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Numerical integration of quantum time evolution in a curved manifold

Jessica F. K. Halliday 1 and Emilio Artacho 1,2,3

1Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 0HE, United Kingdom
2CIC Nanogune BRTA and DIPC, Tolosa Hiribidea 76, 20018 San Sebastian, Spain

3Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain

(Received 31 August 2021; accepted 1 November 2021; published 22 November 2021)

The numerical integration of the Schrödinger equation by discretization of time is explored for the curved
manifolds arising from finite representations based on evolving basis states. In particular, the unitarity of the
evolution is assessed, in the sense of the conservation of mutual scalar products in a set of evolving states,
and with them the conservation of orthonormality and particle number. Although the adequately represented
equation is known to give rise to unitary evolution in spite of curvature, discretized integrators easily break that
conservation, thereby deteriorating their stability. The Crank-Nicolson algorithm, which offers unitary evolution
in Euclidian spaces independent of time-step size dt , can be generalized to curved manifolds in different ways.
Here we compare a previously proposed algorithm that is unitary by construction, albeit integrating the wrong
equation, with a faithful generalization of the algorithm, which is, however, not strictly unitary for finite dt .
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I. INTRODUCTION

Algorithms for the efficient numerical integration of the
time-dependent Schrödinger equation in discretized real time
for finite representations have been discussed at some length
in the literature (see, e.g., Refs [1–4]), normally in the context
of the single-particle states in time-dependent Hartree-Fock or
time-dependent density-functional theory (TD-DFT) [5]. The
consideration of evolving basis sets complicates matters, and
there is less knowledge accumulated on good integrators for
them and for arbitrarily quick basis evolution [6–10]. Evolv-
ing basis sets are routinely encountered in electronic structure
calculations for which atom-centered basis functions are used
and where atoms move, that is, any first-principles dynam-
ical calculation method in quantum chemistry or condensed
matter and materials physics using atomic orbitals as basis
sets. There are many such software packages that are widely
used in either or both communities. For a brief review and
links to codes used in quantum chemistry see, e.g., Ref. [11];
for methods and programs using atomic orbitals in condensed
matter see, e.g., Refs. [12–18].

The equation for the evolution of quantum states for a
moving basis is easily obtained. For a basis set {|eμ, t〉, μ =
1, . . . ,N }, H |ψn〉 = ih̄∂t |ψn〉 straightforwardly becomes

N∑
ν

Hμνψ
ν
n = ih̄

N∑
ν

(
Sμν∂tψ

ν
n + Dμνtψ

ν
n

)
, (1)
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with Hμν = 〈eμ|H |eν〉, Sμν = 〈eμ|eν〉, Dμνt = 〈eμ|∂t |eν〉, and
ψν

n the coefficients in the expansion

|ψn〉 =
N∑
ν

|eν〉ψν
n. (2)

It is known that the evolution of a set of states following
this equation is unitary in the sense that it preserves their mu-
tual scalar products (see, e.g., [19]). Therefore, if the evolving
states are, for instance, the occupied Kohn-Sham states in
TD-DFT evolution, they preserve their orthonormality, and
the number of particles is conserved.

It is not obvious, however, how to guarantee such unitarity
for approximate algorithms based on time discretization. No-
tice that the Dμνt matrix does not need to be anti-Hermitian if
the evolution of basis vectors |eμ〉 and |eν〉 is arbitrary (think,
e.g., of one of them not evolving while the other does), and
therefore the usual thinking in terms of unitary matrices from
the exponential of Hermitian matrices does not apply, at least
directly. In this work we focus on how the unitarity of the
time evolution is affected by the discretization of time for
numerical integration.

The semiclassical description of atomic collisions has
made use of traveling orbitals [20], defined as

〈r|eμ, t〉 = eimev·r/h̄ fμ(r − vt ),

where fμ(r) = R(r)Y m
l (θ, φ), is a time-independent atomic-

like orbital, and v is the velocity at which it is traveling,
normally attached to a nucleus. They are very well adapted to
the situation in which the electrons themselves travel with the
atoms and, therefore, with the basis states, which is frequently
the case in atomic collisions [20]. They are not so useful
beyond that realm, as in, e.g., atoms moving in metals, where
the electrons are pushed around by a moving nucleus but do
not necessarily accompany it.
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A more general procedure based on a Löwdin orthonormal-
ization was proposed by Tomfohr and Sankey (TS) in Ref. [6],
which was built strictly to preserve unitarity of evolution for
finite time steps for any evolving basis. It has been quite
successfully used for projectiles traversing solids at nonadi-
abatic but relatively low velocity [21–25]. The method was
further discussed in Ref. [9], where it was shown to affect the
equation being integrated, with the potential to lead to inaccu-
rate propagation for high velocity, even in the converged low
time-step limit.

Finally, a different way of approaching the integration of
Eq. (1) is by rewriting it as

N∑
ν

(Hμν − ih̄Dμνt )ψ
ν
n = ih̄

N∑
ν

Sμν∂tψ
ν
n,

and taking Hμν − ih̄Dμνt as a modified Hamiltonian matrix
(see, e.g., Ref. [7]). The behavior for finite time step of
this pragmatic approach is not easy to discern from general
considerations, since the Dμνt matrix is not expected to be
anti-Hermitian, as mentioned above. It does work reasonably
well, however [7]. Here we explore it further, both formally
and by explicitly comparing its time-step convergence with
the very stable TS integrator [6], while the accuracy of the
latter is further scrutinized.

For a better understanding of the evolution we use in the
following the recent geometric interpretation [9] of Eq. (1).
The same paper proposed a strictly unitary integrator for an
evolving basis, as long as the spanned Hilbert space � were
invariant at all times, which is approximately the case for a
well-converged basis set. Here we explore the situation for an
evolving Hilbert space �(t ), defining a curved fiber bundle
[9], for the general situation in which its curvature cannot be
neglected.

Reference [9] identifies the Dμνt matrix as a connection in
differential geometry. The integration procedure of Ref. [7]
can then be interpreted in this context as using the connection
as a gauge potential in the Hamiltonian [9]. We will hence
refer to this procedure as the gauge-potential (GP) integrator.

II. UNITARITY IN THE EQUATIONS

Following Ref. [9], the expansion in Eq. (2) of any
quantum state in a nonorthogonal and evolving basis set,
{|eμ, t〉, μ = 1, . . . ,N }, defines an evolving N -dimensional
Hilbert space �(t ), which, in turn, defines a (N + 1)-
dimensional fiber bundle �, which represents a non-Euclidian
manifold. In its natural representation [26], and summing over
repeated indices, Eq. (1) becomes [9]

Hμ
νψ

ν
n = ih̄ ðtψ

μ
n, (3)

with

ψμ
n = 〈eμ|ψn〉 and Hμ

ν = 〈eμ|H |eν〉.
The set {|eμ, t〉, μ = 1, . . . ,N } is the dual basis of {|eμ, t〉},
also a basis of �(t ), satisfying 〈eμ, t |eν, t〉 = δμ

ν, ∀μ, ν at any
time t . ðt represents the covariant time derivative [9] defined
as

ðtψ
μ
n = ∂tψ

μ
n + Dμ

νtψ
ν
n,

where Dμ
νt = 〈eμ|∂t eν〉 gives the connection in the manifold

(note the convention in the order of indices).
Similarly, a bra evolves following

〈ψm|H = −ih̄∂t 〈ψm|,
where we have made use of the Hermiticity of the Hamiltonian
operator. It is represented by [9]

ψmνH ν
μ = −ih̄ ðtψmμ = −ih̄

(
∂tψmμ + ψmνDν

tμ

)
, (4)

with ψmν = 〈ψm|eν〉, and

Dν
tμ = 〈∂t e

ν |eμ〉 = −Dν
μt , (5)

the latter equality being due to ∂t 〈eν |eμ〉 = 0. Equation (5)
is the key for the unitarity of the propagation, replacing the
conventional expectation of Hermiticity of iDμνt .

A. Conservation of scalar products

We start by showing the expected [19] unitarity of the
evolution in the manifold, defined here as conservation of
scalar products

∂t 〈ψn|ψm〉 = 0, ∀ m, n (6)

among the propagating states {|ψm〉, m = 1, . . . , Ne} at any
time. The evolution of the coefficients for the ket and bra then
is determined by Eqs. (3) and (4), as

∂tψ
μ
m = −

(
i

h̄
Hμ

ν + Dμ
νt

)
ψν

m, (7)

∂tψmμ = ψmν

(
i

h̄
Hν

μ + Dν
μt

)
. (8)

It is easy to check that the scalar products 〈ψm|ψn〉 = ψmμψμ
n

are preserved in time:

∂t 〈ψm|ψn〉
= ∂t

(
ψmμ ψμ

n

) = (∂tψmμ)ψμ
n + ψmμ

(
∂tψ

μ
n

)

= ψmν

(
i

h̄
H ν

μ + Dν
μt

)
ψμ

n − ψmμ

(
i

h̄
Hμ

ν + Dμ
νt

)
ψν

n = 0.

In addition to the Hamiltonian operator being Hermitian,
the unitarity of the propagation is therefore a direct conse-
quence of Eq. (5). The natural representation does not recover
the usual self-adjoint matrix shape but offers quite transparent
relations and derivations. If the dealings above seem a bit of
a sleight of hand, Appendix A reproduces the result in the
matrix representation.

III. FINITE TIME STEP dt

After time discretization for numerical integration, we are
interested in propagating the set of coefficients

ψμ
m(t ) → ψμ

m(t + dt )

for finite dt , trying to maximize both the quality and the
stability of whatever the algorithm we use. Preservation of the
orthonormality of the propagating states is key for that pur-
pose. Here we will explore the behavior of the Crank-Nicolson
algorithm in the � curved manifold.
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For the finite time dt we will neglect henceforth the time
evolution of both the Hamiltonian and the connection between
t and t + dt . This is compatible with various integration al-
gorithms such as extrapolating the Hamiltonian to t + dt/2.
Other algorithms, such as the self-consistent Crank-Nicolson
[27] or self-consistent predictor-corrector schemes [28], may
need further consideration.

A. Unitary propagation for static basis

Let us start with a reminder of unitary propagation when
the basis set may be nonorthogonal but does not evolve, and,
consequently, the state manifold is a regular Hilbert space �.
It means that Dμ

νt = Dμ
tν = 0, Sμν and Sμν are constant, and

the solutions for Eqs. (7) and (8) are

ψμ
m(t + dt ) = e−dt i

h̄ Hμ
ν ψν

m(t ),

ψmμ(t + dt ) = ψmν (t ) edt i
h̄ Hν

μ . (9)

Scalar products among |ψm〉’s are preserved as the states
evolve,

〈ψm(t + dt )|ψn(t + dt )〉
= ψmμ(t + dt )ψμ

n(t + dt )

= ψmν (t ) edt i
h̄ Hν

μ e−dt i
h̄ Hμ

σ ψσ
n(t )

= ψmμ(t )ψμ
n(t ) = 〈ψm(t )|ψn(t )〉, (10)

as expected. Appendixes B 1 a and B 1 b show the same in
the matrix representation, and that the evolved bra in Eq. (9)
remains the bra of the evolved ket, respectively.

1. Crank-Nicolson for a static basis

The approximate evolution given by

ψ◦
m(t + dt ) =

[
1◦

• + i

h̄

dt

2
H◦

•

]−1(
1•

• − i

h̄

dt

2
H•

•

)
ψ•

m(t )

(11)
is the direct generalization (in the natural representation)
of the usual Crank-Nicolson evolution step for orthonormal
bases [9]. We have abstracted the notation, with the circles
standing for indices, to be contracted with contiguous ones
if full, and always up with down. Equation (11) can also be
recast in the matrix representation as follows:

ψ◦
m(t + dt )

=
(

1◦
• + i

h̄

dt

2
S◦•H••

)−1(
1•

• − i

h̄

dt

2
S••H••

)
ψ•

m(t )

=
(

1◦
• + i

h̄

dt

2
S◦•H••

)−1

S••S••

(
1•

• − i

h̄

dt

2
S••H••

)
ψ•

m(t )

=
(

S◦• + i

h̄

dt

2
H••

)−1(
S•• − i

h̄

dt

2
H••

)
ψ•

m(t ),

where we use the fact that S◦•S•◦ = 1 and (A◦◦)−1 = (A−1)◦◦,
while (A◦

◦)−1 = (A−1)◦◦. In the first equation we find the
conventional expression in terms of the S−1H matrix product,
while the last one shows a variant that does not require overlap
inversion. Although approximate in the evolution, it can be
shown to be strictly unitary for finite dt (see Appendix B 2).

B. Constant connection

For a situation in which both the basis and the (tangent)
Hilbert space �(t ) do change with time, we consider now
the case in which dt is finite but small enough so that the
connection Dμ

νt can be taken as constant (the situation for
varying basis set but within an invariant or converged � was
contemplated in Ref. [9]).

1. Metric tensor evolution under constant connection

First, let us see how the metric tensors evolve between t
and t + dt . In general, and still exact,

∂t Sμν = Dμtν + Dμνt = Dμt
σ Sσν + SμλDλ

νt . (12)

If both Dμ
νt and Dμt

ν are taken as constant, given the premise
of this section, and given the fact that Dμt

ν = Dν ∗
μt , the solu-

tion of Eq. (12) is

Sμν (t + dt ) = edtD σ
μt Sσλ(t )edtDλ

νt , (13)

which will be exact as long as those connections are strictly
constant, but will represent an approximate solution for small
dt but varying connections. Analogously,

∂t S
μν = Dμ ν

t + Dμν
t = Dμ

tσ Sσν + SμλD ν
λ t

gives

Sμν (t + dt ) = edtDμ
tσ Sσλ(t ) edtD ν

λ t , (14)

since both Dμ
tσ and D ν

λ t are constant again.

2. Calculation of the connection

The results in Eq. (13) and Eq. (14) are important, not only
for further algebraic manipulations but also because they rep-
resent consistency conditions for the evolution, and, to some
extent, they define the connection. In explicit calculations, the
overlap matrix is defined extrinsically at any time step, i.e., it
does not arise from evolution, but given the positions of atoms
at a given time step and given the basis set definition in the
larger ambient Hilbert space, as

Sμν (t ) =
∫

φ∗
μ(r, t )φν (r, t ) d3r, (15)

where, typically, φμ(r, t ) = 〈r|eμ, t〉 = φμ[r − Rμ(t )], and
where Rμ(t ) represents the position of the center of the orbital
at that time.

The connection itself can be computed extrinsically, nor-
mally as

Dμ
νt = Sμσ Dσνt

and

Dσνt =
∫

φ∗
σ (r, t ) ∂tφν (r, t ) d3r. (16)

There are therefore two possibilities for an approximate
evolution for finite dt . (1) The connection can be calculated
as in Eq. (16) neglecting the small discrepancy in the evolved
overlap Sμν (t + dt ) between the actual one, as in Eq. (15), and
the one that would result from evolving under the calculated
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connection, as in Eq. (13). Alternatively, (2) a connection can
be proposed, instead of via Eq. (16), by construction to satisfy
Eq. (13) from the overlaps calculated using Eq. (15) both at t
and t + dt .

In this work we test option (1), since it is the most at-
tractive numerically. The calculation of the connection via
Eq. (16) can be done in linear-scaling operations. We have
implemented it in the SIESTA program [12,29,30], which uses
finite-support atomic orbitals as basis sets and contains a real-
time TD-DFT implementation [31]. The integrals in Eq. (16)
represent two-center integrals which are evaluated by a trivial
extension of the method explained in Sec. 5 of Ref. [29]. The
implemented connection is tested below. Option (2) is further
explored in Appendix D, where a possible alternative direction
towards better orthonormality preservation is outlined, albeit
with worse scaling in computational expense as far as we can
see.

C. Unitarity and convergence with time step

1. Exponential evolution

For constant Dμ
νt and Hμ

ν the coefficients for the ket and
the bra evolve as given by the solution of Eqs. (7) and (8):

ψμ
m(t + dt ) = e−dt ( i

h̄ Hμ
ν+Dμ

νt )ψν
m(t ), (17)

ψmμ(t + dt ) = ψmν (t )edt ( i
h̄ Hμ

ν+Dμ
νt ). (18)

Checking again for unitarity,

ψmμ(t + dt ) ψμ
n(t + dt )

× ψmν (t ) edt ( i
h̄ Hν

μ+Dν
μt )e−dt ( i

h̄ Hμ
δ+Dμ

δt )ψδ
n(t ).

Since eAeB = eA+B when [A, B] = 0, then

edt ( i
h̄ Hν

μ+Dν
μt )e−dt ( i

h̄ Hμ
δ+Dμ

δt ) = δν
δ,

and unitarity of the propagation in Eqs. (17) and (18) is con-
firmed. Appendix E shows that the bra evolved as in Eq. (18)
is the instantaneous bra of the ket in Eq. (17). In Appendix C
the situation for parallel transport is presented for clarity.

2. Crank-Nicolson

Unlike the static-basis case, the Crank-Nicolson approxi-
mate evolution of Eqs. (17) and (18) is not unitary regardless
of dt . In order to see this let us proceed as follows. The
Crank-Nicolson algorithm for both equations is expressed as

ψ◦
m(t + dt ) =

[
1◦

• + dt

2

(
i

h̄
H◦

• + D◦
•t

)]−1

×
[
1•

• − dt

2

(
i

h̄
H•

• + D•
•t

)]
ψ•

m(t ), (19)

ψm◦(t + dt ) = ψm•(t )

[
1•

• + dt

2

(
i

h̄
H•

• + D•
•t

)]

×
[
1•

◦ − dt

2

(
i

h̄
H•

◦ + D•
◦t

)]−1

. (20)

It is easy to see (using appropriate commutation) that, as
defined,

ψm•(t + dt )ψ•
n(t + dt ) = ψm•(t )ψ•

n(t ),

and, therefore, scalar products would seem to be preserved
exactly.

It is not so, however. The evolved bra ψm◦(t + dt ) is only
approximately the bra of the evolved ket ψ◦

m(t + dt ), and
therefore unitarity will only be approximate. This is a cur-
vature effect; Appendix C shows it to happen for parallel
transport as well. The actual bra of the ket in Eq. (19) is
obtained by turning it around and applying metric tensors as
needed, as

ψm◦(2) = ψm•(1)S••(1)

[
1 •

• + dt

2

(
i

h̄
H •

• − D •
•t

)]

×
[
1 •

• − dt

2

(
i

h̄
H •

• − D •
•t

)]−1

S•◦(2), (21)

where we use 1 for t and 2 for t + dt . Using Eq. (13) for
S◦◦(2) does not convert Eq. (21) into Eq. (20). The unitarity
of the evolution is only approximate. It is tested below.

3. Tests: Collision of two He atoms and H across graphite

The mentioned nonunitary evolution is explicitly shown
numerically in Fig. 1. For the two occupied states, |ψ1〉 and
|ψ2〉 in a collision between two He atoms, the quantities
〈ψ1|ψ1〉 − 1, 〈ψ2|ψ2〉 − 1, 〈ψ1|ψ2〉, and 〈ψ2|ψ1〉 are plotted
vs time for various values of dt , using the Crank-Nicolson
algorithm proposed in Eq. (19). One He atom is kept fixed in
space while another moves past it on a fixed trajectory with an
impact parameter of 0.5 Å, with a fixed velocity of 1 atomic
unit.

The calculations are performed using the SIESTA program,
with a double-ζ polarized basis set. All the technical settings
of the calculations are as in Ref. [24], for a box size of 10 Å. It
is apparent how the overlap matrix for the two evolving states
deviates from the starting unit matrix, depending on the size
of dt as expected from the discussion above.

Using as reference the TS algorithm [6], which is unitary
by construction and was extensively used in first-principles
electronic stopping power calculations [21–25], the deterio-
ration of orthonormality of the GP integrator is assessed by
comparing both for exactly the same process and approxima-
tions (using the same basis). Figure 1(c) clearly shows the
creeping in of deviation from orthonormality of the evolving
states for the GP algorithm of Eq. (19) as compared with
the strictly unitary TS alternative, which is limited only by
the accuracy in the diagonalization involved. The significant
deviation between 0.1 and 0.35 fs is over the period where
the two atoms are close enough to interact, i.e., when the
basis states associated to the different atoms overlap. The
magnitude of these larger deviations depends directly on the
value of dt , although the shape is identical, as can be seen
by comparing Figs. 1(a) and 1(b), but they return rapidly to
close to zero once the atoms are further apart, with the final
deviation from 0 at 0.5 fs also depending on dt at a much
smaller scale.

That deviation from unitary evolution is behind the demand
for smaller dt of the algorithm apparent in Fig. 2, where
the convergence in energy transfer for the collision is shown
(difference in electronic energy between times before the col-
lision and after the collision).
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FIG. 1. Evolution of the deviation from orthonormality for the
two occupied states for a collision between two He atoms using the
gauge-potential (GP) integrator, comparing a time step of (a) 0.01 as
and (b) 1 as. (c) Comparison of the evolution of 〈ψ2|ψ2〉 − 1 for the
two integrators, GP and Tomfohr-Sankey (TS), with dt = 1 as.

The convergence, however, depends on system and prop-
erty. Figure 3 shows an analogous plot for the electronic
stopping power Se, electronic energy uptake per unit length
traversed by a proton projectile traveling across graphite along
the (0001) direction (the details about this simulation can be
found in Ref. [24]). The figure shows that this property is quite
similarly converged with both integrators.

It should be noted, however, that the difference in com-
putational effort for both integrators is substantial. The GP
integrator following Eq. (19) requires the calculation of the
connection Dμνt , which represents two-center integrals that
are precalculated as tables at the beginning of a simulation,
which then are interpolated and rotated as needed. It rep-
resents a very small part of the SIESTA run, as the other
two-center integrals, such as the overlap and kinetic energy

0.01

0.1

1

10

0.1 1 10

E
ne

rg
y

di
ff

er
en

ce
(e

V
)

dt (as)

GP
TS

FIG. 2. Deviation in electronic energy uptake vs time step dt for
the collision between two He atoms, relative to dt = 0.01 as, for both
the TS and GP integrators.

matrices. The TS integrator requires a diagonalization of the
overlap matrix for the whole basis at every time step. The
difference increases with system size, since the effort to cal-
culation of Dμνt scales linearly with system size (due to the
sparsity of the matrix, the same as for the overlap), while the
said diagonalization scales with the cube power.

It is important to finish, however, revisiting the accuracy
of the converged integration with both algorithms. It was
already pointed out in Ref. [9] that the TS integrator, al-
though perfectly unitary and displaying good convergence,
does not produce the correct integration for high velocities.
It worked well for electronic stopping power calculations

0.01

0.1

1

10

0.01 0.1 1 10

S
e

di
ff

er
en

ce
(e

V
/Å

)

dt (as)

GP
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FIG. 3. Deviation in electronic stopping power Se vs time step dt
for a proton traveling through graphite along the (0001) direction, for
both the TS and GP integrators.
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FIG. 4. Comparison of converged results for both the GP and TS
integrators, for the electronic stopping power Se vs velocity for a
proton traveling through graphite along the (0001) direction. PSTAR
data are shown for comparison [32].

for low-velocity projectiles [21–25]. This is confirmed in
Fig. 4, where the electronic stopping power for a proton across
graphite is depicted, comparing both integrators with the em-
pirical PSTAR data [32]. Se is indeed well reproduced by both
algorithms for velocities below 1 a.u.

However, the deviation at higher velocities for the TS in-
tegrator is very apparent, very clearly confirming the formal
results of Ref. [9], with a large overestimation of the electronic
stopping power, by a factor of two around the Bragg peak,
growing to a tenfold overestimation for velocities around ten
atomic units.

The simpler system of the two He atom collision is quite
illustrative. Figure 5 shows the electronic energy as a function
of position of the projectile He atom as it passes by an immo-
bile one. The TS integrator converges better with dt , as shown
in Fig. 2, but quite a lot of the physics is lost. In this case the
key difference stems from the start of the evolution, which is
an abrupt kick of the projectile nucleus. It takes a time for
the electrons around that nucleus to respond, and there is a
lag. Since there is nothing else until reaching the target He
atom, the electronic cloud around the projectile oscillates back
and forth, which becomes a more complex behavior when
colliding. This is completely missed by the TS algorithm,
since it transposes the coefficients of the evolving states from
the (orthogonalized) basis at t to the one at t + dt , which
implies an instantaneous response to the initial kick, without
oscillation. This is very smooth, nicely converged, and quite
unphysical. Admittedly, it is an example particularly ill-suited
for the algorithm, but illustrative, nevertheless.

4. Orthonormalization correction

Of course, the Crank-Nicolson propagation step of GP, in
Eq. (19), can be made strictly unitary by force if adding a

FIG. 5. Electronic energy as a function of position along the pro-
jectile trajectory for a collision between two He atoms, one traveling
at 1 a.u. The left (right) panel shows the results for the TS (GP)
integrator.

Löwdin orthonormalization step using S−1/2(t + dt ) as ob-
tained from the diagonalization of

Smn(t + dt ) = 〈ψm(t + dt )|ψn(t + dt )〉.
Notice that the S matrix is of N × N dimensions, N being the
number of occupied propagating states, much smaller than the
number of basis states.

In practical terms, and given the satisfactory unitarity
achieved directly by Eq. (19) for small dt , one can choose to
evolve using the uncorrected algorithm for some time, then
evaluating the S matrix once every number steps ns, and,
whenever maxmn{|Smn − δmn|} exceeds some tolerance ε, an
orthonormalization step would be performed as described.
The algorithm will be then optimized by choosing the best
combination of dt , ns, and ε, which will depend on the system
under study.

We have shown above how different problems have dif-
ferent demands for convergence, depending, for instance, on
their evolution being dominated by the basis motion and the
connection, or by the Hamiltonian itself, either the evolution
of the external potential, or the Hamiltonian effective spectral
width for the evolving states. The interplay of those parame-
ters can therefore vary quite substantially. The method would
be nicely completed with a learning algorithm to adjust those
parameters dynamically.

IV. CONCLUSIONS

The effect of the time evolution of the basis set and of
the Hilbert space it spans is explored for the description
of the time evolution of quantum states. The exploration is
both formal and numerical, assessing the deterioration of the
conservation of scalar products of evolving states (unitarity
of the evolution) and its implication for convergence with
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time step in the integration of the dynamical equation by time
discretization.

Formally, a Crank-Nicolson algorithm using the connec-
tion of the manifold as gauge potential (GP) is shown to keep
unitarity only approximately, unlike the integrator proposed
in Ref. [9] for a moving basis within a static Hilbert space,
and unlike the TS algorithm [6], which is perfectly unitary
regardless of dt size by construction and works well at low
velocities [21–25], but was suggested to describe unphysical
evolution at higher velocities.

The most numerically convenient GP integrator [that of
Eq. (19)] is tried on two systems, a collision between two
He atoms and the passing of a constant-velocity H projectile
across graphite. The unitarity and dt convergence for that
algorithm are compared with the TS one, the latter displaying
the expected better convergence with dt , requiring from two
to ten times less time steps for a given simulation time. That
advantage is, however, offset by the more efficient (and better
basis-size scaling) GP algorithm of Eq. (19), which demands
only, per time step, the calculation of a sparse matrix of
two-center integrals (in linear-scaling operations) instead of
the overlap matrix diagonalization of TS.

The deviation from the physical evolution of the TS inte-
gration is confirmed for nuclear (and basis function) velocities
comparable to or larger than the valence electron velocities. A
very significant overestimation of the Bragg peak (a factor of
two in both height and position) is observed for the electronic
stopping power of the proton shooting through graphite along
the center of a (0001) channel. And a very clear modification
of the expected physics is observed for the same integrator
when describing the two-atom collision.

Although other routes for unitary integrators are proposed
in this work, only the approximately unitary GP algorithm of
Eq. (19) is found to be satisfactory. The work also provides
a better perspective in the understanding of unitary evolution
of quantum states with evolving basis sets, in the context of
curved manifolds.

ACKNOWLEDGMENTS

E.A. is grateful for discussions with Prof. Christos Tsagas
on the possibility of using extrinsic curvature for integrating,
and acknowledges funding from the Leverhulme Trust, un-
der Research Project Grant No. RPG-2018-254, from the EU
through the Electron Stopping Grant No. 333813, within the
Marie-Curie CIG program, and by the Research Executive
Agency under the European Union’s Horizon 2020 Re-
search and Innovation program (project ESC2RAD, Grant No.
776410). Funding from Spanish MINECO is also acknowl-
edged, through Grant No. FIS2015-64886-C5-1-P, and from
Spanish MICIN through Grant No. PID2019-107338RB-
C61/AEI/10.13039/501100011033. J.F.K.H. would like to
acknowledge the EPSRC Centre for Doctoral Training in
Computational Methods for Materials Science for funding un-
der Grant No. EP/L015552/1. This work has been performed
using resources provided by the Cambridge Tier-2 system op-
erated by the University of Cambridge Research Computing
Service funded by the Engineering and Physical Sciences Re-
search Council Tier-2 (capital Grant No. EP/P020259/1), and
DiRAC funding from the Science and Technology Facilities

Council. We also acknowledge the Partnership for Advanced
Computing in Europe, PRACE, for awarding us access to
computational resources in Joliot-Curie at GENCI@CEA,
France, under EU-H2020 Grant No. 2019215186.

APPENDIX A: UNITARY EVOLUTION
IN MATRIX REPRESENTATION

The unitary evolution can be checked more conventionally
in the matrix representation, using for the bra coefficients the
complex conjugate of the ones for the ket, ψ ‘μ

m = 〈ψm|eμ〉 =
ψμ∗

m , as follows:

∂t 〈ψm|ψn〉 = ∂t
(
ψ ν

m Sνμ ψμ
n

)
= (

∂tψ
ν

m

)
Sνμψμ

n + ψ ν
m (∂t Sνμ)ψμ

n + ψ ν
m Sνμ

(
∂tψ

μ
n

)

= ψ •
m

(
i

h̄
H •

• − D •
•t

)
S••ψ•

n + ψ •
m (D•t• + D••t )ψ

•
n

− ψ •
m S••

(
i

h̄
H•

• + D•
•t

)
ψ•

n

= ψ •
m

(
i

h̄
H•• − D•t•

)
ψ•

n + ψ •
m (D•t• + D••t )ψ

•
n

− ψ •
m

(
i

h̄
H•• + D••t

)
ψ•

n = 0,

where a filled bullet has been introduced for every upper
(lower) index that contracts with a contiguous lower (up-
per) index, and where we have used the fact that ∂t Sνμ =
Dμtν + Dμνt .

APPENDIX B: NONORTHOGONAL STATIC BASIS

1. Exponential solution

a. In the matrix representation

A more traditional proof than the one in Eq. (10) is pre-
sented here for the unitarity of the evolution of states in a
static Hilbert space �, for a nonorthogonal static basis. It is
well known, but it serves to set up the scene for later ma-
nipulations. The ψμ

m elements are actually the conventional
expansion coefficients of |ψm〉 in the {|eμ〉} basis, as |ψm〉 =
|eμ〉〈eμ|ψm〉 = |eμ〉ψμ

m. Scalar products remain constant:

〈ψm(t + dt )|ψn(t + dt )〉
= ψμ ∗

m (t + dt ) Sμνψ
ν
n(t + dt )

= ψ• ∗
m (t + dt ) S•• ψ•

n(t + dt )

= ψ• ∗
m (t ) edt i

h̄ H •
• S•• e−dt i

h̄ H•
•ψ•

n(t )

= ψ• ∗
m (t ) S•• S•• edt i

h̄ H •
• S•• e−dt i

h̄ H•
•ψ•

n(t )

= ψ• ∗
m (t ) S•• edt i

h̄ H•
• e−dt i

h̄ H•
•ψ•

n(t )

= ψ• ∗
m (t ) S•• ψ•

n(t ) = 〈ψm(t )|ψn(t )〉,
where filled bullets indicate contracted indices that are con-
tracted as in Appendix A. In the fourth line, 1 = S•• S•• was
introduced, and in the fifth line we made use of the following
relationship:

S••eA •
• S•• = eS••A •

• S•• = eA•
• . (B1)
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The first equality is easily checked by expanding the exponen-
tial, and using the fact that

S••(A •
• )nS•• = (S••A •

• S••)n,

since A •
• A •

• = A •
• S••S••A •

• in any product in the power
expansion. Equation (B1) indicates how to change representa-
tion in powers and exponentials of rank-two tensors, but only
between A •

• and A•
• [the inverse of Eq. (B1), S••eA•

•S•• =
eA •

• , is also true]. Powers or exponentials of A•• or A•• do not
make sense.

Although we are using tensors here, we have used the
matrix representation as the traditional one, where the vector
of coefficients for the bra is the Hermitian conjugate of those
for the ket. Traditionally, H •

• appears as H•• S••, normally
expressed using conventional matrices, H S−1, and H•

• =
S•• H•• = S−1 H. In Sec. III an easier proof is presented for
the natural representation, using ψm• for the bra, and H•

• for
the Hamiltonian.

b. Correspondence of evolved bra and ket

It is easy to check that the bra coefficients in this represen-
tation, in the lower equation of Eq. (9), represent the actual
bra of the upper equation. If ψμ

m(t + dt ) = 〈eμ|ψm(t + dt )〉,
turning it around gives

〈ψm(t + dt )|eμ〉 = ψμ ∗
m (t + dt ) = ψν ∗

m (t )edt i
h H μ

ν ,

where we have just complex-conjugated the whole equation,
and changed the order of ψ and the exponential to reflect the
index contraction (ν) as the order in a matrix product. The
same equation can be reexpressed as

ψmσ (t + dt )Sσμ = ψmλ(t )Sλνedt i
h H μ

ν ,

or, multiplying by the overlap on the right,

ψmμ(t + dt ) = ψmλ(t )Sλνedt i
h H σ

ν Sσμ,

which becomes

ψmμ(t + dt ) = ψmν (t )edt i
h̄ Hν

μ ,

by virtue of Eq. (B1), which coincides with the second line in
Eq. (9), confirming the expectation that the bra of the evolved
ket coincides with the evolved bra.

2. Crank-Nicolson unitarity for static basis

In the natural representation, the bra for the ket in Eq. (11)
is

ψm◦(t + dt ) = ψm•(t )

(
1•

• + i

h̄

dt

2
H•

•

)(
1•

◦ − i

h̄

dt

2
H•

◦

)−1

,

(B2)

and, therefore, 〈ψm|ψn〉 = ψmμψμ
n relate at different times as

ψm•(t + dt )ψ•
n(t + dt )

= ψm•(t )

(
1•

• + i

h̄

dt

2
H•

•

)(
1•

• − i

h̄

dt

2
H•

•

)−1

×
(

1•
• + i

h̄

dt

2
H•

•

)−1(
1•

• − i

h̄

dt

2
H•

•

)
ψ•

n(t )

= ψm•(t )

(
1•

• + i

h̄

dt

2
H•

•

)(
1•

• + i

h̄

dt

2
H•

•

)−1

×
(

1•
• − i

h̄

dt

2
H•

•

)−1(
1•

• − i

h̄

dt

2
H•

•

)
ψ•

n(t )

= ψm•(t )ψ•
n(t ).

We have made use of the fact that the two inverse terms in the
middle commute.

In the traditional matrix representation 〈ψm|ψn〉 =
ψμ ∗

m Sμνψ
ν
n, but since

ψmμ(t + dt ) = ψμ ∗
m (t + dt )Sμν

it obviously complies, too. If we want to check for the evolved
one,

ψ• ∗
m (t + dt ) S•◦

= ψ• ∗
m (t )

(
1 •

• + dt

2

i

h̄
H •

•

)(
1 •

• − dt

2

i

h̄
H •

•

)−1

S•◦

= ψ• ∗
m (t )S••S••

(
1 •

• + dt

2

i

h̄
H •

•

)
S••S••

(
1 •

• − dt

2

i

h̄
H •

•

)−1

S•◦

= ψ• ∗
m (t )S••

(
1•

• + dt

2

i

h̄
H•

•

)(
1•

◦ − dt

2

i

h̄
H•

◦

)−1

,

which coincides with Eq. (B2), and the proof of unitarity
follows from there.

APPENDIX C: PARALLEL TRANSPORT

1. Evolution

The dynamics expressed in Eqs. (7) and (8) is in some
sense counterintuitive, given the fact that neither Dμ

νt nor Dμνt

are anti-Hermitian, and it is hard to see how and why they
would give unitary propagation. The parallel transport case
can be illustrative, i.e., the evolution of states for zero co-
variant derivative. In an Euclidean space the states would not
change in time, but they do in a curved manifold. Because of
the Schrödinger equation, a zero covariant derivative implies
Hμ

ν (t ) = 0. Parallel transport for ket and bra would then be
described by

∂tψ
μ
m = −Dμ

νt ψν
m, ∂tψmμ = ψmνDν

μt . (C1)

For constant Dμ
νt the coefficients for the ket and the bra

evolve as given by the solution of Eq. (C1), namely,

ψμ
m(t + dt ) = e−dtDμ

νt ψν
m(t ),

ψmμ(t + dt ) = ψmν (t ) edtDν
μt . (C2)

In the �(t ) manifold, the scalar-product-preserving propa-
gation 〈ψm|ψn〉(t + dt ) = 〈ψm|ψn〉(t ) becomes

ψmμ(t + dt )ψμ
n(t + dt ) = ψmμ(t )ψμ

n(t ). (C3)

Using Eq. (C2),

ψmμ(t + dt )ψμ
n(t + dt ) = ψmν (t )edt Dν

μt e−dtDμ
δt ψδ

n(t ).

Since edt Dν
μt e−dtDμ

δt = δν
δ , the unitarity of propagation in

Eq. (C3) is demonstrated. The key is in Eq. (5).
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2. Evolved bra

We have shown that the scalar product between the evolved
representation of the ket ψμ

m(t ) ∈ �(t ) and the evolved repre-
sentation of its bra, ψn

ν (t ), is preserved at later times. We can
also show the preservation of the scalar product directly for
the bra ψnν (t + dt ), corresponding to ψν

n(t + dt ) ∈ �(t +
dt ). In other words, the evolved bra is the bra of the evolved
ket, i.e., we want to check that for the ket represented by

ψμ
m(t + dt ) = e−dtDμ

νt ψν
m(t ), (C4)

the bra would be

ψmμ(t + dt ) = ψmν (t ) edtDν
μt . (C5)

For the purpose let us write Eq. (C4) as

〈eμ, t + dt |ψm, t + dt〉 = e−dt〈eμ|∂t eν 〉〈eν, t |ψm, t〉,
and turn it around (and complex conjugate it),

〈ψm, t + dt |eμ, t + dt〉 = 〈ψm, t |eν, t〉 e−dt〈∂t eν |eμ〉, (C6)

where we have changed the order of factors in the r.h.s. to
reflect the summed index ν. Now,

〈ψm|eμ〉 = ψmσ Sσμ,

and Eq. (C6) becomes

ψmσ (t + dt ) Sσμ(t + dt ) = ψmλ(t ) Sλν (t )e−dtD μ
νt

or

ψmμ(t + dt ) = ψmλ(t ) Sλν (t )e−dtD σ
νt Sσμ(t + dt ).

Using now S◦◦(t + dt ) = edtD •
◦t S••(t )edtD•

◦t [Eq. (13)],

ψmμ(t + dt ) = ψmλ(t ) Sλν (t )e−dtD σ
νt edtD δ

σ t Sδκ (t )edtDκ
μt

= ψmλ(t ) Sλν (t )Sνκ (t )edtDκ
μt

= ψmλ(t ) edtDλ
μt ,

coinciding with the evolved bra in Eq. (C5), as expected.
We have used that e−dtD •

•t edtD •
•t = edt (D •

•t −D •
•t ) = 1 and that

S◦• S•◦ = 1◦
◦.

3. Crank-Nicolson for parallel transport

Above we just saw that since parallel transport preserves
scalar products, it also does it in the case of a constant con-
nection, no matter for how long. The question is now what
happens with approximate evolution over a finite dt .

Since the evolution of both ket and bra under parallel trans-
port with constant connection [Eq. (C2)] is mathematically
analogous to their evolution under Eq. (9) with fixed basis, the
Crank-Nicolson algorithm can be used to approximate their
transport,

ψ◦
m(t + dt ) =

(
1◦

• + dt

2
D◦

•t

)−1(
1•

• − dt

2
D•

•t

)
ψ•

m(t ),

(C7)

ψm◦(t + dt ) = ψm•(t )

(
1•

• + dt

2
D•

•t

)(
1•

◦ − dt

2
D•

◦t

)−1

.

(C8)

As done in Sec. III C 2, it is apparent (using appropriate com-
mutation) that

ψm•(t + dt )ψ•
n(t + dt ) = ψm•(t )ψ•

n(t ),

and, therefore, scalar products would seem to be preserved
exactly. But again, they are not. The evolved bra ψm◦(t + dt )
as in Eq. (C8) is only approximately the bra of the evolved ket
ψ◦

m(t + dt ), and therefore unitarity will only be approximate.
The actual bra of the ket in Eq. (C7) is rather

ψm◦(t + dt ) = ψm•(t )S••(t )

(
1 •

• − dt

2
D •

•t

)

×
(

1 •
• + dt

2
D •

•t

)−1

S•◦(t + dt ). (C9)

Using Eq. (13) for S◦◦(t + dt ) does not convert Eq. (C9) into
Eq. (C8).

APPENDIX D: ALTERNATIVE CONNECTION
AND INTEGRATOR FOR FINITE dt

When traveling between t and t + dt , Sμν (t ) and Sμν (t +
dt ) can be calculated directly in ambient space using Eq. (15).
Assuming a constant connection, we could then use the Dμνt

arising from the solution of Eq. (13), instead of calculating
it explicitly as in Eq. (16). However, the relation between
overlaps alone should not be sufficient for the determination of
the connection, since any rotation of the basis at t + dt should
leave Sμν (t + dt ) unaltered while the transformation between
t and t + dt would change.

1. Parallel transport transformation

Defining the transformation tensor,

Aμ
ν = e−dtDμ

νt , (D1)

it performs the transformation from t to t + dt for any vector
following parallel transport (see Appendix C),

ψμ
m(t + dt ) = Aμ

νψ
ν
m(t ). (D2)

We could define A◦
◦ more generally as the one doing that

operation regardless of Dμ
νt being constant or not. If not,

Eq. (D1) would have to be replaced by a time-ordered integral,
but once in possession of Aμ

ν , the rest of this section would
be the same.

It is analogous to a basis set transformation, except that
Aμ

ν 	= Aμ
ν ≡ 〈eμ, t + dt | eν, t〉, as defined in Ref. [9], which

is the relevant transformation when � does not change with
time.

The parallel-transport transformation given by Eq. (D2)
can be understood as a basis set transformation within �(t +
dt ) between the basis set {|eμ, t〉} of �(t ) parallel-transported
into �(t + dt ) and the actual basis of the latter space,
{|eμ, t + dt〉}. Define |φμ, t + dt〉 as the parallel transport
onto �(t + dt ) of |eμ, t〉. Following Eq. (D2), its expansion
in the basis of �(t + dt ) would be

φν
μ(t + dt ) = Aν

σ φσ
μ(t )

but φσ
μ(t ) = δσ

μ (since |φμ, t〉 = |eμ, t〉), and, therefore,

φν
μ(t + dt ) = Aν

μ, (D3)
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that is, Aν
μ = 〈eν, t + dt |φμ, t + dt〉, and |φμ, t + dt〉 =

|eν, t + dt〉 Aν
μ, the proposed basis set transformation.

Writing it with matrices, if defining matrix A as the tensor
A◦

◦, parallel transport from t to dt becomes

�m(t + dt ) = A �m(t ),

and the overlap evolution, Eq. (13) can be recast as

S(t ) = A†S(t + dt )A, (D4)

S(t + dt ) = (A†)−1S(t )A−1. (D5)

Equation (14) for the other metric tensor S◦◦ becomes

S(t )−1 = A−1S−1(t + dt )(A†)−1, (D6)

S−1(t + dt ) = A S−1(t )A†. (D7)

Again. the metric being invariant under any unitary trans-
formation represents a gauge indetermination in the solution
of Eq. (D4), while the definition in Eq. (D3) does not allow for
that freedom and, therefore, seems a more attractive target.

APPENDIX E: EVOLVED BRA
FOR CONSTANT CONNECTION

A valid question after Sec. III C 1 is whether the evolving
bra in Eq. (18) corresponds to the instantaneous bra of the
evolving ket in Eq. (17). The instantaneous bra is, turning
Eq. (17) around,

ψ μ
m (t + dt ) = ψ ν

m (t ) edt ( i
h̄ H μ

ν −D μ
νt ), (E1)

which is just the complex conjugate of the coefficients for the
ket in Eq. (17). It is also the solution of the equation of motion
given by

∂tψ
μ

m = ψ ν
m

(
i

h̄
H μ

ν − D μ
νt

)
, (E2)

given that both H μ
ν and Dνt

μ are time-independent if Hμ
ν and

Dμ
νt are, as assumed before. This equation is derived from

〈ψm|H = −ih̄∂t 〈ψm|,

(∂t 〈ψm|)|eμ〉 = i

h̄
〈ψm|H |eμ〉,

∂tψ
μ

m − 〈ψm|∂t e
μ〉 = i

h̄
ψ ν

m H μ
ν ,

∂tψ
μ

m − ψ ν
m D μ

ν t = i

h̄
ψ ν

m H μ
ν ,

which, remembering that D μ
ν t = −D μ

νt , is nothing but
Eq. (E2), or, canonically,

−ih̄ ðtψ
μ
m = ψ ν

m H μ
ν .

Similarly, Eqs. (8) and (E2) can be easily shown to be
equivalent:

∂tψmμ = ψmν

(
i

h̄
Hν

μ + Dν
μt

)
,

∂t
(
ψ σ

m Sσμ

) = ψ λ
m Sλν

(
i

h̄
Hν

μ + Dν
μt

)
,

(
∂tψ

σ
m

)
Sσμ = ψ ν

m

(
i

h̄
Hνμ + Dνμt

)
− ψ σ

m ∂t Sσμ,

(
∂tψ

σ
m

)
Sσμ = ψ ν

m

(
i

h̄
Hνμ + Dνμt − ∂t Sνμ

)
,

∂tψ
μ

m = ψ ν
m

(
i

h̄
Hνσ + Dνσ t − ∂t Sνσ

)
Sσμ,

∂tψ
μ

m = ψ ν
m

(
i

h̄
H μ

ν + Dνσ t S
σμ + Sνσ ∂t S

σμ

)
,

∂tψ
μ

m = ψ ν
m

(
i

h̄
H μ

ν + D μ
ν t

)
,

∂tψ
μ

m = ψ ν
m

(
i

h̄
H μ

ν − Dνt
μ

)
q.e.d.

Therefore, the bra coefficients in Eq. (E1), which are com-
plex conjugates of the ket coefficients in Eq. (17), represent
the evolved solution of Eq. (E2), which is equivalent to
Eq. (8), that gives the evolved solution of Eq. (18). It all closes
the consistency circle showing that ψmμ(t + dt ) of Eq. (18)
and ψμ

m (t + dt ) of Eq. (E1) are related by

ψmμ(t + dt ) = ψ ν
m (t + dt ) Sνμ(t + dt ), (E3)

as they should.
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