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We consider non-Fermi liquids in which the inelastic scattering rate has an intrinsic particle-hole asym-
metry and obeys ω/T scaling. We show that, in contrast to Fermi liquids, this asymmetry influences the
low-temperature behavior of the thermopower even when the impurity scattering dominates. Implications for the
unconventional sign and temperature dependence of the thermopower in cuprates in the strange metal (Planckian)
regime are emphasized.
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I. INTRODUCTION

Besides its relevance to thermoelectricity, the Seebeck ef-
fect provides invaluable insights into the fundamental physics
of materials [1–3]. The Seebeck coefficient S (thermopower)
is sensitive to the balance between holelike and electronlike
excitations. It is negative when electrons dominate, posi-
tive when holes dominate, and vanishes when particle-hole
symmetry holds. In many cases, the particle-hole asymmetry
originates in the band structure of the material: It is controlled
by the number (density of states) and velocities of the two
types of excitations. However, it has been recognized that
another source of asymmetry may also influence the Seebeck
coefficient: that of the lifetime (scattering rate) of these exci-
tations. Although this has been discussed theoretically [4–12]
and put forward as a possible mechanism for materials in
which the sign of S is found to be opposite to that predicted
by band structure [4,11,13,14], it has received comparatively
less attention. One of the reasons is that, as detailed below,
the particle-hole asymmetry of the inelastic scattering rate
does not influence S at low temperature for metals obeying
Fermi-liquid theory when impurity scattering is also present.

In this paper, we show that the situation is entirely dif-
ferent in correlated metals which do not obey Fermi-liquid
theory. We consider a family of non-Fermi liquids in which
the inelastic (electron-electron) scattering rate �in obeys ω/T
scaling (with ω being the energy of an excitation counted
from the Fermi level). We demonstrate that in “skewed” non-
Fermi liquids where the scaling function has an odd-frequency
component, this particle-hole asymmetry affects the low-T
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behavior of the Seebeck coefficient down to T = 0, even in
the presence of impurity scattering. This is an unexpected
finding because the impurity scattering is temperature inde-
pendent, whereas the electron-electron scattering diminishes
upon cooling down and vanishes at T = 0. The sign of S
can be reversed in comparison to that expected from the
band structure. The case of a “Planckian” metal [15–21] with
�in ∝ ω, T turns out to be particularly interesting. In that case,
S/T ultimately diverges logarithmically at low temperature.
However, the temperature dependence and sign of S/T over
an extended temperature range are strongly affected by the
particle-hole asymmetry of �in. As discussed below, this may
be relevant to the understanding of the Seebeck coefficient of
cuprate superconductors, especially close to the critical dop-
ing where the pseudogap opens and a logarithmic dependence
of the specific heat is observed [22].

The paper is organized as follows: In Sec. II we describe
the Kubo-Boltzmann formalism used in our calculations of the
Seebeck coefficients, taking explicit account of the skewness
(particle-hole asymmetry) of the inelastic scattering rate. In
Sec. III we describe our main results that reveal the unusual
effect of skewness in non-Fermi liquids and contrast it to the
more moderate behavior in Fermi liquids. In Sec. IV we dis-
cuss the implication of our findings for experiments. Technical
details are delegated to the Appendices: In Appendix A we
give a derivation of the transport equations starting from the
Kubo formalism, in Appendix B we discuss the ω/T scaling
properties of the considered class of non-Fermi liquids, and
in Appendix C we elaborate on the behavior of the Seebeck
coefficient at higher temperatures.

II. SEEBECK COEFFICIENT AND PARTICLE-HOLE
ASYMMETRIC INELASTIC SCATTERING

We recall that in metals, for noninteracting electrons and in
the presence of elastic scattering only, the Seebeck coefficient
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at low temperature T is given by

S

T
= −kB

e

π2

3

�′
0

�0
. (1)

This expression involves the transport function �(ε) =
2

∫
dd k/(2π )d v2

k δ(ε − εk ) at the Fermi level �0 = �(εF )
and its derivative with respect to energy �′

0 = �′(εF ). vk =
(∇kεk )α/h̄ denotes the electron velocity in the direction α =
x, y, z considered (we set h̄ = kB = 1 in most of the follow-
ing). In this simplest description, S/T does not depend on the
magnitude of the scattering rate, and its sign is determined
by the particle-hole asymmetry of the band structure encoded
in the transport function: S/T > 0 for a holelike band struc-
ture (�′

0 < 0) and S/T < 0 for an electronlike band structure
(�′

0 > 0).
We now consider the effect of both elastic and inelastic

scattering (that is, the impurity and the electron-electron scat-
tering, respectively), writing the total scattering rate as

�(T, ω) = γ + �in(T, ω). (2)

It is convenient for our purpose to decompose the scattering
time into components which are even and odd in frequency:

τ±(T, ω) = 1

2

[
1

�(T, ω)
± 1

�(T,−ω)

]
. (3)

Note that we assume that the elastic scattering rate γ is
isotropic and that the inelastic scattering rate only depends
on frequency and not on momentum (i.e., it does not vary
along the Fermi surface). The isotropy assumption allows
us to keep the discussion simple and is sufficient to reveal
the main effects that we wish to emphasize. Likewise, in
our calculation of transport we do not take into account
vertex corrections. This simplification is exact in models in
which both the self-energy � and the many-particle vertex
are local (momentum independent) [23]. As discussed, e.g., in
Ref. [24], inelastic electron-electron processes contributing to
the conductivity in such models are entirely due to umklapp
scattering. For recent discussions of the role of vertex cor-
rections in transport, see Refs. [25–29]. In the following, we
thus take �in(T, ω) = −2Im�(ω + i0+, T ) (also neglecting
possible distinctions between current and energy relaxation
rates [30,31]).

Starting from the Kubo formula, one can derive the
following expression for the Seebeck coefficient in the low-
temperature regime [32], as detailed in Appendix A:

S = −kB

e

I1(T )

I0(T )
, (4)

in which

I1(T ) = T

Z (T )

�′
0

�0
〈x2τ+〉 + 〈xτ−〉, (5)

I0(T ) = 〈τ+〉 + T

Z (T )

�′
0

�0
〈xτ−〉. (6)

In these expressions, the frequency dependence of the scat-
tering rates is expressed in terms of the scaling variable
x = ω/T : τ± = τ±(T, xT ), and we use the notation 〈F (x)〉 ≡∫ +∞
−∞ dxF (x)/4 cosh2 x

2 . Z denotes the effective mass renor-
malization, which for a local theory is related to the real part of

the self-energy by 1/Z (T, ω) = 1 + [Re�(0) − Re�(ω)]/ω.
Strictly speaking, the frequency dependence of Z has to be
kept in the integrals entering Eqs. (5) and (6). As we discuss
in Appendix A, neglecting this effect is actually a good ap-
proximation, and we use it here to simplify the discussion.
In a local Fermi liquid, Z (T ) coincides with the quasiparticle
spectral weight and reaches a finite value at T = 0, while in
a non-Fermi liquid Z (T ) may vanish as T → 0 [33]. In the
absence of interactions (Z = 1) and for elastic scattering only
(τ+ = 1/γ , τ− = 0) we recover from Eqs. (4)–(6) the simple
expression of Eq. (2) (〈1〉 = 1, 〈x2〉 = π2/3). The effect of a
possible temperature dependence of Z (T ) on both the Seebeck
coefficient and the specific heat or entropy, for example, near
a quantum critical point, has been previously discussed in the
literature; see, e.g., Ref. [34]. In this paper, we focus on the
effect of a particle-hole asymmetry of the scattering rate, i.e.,
on the terms involving 〈xτ−〉 in Eqs. (5) and (6).

III. FERMI LIQUIDS VERSUS NON-FERMI LIQUIDS

A. Fermi liquid

We first consider a (local) Fermi liquid with an inelastic
scattering rate:

�in(T, ω) = λ[ω2 + (πT )2 + aω3 + bωT 2] + · · · . (7)

The key point is that the odd part of the scattering rate scales
as ω3, ωT 2 ∼ xT 3 and hence is subdominant as compared
with the even-frequency part: The inelastic scattering rate
of conventional Fermi liquids is asymptotically particle-hole
symmetric at low energy. Adding the elastic scattering rate, we
see that there are two regimes. In the “elastic regime,” γ dom-
inates over the inelastic scattering rate: This holds for γ �
λ(πT )2 or alternatively for T � T ∗ with T ∗ ∼ (γ /π2λ)1/2

being a crossover temperature. In the “inelastic” regime [γ �
λ(πT )2 or T � T ∗], inelastic scattering dominates [32]. Let
us consider first the “inelastic” regime, in which τ+ is of
order 1/T 2 and τ− is of order 1/T . Hence, in the denominator
I0 of Eq. (4), 〈τ+〉 ∼ 1/T 2 dominates over T 〈xτ−〉 ∼ const.
In contrast, in the numerator I1, the odd term 〈xτ−〉 has the
same 1/T temperature dependence as the even one T 〈x2τ+〉.
Taking into account that, in a Fermi liquid, the effective mass
enhancement 1/Z = m∗/m reaches a constant at low temper-
ature, we obtain in the inelastic limit T � T ∗

S

T

∣∣∣∣FL

in

� −kB

e

[
(12 − π2)

1

Z

�′
0

�0
− 12

π4
(caa + cbb)

]
, (8)

with coefficients ca = 〈x4/(1 + x2/π2)2〉 � 6.51, cb =
〈x2/(1 + x2/π2)2〉 � 1.09. Remarkably, the odd-frequency
terms of �in directly contribute to S in this limit, on
equal footing with the band-structure term. This was, to
our knowledge, first emphasized in Ref. [5], in which
expression (8) was derived, and further discussed in
Refs. [6–10,12]. We also note that the prefactor of the
band-structure term is modified (from π2/3 � 3.29 to
12 − π2 � 2.13) as compared with the elastic (low-T ) limit.

However, in the low-T “elastic” limit (γ � λπ2T 2 or T 
T ∗), this interesting effect disappears. Indeed, τ+ ∼ 1/γ is
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FIG. 1. Fermi liquid: S/T in units of |kB/e · �′
0/Z�0| vs T/T ∗

for several values of the dimensionless particle-hole asymmetry pa-
rameters ã ≡ aZ�0/�

′
0 and taking a = b (see text). This illustrates

the crossover between the low-T elastic-dominated regime which
does not depend on asymmetry and the higher-T inelastic-dominated
one in which the asymmetry contributes. A holelike band contribu-
tion �′

0/�0 < 0 is considered here.

constant in this limit, while τ− vanishes as T 3, leading to

S

T

∣∣∣∣FL

el

� −kB

e

π2

3

1

Z

�′
0

�0
. (9)

Hence odd-frequency scattering does not contribute at low
temperature. The conventional elastic value of Eq. (2) is
recovered, with the notable difference that the prefactor is
enhanced by the effective mass 1/Z = m∗/m. Indeed, it was
emphasized in Ref. [35] that S/T is proportional to the linear
term in the specific heat (∼m∗/m) in many materials.

The crossover between the low-T elastic limit and the high-
T inelastic limit is illustrated in Fig. 1. The data in this plot
as well as in Figs. 2 and 3 are obtained from evaluating the
Seebeck coefficient with Eq. (4). In Appendix A, we show
that the results are unchanged when evaluated from the full
Kubo formula. We see that, in a Fermi liquid, the band value of
the Seebeck coefficient enhanced by the effective mass effect
(Z) is recovered below the crossover temperature T ∗. In that
regime, the particle-hole asymmetry of the inelastic scattering
has no influence on the Seebeck coefficient. In practice, T ∗
can be estimated as the characteristic temperature at which the
measured T -dependent contribution to the resistivity becomes
comparable in magnitude to the residual resistivity at low T .

B. “Skewed” non-Fermi liquids

The washing out of the effects of the particle-hole
asymmetry in the Fermi-liquid case happens because the
odd-frequency terms in the inelastic scattering rate are sub-
dominant in comparison to the even ones and hence do not
contribute to S at low T . We consider now a class of non-
Fermi liquids in which, in contrast, the odd-frequency terms
are of the same order as the even-frequency ones, such that the
inelastic scattering rate obeys a scaling form

�in(T, ω) = λ(πT )ν g
(ω

T

)
. (10)

Here, ν is an exponent (we focus on ν � 1 in the follow-
ing), and the scaling function g(x) contains both an even and

FIG. 2. “Skewed” non-Fermi liquid with ν = 1/2. (a) shows the
Seebeck coefficient vs T/T ∗ in units of kB/e, for πT ∗/γ = 0.2 and
several values of the asymmetry parameter α. (b) shows S/T in units
of kB/(eγ ). At low T , the sign of S is seen to depend on α, while
at high T all curves have the same sign, set by the band structure
η = γ�′

0/�0 < 0 (holelike). The dash-dotted curve corresponds to
the special case η = 0 in which the sign of S is determined solely by
the scattering rate asymmetry (see text).

an odd component. It has a regular expansion at small x,
so that for ω � T , �in ∼ λ(πT )ν[g(0) + g′(0)T −1ω] + · · · ,
while g(x) ∼ c∞

± · |x|ν at large x. The effects discussed in this
paper do not depend on the specific form of the scaling func-
tion g(x). Systems obeying this scaling form with a noneven
scaling function can be called “skewed non-Fermi liquids.”

It is of course expected that systems such as doped Mott
insulators should display a particle-hole asymmetry (see, e.g.,
Ref. [8]). However, while it is clear that such an asymme-
try exists on energy scales comparable to electronic ones,
it is a more demanding requirement that this asymmetry
persists down to frequencies comparable to the temperature
itself, as assumed in (10). Indeed, this does not apply in a
Fermi liquid. In contrast, we note that the scaling form of
Eq. (10) has been shown to apply in overscreened Kondo
models controlled by a non-Fermi-liquid fixed point [36].
It is also relevant to the proximity of the quantum critical
point of doped random-exchange Hubbard models, related to
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FIG. 3. Planckian metal. Temperature dependence of S/T [in
units of kB/(eγ )] for two opposite values of the band-structure term
η = γ�′

0/�0: electronlike η > 0 and holelike η < 0. Solid (dashed)
curves are for a particle-hole asymmetric (symmetric) scattering rate
[α �= 0 (α = 0)]. πT ∗/γ = 1. Top inset: S/T on a logarithmic scale,
emphasizing the low-T behavior. Bottom inset: Linear dependence
of the resistivity ρ/ρ(T = 0) = I0(0)/I0(T ) on T/T ∗.

Sachdev-Ye-Kitaev (SYK) models [37,38], as recently studied
in Refs. [39–46].

For such models obeying conformal invariance at low en-
ergy, g(x) is a universal scaling function that depends only on
the exponent ν and on a “spectral asymmetry” parameter α.
Its exact form was derived in Ref. [36] and reads [with the
normalization gα=0(0) = 1]

g(x) =
∣∣∣∣�

[
1 + ν

2
+ i

x + α

2π

]∣∣∣∣2 cosh(x/2)

cosh(α/2)�[(1 + ν)/2]2 ,

(11)
where �(x) is the � function. The ω/T scaling form is also
relevant to the proximity of a quantum critical point associated
with a strong-coupling fixed point [47].

The crossover temperature T ∗ separating the “elastic”
and “inelastic” limits now reads (πT ∗)ν = γ /λ. In the low-
T elastic limit, τ+ ∼ 1/γ and τ− ∼ −λγ −2(πT )νg−(x) ∼
−γ −1(T/T ∗)νg−(x). In this expression, g−(x) = [g(x) −
g(−x)]/2 is the odd-frequency component of the scaling func-
tion g. For the Seebeck coefficient at low T one obtains

S
∣∣NFL

el = −kB

e

[
π2

3

�′
0

Z (T )�0
T − λ(πT )ν

γ
c−

]
, (12)

in which c− = 〈xg−(x)〉 is a universal constant depending
only on g. Ignoring at first the temperature dependence of the
quasiparticle weight Z (T ), one sees that whenever ν � 1, the
particle-hole asymmetry of the inelastic scattering influences
S|NFL

el even at the lowest temperatures, in sharp contrast to the
Fermi-liquid case discussed above.

What is the influence of the temperature dependence of
Z? For ν < 1 (we consider separately the ν = 1 case below),
Z vanishes at low T as ∼T 1−ν , and it can be shown (see
Appendix B) that T/Z (T ) ∼ λ(πT )ν/cZ + T with cZ being
a universal constant depending only on the scaling function g.

Hence we see that, remarkably, the two terms in the numerator
I1 of Eq. (4) have the same T dependence: T 〈x2τ+〉 /Z ∼ T ν

and 〈xτ−〉 ∼ T ν . One therefore obtains for T  T ∗

S|NFL
el = −kB

e

λ

γ
(πT )ν

[
π2

3cZ
γ

�′
0

�0
− c−

]

= −kB

e

( T

T ∗
)ν

[
π2

3cZ
η − c−

]
. (13)

The dimensionless parameter η ≡ γ�′
0/�0 is the ratio of the

elastic scattering rate to the characteristic energy scale associ-
ated with the band-structure asymmetry. Hence, in this case,
S behaves as T ν at low T , corresponding to a divergent slope
S/T .

Expression (13) has several remarkable features. Firstly,
we see that the odd-frequency inelastic scattering contributes
to the low-T Seebeck coefficient on equal footing with the
even-frequency–elastic contribution. Both terms in Eq. (13)
have the same T dependence ∼T ν but for different reasons:
the first one because of the vanishing of Z (T ), and the second
one because of the T dependence of �in. Secondly, in contrast
to the former, this odd-frequency contribution is completely
independent of the band-structure asymmetry: Its sign is dic-
tated by that of the constant c−, and thus by the intrinsic
asymmetry of the inelastic rate scaling function. If this term
dominates, the overall sign of the Seebeck coefficient can be
opposite to that predicted by band-structure considerations in
the low-T limit, even when elastic scattering is present. This is
one of the main results of this work. The odd-frequency con-
tribution dominates over the first term when the dimensionless
ratio η = γ�′

0/�0 is small, i.e., for clean-enough systems.
Thirdly, we note that S depends on both the inelastic constant
λ and the elastic rate γ . This is an unusual situation in which
the strength of the scattering does not drop out of the value of
S at low T .

The behavior of Eq. (4) with temperature is investigated
analytically in Appendix C. At high T , we obtain

S ∼ −kB

e

[
η

c2

c0

T

γ
+ η

c2

c0cZ

( T

T ∗
)ν

+ c1

c0

]
, (14)

with cn = 〈xn/g〉. Hence, as long as η = γ�′
0/�0 �= 0, the

behavior of S at high temperature is dominated by the first
term of Eq. (14) (with a linear dependence in T , the same sign
as the band-structure result, but with a slope that is corrected
by c2/c0). In contrast to the low-T limit, the sign of the
Seebeck coefficient is thus given by the band-structure term.
Remarkably, in the absence of elastic scattering or band asym-
metry (η = 0), S instead tends to a constant value −c1/c0 kB/e
which depends only on the universal scaling function and
its asymmetry. A related finding was reported in Ref. [42]
(see also Ref. [45]) in the context of SYK models, where
S was shown to be constant and determined by the spectral
asymmetry α (related by holography to the electric field or
charge of the black hole and to the ground-state entropy of
these models).

In Figs. 2(a) and 2(b), we display the temperature depen-
dence of S and S/T , respectively, plotted vs T/T ∗ in the
non-Fermi-liquid case for several values of the asymmetry
parameter α in Eq. (11). We see that at low T the sign of S
can be changed by the scattering rate asymmetry, while it is
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set by the band-structure term at high T , except for vanishing
η, where the Seebeck approaches a constant given by the last
term of Eq. (14), instead.

The overall behavior at larger T reveals a const + T ν + T
behavior at higher T (with ν = 1/2 in Fig. 2), with a different
coefficient of the T ν term in the high-T regime from that in the
low-T regime. We see that the larger the asymmetry, the larger
the temperature at which the sign change occurs as compared
with the symmetric case.

A remark is in order here. In microscopic models or mate-
rials realizations, the universal scaling form of the scattering
rate (10) is only expected to apply below a certain cutoff,
which is of the order of the bare electronic energy scales,
e.g., the bandwidth. The physics discussed here obviously can
only apply for temperatures below that cutoff. Hence, for our
analysis of the T dependence to be valid, the system should
be clean enough that the crossover scale T ∗ is smaller than
such bare electronic energies at which nonuniversal effects
will appear.

C. Skewed Planckian metal

We now discuss the case of a “Planckian” metal [15–21]
(ν = 1) with a particle-hole asymmetry scaling with ω/T ,
so that �in = πλg(0) T + πλg′(0) ω + · · · at low ω and
ω < T (“skewed” Planckian metal). Setting ν = 1 in expres-
sion (13) would predict a linear dependence of S at low T ,
with a slope that is given in terms of the mutual effect of
the band-structure and inelastic scattering rate asymmetries.
This behavior corresponds to a case where the quasiparticle
weight is approximated by a constant. However, the quasipar-
ticle weight actually vanishes logarithmically: 1/Z (T ) ∼ 1 +
πλc−1

Z ln �/T , with � being a high-energy cutoff and cZ be-
ing a universal constant depending on the scaling function g;
see Appendix B (note that λ is dimensionless in the Planckian
case). Hence, in the low-T “elastic” limit T  T ∗ = γ /πλ,

S

T

∣∣∣SPM

el
∼ −kB

e

[
πλ

π2

3cZ

�′
0

�0
ln

�

T
+ π2

3

�′
0

�0
− c−

πλ

γ
+ · · ·

]
.

(15)

Thus, in a Planckian metal, S/T ultimately diverges logarith-
mically at very low T . This corresponds to the logarithmic
divergence of the effective mass (specific heat coefficient).
The sign of the logarithmic term in S is dictated by the band
structure. In contrast, the last term in Eq. (15) is controlled
by the odd-frequency part of the inelastic scattering and has
a sign which can counteract the conventional band-structure
effect corresponding to the second term in Eq. (15). Inter-
estingly, we note that the “skewed” term dominates over the
conventional one for cleaner systems η/λ � 3c−/π . The full
temperature dependence is again given by Eq. (C5), setting
ν = 1 and replacing cZ by cZ/ ln �/T .

To illustrate these effects, we display in Fig. 3 the T depen-
dence of S/T for a “skewed” Planckian metal. Two opposite
signs of the band-structure term �′

0/�0 are considered. In the
absence of a scattering rate asymmetry (α = 0) it is seen that
S/T has a rather weak T dependence (except at low T , where
the logarithmic term becomes relevant), while it acquires sig-
nificant T dependence for α �= 0. Importantly, in the presence
of an asymmetry, the sign of the Seebeck coefficient can be

reversed in comparison to its band-structure value over a wide
range of temperature.

IV. SUMMARY AND DISCUSSION

In summary, our work reveals the importance of a particle-
hole asymmetry of the inelastic scattering rate in a class of
non-Fermi liquids. This asymmetry influences the Seebeck
coefficient even in the asymptotic low-temperature regime,
when inelastic scattering events are comparatively rare as
compared with elastic scattering on impurities.

A number of materials display non-Fermi-liquid behavior
and an unconventional T dependence of the Seebeck coeffi-
cient. This has been addressed in previous theoretical works,
such as Refs. [34,48], which have emphasized the logarithmic
divergence of S/T in metals with a T -linear scattering rate.
The T dependence of S close to a Fermi surface Lifshitz tran-
sition has been considered in Refs. [49,50]. However, to our
knowledge, the key role of a particle-hole asymmetry of the
inelastic scattering rate in non-Fermi-liquid metals with ω/T
scaling has not been discussed before. The theory presented
here may be relevant when both the temperature dependence
and the sign of the Seebeck coefficient are found to be
unconventional.

Cuprate superconductors in the “strange metal” regime
display clear signatures of quantum criticality: T -linear resis-
tivity (for reviews, see, e.g., Refs. [21,51,52]), a logarithmic
divergence of the specific heat coefficient C/T [22], and
ω/T scaling observed in optical spectroscopy [53] and
angular-resolved photoemission spectroscopy (ARPES) [54].
An increase of the in-plane S/T at low T reminiscent
of Fig. 3 has been reported for La1.8−xEu0.2SrxCuO4 (Eu-
LSCO) [55] at hole doping p � 0.21 and p � 0.24 and for
La1.6−xNd0.4SrxCuO4 (Nd-LSCO) [56,57] at p � 0.24, just
above the critical doping p∗ at which the pseudogap phase
terminates. Interestingly, S was found to be positive at those
doping levels, while simple considerations based on band
structure and isotropic elastic scattering yield a negative
value [58]. It is thus tempting to infer from these obser-
vations that the quantum critical (strange metal) regime of
those cuprate superconductors may be described as a “skewed
Planckian metal.” We emphasize that experiments involving
different controlled levels of disorder would play a decisive
role in assessing the relevance of the mechanism proposed
here, since the asymmetric term in Eq. (15) becomes larger
for cleaner systems. For a discussion of the relevance of the
present theory to the interpretation of recent measurements of
the ab-plane and c-axis measurements of the Seebeck coeffi-
cient in Nd-LSCO, see Ref. [59].

In Eu-LSCO, Nd-LSCO, and also Bi2Sr2−xLaxCuO6+δ

(Bi2201) [60], the increase in S/T at low T observed exper-
imentally appears consistent with a logarithmic dependence.
Given the sign of the band-structure term for Nd-LSCO, one
would expect from Eq. (15) a negative coefficient of this loga-
rithmic term, in contrast to the experimental observation. This
may suggest that the asymmetry term is actually dominant (as
in Fig. 3) in the range of temperature of the measurement, in
which the increase in C/T is moderate [22].

As emphasized recently by Jin et al. [61], in the over-
doped regime the Seebeck coefficient of the LSCO family
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remains positive [62,63]. These overdoped compounds behave
as Fermi liquids at low enough temperature, however [64–66].
Hence, in view of the discussion above (Fig. 1), a particle-hole
asymmetry of the inelastic scattering rate is unlikely to be
responsible for this unexpected sign of S. It is possible that a
particle-hole asymmetric dependence of the elastic scattering
rate on momentum and energy is relevant to explain this
observation [51,67,68]. We also note that the Seebeck coef-
ficient of other single-layer cuprates such as HgBa2CuO4+δ

(Hg1201) [69] and Bi2201 [70,71] has been reported to be
negative in the overdoped regime.

Recently, the present theory was applied to experimental
measurements of the ab-plane and c-axis Seebeck coefficients
in Nd-LSCO [59]. The scattering rates used in this analy-
sis were extracted from angular-dependent magnetoresistance
measurements, which reveal that the elastic (temperature
independent) rate is momentum dependent but that the in-
elastic one is not [20]. The theory was hence minimally
extended as compared with the present work by using a
momentum-dependent elastic lifetime and found to describe
the experimental results well. We stress that the qualitative
aspects (change of sign for the in-plane Seebeck coefficient
due to inelastic scattering) are already well described by the
simpler approach used here, which neglects the momentum
dependence, but that quantitative aspects require the momen-
tum dependence to be taken into account, especially for the
out-of-plane Seebeck coefficient.

Our results are relevant also in the context of the non-
Fermi-liquid quantum critical point separating a metallic spin-
glass phase and a Fermi-liquid metal in doped SYK models,
which has attracted a lot of attention recently [43,44,46,72–
74]. Indeed, numerical results show strong spectral asymme-
try in the quantum critical regime, possibly signaling a skewed
non-Fermi liquid at the critical point [46]. We also note that
in the context of transport in SYK models, the Seebeck co-
efficient has been emphasized as a probe of the universal
ground-state entropy [42,45].

Our work may also have relevance to twisted bilayer
graphene and related systems, in which linear resistivity and
Planckian behavior have been observed; see, e.g., Ref. [75].
A systematic investigation of thermoelectric effects and heat
transport in these materials would be of great interest. We note
that a recent study of twisted bilayer graphene reports a rich
temperature dependence with changes of sign in the Planckian
regime [76].
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APPENDIX A: THERMOPOWER AND CONDUCTIVITY
EVALUATED WITH THE KUBO FORMULA

The conductivity σ , thermopower S, and (electronic) heat
conductivity κ are given by

σ = e2L11, S = − L12

eL11
, κ = T

[
L22 − L2

12

L11

]
, (A1)

in which L are the Onsager coefficients and e is the absolute
magnitude of the electron charge. In the following, we set
for simplicity h̄ = kB = e = 1 (except when restored in final
results). Within the Kubo formalism, and neglecting vertex
corrections, the Onsager coefficients are given by (denoting
for simplicity L11 ≡ L0, L12 ≡ L1, L22 ≡ L2)

Ln = 1

T n

∫
dω

(
− ∂ f

∂ω

)
ωn T (ω), (A2)

in which f (ω) = 1/[1 + eω/T ] is the Fermi function and

T (ω) = 2π

∫
dd k

(2π )d
v2

k A(k, ω)2. (A3)

In this expression, vk = (∇kεk )α/h̄ denotes the band velocity
in the direction α = x, y, z being considered, and A(k, ω) is
the electronic spectral function, related to the self-energy � =
�(ω + i0+, k) by

A(k, ω) = 1

π

�/2

(ω + μ − εk − Re�)2 + (�/2)2
. (A4)

In this expression, � = �(ω + i0+, k) is the self-energy due
to inelastic interactions between electrons, and � is the full
scattering rate including both elastic and inelastic terms:

�(k, ω) = γk − 2Im�(k, ω + i0+). (A5)

These expressions can be further simplified when the elastic
scattering rate γk and electron-electron self-energy � do not
depend on momentum and when the vertex corrections can be
neglected [23].

Using the band transport function �, one can express

T (ω) = π

∫
dε �(ε) A(ε, ω)2. (A6)

We change the integration variable by setting ε = ω + μ −
Re� + �

2 y, so that

T (ω) = π
2

�

∫ +∞

−∞
dy �

(
ω+ μ − Re�+ �

2
y

) (
1/π

y2 + 1

)2

.

(A7)
We now perform an expansion of this expression for small �

and retain only the most singular term, yielding

T (ω) = 1

�
�(ω + μ − Re�) + · · · , (A8)

where we have used
∫ +∞
−∞ dy 1/π2(y2 + 1)2 = 1/(2π ). It is

convenient to introduce the notations

εF (T ) ≡ μ − Re�(ω = 0, T ),

1 − 1

Z (T, ω)
≡ 1

ω
[Re�(ω, T ) − Re�(0, T )], (A9)
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so that, to dominant order in �,

T (ω) = 1

�(T, ω)
�

[
εF (T ) + ω

Z (T, ω)

]
+ · · · . (A10)

Inserting this expression in the Onsager coefficients Ln above,
and changing the variable to x = ω/T in the integral over
frequency, we obtain, with τ = 1/�,

Ln =
∫

dx
xn

4 cosh2 x
2

�

[
εF (T ) + x

T

Z (T, xT )

]
τ (T, xT ).

(A11)
We now perform a low-T expansion of this expression. We
note that for both the Fermi-liquid and non-Fermi-liquid cases
considered in this paper, T/Z (T, xT ) vanishes at low T (as
∼T and ∼T ν , respectively). We assume furthermore that the
T dependence of εF (T ) is subdominant and can be neglected.
We thus obtain

Ln = �0 〈xnτ (T, xT )〉 + T �′
0 〈xn+1 τ (T, xT )

Z (T, xT )
〉 + · · · ,

(A12)
with the notation

〈F (x)〉 =
∫ +∞

−∞
dx

F (x)

4 cosh2 x
2

. (A13)

Retaining just the lowest two terms in the Taylor expansion of
φ(ε) is sufficient at low temperatures as the transport func-
tion usually varies only on the bare electronic scales, e.g.,
the bandwidth. We have checked furthermore that neglecting
the frequency (x) dependence of Z in these equations is a
good approximation, so that we finally obtain the expressions
(4)–(6) of Sec. II.

We define In = Ln/�0 and note the expression of the con-
ductivity:

σ = e2�0 I0(T ) � e2�0 〈τ+〉 . (A14)

Although the non-Fermi-liquid case does not have conven-
tional quasiparticles, the final expressions for S, σ , and the
Onsager coefficients Ln at low T are formally identical to the
ones obtained by applying a Boltzmann equation formalism to
excitations with a lifetime τ ex = τ/Z and dispersing as εex

k =
Zεk, corresponding to a transport function of these excitations
�ex(ε) = Z�(ε/Z ).

In Fig. 4, we compare the Seebeck coefficient evalu-
ated with the full Kubo formula and with the simplified
Boltzmann-like expressions. The data are for the sub-
Planckian ν = 1/2 case. The results of the full Kubo
evaluation (dotted curves) agree well with the results of a sim-
plified Boltzmann calculation that approximates Z (ω, T ) by
its zero-frequency value Z (ω, T ) → Z (0, T ) (solid curves).
The result of such Boltzmann calculations are the data given
in the main text. The remaining small discrepancy between
the Kubo and the Boltzmann results can be remedied if one
retains the frequency dependence of Z (ω, T ) (dashed curves
that overlap with the dotted ones).

For application of our theory to cuprates it is essential to
retain momentum dependence. However, as recently reported
in an angular-dependent magnetoresistance (ADMR) study of
cuprates [20], the inelastic scattering is found to be local,
and it is sufficient to retain the momentum dependence in
the elastic scattering rate. In such a case, the theory can be

FIG. 4. Seebeck coefficient in units of kB/e for the ν = 1/2
case. πT ∗/γ = 1. The results of the Boltzmann calculation with
Z = Z (T ) (solid curves) are compared with the Kubo calculation
(dotted curves) and a Boltzmann calculation that retains the fre-
quency dependence of Z = Z (ω, T ) (dashed curves). The results of
the latter two cannot be distinguished on the scale of this plot. Similar
agreement between the Boltzmann and Kubo results is found for all
the data in the main text.

minimally extended, with only quantitative but no qualitative
changes, by allowing for the elastic rate to have momentum
dependence. Such an extension is presented in Ref. [59].

APPENDIX B: SKEWED NON-FERMI LIQUIDS
AND ω/T SCALING

1. Scaling function and conformally invariant case

The (local) non-Fermi liquids considered in this paper have
a scattering rate that obeys ω/T scaling (ν � 1):

�in(T, ω) = λ(πT )ν g
(ω

T

)
. (B1)

The scaling function g(x) has a regular expansion at small x:
g(x) = g(0) + x g′(0) + · · · , while at large x it obeys g(x →
+∞) ∼ c∞

+ xν and g(x → −∞) ∼ c∞
− |x|ν . The “skewed” case

with a particle-hole asymmetry will in general have g′(0) �= 0
and c∞

+ �= c∞
− . Hence

�in(T � |ω|) ∼ λg(0) (πT )ν + λg′(0)
πω

(πT )1−ν
+ · · · ,

�in(T  |ω|) ∼ c∞
± λ|πω|ν + · · · . (B2)

Our qualitative results do not depend on the specific form
of the scaling function g(x) provided it obeys these general
properties.

In Sec. III we considered g(x) given by Eq. (11). It has
been shown in Ref. [36], in the context of overscreened Kondo
impurity models, that this specific form of the scaling function
holds in models which have conformal invariance at low en-
ergy or temperature. It is also relevant in the context of SYK
models [39–42,46]. The parameter α controls the particle-hole
asymmetry (see Fig. 5), with α = 0 corresponding to particle-
hole symmetry g(x) = g(−x) and g−α,ν (x) = gα,ν (−x). The
normalization gα=0,ν (0) = 1 was chosen in the above expres-
sion. In the Planckian case ν = 1, Eq. (11) can be cast in the
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(a) (b)

FIG. 5. Scaling function gα,ν (x) for ν = 1/2 (a) and ν = 1 (b),
for different values of the asymmetry parameter α = 0, 0.3, 1, 1.5
(blue, yellow, green, and red).

explicit form

gα,ν=1(x) = (x + α)/2

sinh[(x + α)/2]

cosh(x/2)

cosh(α/2)
,

�in(T, ω) = λπT
(ω/T + α)/2

sinh[(ω/T + α)/2]

cosh(ω/2T )

cosh(α/2)
. (B3)

The connection between this scaling form and conformal
invariance in local models is the following. This invariance
implies that any imaginary time (τ ) fermionic correlation
function (for example, the self-energy) takes the following
form in the limit where τ and inverse temperature β = 1/T
are both large compared with microscopic scales, but with
arbitrary τ/β [36]:

�(τ ) ∝ eα(τ/β−1/2)

(
π/β

sin πτ/β

)1+ν

. (B4)

This function has the following spectral representation
(τ = τ/β):

eα(τ−1/2)
( π

sin πτ

)1+ν

= C
∫ +∞

−∞
dx

e−xτ

1 + e−x
gα,ν (x), (B5)

with C = cosh(α/2)(2π )ν�[(1 + ν)/2]2/(π�[1 + ν]).
Other forms of the scaling functions g can also be con-

sidered. In the absence of a particle-hole asymmetry, the
following phenomenological scaling function has sometimes
been considered in the literature (see, e.g., Ref. [54]):

gα=0(x) = [1 + x2/π2]ν/2. (B6)

Note that ν = 2 reduces to the Fermi-liquid scaling function
1 + x2/π2: This is also the case of Eq. (11) for ν = 2, α = 0.
Starting with this form, one can introduce an asymmetry, for
example, by deforming the scaling function in an analogous
way to Eq. (11) [36]:

gα (x) = g0(x + α)
cosh(x/2)

cosh[(x + α)/2] cosh(α/2)
. (B7)

A simple calculation using the spectral representation of �

then shows that

�α (τ ) = eα(τ/β−1/2)

cosh α/2
�α=0(τ ). (B8)

2. Scaling form of Z(T, ω)

Here, we discuss the scaling form of the real part of the
self-energy. We start from the spectral representation

Re�(ω) = P
∫

dε
σ (ε)

ω − ε
,

σ (ω) = − 1

π
Im�(ω + i0+) = 1

2π
�in(T, ω), (B9)

in which P denotes the principal part of the integral and we
have recalled the relation (factor of 2) between the imaginary
part of the self-energy and the inelastic scattering rate for a
local theory. The frequency- and temperature-dependent ef-
fective mass enhancement 1/Z (T, ω) is given by

1 − 1

Z (T, ω)
≡ 1

ω
[Re�(ω) − Re�(0)] = P

∫
dε

σ (ε)

ε(ω − ε)
.

(B10)
Because we have subtracted Re�(0), we can substitute the
scaling form of σ = �in/2 in the integral without encounter-
ing divergencies for a non-Fermi liquid with ν < 1, and thus
we obtain

T

Z (T, ω = xT )
= T − λ

2π
(πT )ν P

∫
dy

g(y)

y(x − y)
. (B11)

Hence, remarkably, T/Z obeys a universal scaling form which
depends only on the scaling function g. This is in contrast to
a Fermi liquid in which Z depends on all energy scales [as
signaled by the fact that inserting the low-energy expression
σ (ω) ∝ ω2 + (πT )2 in Eq. (B9) would lead to a divergent
integral].

For results given in Sec. III, we ignore the ω (i.e., x)
dependence of Z and replace Z (T, ω) by Z (T, 0) = Z (T ).
Comparison with the full Kubo formula calculations given in
Fig. 4 justifies this approximation for transport calculations.
The x → 0 limit of the above expression requires some care
because of the appearance of a double pole. This is resolved
by integrating by parts, and one obtains

T

Z (T, ω = 0)
= T + λ

2π
(πT )ν

∫
dy

g′(y)

y
, (B12)

so that, with the notation introduced in the text,

T

Z (T )
= T + λ(πT )ν

cZ
,

1

cZ
= 1

2π

∫
dy

g′(y)

y
. (B13)

These expressions are valid for ν < 1. The Planckian case
ν = 1 requires a slightly different analysis because in Eq. (B9)
the integral would diverge logarithmically at large frequency.
Hence a cutoff � must be kept. The low-temperature behavior
of the zero-frequency limit of Z (T ) can be again obtained
from an integration by part (up to the cutoff). We obtain

1 − 1/Z (T ) = −λ

2

[
P

∫ +�/T

−�/T
dy

g′(y)

y
− g(y)

y

∣∣∣∣�/T

−�/T

]
.

(B14)
At large y, g′ tends to a constant in the Planckian case g′(y ∼
±∞) → g′(±∞), so that the low-temperature behavior is

1

Z (T )
= 1 + λ

2
[g′(+∞) − g′(−∞)] ln

(
ζ

�

T

)
, (B15)
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FIG. 6. θνF2(θ )/F1(θ ) vs θ (red) and F0(θ )/θνF1(θ ) vs θ (blue)
for ν = 0.5 and α = 0.3.

with ζ � 0.28 being a numerically determined constant.
Hence, using the notation in the main text (and absorbing
ζ in the definition of the cutoff �), we obtain 2π/cZ =
[g′(+∞) − g′(−∞)] (= 1 for any α). In the Planckian case,
the high-energy cutoff does not entirely disappear from the
expression of Z , but we note that the prefactor of the ln T term
depends only on the inelastic coupling constant and not on the
cutoff.

APPENDIX C: TEMPERATURE DEPENDENCE
OF THE SEEBECK COEFFICIENT

Setting θ = T/T ∗ and η = γ�′
0/�0, expressions (5)

and (6) can be written as

I1(θ ) = F1(θ ) + η

[
T ∗

γ
θ + 1

cZ
θν

]
F2(θ ), (C1)

I0(θ ) = F0(θ ) + η

[
T ∗

γ
θ + 1

cZ
θν

]
F1(θ ), (C2)

with

Fn(θ ) =
〈

xn

1 + θνg(x)

〉
. (C3)

The low-temperature expansion (θ → 0) of the functions Fn

reads

F0(θ ) = 1 − 〈g〉 θν + 〈g2〉 θ2ν + · · · ,

F1(θ ) = −〈xg〉 θν + 〈xg2〉 θ2ν + · · · ,

F2(θ ) = π2

3
− 〈x2g〉 θν + 〈x2g2〉 θ2ν + · · · . (C4)

The key difference in the behavior of Fn is that F1 ∼ c−θν

(c− = 〈xg〉) while F0,2 ∼ const. As a result, θνF2 and F1 have

FIG. 7. Coefficient c− vs α for ν = 0.5 (blue) and ν = 1 (red).

the same temperature dependence in this regime, and hence
both contribute to I1 and to the thermopower. In contrast, in
I0, the term θνF1 ∼ θ2ν can be neglected in comparison to F0

in both the conductivity and the Seebeck coefficient, which
can be hence written as

S(T ) = −kB

e

[
η

(
1

cZ
θν + T ∗

γ
θ

)
F2(θ )

F0(θ )
+ F1(θ )

F0(θ )

]
.

F1 is much smaller in magnitude than θνF2, as shown in Fig. 6.
Hence the odd-frequency contribution F1 in I1 is comparable
to the even one ηθνF2 only when the parameter η = γ�′

0/�0

is small (of order 10−2). This is, however, typically the case
since the elastic scattering rate is usually much smaller than
electronic energy scales (the elastic scattering rate is usually
much smaller than the bandwidth). Hence, at low T , the See-
beck coefficient reads, for ν < 1,

S ∼ −kB

e

( T

T ∗
)ν

[
π2

3cZ
η − c−

]
. (C5)

The dependence of the coefficient c− on the asymmetry pa-
rameter α for the choice [Eq. (11)] of scaling functions is
displayed in Fig. 7.

In the high-temperature limit (θ → ∞), all the functions
Fn have the same temperature dependence ∼cn/θ

ν :

Fn(θ ) = 1

θν

〈
xn

g

〉
− 1

θ2ν

〈
xn

g2

〉
+ · · · . (C6)

Hence, formally, at very high T , S tends to a constant
= −c2/c1 kB/e in the presence of odd-frequency scattering.
However, the term involving F1 in I0 remains small for most
temperatures of interest as shown in Fig. 6. Hence, in practice,
the relevant high-T behavior of S is

S ∼ −kB

e

[
c2

c0

�′
0

�0
T + η

c2

c0cZ

( T

T ∗
)ν

+ c1

c0

]
. (C7)
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