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Following Floquet states in high-dimensional Hilbert spaces
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An iterative algorithm is established which enables one to compute individual Floquet states even for many-
body systems with high-dimensional Hilbert spaces that are not accessible to commonly employed conventional
methods. A strategy is proposed for following a Floquet state in response to small changes of a given system’s
Hamiltonian. The scheme is applied to a periodically driven Bose-Hubbard chain, verifying the possibility of a
pseudoadiabatic Floquet state following. In particular, it is demonstrated that a driving-induced Mott insulatorlike
target Floquet state can be populated with high efficiency if the driving amplitude is turned on smoothly but not
too slowly. We conclude that the algorithm constitutes a powerful tool for the future investigation of many-body
Floquet systems.
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I. INTRODUCTION

The experimental and theoretical investigation of periodi-
cally time-dependent many-body quantum systems, nowadays
often dubbed Floquet systems, has turned into a remarkably
fruitful area of physics in recent years, comprising, among
many others, the dynamics of cold atomic quantum gases in
periodically driven optical lattices [1], the principles underly-
ing Floquet time crystals [2,3], and the fundamental aspects
of nonequilibrium statistical physics [4,5].

Advances on the theoretical side of this field appear to be
impeded by the fact that, while it is still feasible to solve the
time-dependent Schrödinger equation numerically for many
such systems of interest, there is a notable lack of powerful
methods for computing the systems’ Floquet states. Since
these states constitute a natural basis which fully incorporates
the periodic time dependence, thus providing a key for un-
derstanding both the short-time and the long-time behavior of
periodically driven quantum systems, lack of knowledge of
these states tends to limit one to a mere description of the re-
sults of numerical calculations, precluding deeper conceptual
insight.

So far, numerical methods for treating large Floquet sys-
tems either make heavy use of specific properties of the
respective system [6] or require supercomputing facilities [7],
typically enabling one to perform exact calculations for sys-
tems with a Hilbert space with a dimension on the order of
104. In the present paper we establish a general computational
strategy for calculating the Floquet states of even higher-
dimensional systems with only modest numerical effort. This
progress is achievable if one does not require all Floquet states
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and their quasienergies but wishes to obtain information on
specific individual states. In contrast to a variational principle
which has been suggested recently for the same purpose [8],
here we propose an iterative algorithm that does not require a
variational ansatz and can be executed whenever a sufficiently
efficient scheme for propagating states in time is available.
As an experiment-related application, we employ the exact
Floquet states obtained in this manner for a periodically driven
finite Bose-Hubbard chain in order to investigate the pecu-
liarities of pseudoadiabatic Floquet-state preparation in the
system’s high-frequency regime [9]. This is a somewhat subtle
topic, since a proper adiabatic limit, referring to a turn-on of
the driving amplitude that proceeds “infinitely slowly,” cannot
be expected to exist when the Bose-Hubbard system becomes
large, owing to the fact that the gap condition required by the
standard adiabatic theorem [10] cannot be satisfied; moreover,
for an infinite system the quasienergy eigenvalues probably
are nowhere differentiable with respect to the adiabatically
changing parameter [11,12]. We argue that, nonetheless, there
may be a window of opportunity involving driving amplitudes
which vary so fast that these pathologies remain almost unre-
solved but still sufficiently slow to enable effectively adiabatic
following at least to a high degree; the detailed experimental
verification of this scenario with cold atoms in shaken optical
lattices might constitute a rewarding challenge in the near
future.

We proceed as follows: In Sec. II we review some basic ele-
ments of the Floquet approach to periodically time-dependent
quantum systems, thereby establishing our notation in the
form it will be required later. We then introduce our iterative
algorithm for computing Floquet states of high-dimensional
systems in Sec. III and discuss a method for “following”
Floquet states in response to small changes of the system’s
Hamiltonian in Sec. IV. This type of computational follow-
ing is still not directly related to an adiabatic following but
based on the likeness of Floquet states. In Sec. V we apply
these concepts to a periodically driven one-dimensional Bose-
Hubbard chain, documenting both the viability of the iterative
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algorithm and the usefulness of the Floquet state-following
scheme. In Sec. VI we then tie the open ends together and
scrutinize what we call a pseudoadiabatic following, demon-
strating that a periodically driven many-body system may
respond to a slowly changing driving amplitude by actu-
ally taking the Floquet path sorted out by the computational
following procedure. Some conclusions regarding possible
experimental implications are drawn in the final Sec. VII.

II. THE FLOQUET PICTURE

Consider a quantum system with a periodically time-
dependent Hamiltonian Ĥ (t ) = Ĥ (t + T ) acting on a Hilbert
space H, giving rise to the time-dependent Schrödinger equa-
tion

ih̄
d

dt
|ψ (t )〉 = Ĥ (t )|ψ (t )〉. (1)

Then the unitary time-evolution operator of that system pos-
sesses the Floquet product form [13–16]

Û (t, 0) = P̂(t ) exp(−iĜt/h̄), (2)

where the unitary operator P̂(t ) = P̂(t + T ) inherits the peri-
odic time dependence of the Hamiltonian, with P̂(0) = 1̂, and
the operator Ĝ is self-adjoint. Thus, the transformed states

|ψ̃ (t )〉 = P̂†(t )|ψ (t )〉 (3)

obey the Schrödinger equation

ih̄
d

dt
|ψ̃ (t )〉 = Ĝ|ψ̃ (t )〉, (4)

in which Ĝ appears as an effective time-independent Hamilto-
nian.

The quasienergies εn constitute the spectrum of Ĝ [15].
Requiring H to be of finite dimension, the “stroboscopic” ap-
proach to periodically time-dependent quantum systems rests
on the eigenvalue problem

Û (T, 0)|n〉 = exp(−iεnT/h̄)|n〉, (5)

which is posed by the unitary one-cycle evolution oper-
ator Û (T, 0) = exp(−iĜT/h̄) on H. Since all eigenvalues
exp(−iεnT/h̄) fall on the unit circle of the complex plane, the
quasienergies are thus determined up to an integer multiple of
h̄2π/T ≡ h̄ω.

If H is not of finite dimension, the eigenvalue problem may
become quite difficult. For example, the quasienergy spectrum
of a linearly driven harmonic oscillator [17] is pure point if
the driving is nonresonant but absolutely continuous if the
driving frequency matches the oscillation frequency of the
undriven oscillator. More generally, the question under which
conditions the quasienergy spectrum of a periodically driven
quantum system may become continuous has been termed
the “quantum stability problem” in the literature [18]; some
sophisticated theorems have been developed which allow one
to exclude the presence of a continuous spectrum in particular
cases [19–21]. In order to avoid such complications we require
H to be of large, but finite dimension from here on.

The “extended” viewpoint emerges when introducing the
Floquet functions

|un(t )〉 = P̂(t )|n〉, (6)

which are T -periodic by construction,

|un(t )〉 = |un(t + T )〉. (7)

By virtue of the representation (2), the Floquet states

|ψn(t )〉 = |un(t )〉 exp(−iεnt/h̄) (8)

then constitute a set of particular solutions to the Schrödinger
equation (1) which is orthogonal and complete in H at each
instant t . Every solution to Eq. (1) can be expanded with
respect to these states with time-independent coefficients an,

|ψ (t )〉 =
∑

n

an|un(t )〉 exp(−iεnt/h̄), (9)

showing that the Floquet functions adopt a role which is
conceptually similar to that of the energy eigenfunctions of
time-independent systems. Moreover, inserting a Floquet state
(8) into the Schrödinger equation, one readily derives(

Ĥ (t ) + h̄

i

d

dt

)
|un(t )〉 = εn|un(t )〉. (10)

This is an eigenvalue equation for the quasienergies akin to
the stationary Schrödinger equation, posed by the quasienergy
operator

K̂ = Ĥ (t ) + h̄

i

d

dt
(11)

on an extended Hilbert space L2[0, T ] ⊗ H of time-periodic
functions [22]. Denoting the scalar product on H by 〈 · | · 〉,
the scalar product on L2[0, T ] ⊗ H is naturally given by

〈〈 · | · 〉〉 = 1

T

∫ T

0
dt 〈 · | · 〉, (12)

since the time t is an additional coordinate in this extended
space. When regarding a Floquet function |un(t )〉 no longer
as a time-dependent function on H but rather as an element
of L2[0, T ] ⊗ H, it is written as |un〉〉, so that the quasienergy
eigenvalue equation (10) takes the form

K̂|un〉〉 = εn|un〉〉. (13)

There is a seemingly simple but important implication that
marks a crucial difference between this quasienergy eigen-
value problem and the more familiar energy eigenvalue
problems encountered with time-independent Hamiltonian
operators: If |un(t )〉 is a Floquet function with quasienergy εn,
and if m is any positive or negative integer, then |un(t )eimωt 〉
is a further T -periodic Floquet function with quasienergy
εn + mh̄ω, where, again, ω = 2π/T ; all these different solu-
tions are required for the completeness relation pertaining to
the eigenfunctions of K̂ in L2[0, T ] ⊗ H. On the other hand,
solutions differing by m only give rise to the same Floquet
state in H, since

|un(t )eimωt 〉 exp(−i[εn + mh̄ω]t/h̄)

= |un(t )〉 exp(−iεnt/h̄). (14)

Expressed pictorially, the spectrum of the quasienergy op-
erator (11) is obtained by “unrolling” the eigenvalues
exp(−iεnT/h̄) of the one-cycle evolution operator from the
unit circle to the infinite real energy axis. More technically,
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a “quasienergy” should not be regarded as a single eigen-
value but rather as an infinite set of equivalent representatives
spaced by h̄ω, implying that quasienergies cannot be ordered
with respect to their magnitude without additional conven-
tions. The spectrum of K̂ thus consists of infinitely many
identical Brillouin zones of width h̄ω, with each zone con-
taining one quasienergy representative of each Floquet state.

When the dimension of H becomes high, the distance
between the quasienergy representatives within one Brillouin
zone necessarily becomes small. On the other hand, being
the eigenvalues of a Hermitian operator, the quasienergies
are subject to the von Neumann-Wigner noncrossing rule and
hence generally do not cross when only one parameter of
the quasienergy operator is varied, unless such a crossing is
permitted by a symmetry [23]. Hence, excepting integrable
systems, which actually do possess smooth quasienergies
such as the nonresonantly driven harmonic oscillator [17],
the quasienergies of a high-dimensional periodically time-
dependent quantum system form an intricate, dense net of
avoided crossings when viewed as functions of one of its
parameters, such as the amplitude of a driving force; the full
complexity of this net may remain unresolvable when limited
to the accuracy attainable by numerical computations [11,12].
The question how to “follow” an individual Floquet state on
parameter changes in such a net is, therefore, far from trivial.

III. ITERATIVE COMPUTATION OF FLOQUET STATES

Our present approach to computing individual Floquet
states of periodically time-dependent quantum systems is
based on the following theorem, resorting to the stroboscopic
viewpoint:

Let Û1 = Û (T, 0) be the one-cycle evolution operator of a
quantum system defined on a finite-dimensional Hilbert space
H, which possesses a time-periodic Hamiltonian Ĥ (t ) =
Ĥ (t + T ), and consider the functional �γ on H which is given
by

�γ [ |ψ〉] ≡ 〈ψ |(Û1 + e−iγ )†(Û1 + e−iγ )|ψ〉. (15)

Then one has, for any γ ∈ R and any normalized |ψ〉 ∈ H,

4 � �γ [ |ψ〉] � 0. (16)

This is easily shown: After expanding |ψ〉 with respect to the
eigenvectors |n〉 = |un(0)〉 = |un(T )〉 of Û1, obtaining

|ψ〉 =
∑

n

an|n〉, (17)

one finds

(Û1 + e−iγ )†(Û1 + e−iγ )|ψ〉
=

∑
n

an(2 + 2 cos(εnT/h̄ − γ ))|n〉 (18)

and, hence,

�γ [ |ψ〉] =
∑

n

|an|2(2 + 2 cos(εnT/h̄ − γ )). (19)

From this representation, the theorem follows immediately,
since 1 � cos(εnT/h̄ − γ ) � −1, and |ψ〉 is assumed to be
normalized,

∑
n |an|2 = 1. �

In particular, the maximum �γ [ |ψ〉] = 4 of the functional
�γ is attained if |ψ〉 = |n〉 equals one of the eigenvec-
tors of Û1, and γ = εnT/h̄ equals the corresponding phase.
This observation enables one to invoke iterative methods for
computing eigenvectors possessing the largest eigenvalue, up-
dating the phase γ at each step. Here we employ a power
method based on the scheme

|ψnew〉 = ((Û1 + e−iγ )†(Û1 + e−iγ ) + α)|ψold〉, (20)

combined with subsequent normalization of |ψnew〉. The real
parameter α can be adjusted empirically in order to speed up
the convergence; evidently, one requires α > −2 for filtering
out the desired eigenvector of the kernel of the functional �γ

which belongs to the largest eigenvalue. To be precise, we
propose the following three-step algorithm:

Step 1: Choose a convenient initial state |ψ0〉 and propagate
this state in time over one period T , obtaining Û1|ψ0〉. If then

1 − |〈ψ0|Û1|ψ0〉| � δ, (21)

where δ > 0 is a predefined small error tolerance, |ψ0〉 already
is an eigenvector |n〉 of Û1 to the accuracy thus speci-
fied. Hence, the algorithm terminates, and the corresponding
quasienergy is obtained from the relation

〈ψ0|Û1|ψ0〉 = exp(−iεnT/h̄). (22)

Otherwise, that is, if the condition (21) is not satisfied, com-
pute

exp(−iγ1) = 〈ψ0|Û1|ψ0〉
|〈ψ0|Û1|ψ0〉|

, (23)

yielding the vector

|ψ1〉 = (Û1 + e−iγ1 )|ψ0〉. (24)

Step 2: Now perform a propagation backward in time over
one period T to obtain Û †

1 |ψ1〉 and compute

|ψ2〉 = (Û1 + e−iγ1 )†|ψ1〉. (25)

Step 3: Compute

|ψ3〉 = |ψ2〉 + α|ψ0〉 (26)

and normalize, obtaining

|ψ0〉 = |ψ3〉/‖|ψ3〉‖. (27)

With this new |ψ0〉, go back to Step 1 and repeat until the
algorithm terminates.

Observe that this scheme for computing |n〉 = |un(0)〉 and
the quasienergy eigenvalue εn can be executed already if a
sufficiently efficient routine for propagating states in time is
available. Thus, it is well applicable even if the dimension
of H is so large that the computation and subsequent diago-
nalization of the one-cycle evolution operator, or alternatively
the diagonalization of K̂ in the extended Hilbert space, are
rendered impracticable.

043133-3



NILS KRÜGER AND MARTIN HOLTHAUS PHYSICAL REVIEW RESEARCH 3, 043133 (2021)

IV. COMPUTATIONAL FOLLOWING
OF FLOQUET STATES

Now suppose that a Floquet function |u1〉〉 of some
quasienergy operator K̂1 with eigenvalue ε1 is already known,

K̂1|u1〉〉 = ε1|u1〉〉. (28)

Next, suppose that the quasienergy operator is modified by
adding a piece λV̂ , where λ is a dimensionless parameter,
giving K̂2 = K̂1 + λV̂ . It then appears natural to seed the
algorithm devised in Sec. III, searching for a Floquet function
of the new operator K̂2, with the old Floquet function |u1〉〉 per-
taining to K̂1. This is based on the continuity assumption that
for sufficiently small λ there should be an eigenfunction of
K̂2 which closely resembles |u1〉〉. Would it then be possible to
make a useful a priori statement concerning the performance
of the algorithm?

To this end, consider the expression

F [ |u〉〉; z; Ŷ ] ≡ 〈〈u|(Ŷ − z)2|u〉〉, (29)

where Ŷ is an operator acting on the extended Hilbert space,
|u〉〉 is an element of that space, z is a scalar, and double angu-
lar brackets indicate the scalar product (12) on L2[0, T ] ⊗ H.
In view of Eq. (28), one evidently has

F [ |u1〉〉; ε1; K̂1] = 0; (30)

this identity implies a variational principle for Floquet states
[8]. Inserting the old, known Floquet function |u1〉〉 and its
quasienergy ε1 but the new quasienergy operator K̂2 into this
expression (29), it jumps to the nonzero value

F [ |u1〉〉; ε1; K̂2] = 〈〈u1|(λV̂ )2|u1〉〉. (31)

More elaborately, computing

ε = 〈〈u1|K̂2|u1〉〉
= ε1 + 〈〈u1|λV̂ |u1〉〉, (32)

and inserting this ε instead of ε1, one derives

F [ |u1〉〉; ε; K̂2] = 〈〈u1|(λV̂ − 〈〈u1|λV̂ |u1〉〉)2|u1〉〉
≡ Var1(λV̂ ). (33)

Under the plausible, yet unproven assumption that the magni-
tude of this jump of F from zero to Var1(λV̂ ) is monotonically
related to the number of iterations it takes the algorithm to
converge to the new Floquet state, one obtains a cue how to
choose the parameter λ. In particular, when trying to monitor
the behavior of a certain Floquet state for all values of λ within
some interval [0, λmax] of interest by performing computa-
tions on a grid of width �λ, it may be helpful to compute
Var1(V̂ ) at each step, thus obtaining information on “how far
away” the desired new Floquet state may be from the previous
one; if this jump appears too large, �λ should be suitably
decreased.

We emphasize that this strategy for following an individual
Floquet state in parameter space does not necessarily result
in following by continuity with respect to λ. If, for instance,
the relevant quasienergy functions εn(λ) are broken by a large
number of tiny avoided crossings, indicating weak multi-
photon-like resonances, and if the increment �λ is larger than
the typical width of these avoided crossings, the initial state

will be followed diabatically, that is, ignoring the avoided
crossings as if they did not exist. If, on the other hand, �λ

is comparable to the size of the avoided crossings, they will
be resolved, and the numerically computed Floquet state will
follow its quasienergy continuously, that is, adiabatically. It
remains to be explored whether this potential sensitivity of the
computational following procedure to the stepsize �λ can be
exploited for extracting useful information about the physics
of the respective system under investigation.

V. APPLICATION: THE PERIODICALLY DRIVEN
BOSE-HUBBARD MODEL

The Bose-Hubbard model constitutes an idealized lattice
system of theoretical many-body physics, embodying the
competition between delocalization due to kinetic energy and
localization due to repulsive potential energy, thus giving rise
to a superfluid-Mott insulator quantum phase transition [24].
Here we consider a one-dimensional Bose-Hubbard chain, as
specified by the Hamiltonian

Ĥ0 = Ĥtun + Ĥint (34)

with nearest-neighbor tunneling

Ĥtun = −J
∑

j

(â†
j â j+1 + â†

j+1â j ) (35)

and on-site interaction

Ĥint = U

2

∑
j

n̂ j (n̂ j − 1), (36)

where j labels the chain’s sites in consecutive order, â j (â†
j )

annihilates (creates) a Bose particle at site j, implying the
canonical commutator [â j , â†

k] = δ jk , while n̂ j = â†
j â j de-

notes the number operator at that site. Moreover, J is the
nearest-neighbor hopping matrix element, and U is the repul-
sion energy contributed by each pair of particles occupying a
common site. In the limit of infinite chain length, the phase
transition occurs at (J/U )c = 0.297 ± 0.01 for unit filling,
that is, when the chain is occupied by one particle per site
[25,26].

In order to equip this model with a periodic time depen-
dence, thus admitting an additional wealth of Floquet physics,
we introduce a monochromatic homogeneous driving force
described by

Ĥdrive(t ) = R cos(ωt )
∑

j

jn̂ j (37)

and investigate the periodically driven Bose-Hubbard model
[27]

Ĥ (t ) = Ĥ0 + Ĥdrive(t ); (38)

this driving scheme can be implemented experimentally with
ultracold atoms in periodically shaken optical lattices [27–30].
Some salient features of this system (38) can already be de-
duced by calculating the matrix elements of its quasienergy
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operator K̂ for the Floquet-Fock functions [27],

|{n j}, m〉〉

= |{n j}〉 exp

(
−i

R

h̄ω
sin(ωt )

∑
j

jn j + imωt

)
, (39)

spanning its extended Hilbert space, where |{nj}〉 denotes a
Fock state with n j particles occupying the site labeled by j,
and m is the integer having shown up before in Eq. (14): While
the on-site contributions remain diagonal,

〈〈{n′
j}, m′|Ĥint + Hdrive(t ) + h̄

i

d

dt
|{n j}, m〉〉

=
[

U

2

∑
j

n j (n j − 1) + mh̄ω

]
δ{n j },{n′

j}δm,m′ , (40)

the matrix elements of the tunneling operator are found to read

〈〈{n′
j}, m′|Ĥtun|{n j}, m〉〉

= 〈{n′
j}|Ĥtun|{n j}〉

× 1

T

∫ T

0
dt exp

(
−i

Rs

h̄ω
sin(ωt ) + i(m − m′)ωt

)
, (41)

where

s =
∑

j

j(n j − n′
j ) = ±1, (42)

since Ĥtun transfers one particle by one site along the chain,
with the plus (minus) sign referring to a tunneling process to
the left (right). Invoking the Jacobi-Anger identity

exp(iz sin ϕ) =
+∞∑

=−∞
eiϕJ(z) (43)

for the Bessel functions J of integer order , this becomes

〈〈{n′
j}, m′|Ĥtun|{n j}, m〉〉

= 〈{n′
j}|Ĥtun|{n j}〉 (−s)m′−m Jm′−m

(
R

h̄ω

)
. (44)

In the high-frequency regime, in which the width h̄ω of the
quasienergy Brillouin zone becomes the dominant energy
scale and “small” avoided crossings of quasienergy repre-
sentatives belonging to different m can be ignored, one may
neglect all Bessel function factors Jm′−m(R/h̄ω), except for
m′ − m = 0. Thus, one arrives at a time-independent effec-
tive Hamiltonian which differs from the original, undriven
Bose-Hubbard model (34) only through the replacement of
the hopping matrix element J by the “renormalized” hopping
strength [27]

Jeff = J J0(R/h̄ω); (45)

this effective Hamiltonian is a simple but often apparently
sufficient approximation to the exact operator Ĝ introduced on
general grounds in Eqs. (2) and (4). Since the iterative scheme
established in Sec. III does not require any such approxima-
tion, we are now in a position to subject this high-frequency
approximation to a “hard” numerical test.

The interest in such a test stems from the following de-
liberation: Assume that J/U > (J/U )c, so that the undriven

chain (34) is in its superfluid ground state. If then the scaled
driving amplitude R/(h̄ω) is increased from zero toward the
first zero j0,1 ≈ 2.405 of the Bessel function J0, the effective
hopping strength (45) decreases monotonically to zero. This
implies that the effective time-independent model enters the
Mott insulator regime at a certain “critical” driving strength, at
which Jeff/U = (J/U )c; for even stronger driving, the energy
ground state of the effective model is separated from the ex-
cited states by a finite gap. Thus, the effective model predicts
the emergence of a driving-induced Mott insulator state [27].

The full Floquet system (38), however, does not possess
such a gapped ground state. Considering an infinitely long
chain for the sake of the argument, the quasienergy of a
Floquet state originating on activation of the drive from the
undriven chain’s Mott insulator ground state would be em-
bedded in the continuum of excited states due to the Brillouin
zone structure of the quasienergy spectrum. Therefore, this
state should turn into a resonance, that is, into a decaying
state characterized by a Lorentzian peak in the spectral density
with a certain width determining its life time, akin to the
familiar Floquet resonances of atomic states in strong laser
fields [31], so that the decay width may be interpreted as an
inverse characteristic heating time.

Returning to large but finite driven Bose-Hubbard chains
which are more realistic from an experimental point of view,
the quasienergy continuum resulting from the excited states
gives way to a huge number of discrete quasienergy eigen-
values filling each Brillouin zone. Thus, on variation of the
driving amplitude, a Floquet state associated with a Mott
insulator state would not be protected by a gap but would have
to avoid a plethora of other states instead to the effect that its
quasienergy cannot depend smoothly on the driving amplitude
but is “broken” by countless tiny avoided crossings. Indeed
this “roughness” of the quasienergy functions should enable
one to estimate the corresponding decay or heating times by
a procedure mimicking the so-called L2 stabilization method
[32,33]. Here we do not attempt to determine these heating
times but focus on the first and foremost question: If one
goes beyond the convenient but essentially uncontrolled high-
frequency approximation (45), would it actually be possible
to identify driving-induced Mott insulatorlike Floquet states
despite the above caveats?

To this end we study a finite Bose-Hubbard chain (34)
possessing M = 11 sites ranging from jmin = −5 to jmax = 5
and specify unit filling so that the chain is occupied by N = 11
Bose particles. The dimension d of this system’s Hilbert space
H then is determined by the binomial coefficient

d =
(

N + M − 1
M − 1

)
= 352716, (46)

posing a serious challenge to more traditional methods com-
monly used for investigating Floquet systems. Adopting the
above reasoning, we fix the parameter J/U = 1/3 > (J/U )c,
placing the undriven system in the superfluid regime. The
energy spectrum of this chain ranges from Emin/U = −3.64
to Emax/U = 55.25. Moreover, we select the driving fre-
quency h̄ω/U = 14/3, thus aiming for the high-frequency
regime in which the approximation (45) should be viable
[27]. This gives Emin/(h̄ω) = −0.78 and Emax/(h̄ω) = 11.84,
implying that the chain’s energy spectrum covers more
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FIG. 1. Following the Floquet state that develops from the energy
ground state of the Bose-Hubbard chain (34) with M = 11 sites
occupied by N = 11 particles in response to the drive (37) with
parameters J/U = 1/3 and h̄ω/U = 14/3: Red dots indicate the
number of iterations required for converging to the respective new
Floquet state for stepsize �R/(h̄ω) = 7/120, tolerance δ = 10−4,
and α = −1.9; blue dots show the magnitude of the corresponding
jump Var1(V̂ (t )), where V̂ (t ) = Ĥdrive(t )/R

than 12 quasienergy Brillouin zones. With this choice of
parameters one finds Jeff/U = (J/U )c for R/(h̄ω) ≈ 0.67.
Hence the driven system should enter a Mott insulatorlike
regime at about this value of the the driving amplitude and
stay therein for stronger driving.

The quasienergy operator K̂ of the driven chain remains
invariant under a generalized parity transformation in its ex-
tended Hilbert space, corresponding to the spatial reflection
j → − j combined with a shift in time by half a period,
t → t + T/2. Since the Floquet functions are odd or even
under this generalized parity, and eigenvalues belonging to
the same parity class are subject to the von Neumann-Wigner
noncrossing rule, each of the d quasienergy respresentatives
falling into one Brillouin zone inevitably is perforated by a
large number of avoided crossings when, for example, the
driving amplitude is varied.

As a preliminary application of the strategy put forward in
Sec. IV, we try to follow the Floquet state, which develops
from the superfluid energy ground state of the undriven chain
in response to a time-periodic drive (37) with increasing driv-
ing amplitude, so that the scaled amplitude R/(h̄ω) now plays
the role of the parameter λ. The calculations were performed
on a standard laptop computer equipped with a GPU (GeForce
GTX 1060 Mobile). Figure 1 depicts the performance of the
algorithm when scanning the interval 0 � R/(h̄ω) � 7 with
stepsize �R/(h̄ω) = 7/120 and tolerance δ = 10−4; here, the
parameter α employed in Eq. (26) has been set to α = −1.9.
These results are fairly encouraging: Indeed, the procedure al-
ways converges to a Floquet state after less than 30 iterations.
Most significantly, the expected entrance into a Mott insula-
torlike regime is reflected by the number of iterations; in the
initial superfluidlike regime, the state is increasingly harder
to follow when R/(h̄ω) is enhanced. This behavior changes
after entering the potential Mott regime; for R/(h̄ω) > 2,
very few iterations are required for settling down to the new
Floquet state. Although there can be no sharp transition here,

FIG. 2. One representative of the quasienergy of the Floquet state
resulting from the numerical following scheme documented in Fig. 1
(red dots) compared with the corresponding ground-state energy of
the effective Hamiltonian within the high-frequency approximation
(red full line). Blue dots indicate the effective hopping strength (45).
Observe that the quasienergy becomes maximal when this effective
hopping strength vanishes.

related features are observed when monitoring the functional
Var1(Ĥdrive(t )/R), as defined by Eq. (33). In particular, the low
values of this functional for large driving amplitudes appear to
match the incompressibility, which is characteristic of a gen-
uine Mott insulator [24] since the system’s compressibility is
determined by the variances of the particle-number operators
showing up in Ĥdrive(t ).

In Fig. 2 we compare the quasienergies of the exact, nu-
merically computed Floquet states obtained by this following
procedure to the corresponding ground-state energy of the
effective Hamiltonian with the appropriately renormalized
hopping strength (45). The agreement is quite impressive ex-
cept for scaled driving amplitudes R/(h̄ω) close to the zeros
j0,1 ≈ 2.405 and j0,2 ≈ 5.520 of the Bessel function J0: At
these zeros, the ground-state energy of the effective time-
independent model vanishes, while the exact quasienergies
rise to slightly higher values. Still, it needs to be kept in
mind that the exact Floquet state considered here is coupled
to a background of many others by large numbers of avoided
crossings, yet these avoided crossings are too narrow to be in-
dividually resolved on the scale imposed in Fig. 2. In contrast,
the energy of the effective model’s ground state varies in a
perfectly smooth manner with the driving amplitude. Under
the present conditions the Floquet state following procedure
thus provides a coarse-grained image of the exact eigenvalue,
selecting the followers diabatically, that is, according to max-
imum likeness of the states. The fact that no “roughness” of
the quasienergy can be detected in Fig. 2 also implies that the
corresponding Floquet resonance is fairly long-lived.

On the level of the states, the fair agreement between the ef-
fective and the full, periodically time-dependent system in the
high-frequency regime is emphasized further by the following
comparison. Figure 3 shows contour plots of the momentum
distribution functions

Ceff (k) =
∑

j,l

〈ϕ0|â†
j âl |ϕ0〉 exp(−ik[ j − l]d ) (47)
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FIG. 3. Contour plot of the momentum distribution functions
(47) pertaining to the effective model. For scaled driving amplitudes
R/(h̄ω) close to the zeros j0,1 ≈ 2.405 and j0,2 ≈ 5.520 of J0, this
function is almost structureless; between these zeros, one observes a
weak precursor of a new superfluid state.

of the effective model, where k is a wave number and d
indicates the lattice constant; |ϕ0〉 is the energy ground state
of the effective model at the respective value of R/(h̄ω). Such
momentum distributions are accessible to measurement with
the help of time-of-flight interference experiments [34–36].
One observes marked peaks of this distribution function at
k = 0 mod 2π/d in the superfluid regime at low driving
amplitudes, since the system tends to condense into the single-
particle state at the bottom of the energy band

E (k) = −2J cos(kd ) (48)

of the noninteracting system with U = 0. For scaled driving
amplitudes R/(h̄ω) in the vicinity of the zeros j0,1 and j0,2

of J0 this distribution function is almost flat, as it should,
since the effective hopping matrix element (45) is small there.
Interestingly, between these zeros one finds a weak precursor
of a new superfluid state conforming to a condensate in the
single-particle state k = π/d mod 2π/d as corresponding to
the upper edge of the band (48); this is naturally explained
by the fact that the sign of the effective hopping strength is
inverted between the zeros.

When the energy eigenstates |ϕ0〉 entering the functions
(47) are replaced by the exact Floquet functions |u(0)〉 com-
puted by following the ground state of the undriven chain with
increasing driving amplitude, providing the exact distribution
functions Cexact (k), one obtains a plot that is almost indis-
tinguishable from Fig. 3. Therefore, we depict in Fig. 4 the
squared difference

meank ((�C)2) = meank ([Ceff (k) − Cexact (k)]2) (49)

averaged over k, revealing that the deviation between the
two functions figures on the subpercent level. Thus, un-
der the conditions considered in this section, the simple
time-independent, effective model performs fairly well when
compared with the full, periodically driven Bose-Hubbard
chain (38), and the question posed above can be answered in
the affirmative: The driving-induced Mott insulatorlike Flo-
quet state predicted by the high-frequency approximation (45)
is no artifact.

FIG. 4. The squared difference Ceff (k) − Cexact (k) of the momen-
tum distribution function (47) predicted by the effective model and
that obtained for the exact Floquet states computed by the following
scheme averaged over k. Note how the scale here differs from that in
Fig. 3.

VI. PSEUDOADIABATIC FOLLOWING
OF FLOQUET STATES

Going beyond the computational Floquet state-following
strategy suggested in Sec. IV and practiced for one particular
example in Sec. V, there also is the more experiment-related
question of whether the actual state of a system would be able
to follow one of its Floquet states in an adiabatic manner when
its parameters are changing in real time. Indeed there is an
adiabatic principle for Floquet states [37,38], which formally
resembles the celebrated adiabatic theorem of quantum me-
chanics [10]. This principle allows one, for instance, to define
generalized π -pulses together with a generalized area theo-
rem, which govern transitions in periodically driven multilevel
ladder systems in close analogy to their two-level analogs
[39]. However, for many-body Floquet systems with a high-
dimensional Hilbert space, as considered here, the inevitable
multitude of avoided crossings renders adiabatic following, if
understood in the formal mathematical sense, impossible. Yet,
a closely related option emerges: If the relevant quasiener-
gies are punctured only by narrow avoided crossings below
a certain scale, and if the parameter variation, while suffi-
ciently slow, still proceeds so fast that these narrow avoided
crossings are traversed almost diabatically by Landau-Zener-
like Floquet-state transitions [40], highly diabatic quantum
motion actually appears as effectively adiabatic motion on
coarse-grained quasienergy eigenvalue surfaces [16,37]. This
is termed pseudoadiabatic following here, enabling one to
design the parameter variation such that desired Floquet target
states are populated with high probability.

For demonstrating the feasibility of this concept we now
perform a series of numerical experiments: Initially, at time
t = 0, the state |ψ (t = 0)〉 of the system is given by the energy
ground state of the undriven Bose-Hubbard chain (34). Then
the driving amplitude is smoothly ramped up according to the
protocol

R(t ) = Rmax sin2

(
t

zT

π

2

)
for 0 � t � zT, (50)
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FIG. 5. Absolute value of the overlap (51) resulting from a
smooth ramp (50) of the driving amplitude from zero to the final
value Rmax/(h̄ω) = 4, vs the number z of driving cycles it takes to
reach this final amplitude. Parameters are J/U = 1/3 and h̄ω/U =
14/3 as corresponding to Figs. 1 and 2.

reaching its final value Rmax at time t = zT , that is, after z
driving cycles T = 2π/ω. The resulting state |ψ (t = zT )〉,
as computed by numerical integration of the Schrödinger
equation, is then projected on the Floquet function |u(0)〉
calculated for R = Rmax by means of the procedure outlined
in Sec. V, yielding the overlap

O = 〈u(0)|ψ (zT )〉. (51)

Similar studies have been reported by Poletti and Kollath
in Ref. [9], the difference being that here we target an ex-
act Floquet state instead of the ground state of the effective
Hamiltonian.

Figure 5 depicts numerical results obtained in this man-
ner for Rmax/(h̄ω) = 4, again with J/U = 1/3 and h̄ω/U =
14/3: While the absolute value of the overlap (51) is only
small if the turn-on of the driving force proceeds within a few
cycles, because the initial superfluid state is given insufficient
time to adjust to the Mott insulatorlike target state, it becomes
appreciably higher than 0.95 when the final amplitude is
reached after some 10 cycles. Yet the inset of Fig. 5 reveals
that this trend cannot be extended to much longer turn-on

FIG. 6. As Fig. 5 but for lower value Rmax/(h̄ω) = 1 of the final
driving amplitude.

FIG. 7. As Fig. 5 but for higher value Rmax/(h̄ω) = 7 of the final
driving amplitude.

times: For z > 70 the population of the target Floquet state
starts to decrease. This is the expected consequence of the
many tiny avoided crossings that have remained unresolved
in Fig. 2 but nonetheless are effective: Even if each individual
avoided crossing is still traversed almost diabatically when z
is increased, they conspire by their sheer number to divert an
increasing fraction of the evolving state into the anticrossing
Floquet states; this fraction cannot reach the target state. This
is, in a nutshell, a visualization of the window of opportunity
referred to in the Introduction: Pseudoadiabatic following of
Floquet states is possible if (i) their quasienergies do not ex-
hibit large avoided crossings, and (ii) the parameter variation
proceeds reasonably slowly but not too slowly.

A variation of this theme is shown in Fig. 6, which depicts
the corresponding results for Rmax/(h̄ω) = 1: Although the
final amplitude is four times smaller here than that employed
in the preceding Fig. 5 so that the target state resembles the
initial state more closely, the decrease of the target-state pop-
ulation now becomes notable for z ≈ 20 already. The reason
for this unexpected behavior can be spotted in Fig. 1: With
Rmax/(h̄ω) = 1 the final amplitude falls into the regime where
Var1(Ĥdrive(t )/R) is large, signaling a relatively strong sensi-
tivity of the Floquet states to the driving amplitude; this is felt
by the state if it spends too much time in this regime.

Finally, Fig. 7 shows data obtained for Rmax/(h̄ω) = 7
beyond the second zero j0,2 of J0. Here the overlap first
decreases with increasing length of the turn-on before it in-
creases again. This behavior again may allow one to draw
deductions concerning the instantaneous Floquet states in-
volved: Now the initial state already exhibits a certain likeness
to the target Floquet state, as is reflected by Fig. 3; this
likeness is advantageous in case of an almost sudden turn-on.
However, the time-evolving state is forced to undergo a sub-
stantial structural change for j0,1 < R/(h̄ω) < j0,2, where the
sign of the effective hopping matrix element (45) is inverted,
requiring a sufficiently moderate growth rate of the driving
amplitude.

VII. CONCLUSIONS

The iterative algorithm proposed in this work for calcu-
lating Floquet states of periodically time-dependent quantum
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systems does not yield the systems’ full spectrum but provides
selected individual states and their quasienergy eigenvalues.
Nonetheless, its attractive feature stems from the fact that it
requires neither diagonalization of the quasienergy operator
in the extended Hilbert space [6] nor computation of the
one-cycle evolution operator [7]. Thus, it provides a powerful
tool for scrutinizing many-body Floquet systems that are not
accessible to these older standard techniques due to the high
dimensions of their Hilbert spaces.

Since a Floquet system does not possess a proper ground
state, and since it is neither possible nor even desirable to
compute all Floquet states of a truly high-dimensional system,
one necessarily faces the question of how to select suitable,
hopefully typical Floquet states for inspection. Here we have
suggested to “follow” a Floquet state in parameter space by
slightly modifying the quasienergy operator, seeding the iter-
ative algorithm with the old Floquet state and letting it relax
to the new one; this strategy amounts to following according
to maximum likeness of the Floquet states.

Our explorative application of this strategy to a Bose-
Hubbard chain subjected to a high-frequency drive was
facilitated by the observation that here the quasienergy, which
emerges from the system’s ground-state energy, undergoes
only tiny avoided crossings, unresolved on the scale of Fig. 2
when regarded as function of the driving amplitude. In such
favorable cases one encounters a pseudoadiabatic Floquet
state following in response to a driving amplitude that changes
smoothly but still so fast that all these tiny avoided cross-
ings are traversed diabatically. The attempt to reach a formal
adiabatic limit, as corresponding to a change of the driving

amplitude that proceeds “infinitely slowly,” would be fruitless
[11] because countless Landau-Zener-like transitions would
then divert the evolving state into undesired channels.

It should also be pointed out that the comparatively sim-
ple dynamics encountered in the present study within the
high-frequency regime will give way to more complicated
dynamics at lower frequencies when resonances make them-
selves felt [9]. With the tools provided here, which do not rely
on any high-frequency approximation, the Floquet analysis
also of such resonant dynamics can now be performed rou-
tinely.

From an experimental viewpoint, the paradigmatic results
depicted in Figs. 5–7 suggest what may be termed “turn-on
spectroscopy” with cold atoms in optical lattices: Prepare a
superfluid or a Mott insulator state, then start shaking the
lattice according to a deliberately designed turn-on protocol
and perform time-of-flight imaging after the shaking has be-
come strictly periodic in time. Results obtained in this manner
will depend on details of the respective turn-on protocol, and
model calculations of the type discussed in this paper may be
of profound help for relating the different signatures observed
for different protocols to the underlying quantum nonequilib-
rium many-body dynamics.

ACKNOWLEDGMENTS

This work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) through
Project No. 397122187. We thank the members of the Re-
search Unit FOR 2692 for many stimulating discussions.

[1] A. Eckardt, Colloqium: Atomic quantum gases in periodically
driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).

[2] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.
Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath,
N. Y. Yao, and C. Monroe, Observation of a discrete time
crystal, Nature (London) 543, 217 (2017).

[3] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk,
N. Y. Yao, E. Demler, and M. D. Lukin, Observation of
discrete time-crystalline order in a disordered dipolar many-
body-system, Nature (London) 543, 221 (2017).

[4] A. Rubio-Abadal, M. Ippoliti, S. Hollerith, D. Wei, J. Rui,
S. L. Sondhi, V. Khemani, C. Gross, and I. Bloch, Floquet
Prethermalization in a Bose-Hubbard System, Phys. Rev. X 10,
021044 (2020).

[5] D. J. Luitz, R. Moessner, S. L. Sondhi, and V. Khemani, Prether-
malization without Temperature, Phys. Rev. X 10, 021046
(2020).

[6] C. A. Parra-Murillo, J. Madroñero, and S. Wimberger, Exact
numerical methods for a many-body Wannier-Stark system,
Comput. Phys. Commun. 186, 19 (2015).

[7] T. V. Laptyeva, E. A. Kozinov, I. B. Meyerov, M. V.
Ivanchenko, S. V. Denisov, and P. Hänggi, Calculating Floquet
states of large quantum systems: A parallelization strategy and
its cluster implementation, Comput. Phys. Commun. 201, 85
(2016).

[8] N. Krüger, Variational principle for time-periodic
quantum systems, Z. Naturforsch. A 75, 855
(2020).

[9] D. Poletti and C. Kollath, Slow quench dynamics of pe-
riodically driven quantum gases, Phys. Rev. A 84, 013615
(2011).

[10] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Phys. 51,
165 (1928).

[11] D. W. Hone, R. Ketzmerick, and W. Kohn, Time-dependent
Floquet theory and absence of an adiabatic limit, Phys. Rev. A
56, 4045 (1997).

[12] D. W. Hone, R. Ketzmerick, and W. Kohn, Statistical mechanics
of Floquet systems: The pervasive problem of near degenera-
cies, Phys. Rev. E 79, 051129 (2009).

[13] W. R. Salzman, Quantum mechanics of systems periodic in
time, Phys. Rev. A 10, 461 (1974).

[14] S. R. Barone, M. A. Narcowich, and F. J. Narcowich, Floquet
theory and applications, Phys. Rev. A 15, 1109 (1977).

[15] F. Gesztesy and H. Mitter, A note on quasi-periodic states,
J. Phys. A: Math. Gen. 14, L79 (1981).

[16] M. Holthaus, Tutorial: Floquet engineering with quasienergy
bands of periodically driven optical lattices, J. Phys. B: At. Mol.
Opt. Phys. 49, 013001 (2016).

[17] V. S. Popov and A. M. Perelomov, Parametric excitation of a
quantum oscillator. II, Sov. Phys. JETP 30, 910 (1970) [Zh.
Eksp. Teor. Fiz. 57, 1684 (1969)].

043133-9

https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21426
https://doi.org/10.1103/PhysRevX.10.021044
https://doi.org/10.1103/PhysRevX.10.021046
https://doi.org/10.1016/j.cpc.2014.09.008
https://doi.org/10.1016/j.cpc.2015.12.024
https://doi.org/10.1515/zna-2020-0209
https://doi.org/10.1103/PhysRevA.84.013615
https://doi.org/10.1007/BF01343193
https://doi.org/10.1103/PhysRevA.56.4045
https://doi.org/10.1103/PhysRevE.79.051129
https://doi.org/10.1103/PhysRevA.10.461
https://doi.org/10.1103/PhysRevA.15.1109
https://doi.org/10.1088/0305-4470/14/4/003
https://doi.org/10.1088/0953-4075/49/1/013001


NILS KRÜGER AND MARTIN HOLTHAUS PHYSICAL REVIEW RESEARCH 3, 043133 (2021)

[18] M. Combescure, The quantum stability problem for some class
of time-dependent Hamiltonians, Ann. Phys. (NY) 185, 86
(1988).

[19] J. S. Howland, Floquet operators with singular spectrum I, Ann.
Inst. Henri Poincaré 49, 309 (1989); II. 49, 325 (1989); III. 69,
265 (1998).

[20] J. S. Howland, Stability of quantum oscillators, J. Phys. A:
Math. Gen. 25, 5177 (1992).

[21] A. Joye, Absence of absolutely continuous spectrum of Floquet
operators, J. Stat. Phys. 75, 929 (1994).

[22] H. Sambe, Steady states and quasienergies of a quantum-
mechanical system in an oscillating field, Phys. Rev. A 7, 2203
(1973).

[23] J. von Neumann and E. P. Wigner, Über das Verhalten
von Eigenwerten bei adiabatischen Prozessen, Physikalische
Zeitschrift 30, 467 (1929); Reprinted in The Collected Works
of Eugene Paul Wigner, edited by A. S. Wightman (Springer-
Verlag, Berlin, Heidelberg 1993).

[24] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Boson localization and the superfluid-insulator transition,
Phys. Rev. B 40, 546 (1989).

[25] T. D. Kühner and H. Monien, Phases of the one-
dimensional Bose-Hubbard model, Phys. Rev. B 58, R14741
(1998).

[26] T. D. Kühner, S. R. White, and H. Monien, One-dimensional
Bose-Hubbard model with nearest-neighbor interaction,
Phys. Rev. B 61, 12474 (2000).

[27] A. Eckardt, C. Weiss, and M. Holthaus, Superfluid-Insulator
Transition in a Periodically Driven Optical Lattice, Phys. Rev.
Lett. 95, 260404 (2005).

[28] K. Drese and M. Holthaus, Ultracold atoms in modulated stand-
ing light waves, Chem. Phys. 217, 201 (1997).

[29] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and E.
Arimondo, Coherent Control of Dressed Matter Waves, Phys.
Rev. Lett. 102, 100403 (2009).

[30] E. Arimondo, D. Ciampini, A. Eckardt, M. Holthaus, and O.
Morsch, Kilohertz-driven Bose-Einstein condensates in optical
lattices, Adv. At. Mol. Opt. Phys. 61, 515 (2012).

[31] K. Yajima, Resonances for the AC-Stark effect, Commun.
Math. Phys. 87, 331 (1982).

[32] V. A. Mandelshtam, T. R. Ravuri, and H. S. Taylor, Calcula-
tion of the Density of Resonance States using the Stabilization
Method, Phys. Rev. Lett. 70, 1932 (1993).

[33] A. A. Makarov, H. S. Taylor, and M. Pont, Application of the L2

box-stabilization method to time-periodic systems, Phys. Rev.
A 50, 3276 (1994).

[34] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Quantum phase transition from a superfluid to a Mott
insulator in a gas of ultracold atoms, Nature (London) 415, 39
(2002).

[35] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[36] A. Hoffmann and A. Pelster, Visibility of cold atomic gases in
optical lattices for finite temperatures, Phys. Rev. A 79, 053623
(2009).

[37] H. P. Breuer and M. Holthaus, Adiabatic processes in the ioniza-
tion of highly excited hydrogen atoms, Z. Phys. D 11, 1 (1989).

[38] K. Drese and M. Holthaus, Floquet theory for short laser pulses,
Eur. Phys. J. D 5, 119 (1999).

[39] M. Holthaus and B. Just, Generalized π pulses, Phys. Rev. A
49, 1950 (1994).

[40] H. P. Breuer and M. Holthaus, Quantum phases and Landau-
Zener transitions in oscillating fields, Phys. Lett. A 140, 507
(1989).

043133-10

https://doi.org/10.1016/0003-4916(88)90259-X
https://doi.org/10.1088/0305-4470/25/19/025
https://doi.org/10.1007/BF02186751
https://doi.org/10.1103/PhysRevA.7.2203
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.58.R14741
https://doi.org/10.1103/PhysRevB.61.12474
https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1016/S0301-0104(97)00025-6
https://doi.org/10.1103/PhysRevLett.102.100403
https://doi.org/10.1016/B978-0-12-396482-3.00010-7
https://doi.org/10.1007/BF01206027
https://doi.org/10.1103/PhysRevLett.70.1932
https://doi.org/10.1103/PhysRevA.50.3276
https://doi.org/10.1038/415039a
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevA.79.053623
https://doi.org/10.1007/BF01436579
https://doi.org/10.1007/s100530050236
https://doi.org/10.1103/PhysRevA.49.1950
https://doi.org/10.1016/0375-9601(89)90132-1

