1(ζt−s−9)

+βpt

9∑
j=0

t− j∑
s=1

rt− j,sP1(ζt−s− j )P1(ζt−s− j−9)

+β

9∑
j=0

pt− j

t∑
s=1

rt,sP1(ζt−s)P1(ζt−s−9)

+
t∑

s=1

qt,sP1(ζt−s)P1(ζt−s)
9∑

j=0

t− j∑
s=1

qt− j,sP1(ζt−s− j )

+ · · · , (E11)

where P1(ζ ) = ζ . When increasing t by one in Eq. (E9), the
following equation is obtained:

yt+1 = pt+1 +
t+1∑
s=1

qt+1,sP1(ζt+1−s)

+
t+1∑
s=1

rt+1,sP1(ζt+1−s)P1(ζt+1−s−9) + · · · . (E12)

Equating the coefficients in Eqs. (E11) and (E12) yields

pt+1 = αpt +
9∑

j=0

βpt pt− j + γμ2 + δ, (E13)

qt+1,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γμκ (s = 1)(
α + β

∑9
j=0 pt− j

)
qt,s−1

+∑s−2
j=0 βpt qt− j,s− j−1 (s = 2, 3, . . . , 9)

γμκ + (
α + β

∑9
j=0 pt− j

)
qt,s−1

+∑s−2
j=0 βpt qt− j,s− j−1 (s = 10)(

α + β
∑9

j=0 pt− j
)
qt,s−1

+∑9
j=0 βpt qt− j,s− j−1 (s = 11, 12, . . .)

,

(E14)
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rt+1,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ κ2 (s = 1)(
α + β

∑9
j=0 pt− j

)
rt,s−1

+βqt,s−1
∑9

j=0 qt− j,s+8− j

+β
∑s−2

j=0(pt rt− j,s− j−1 + qt,s+8qt− j,s− j−1)
(s = 2, 3, . . . , 10)(
α + β

∑9
j=0 pt− j

)
rt,s−1

+βqt,s−1
∑9

j=0 qt− j,s+8− j

+β
∑9

j=0(pt rt− j,s− j−1 + qt,s+8qt− j,s− j−1)
(s = 11, 12, . . .)

.

(E15)

According to Eq. (E13), pt has both a stable and
an unstable equilibrium point. If pt < (1 − α)/20β +√

((1 − α)/20β )2 − (γμ2 + δ)/10β, it converges to the sta-
ble point. When t is large enough, pt converges to

p = lim
t→∞ pt = 1 − α

20β
−
√(

1 − α

20β

)2

− γμ2 + δ

10β
.

According to Eq. (E14), qt,s also converges to

qs = lim
t→∞ qt+1,s

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γμκ (s = 1)
(α + 10βp)qs−1 +∑s−2

j=0 βpqs− j−1

(s = 2, 3, . . . , 9)
γμκ + (α + 10βp)qs−1 +∑s−2

j=0 βpqs− j−1

(s = 10)
(α + 10βp)qs−1 +∑9

j=0 βpqs− j−1

(s = 11, 12, . . .)

.

In the same manner, rt,s converges to

rs = lim
t→∞ rt+1,s

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ κ2 (s = 1)
(α + 10βp)rs−1 + βqs−1

∑9
j=0 qs+8− j

+β
∑s−2

j=0(prs− j−1 + qs+8qs− j−1)
(s = 2, 3, . . . , 10)
(α + 10βp)rs−1 + βqs−1

∑9
j=0 qs+8− j

+β
∑9

j=0(prs− j−1 + qs+8qs− j−1)
(s = 11, 12, . . .)

.

Therefore, when t is large enough, and Eq. (E9) is approxi-
mated with the constant term p and the Legendre chaoses of

P1(ζt−s) and P1(ζt−s)P1(ζt−s−9), whose delayed time steps s
are limited to sets N1 and N2, respectively, Eqs. (E5)–(E8)
are obtained.

APPENDIX F: HOW TO COMPOSE THE DISSOCIATED
CULTURE RESERVOIR

All experiments were approved by the ethical committee of
the University of Tokyo and followed the “Guiding Principles
for the Care and Use of Animals in the Field of Physio-
logical Science” established by the Physiological Society of
Japan. Embryonic rat cortices were dissected from E18 rats
and used for cortical cell cultures. The cortices were disso-
ciated in 2 mL of 0.25% trypsin-ethylenediaminetetraacetic
acid (Trypsin-EDTA, Life Technologies), from which cells
were isolated by trituration, and 38,000 cells were seeded
on each microelectrode array (MEA; MaxWell Biosystems).
For cell adhesion, 5 mL of 0.05% Polyethileneimine (PEI;
Sigma-Aldrich) and 5 μl of 0.02 mg/ml Laminin (Sigma-
Aldrich) were used before plating the cells. Then, after 24
hours, the plating media [70] were changed to growth media
[71]. The plating media were composed of Neurobasal 850 μl
(Life Technologies), 10% horse serum (HyClone), 0.5 mM
GlutaMAX (Life Technologies), and 2% B27 (Life Technolo-
gies). The growth media were composed of DMEM 850 μl
(Life Technologies), 10% horse serum (HyClone), 0.5 mM
GlutaMAX (Life Technologies), and 1 mM sodium pyruvate
(Life Technologies). All experiments were conducted in an
incubator at 37 ◦C with 5% CO2. The MEAs were sealed with
a lid to prevent water evaporation and invasion of bacteria and
fungus.

The MEA had 26,400 electrodes, which were placed
17.5 μm apart and arranged in a 120×220 grid. The MEA
can simultaneously use up to 1,024 of 26,400 electrodes. We
selected electrodes with a high firing rate as measurement
electrodes and, for simulation electrodes, electrodes on which
the axon places. We applied bipolar pulse stimuli that had
an amplitude of ζt , which followed a normal distribution
with mean μ and standard deviation σ , and had an inter-
pulse interval (IPI) of 10, 20, and 30 ms to the stimulation
electrodes. Furthermore, a 6th-order Butterworth bandpass
filter and zero-phase IIR filter were applied to the voltage
traces observed from the measurement electrodes to extract
300–3000 Hz components. At all electrodes, stimulus-induced
artifacts were removed by eliminating traces ±2 ms from the
stimulus times. The standard deviation of extracted signals
was calculated as follows [72]:

σ = median

{ |x|
0.6745

}
.

If the amplitude of an extracted signal exceeded 4σ , the value
of the spike train was set to one; otherwise, it was set to zero.
As the measurement frequency was 20 kHz, the above spike
train was separated by a 1-ms time bin, and if one or more
spikes appeared in one bin, the modified spike train was set to
one; otherwise, it was set to zero. The train was divided into
bins by IPI width, and the number of spikes in the bin was
used for the state xt .
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