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Weights and directionality of the edges carry a large part of the information we can extract from a complex
network. However, many network measures were formulated initially for undirected binary networks. The
necessity to incorporate information about the weights led to the conception of multiple extensions, particularly
for definitions of the local clustering coefficient discussed here. We uncover that not all of these extensions
are fully weighted; some depend on the degree and thus change a lot when an infinitely-small-weight edge is
exchanged for the absence of an edge, a feature that is not always desirable. We call these methods “hybrid”
and argue that, in many situations, one should prefer fully weighted definitions. After listing the necessary
requirements for a method to analyze many various weighted networks properly, we propose a fully weighted
continuous clustering coefficient that satisfies all the previously proposed criteria while also being continuous
with respect to vanishing weights. We demonstrate that the behavior and meaning of the Zhang-Horvath
clustering and our proposed continuous definition provide complementary results and significantly outperform
other definitions in multiple relevant conditions. We demonstrate, using synthetic and real-world networks, that
when the network is inferred, noisy, or very heterogeneous, it is essential to use the fully weighted clustering
definitions.
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I. INTRODUCTION

The clustering coefficient (CC) was originally introduced
for binary undirected networks to quantify strong connect-
edness within a local neighborhood. It was defined as the
fraction of all possible triangles that were realized, i.e., the
ratio between all triangles in which node i participates (n�,i)
and the total number of triangles that could theoretically be
made given its degree di, which is the number of triplets (nT,i):

Cbin
i = n�,i

nT,i
= n�,i

di(di − 1)
. (1)

From a neighbor-centric perspective, it can be seen perhaps
more intuitively as the probability that two neighbors of a
node are connected. However, as network science expanded,
more and more graphs were encountered, where directedness
and edge weights play a central role. Generalizations of the
clustering coefficient were therefore introduced to account
for asymmetry in the connections between pairs of nodes or
heterogeneity in their strength.

The importance of clustering, including its directed vari-
ants, to understand complex dynamics on networks has been
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stressed in multiple studies [1–4]. This is notably the case
for the middleman motif, which is a marker of feedforward
loops in transcriptional networks and of information trans-
fer redundancy, e.g., in neuroscience. More generally, such
motifs will influence the evolution of dynamical processes
on the networks, for instance, synchronization patterns, and
have been shown to characterize families of networks such as
transcription or language networks [2]. Finally, clustering is
used in other measurements to access the small-world propen-
sity of networks [5], and the choice of a specific definition
can therefore influence whether the network of interest will
register as small world or not.

In many applications, network topology and weights are
measured only up to a certain precision [6,7]. For example, in
neuroscience, the functional connectivity networks are mea-
sured using the indirect inference of connections from the
recorded activity [8,9]. Accepting the inevitability of noise in
a network brings forward new requirements on the network
measures, namely, that they are stable to the noise and do
not change dramatically if the weights are perturbed or weak
connections are randomly omitted.

There is no agreement among researchers as to which
weighted extension of the clustering coefficient definition is
most appropriate. The three predominantly used methods at
the moment [10–12] differ in many properties of their def-
initions. Part of the reason for the absence of a single best
weighted clustering lies in a different interpretation of weights
in various data sets. Consequently, a different weighted exten-
sion might be most appropriate for various data and specific
scientific questions. However, to understand which method to
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use when and why, we need to understand their differences
precisely.

The difficulty of extending graph measures to weighted
networks is not specific to the clustering coefficient but can
occur whenever ratios of degrees or path length are involved.
We will therefore also discuss a second clustering-related
measure, called the closure coefficient and introduced as the
fraction of all open walks of length 2 starting from node i that
are part of a triangle [13]. This will also enable us to discuss
the complementarity of closure and clustering as the former
provides an important complement to analyze the tendency of
nodes to form 3- and 4-cliques.

We introduce here a distinction between fully weighted
and hybrid definitions and discuss why, for several classes
of networks, fully weighted and directed definitions should
be preferred to other clustering definitions that are currently
used for network analysis. We also propose a definition that
obeys additional conditions, including continuity of the results
with respect to infinitesimal changes in edge weights, which
has significant consequences for the resilience to noise in in-
ferred networks. We demonstrate why fully weighted methods
are essential for measured and inferred networks, which are
pervasive in biological fields such as neuroscience, and for
networks dealing with flows of information, money, or goods
that display a very broad weight distribution.

II. INTERPRETATION AND PURPOSE OF WEIGHTED
CLUSTERING

A. Desired properties of weighted clustering coefficients

Weighted measures are crucial for many network types
where the binary connectivity is either uninformative (fully
connected network) or displays similar or lower heterogeneity
compared with the weighted structure. In this paper, we focus
on two classes of real-world networks: inferred or measured
networks where there can be a large number of spurious
(false positive) edges with small weights; and networks asso-
ciated with flows of information or goods, which often display
broad weight distributions. This is notably the case for many
networks in neuroscience, and more generally in informa-
tion, transportation, or other social and economic networks.
Weights are essential to understand the dynamical processes
that occur in these networks, requiring measures that go be-
yond the binary structure.

There could be multiple requirements for weighted clus-
tering coefficients [14] depending on the particular question
of interest and on the network properties. The main require-
ments that we considered necessary for a weighted clustering
coefficient are (i) normalization (Ci ∈ [0, 1]), (ii) consistency
with the binary definition (for binary networks, it should
give back the classical result), (iii) linearity (scaling by α all
edges involving node i and all edges in triangles including
node i scales Ci by α), and (iv) continuity (weak influence of
the addition or deletion of edges having very small weights,
meaning that an edge with infinitesimally small weight should
be equivalent to the absence of that edge).

Compared with a previously proposed list of conditions
given by Saramäki et al. [14], we added a continuity condition
but did not include a requirement of a specific normalization

factor [the global max(w)] as long as the normalization con-
dition is fulfilled since only the normalization matters. We
omitted the last two conditions of Saramäki et al.’s paper
(invariance to weight permutation and ignorance of weights
not participating in any triangle). Although they might be of
interest for some specific applications, we do not consider
them to be generally desired properties for a clustering co-
efficient. Indeed, the clustering coefficient is a node-centric
measure, so there is no reason to expect invariance when the
weights of a node’s edges change. As for edge ignorance, in
the original classifying paper [14] this property is introduced
as a particular feature of the Onnela et al. [11] definition, with-
out reasons why it may be a desired condition. We also did
not require that all weights in a triangle should be accounted
for because this condition is necessarily met if the continuity
condition is fulfilled.

Continuity can be expressed mathematically as follows: for
a graph G(V, E ), if a weighted edge (u, v,w) with u, v ∈ V
and weight w ∈ R is added to this graph to form a new graph
G′(V, E ′), with E ′ = E + {(u, v,w)}, then the clustering mea-
sure is continuous if and only if ∀i ∈ V , C(G′ )

i −−−→
w→0+

C(G)
i .

This condition in crucial to ensure a reasonable behavior of
the clustering coefficient in inferred networks.

Though some definitions of previously proposed weighted
clustering coefficient definitions obey most of the required
properties, none of them completely fulfill the continuity
condition—despite previous claims [15]. This is why we will
later propose a definition that fulfills all aforementioned con-
ditions. An extensive comparison of the properties fulfilled by
different clustering definitions can be found in Appendix B.

B. State of the art for weighted clustering

First we introduce and classify the existing weighted clus-
tering coefficient definition. For all clustering definitions in
the main text, we use the following notation: A is an adja-
cency matrix, and W = {wi j} is the normalized weight matrix,
obtained from the original weight matrix W̃ = {w̃i j} by wi j =
w̃i j/ maxi, j (w̃i j ).

Hybrid definitions were the first extensions of the binary
clustering coefficient definitions. They combine properties
associated with a weighted connectivity matrix (i.e., the in-
tensity of the triangle) with properties that could be already
obtained from an adjacency matrix (i.e., node degrees). These
definitions move from an integer counting the number of trian-
gles (n�) to a sum of real numbers (computed as a function of
edge weights) that we call “intensities” of triangles (I�). The
choice of a particular function for the intensity of the triangles
determines the properties of the clustering coefficient.

Two popular hybrid weighted clusterings were given by
Barrat et al. [10] and Onnela et al. [11], which we will refer
to as the Barrat and Onnela definitions, respectively.

For a node i in a graph, the Barrat definition [10] quantifies
the fraction of the node’s strength that is invested in triangles
(see Appendix C 1 for more details):

CB
i = (WA2)ii

2si(di − 1)
= Cbin

i

w�
i

wi
, (2)
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where si = ∑
j �=i wi j is the strength of the node, wi is

the average weight of the edges involving i, and w�
i =∑

j �=k
wi j+wik

2n�,i
ai jaika jk is the average weight of edges involving

i that are part of a triangle computed over all triangles in
which node i participates. In terms of triangle intensity, this
definition was originally written as

CB
i =

∑
j �=k

wi j+wik

2 ai jaika jk

2si(di − 1)

= 1

di(di − 1)

∑
j �=k

wi j + wik

2wi
ai jaika jk, (3)

thus defining the intensity of triangle �i jk as IB
�i jk =

wi j+wik

2wi
ai jaika jk as the function of two of the triangle’s weights

and the average weight of the edges connected to node i, wi.
Proposed a bit later, the Onnela definition [11] scales the

binary clustering by the average intensity of the triangles (see
Appendix C 2 for more details):

CO
i =

(
W [ 1

3 ])3

ii

di(di − 1)
= Cbin

i IO
�i jk, (4)

with the triangle intensity defined as IO
�i jk = (wi jwikw jk )1/3

and the average intensity taken over all triangles in which i
participates.

For all hybrid methods the denominator relies on the node’s
degree, meaning that the addition or deletion of edges will
always significantly affect the clustering coefficient even if
the edge has an infinitely small weight. Such methods can
thus lead to inaccurate results when applied to the inferred net-
works, where a significant fraction of edges are false positives
with small weights. In the following we will also demonstrate
that they cannot reliably detect the most strongly clustered
nodes in structured networks. Only fully weighted definitions
can rise up to these challenges.

Fully weighted definitions are variants of the clustering
coefficient that do not include any binary measures (anything
that can be derived from the adjacency matrix alone, e.g.,
degrees). In addition to substituting the number of triangles
by the sum of triangle intensities, they also move away from
counting triplets—defining the maximum number of possible
triangles max(n�,i ) = nT,i = di(di − 1). Instead, they intro-
duce the triplet intensity IT such that, for a node i, IT,i is a
real-valued function of the weights associated with i.

One of the first fully weighted definitions for the cluster-
ing coefficient was provided by Zhang and Horvath [12] to
analyze gene coexpression networks:

CZ
i =

∑
j �=k wi jwikw jk∑

j �=k wi jwik
= IZ

�i jk

IZ
Ti jk

Cbin
i , (5)

which we will refer to as the Zhang-Horvath definition. Note
that the fact that the definition can be expressed as a function
of the binary clustering does not contradict the fully weighted
nature of the measure, as it stems from a simple recombination
of the terms.

This definition can be interpreted as the ratio of
the summed intensities IZ

�i jk = wi jwikw jk of the triangles
�i jk = (i, j, k) to the maximum possible summed intensities

TABLE I. Limit values for undirected weighted clustering coeffi-
cients of vertex i (solid circles) for different weight configurations in
graphs with vanishing weights. Solid lines depict edges of weight
w = max(w) = 1, and dotted lines denote edges with vanishing
weight ε. Only the proposed continuous clustering (bottom row)
returns values consistent with the continuity condition, whereas the
Barrat (CB), Onnela (CO), and Zhang-Horvath definitions (CZ ) devi-
ate for it.

IZ (max)
�i jk = IZ

Ti jk = wi jwik if all existing triplets Ti jk were closed
by an edge of weight 1 (the maximum possible weight in the
normalized network). This way, if i is involved in a single
triangle, the clustering coefficient is equal to the weight of
the edge closing the triplet centered on i (see also Table I).

Though this definition does not fulfill the continuity
property, we will show that it still provides a consistent in-
terpretation of weighted clustering, as discussed in Ref. [16],
and is well suited to tackle networks with a large fraction of
false positives.

Other fully weighted definitions that have been proposed
and discussed since [15,17,18] do not bring significant ad-
ditions compared with the Zhang-Horvath definition while
actually losing some of its properties and its straightforward
interpretation. They are not considered further in this paper;
see Appendix A for further explanations.

C. A continuous definition for weighted clustering and closure

For an undirected graph G, we define the proposed contin-
uous clustering of node i as

Ci =
∑

j �=k I2
�i jk∑

j �=k ITi jk
=

∑
j �=k ( 3

√
wi jw jkwik )2∑

j �=k
√

w jiwik
. (6)

We define the weighted intensity of triangles and triplets,
I�i jk = 3

√
wi jw jkwik and ITi jk = √

w jiwik , respectively, using
the geometric mean of the weights involved. Because of this,
one strong weight in a triangle or triplet cannot compensate
the presence of smaller weights, in contrast to what may
happen if one uses the arithmetic mean. This provides the
desired property that the intensity of triangles and triplets will
go to zero if even a single edge weight goes to zero. Note
that, though the triangle intensity is defined as the geometric
mean of the three weights involved, it is the square of this
intensity that is used in the definition. The reason for this
choice is twofold: to assign higher influence to large triangles
and to ensure the linearity of the coefficient. Importantly, this
definition of the triangle intensity I� assigns the same role to
all participating edges. The proposed clustering could be in-
terpreted as the ratio of the triangle intensity that is invested in
strong triangles (given by the sum of the squared intensities of
triangles, which increases the importance of strong triangles)
to the triplet intensity, which would represent the maximum
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TABLE II. Definitions of the continuous intensities for each partial mode pattern in directed graphs. Column 1, pattern names; column 2,
pattern illustration; column 3, number of triangles for node i; column 4, number of triplets for node i; column 5, continuous intensities of the
triangles for node i; and column 6, continuous intensities of triplets for node i. The clustering coefficients associated with each mode m are
given by C (m)bin

i = n(m)
�,i/n(m)

T,i for binary networks and C (m)
i = I (m)

�,i /I (m)
T,i for the continuous definition.

possible triangle intensity if all weights connecting adjacent
nodes were equal to 1.

The proposed continuous definition fulfills all the condi-
tions we put forward above, and to the best of our knowledge
it is the only one to do so. Similarly to previous definitions, the
proposed clustering coefficient can also be rewritten in terms
of node properties:

Ci =
(
W [ 2

3 ])3

ii(
s[ 1

2 ]
i

)2 − si

, (7)

where si = ∑
j �=i wi j is the normalized strength of node i

and W [α] = wα
i j and s[α]

i = ∑
j �=i w

α
i j are the fractional weight

matrix and strength for any α ∈ R.
As for the previous definitions, the continuous clustering

can be interpreted as a function of intensities and the binary
clustering:

Ci = n�I2
�i jk

nT ITi jk
= I2

�i jk

ITi jk
Cbin

i = Var(I�i jk ) + I�i jk
2

ITi jk
Cbin

i , (8)

with means I�i jk and ITi jk and variance taken over all the
triangles or triplets the node i participates in, respectively.
In the limit where all triangles associated with node i have
similar intensities, we can neglect the variance term, leaving
I�i jk

2

ITi jk
Cbin

i . In this case, in contrast to the Zhang-Horvath def-

inition [Eq. (5)], the absolute value of the intensity matters,
not only its ratio to the maximum possible intensity. For a
given average triangle intensity, the positive contribution of
the variance implies that nodes with more variable intensities,
i.e., at least one triangle with a high intensity, will have higher
clustering coefficients than nodes with identical triangles of
average intensity.

Finally, the global clustering can also be defined in a
straightforward fashion. For simplicity, we define I�,i =∑

j �=k I2
�i jk and IT,i = ∑

j �=k ITi jk , leading to Ci = I�,i/IT,i.
Using this definition, the continuous global clustering is ob-

tained via the formula

Cg =
∑

i I�,i∑
i IT,i

. (9)

D. Directed weighted clustering

Fagiolo [19] proposed how to generalize clustering to di-
rected networks. He defined the different patterns or motifs
(shown in Table II) that can exist in these networks and
adapted the Onnela definition [11] as the first weighted di-
rected clustering coefficient. The Barrat definition [10] was
generalized to directed graphs in Ref. [20] following the same
distinction into Fagiolo’s cycle, middleman, fan-in, and fan-
out motifs.

Similarly, the Zhang-Horvath definition [12] and the con-
tinuous definition can be generalized in a straightforward
manner for directed networks. For this, we only need to
redefine the intensities of each directed triangle and triplet
motif (as shown in Table II for the continuous definition and
in Table VII for the Zhang-Horvath definition). This simply
requires replacing A with W in all expressions of n(m)

�,i and

a with w in all expressions of n(m)
T,i . As the total directed

clustering is defined as the sum of all modes, we can write
it as

CZ (tot)
i = IZ (tot)

�,i

IZ (tot)
T,i

= (W + W T )3
ii∑

j �=k (wi j + w ji )(wik + wki )
. (10)

Finally, the continuous clustering can be extended for each
directed mode (see Table II), and for the total directed cluster-
ing, this leads to

C(tot)
i = I (tot)

�,i

I (tot)
T,i

=
1
2

(
W [ 2

3 ] + W [ 2
3 ]T

)3

ii(
s[ 1

2 ]
i,tot

)2 − si,tot − 2s↔
i

, (11)

with si,tot = ∑
j (wi j + w ji ) being the total strength, s

[ 1
2 ]

i,tot =∑
j (w

1
2
i j + w

1
2
ji ) being the total root strength, and s↔

i =∑
j
√

wi jw ji being the reciprocal strength.
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(a)

(b)

FIG. 1. Only the continuous clustering coefficient uncovers the true structure in the weighted core-periphery network. A network has 11
strongly connected core nodes (black edges) that interact with well-clustered periphery nodes with weaker connection strengths (light-brown
edges); see Appendix E 1 for details on the network. (a) Graphical view of the network; the edge width gives the strength of the connection,
and the node color gives its clustering coefficient. (b) Distribution of clustering coefficients for the three types of nodes over ten realizations of
such a core-periphery network. Only the continuous definition differentiates between the central, the outer-core, and the periphery nodes. In all
the other methods, the clustering coefficients of the 10 “outer-core” and 22 periphery nodes overlap: The Onnela definition only distinguishes
the central node, whereas the Barrat and Zhang-Horvath definitions do not hint at a core-periphery structure.

As for the undirected case, the global clustering coefficient
associated with each directed pattern can be obtained via the
formula C(m)

g = ∑
i I (m)

�,i /
∑

i I (m)
T,i .

III. THE ADVANTAGES OF FULLY WEIGHTED
DEFINITIONS

In this section we discuss the sensitivity to the weight-
encoded topological features and stability to noise in network
measurements of the different clustering methods. A previous
study [14] already noted the fact that previous definitions did
not fulfill the continuity condition by analyzing the behavior
of the different coefficients for nodes that participate in a
single triangle. Table I illustrates some of these cases and
shows that the proposed continuous definition is the only one
to behave as expected.

Yet we note that the Zhang-Horvath definition is also very
resilient to noise because, except for the corner cases asso-
ciated with single triangles, its behavior is continuous in all
other situations. Moreover, contrary to what was asserted in
Ref. [14], it provides a perfectly sensible behavior given its
interpretation of clustering as the ratio of the triangle intensity
IZ
�i jk = wi jwikw jk to its maximum possible intensity given the

weights of node i: IZ (max)
�i jk = IZ

Ti jk = wi jwik if w jk = 1.
Because the Barrat and Onnela definitions [10,11] are the

most well known and (to the best of our knowledge) the only
methods implemented in popular graph libraries, we restrict
our comparison to the Zhang-Horvath definition and these
two definitions. A more comprehensive discussion of other
definitions of the weighted clustering coefficient can be found
in Appendix A.

A. Sensitivity to weight-encoded topological features

Here, we investigate how weighted structures can be de-
tected or missed using different clustering definitions. As
an example we consider weighted core-periphery graphs in
Fig. 1. There, core nodes are characterized by both a dense
binary connectivity and large weights, whereas periphery
nodes display both sparser connectivity (though they still
have large degrees) and weaker weights; for more details, see
Appendix E 1. We generate ten realizations of the network
and consider distribution of clustering coefficients of differ-
ent types of nodes. Continuous definition leads to distinct
clustering of different types of nodes, making the true struc-
ture of the network clearly visible already in the clustering
distributions. Because of their hybrid nature, the Barrat and
Onnela definitions cannot capture this underlying structure
as it is mostly encoded in the weights and not at all in the
degrees (core nodes are not binary hubs). Though it is purely
weighted, the Zhang-Horvath definition is also not suited to
detect this type of weighted structure because its interpretation
of a node’s clustering only accounts for the relative triangle
intensity given the node’s weights.

The continuous clustering is sensitive to any topological
property that is encoded via specific weight distributions.
Furthermore, in contrast to the Zhang-Horvath definition, it
accounts not only for the ratio of the triangle intensity over
the triplet intensity (how strong the triangles are compared
with the maximum possible value given the node’s weights)
but also for the absolute value of the intensity: A weak tri-
angle, even if it corresponds to the highest possible value
given the node’s weights, will decrease the node’s clustering
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(a) (b) (c) (d)

(e) (f) (g) (h)
(a) (c)

(a)

)b( )c(

(b) (d)

(d)

FIG. 2. Fully weighted methods are less sensitive to spurious edges. A “measured network” can be represented as the union of a “ground
truth” (G.T.)—here, a Watts-Strogatz network in dark brown—and spurious small-weight connections (“noise” graphs with (a) random [Erdős-
Rényi (ER)] or (b) scale-free (SF) connectivity, in red). We assess the influence of the weight distribution of spurious connections (red) by
checking weights that are (c) all equal and small or (d) following an exponential distribution and overlapping with the real weights (dark
brown). (e)–(g) Ground-truth clustering distribution (filled dark brown) compared with the distributions associated with the measured networks
for each method (dashed lines). Weight and noise types, combining noise shown in (a) or (b) with weight shown in (c) or (d), which we refer
to as conditions “(a)+(c),” “(a)+(d),” “(b)+(c),” and “(b)+(d),” are associated with colors from brown to orange in the same order as in
(h). Distributions associated with the exponential noise [conditions (a)+(d) and (b)+(d)] differ most from the original distributions for the
Zhang-Horvath and continuous clusterings [(e) and (f)] and are broader for the Onnela clustering (g). (h) Correlation between the ground-truth
clustering and clustering in measured networks for indicated spurious edge topology and weights. Fully weighted clusterings retain most of
the correlation for condition (a)+(d), with R2 > 0.55, and only lose the original information for condition (b)+(d). The results were obtained
for ten realizations of the spurious edges; error bars give confidence intervals. Network properties are detailed in Appendix E. Z, C, O, and B,
Zhang-Horvath, continuous, Onnela, and Barrat definitions, respectively.

in the continuous definition whereas it increases it with the
Zhang-Horvath method. In that sense, the continuous clus-
tering provides a more global evaluation of the clustering
coefficient compared with the Zhang-Horvath definition that
provides more local information.

The Barrat definition has several limitations because it is
close to being weight insensitive [11,21]. It is particularly
unsuitable for assessing networks with a potentially large
number of low-weight spurious connections or very hetero-
geneous weight distributions. For this reason, we will mostly
leave this clustering aside in the rest of this paper.

B. Continuity and resilience to noise

The stability of a network measure to noise is of particular
importance for networks that are obtained via experimental
measurements since these are often subject to noise and sta-
tistical biases, notably for inferred networks. Methods abiding
by the continuity condition are especially resilient to the pres-
ence of low-weight spurious edges. Violation of continuity
can have significant and pervasive consequences for inference
of network properties in many network structures. We have
already seen the simple examples in Table I; here, we demon-
strate that they are not just corner cases, but occur in larger,
real-world networks.

We illustrate the impact of spurious edges on measured
clustering coefficients using the example of Watts-Strogatz
small-world networks. We consider different topologies for
the subnetwork formed by the spurious edges: either an
Erdős-Rényi random network [Fig. 2(a)], associated with un-
correlated noise, or a scale-free network [Fig. 2(b)], which
would correlate noise with certain nodes in the network.
Additionally, weights on the spurious edges could be much
smaller than the weight of the actual edges [Fig. 2(c)] or
have an overlapping distribution [Fig. 2(d)]. We refer to the
combinations of these noise and weight types as conditions
“(a)+(c),” “(a)+(d),” “(b)+(c),” and “(b)+(d).” Both fully
weighted methods are unaffected by low noise [conditions
(a)+(c) and (b)+(c)] and are also less influenced by the spuri-
ous edges when their weights are large enough to overlap with
the real weight distribution [conditions (a)+(d) and (b)+(d)].
On the other hand, because hybrid methods explicitly depend
on the nodes’ degrees, they are very susceptible to the pres-
ence of spurious edges [Figs. 2(g) and 2(h)].

The difference in behavior between the methods can be
easily explained by a first-order expansion. We consider
change in the clustering coefficient of a node i with degree
di after addition of a spurious edge e = (i, v) with weight
ε 	 1. For the Barrat and Onnela methods, the new clustering
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coefficient becomes

CO′
i = IC

�,i + O
(
ε

1
3
)

di(di + 1)
= di − 1

di + 1
CO

i + O
(
ε

1
3
) ε→0

� CO
i ,

CB′
i = IB

�,i + ∑
k

ε+wik
2 avkaik

IB
T,i + si + ε

= di − 1

di
CB

i + O(ε)
ε→0
� CB

i ,

meaning that, for both methods, the coefficients will deviate
from the original clustering CO/B

i by a noninfinitesimal value,
even when the perturbation was infinitesimal; see Appendix C
for a complete derivation.

On the other hand, the continuous clustering becomes

Ci = I�,i + ∑
k∼i (ε wvkwki )

2
3

IT,i + 2s[ 1
2 ]

i

√
ε

= Ci

(
1 − 2s[ 1

2 ]
i

√
ε

IT,i
+ O

(
ε

2
3
))

= Ci + O(
√

ε) −−−→
ε→0+

Ci, (12)

showing only an infinitesimal deviation to the similarly in-
finitesimal perturbation.

Similarly, except for the single-triangle cases discussed in
Table I, the Zhang-Horvath clustering becomes

CZ ′
i = IZ

�,i + O(ε)

IZ
T,i + O(ε)

= CZ
i + O(ε) −−−→

ε→0+
CZ

i . (13)

It is worth noting that one continuity issue, associated with
nodes participating in only one triangle, occurs for all defini-
tions but the continuous one. Since this situation is pervasive
in networks with low degree or binary clustering, using the
continuous clustering definition can be of particular impor-
tance in such cases; see Appendix F 4.

IV. APPLICATION TO REAL-WORLD NETWORKS

A. Mouse mesoscale connectome

In neuroscience, the networks on different scales give a
vital piece of information to understand the brain better. Un-
surprisingly, connectomics, the mapping of the connections in
the nervous system, has gained significant attention and devel-
oped dramatically over the last years. Most of the networks in
neuroscience are weighted, and the obtained connectivities are
either measured or inferred, making them a typical example
for the challenges discussed above. The mouse mesoscale
connectome [22] is a fascinating example of such networks,
both because it provides information about the entire mouse
brain and because it contains an evaluation of the probability
of false positives for all connections.

Here, we investigate how the choice of the clustering co-
efficient definition can alter the results. The network is very
inhomogeneous, with broadly varying degrees [Fig. 3(a)]. The
edges in the mesoscale connectome are assigned p values
that quantify their probability to correspond to a real physical
connection (p denotes the probability of the connection to be
a spurious edge). They have therefore different significance
levels, with only 13% of all edges having p values smaller
than 0.01, i.e., only 13% of all edges have a probability to be

spurious that is lower than 1%. We consider a thresholding
procedure, where at each level of the threshold (pmax), only
the edges with smaller p values are kept. This procedure can
be seen as an attempt to remove spurious edges, though no
correct threshold level is known. Compared with the hybrid
method, both fully weighted definitions are much less sensi-
tive to thresholding [Figs. 3(b) and 3(c)]. Thus we see that
the resilience to noise we showed analytically and on toy
networks is relevant for a real-world network. Furthermore,
the resilience is not limited to the general shape of the dis-
tribution but indeed preserves the precise values and ranks:
A larger fraction of the nodes displaying high clustering in
the full graph are still among the highest ranking nodes in
the thresholded graphs when fully weighted methods are used
compared with the hybrid method [Figure 3(e)].

The clustering coefficient is a network measure that cap-
tures features beyond purely local parameters, such as degree
or strength. However, as we see for the mouse connec-
tome, the hybrid method strongly correlates with the average
weight associated with a node i: si/di. At the same time,
the fully weighted definitions are much less correlated with
it [Fig. 3(d)]. As a result, they can bring more independent
information regarding the weighted network structure than the
hybrid method. This trend is even stronger for the Zhang-
Horvath definition, which does not account for the absolute
intensity of triangles. In contrast, the continuous definition
provides some intermediate behavior as the intensity of trian-
gles often correlates, if only in part, with the average weight
associated with the node.

Finally, though the continuous and Zhang-Horvath defini-
tions often provide somewhat similar results, they may differ
significantly, e.g., for the cerebellar cortex in Fig. 3(f). Com-
bining the results of both methods can thus be informative,
for example, to single out nodes that possess only weak con-
nections (and will therefore register as weakly clustered for
the continuous definition) yet connect to other nodes that are
strongly connected (thus registering as strongly clustered for
the Zhang-Horvath definition).

B. Decentralized social media: The Fediverse

The Fediverse [23] is a set of federated social media that
can communicate via a collection of common protocols [24],
the most well known being ActivityPub. This network can be
seen as a set of alternatives to corporate platforms such as
Facebook or Twitter. Social media on the Fediverse usually
promote ideas of decentralization, interoperability, free/libre
and open-source software (FLOSS), and the absence of algo-
rithmic filters in favor of human curation and moderation.

We analyze here a snapshot of this network that was ob-
tained in 2018 by Zignani et al. [25] (data are available [26]).
In contrast to the original publication, we chose here to look
at the mesoscale level, i.e., at connections between instances
(the equivalent of a community on the Fediverse, where at
least one, but up to several thousand users can have an ac-
count). This mesoscale view leads to a network of weighted
directed interactions between communities of strongly con-
nected users. Indeed, users of a single instance (the technical
name for a community on the Fediverse) can see and interact
with all public messages posted by other members on that
same server. At the same time, they can only see a subset of
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FIG. 3. For the mouse connectome, different clustering methods give significantly different results. (a) Top view of the mouse brain; node
size indicates the total degree, and node color indicates the out-degree (lighter colors for higher degrees). (b) Distribution of the total clustering
coefficients if only edges with the p value p < pmax are preserved. There are smaller changes in clustering distribution for fully weighted
definitions than for the Onnela definition. From pale yellow to dark gray, thresholding keeps 9, 13, 32, and 100%, respectively, of the original
network. (c) The fraction of the nodes with the highest total clustering (top 5, 10, and 25%) that are preserved across all subsamplings in (b) for
the Zhang-Horvath (brown), continuous (orange), and Onnela definitions (pale yellow). (d) Correlation of the three total clustering definitions
with average total node weight (si/di) shows that fully weighted definitions capture additional information beyond degree and strength. (e)
Fraction of the 10% highest clustering nodes that are common between two of the definitions (filled markers in the right panel include the
central region of the left panel) or among all three definitions (black crosses, central region) as shown in the Venn diagram. (f) Clustering ranks
of the areas within brain regions (showing which regions contain nodes with high clustering coefficients) can significantly vary depending on
the definition (Zhang-Horvath, brown; continuous, orange; and Onnela, pale yellow).

the posts from people on other servers (either because they
follow their author or because other members of the instance
follow the author or shared this specific post).

For each instance I1, an edge towards another instance I2

means that at least one user on I1 follows at least one member
of I2. The precise value of the weight associated with this
edge gives the fraction of all followers from the source in-
stance that are associated with members of the target instance.
The weights are thus a proxy to characterize the fraction
of the community’s attention that is associated with content
produced by another community; this means of course that,
for each node, its outgoing strength so is equal to 1. Note
that in this network, information flow occurs in the direction
opposite to that of the edge, because the directed edge denotes
that the source is paying attention to what the target posts.

The network snapshot contains 3825 nodes corresponding
mostly to instances running Mastodon [27], one of the most
prominent microblogging platforms on the Fediverse. These

3825 nodes represent more than half of the entire network
and are connected via 81 371 edges. A chord diagram of
connections between locations shows that, besides the fact
that the position of most instances is unspecified (UNS), the
largest hosting countries are Japan, the United States, and
France, with Japanese and French communities interacting
mostly among themselves [Figs. 4(a) and 4(b)]. The network
is both very sparse and strongly heterogeneous, with a median
degree of 5 but node degrees and sizes varying over 3–5 orders
of magnitude. This broad distribution has notable implications
for different clustering definitions. For the Zhang-Horvath
definition, it increases the likelihood of running into the corner
cases of single triangles, increasing the average clustering
compared with the other methods. For the Onnela definition,
it strongly correlates clustering values to the degree (and thus
to the size) of the instance.

As for the mouse network, all weighted methods lead to re-
sults that differ strongly from the binary clustering [Figs. 4(d)
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(d)

(b)(a)

(c) (e) (f)

FIG. 4. Properties of the network of Fediverse instances. (a) Chord diagram of connections between locations (DEU, Germany; FRA,
France; JPN, Japan; UNS, unspecified; USA, United States of America). (b) Spatial representation of the network showing connections that
amount to at least 1% of the strongest connection; nodes are placed on each country’s capital, and their sizes represent the number of instances
hosted in that country. The zoom on Europe shows all connections in the European subnetwork. (c) The count of users per instance follows a
heavy-tailed distribution. (d) The network displays strong structural clustering, most nodes with nonzero in- and out-degrees displaying binary
clustering values close to 1, whereas the expected value for an Erdős-Rényi network with the same number of edges would be almost zero
(dotted line). (e) The median values of the fan-out clustering for different instance sizes show that the strong heterogeneity of the network can
have a notable influence for the Onnela method (yellow), whereas the Zhang-Horvath (dark brown) and continuous methods (orange) display
much weaker correlation with the size of the instance. (f) The fan-in motifs have intensities that are several orders of magnitude lower than fan
out and display weaker dependency on the instance size. The binary (gray) clustering coefficient misses the difference between fan out and fan
in, which predominantly relies on the weights’ effect.

and 4(e)]. Some of the results from the hybrid method tend to
correlate strongly with some first-order properties of the nodes
[Fig. 4(e)], whereas the fully weighted methods bring more
independent information. The Fediverse network displays a
peculiar feature as its fan-out and fan-in clusterings differ
significantly despite the usual correlation between these two
patterns, as can be seen from the comparison of Figs. 4(e) and
4(f).

C. Using local clustering to infer dynamical properties

Analysis of the clustering coefficient for different struc-
tured patterns offers a way to obtain a precise idea of
the critical dynamical patterns within a network. To deter-
mine the significance of a particular pattern, we compare its
prominence in the original network with its prominence in
null-model networks obtained via appropriate randomization.
For the mouse brain, as a randomized control, we take the
original network and only shuffle the weights, thus preserving
the weight distribution and binary structure. Comparing the
actual values in the original graphs with those of the random-
ized graphs, we can see the importance of looking at fully
weighted measures.

Both the Zhang-Horvath and continuous definitions iden-
tify the preference of the mouse brain network for redundant
information flows, whereas the hybrid method of Onnela does
not capture this feature. Redundant information transfer in

the brain is indeed associated with situations where a signal
can be transferred not only directly from one node to another,
but also indirectly via a third (middleman) node, as can be
seen in middleman, fan-in, and fan-out patterns (cf. Table II).
This overexpression of redundant patterns is visible, for the
fully weighted methods, in the high values of the middleman,
fan-in, and fan-out motifs in Fig. 5(a).

The situation for the Fediverse is significantly more com-
plex. Indeed, 98% of all edges belong to at least one triangle,
and some are involved in up to thousands of triangles. A
deeper understanding of the clustering requires precise in-
vestigation of how the weight distribution correlates with
specific patterns of triangles. For instance, though fan-in and
fan-out patterns co-occur and are thus usually correlated, the
Fediverse displays an unexpected discrepancy between the
weights associated with the two patterns, as seen in Fig. 5(b),
which notably differentiates it from the mouse connectome
(see also Appendix F 3).

V. DISCUSSION

In this paper, we introduced directed weighted definitions
for clustering analysis. Using analytic derivations, generated
network models, and real data, we showed that the behavior
of fully weighted measures displayed enhanced sensitivity,
selectivity, and robustness compared with hybrid measures.
To facilitate access to these measures, all clustering methods
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(a) (b)

FIG. 5. Different structures of clustering patterns and information flow in the mouse brain and the Fediverse. The original clustering values
are compared with graphs with the same adjacency matrix but shuffled edge weights (mouse, 10 uniformly shuffled networks; Fediverse, 200
graphs shuffled across all outgoing edges of each node to preserve out-strength normalization). The contours show different density levels of
the point clouds associated with the original and shuffled pairs of clustering coefficients. (a) The Zhang-Horvath and continuous definitions
capture the redundancy of information flow in the mouse brain (the middleman, fan-in, and fan-out motifs are higher in the original graph).
However, the Onnela method does not capture this feature. (b) For the Fediverse, only fan-out and middleman motifs are significantly stronger
than in the random graphs. Patterns where the original values are significantly greater than the randomized ones are marked by a + and the
initial of the method (brown Z, Zhang-Horvath method; orange C, continuous method; yellow O, Onnela method). The original clustering is
considered to be significantly higher (lower) if 75% of the points are above (below) the dotted identity line. The addition of * denotes one-sided
fractions greater than 95%.

were implemented in PYTHON and made compatible with the
three main libraries in this language (NETWORKX, IGRAPH, and
GRAPH-TOOL) [28].

The use of a specific weighted clustering coefficient should
be an informed choice, based on the precise questions and ob-
jects of study and thus on the specific properties that a relevant
measure should fulfill to answer these questions. We therefore
wish to highlight the importance of continuity as a potentially
crucial notion for networks with highly heterogeneous weight
distribution or numerous spurious edges with low weights.
In previous studies, slight variations on this notion had been
introduced mathematically [15] or hinted at by the study of
corner cases [14]. However, the continuity property was in-
advertently considered only in particular classes of networks
in Ref. [15] (disregarding, for example, small-degree cases),
erroneously marking previous methods as continuous. The
other study (Ref. [14]) asserted discontinuity of previous mea-
sures simply as a feature, without discussing its implications
or ways to avoid it. Our proposal of fully continuous clus-
tering methods based on simple mathematical principles and
requirements fully solves the issue of continuity. In addition,
we show in Appendix D that these principles can be extended
to other measures such as the local closure.

We discussed how each weighted definition is associated
with a specific interpretation of weighted clustering as a func-
tion of the binary clustering, triangle, and triplet intensities
(see Appendix B and Table VI for a summary). Corre-
spondingly, these interpretations are associated with specific
properties of each clustering coefficient. In rare cases where,
by design, there are edges with small weights that should be
treated significantly differently from an absence of connec-
tion, researchers may want to check whether the properties of
the Barrat or Onnela definitions fit their needs or if they should
come up with new, more appropriate definitions. In many
other cases, combining mathematical analysis and concrete
examples, we asserted that fully weighted measures outper-
form hybrid ones to evaluate clustering in networks with large

numbers of spurious edges with small weights. We expanded
the results from previous studies comparing existing weighted
definitions [14–16,21], extending their definition to directed
networks and providing complete mathematical justifications
for previous observations regarding linearity and continuity.

Our analyses show that either of the fully weighted defini-
tions may be preferred depending on the network properties.
For networks with large degrees, the Zhang-Horvath defini-
tion may be preferred if the number of low-weight spurious
edges is very high, as it is least susceptible to noise. In
networks with heterogeneous weight distributions where the
absolute value of triangle strength is of interest, we showed
that the continuous definition provides more relevant results
than the Zhang-Horvath definition. Indeed, in networks in-
volving fluxes of goods or matter as well as for information
processing (e.g., in brain or telecommunications networks),
one may be interested in the absolute amount that can be
transferred between nodes, making nodes with small weights
of little relevance. A similar issue occurs for networks where
many nodes participate in a single triangle (see Appendix F 4)
making the Zhang-Horvath clustering noncontinuous. In such
networks, the use of the Zhang-Horvath definition is likely
to assign high clustering to single-triangle nodes with low
weights, whereas the continuous definition will not, as was
shown in Fig. 1.

Finally, we illustrate the usefulness of weighted cluster-
ing methods to investigate clustering in the examples of a
connectome and a decentralized social network. The fully
weighted methods were especially suitable to reveal key dif-
ferences in their weighted structural properties. Indeed, we
showed that middleman, fan-in, and fan-out patterns, charac-
teristic of pathways enabling redundant information transfer
between nodes, were overexpressed in the mouse brain. In the
Fediverse, the methods revealed an unexpected discrepancy
between fan-in and fan-out modes, probably associated with
social interaction patterns that would mandate further investi-
gation.
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TABLE III. Undirected weighted clustering coefficients of ver-
tex i (solid circles) for different weight configurations. Solid lines
depict edges of weight w = max(w) = 1, whereas dotted lines are
associated with edges with vanishing weight ε. Only the proposed
continuous clustering (bottom row) displays the required properties,
compared with the Zhang-Horvath (CZ ), Holme et al. [17] (CH ), and
Miyajima-Sakuragawa (hm) definitions (CM,hm).
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APPENDIX A: LIMITATIONS OF OTHER FULLY
WEIGHTED DEFINITIONS

See Table III for a complete comparison of the fully
weighted clustering definitions.

1. Holme et al. [17]

Most studies consider the definition of Holme et al. [17] to
be

CH
i =

∑
jk wi jwikw jk

maxi j (wi j )
∑

jk wi jw jk
, (A1)

which would make it inconsistent with the binary definition.
However, the discussion in their paper states that consistency
was one of their requirements, letting us think that they actu-
ally meant to define it as

CH
i =

∑
j �=k wi jwikw jk

maxi j (wi j )
∑

j �=k wi jw jk
, (A2)

which would make it equal to the Zhang-Horvath definition
[12], and we will therefore not consider Eq. (A1) here.

2. Miyajima and Sakuragawa [18]

Miyajima and Sakuragawa [18] define a multitude of gen-
eralized clustering coefficients based on the use of an arbitrary
function h : R2 → R such that

CM,h
i =

∑
jk h[h(wi j,wik ),w jk]∑

j �=k h[h(wi j,w jk ), maxlm(wlm)]
. (A3)

More specifically, Wang et al. [15] argue in favor of the use of
a specific version using the harmonic mean (hm):

CM,hm
i =

∑
jk

2
2

1
wi j

+ 1
wik

+ 1
w jk∑

j �=k
2

2
1

wi j
+ 1

wik

+ 1
maxlm (wlm )

, (A4)

which we will refer to as the Miyajima-Sakuragawa (hm)
definition. However, this definition suffers from three major
shortcomings:

(i) Despite what is asserted by the authors, it does not fulfill
the continuity condition.

(ii) It is not locally linear, meaning that two nodes that have
the same neighborhood but with all weights differing by a
factor λ will not have the ratio of their clustering coefficients
equal to λ.

(iii) It introduces an undesired asymmetry in the definition
of the triangle intensity: For a given triangle �i jk , the com-
puted intensity will be different for each node as it depends
on which one is considered as i.

APPENDIX B: COMPARISON OF CLUSTERING
PROPERTIES

Multiple properties of the main definitions for the cluster-
ing coefficient are listed in Table IV. These properties depend
on the definitions of triangle and triplet intensity that are
recapitulated in Table V.

The different formulas for the intensities lead to different
interpretations of weighted clustering (Table VI). The Barrat
and Zhang-Horvath definitions only quantify ratios of trian-
gle and triplet strength, while the Onnela and continuous
definitions are sensitive to the absolute value of the triangle
intensity. The latter provides an intermediate interpretation
between the Zhang-Horvath and Onnela definitions as it reacts
to both the ratio of intensities and the absolute value of the
triangle intensity.

APPENDIX C: DERIVATION OF THE EVOLUTION
OF HYBRID CLUSTERING COEFFICIENTS

1. Barrat method

Upon addition to a graph G(N, E ) of an edge (i, v) of
weight ε, giving G′(N, E ′) = E + {(i, v)}, one can compute
the evolution of the initial clustering coefficient CB

i to its new
value CB′

i by rewriting the definition from Ref. [10] as in
Ref. [14]:

CB
i = 1

di(di − 1)

∑
j �=k

wi j + wik

2wi
ai jaika jk

= 1

di(di − 1)

∑
j �=k

wi j

wi
ai jaika jk . (C1)

From this, we can deduce the following relationship
between the Barrat definition and the binary clustering coeffi-
cient Cbin

i :

CB
i = n�,iw

�
i /wi

di(di − 1)
= Cbin

i

w�
i

wi
, (C2)
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TABLE IV. Comparison of the different properties of the different clustering coefficients. The Zhang-Horvath and continuous definitions
fulfill the maximum number of desirable properties. An “X” means that the method possesses this property.

Property Barrat Onnela Miyajima-Sakuragawa (hm) Zhang-Horvath Continuous

Consistent with binary definition X X X X X
Normalized (C ∈ [0, 1]) X X X X X
All weights participate in I� X X X X
All weights participate equally in I� X X X
Linear against local scaling of the weights X X X
Sensitive to weight permutations X X X X
For a triangle � = (i, j, k), I� = IT f (w jk ) X
Continuous X

with n�,i being the number of triangles in which node i partic-
ipates and w�

i being the average weight associated with edges
connected to i and participating in a triangle.

Notice that this expression also explains why the Barrat
definition is so close to the binary clustering: For networks
where weights are either rather homogeneous or not strongly
correlated to triangles, w�

i and wi become very close as the
number of triangles per node increases.

Using Eq. (C2), the new clustering can be defined as

CB′
i = Cbin′

i

w�
i

′

wi
′

= n′
�,i

di(di + 1)

n�,iw
�
i +(n′

�,i−n�,i )ε
n′

�,i

diwi+ε
di+1

= n�,iw
�
i

d2
i wi

+ O(ε)

= di − 1

k
CB

i + O(ε). (C3)

2. Onnela method

As for the other definitions, the clustering from Ref. [11]
can be defined as a function of the binary clustering:

CO
i = n�IO

�i jk

di(di − 1)
= Cbin

i IO
�i jk . (C4)

TABLE V. Comparison of the formula for triangle and triplet
intensity among the different clustering definitions for undirected
networks.

Definition Triangle (I�i jk) Triplet (ITi jk)

Barrat
wi j + wik

2wi
ai jaika jk di(di − 1)

Onnela (wi jwikw jk )1/3 di(di − 1)

Miyajima-Sakuragawa (hm)
2

2
1

wi j
+ 1

wik

+ 1
w jk

2
1

wi j
+ 1

wik

Zhang-Horvath wi jwikw jk wi jwik

Continuous 3
√

wi jw jkwik
√

wi jwik

From this, one can define the evolution upon addition of an
edge (i, v) of weight ε as

CO′
i = Cbin′

i IO
�i jk

′

= n′
�

di(di + 1)

n�IO
�i jk + O(ε)

n′
�

= n�

di(di + 1)
IO
�i jk + O(ε)

= di − 1

di + 1
CO

i + O(ε). (C5)

3. Directed versions of the clustering coefficients

To generalize the Zhang-Horvath definition of cluster-
ing [12] for directed graphs, we use the same approach as
proposed by Fagiolo [19]. These definitions are visible in
Table VII together with the directed definitions associated
with Barrat et al. [10] and Onnela et al. [11], respectively
defined in Refs. [20] and [19].

APPENDIX D: CLOSURE

Closure was introduced in Ref. [13] as a complementary
measure of clustering for binary undirected networks.

1. Undirected weighted closure

From the Zhang-Horvath definition of clustering, closure
can be generalized in a fully weighted but noncontinuous way
as

H0
i =

∑
j �=k wi jw jkwki∑
j �=k �=i wi jw jk

= W 3
ii∑

j wi j (s j − wi j )
, (D1)

again comparing the triangle intensities with their maximum
possible value if all their second neighbors are also connected
to them (i.e., also first neighbors) by an edge of weight 1.

TABLE VI. Comparison of the interpretations of the different
clustering definitions for undirected networks.

Definition Barrat Onnela Zhang-Horvath Continuous

Formula
w�

i

wi
Cbin

i IO
�i jkC

bin
i

IZ
�i jk

IZ
Ti jk

Cbin
i

I2
�i jk

ITi jk

Cbin
i
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TABLE VII. Definitions of the Barrat, Onnela, and Zhang-Horvath intensities for each partial mode pattern in directed graphs. Column
1, pattern name; column 2, Onnela triangle intensity for node i; column 3, Barrat triangle intensity for node i; column 4, Barrat triplet
intensity for node i; column 5, Zhang-Horvath triangle intensity for node i; column 6, Zhang-Horvath triplet intensity for node i. The clustering
coefficients associated with each mode m are given by CO,(m)

i = IO,(m)
�,i /n(m)

T,i for the Onnela method, CB,(m)
i = IB,(m)

�,i /IB,(m)
T,i for the Barrat method,

and CZ,(m)
i = IZ,(m)

�,i /IZ,(m)
T,i for the Zhang-Horvath method. Note that, for the Barrat method, the reciprocal strength has been defined in Ref. [20]

as sB
i,↔ = ∑

i �= j
1
2 (wi j + w ji ).

Mode IO,(m)
�,i IB,(m)

�,i IB,(m)
T,i IZ,(m)

�,i IZ,(m)
T,i

Cycle (W [ 1
3 ] )3

ii
1
2 (WA2 + (WA2)T )ii

1
2 (si,indi,out + si,outdi,in ) − sB

i,↔ (W )3
ii si,insi,out − s[2]

i,↔
Middleman (W [ 1

3 ]W [ 1
3 ]T W [ 1

3 ] )ii
1
2 (WAT A + W T AAT )ii

1
2 (si,indi,out + si,outdi,in ) − sB

i,↔ (WW T W )ii si,insi,out − s[2]
i,↔

Fan in (W [ 1
3 ]T (W [ 1

3 ] )2)ii
1
2 (W T (A + AT )A)ii si,in(si,in − 1) (W T WW )ii (si,in )2 − s[2]

i,in

Fan out ((W [ 1
3 ] )2W [ 1

3 ]T )ii
1
2 (W (A + AT )AT )ii si,out (si,out − 1) (WWW T )ii (si,out )2 − s[2]

i,out

This is equivalent to comparing with the situation where all
open paths of length 2 are closed into a triangle by an edge of
weight 1.

Finally, it can also be defined in a continuous way as

Hi =
∑

j �=k
3
√

wi jw jkwki
2∑

j �=k �=i
√

wi jw jk
=

(
W [ 2

3 ])3

ii∑
j

(
W [ 1

2 ])2

i j
− si

. (D2)

2. Directed weighted closure

For directed networks, in contrast to Ref. [29], we only
consider the extension of the undirected measure to di-
rected paths (that is, we consistently consider only second
in-neighbors via in-neighbors and second out-neighbors via
out-neighbors, but not the out-neighbors of the node’s in-
neighbors or vice versa). Therefore we define only four
variants of the directed closure, two for outgoing paths [cycle
out (CO) and fan out (FO)] and two for incoming paths [cycle
in (CI) and fan in (FI)].

We define the weighted version either directly using the
weights, as in the Zhang-Horvath definition for the clustering
coefficient,

H0
i,CO =

∑
j �=k wi jw jkwki∑
j �=k �=i wi jw jk

= W 3
ii∑

j wi j (s j,out − wi j )
, (D3)

H0
i,CI =

∑
j �=k wk jw jiwik∑
j �=k �=i wk jw ji

= (W T )3
ii∑

j w ji(s j,in − w ji )
, (D4)

H0
i,FO =

∑
j �=k wi jw jkwik∑
j �=k �=i wi jw jk

= (W 2W T )ii∑
j wi j (s j,out − wi j )

, (D5)

H0
i,FI =

∑
j �=k wk jw jiwki∑
j �=k �=i wk jw ji

= (W T W 2)ii∑
j w ji(s j,in − w ji )

, (D6)

TABLE VIII. Some characteristic properties of the mesoscale
mouse brain. SD, standard deviation.

Mean SD Median Min Max

In-degree 153.7 25.6 152 104 223
Out-degree 153.7 77.6 151 14 357
CCbin

tot 0.43 0.02 0.43 0.38 0.49
Weight 0.076 0.36 0.038 3.9 × 10−16 20.4

or via the continuous definition,

Hc
i,CO =

∑
j �=k

3
√

wi jw jkwki
2∑

j �=k �=i
√

wi jw jk
=

(
W [ 2

3 ])3

ii∑
j

(
W [ 1

2 ])2

i j
− si,out

, (D7)

Hc
i,CI =

∑
j �=k

3
√

wk jw jiwik
2∑

j �=k �=i
√

wk jw ji
=

(
W [ 2

3 ],T )3

ii∑
j

(
W [ 1

2 ,T ])2

i j
− si,in
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(D8)

Hc
i,FO =

∑
j �=k
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√
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2∑
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√

wi jw jk
=
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3 ]2
W [ 2
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ii∑
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(
W [ 1

2 ])2
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Hc
i,FI =

∑
j �=k

3
√

wk jw jiwki
2∑
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√

wk jw ji
=

(
W [ 2

3 ],T W [ 2
3 ]2)

ii∑
j

(
W [ 1

2 ,T ])2
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. (D10)

APPENDIX E: NETWORK GENERATION ALGORITHMS

All networks were generated using the Neural Networks
and Graphs’ Topology (NNGT) library [28].

1. Core-periphery network

The core-periphery network in Fig. 1 contains (i) 1 cen-
tral core node (CCN), (ii) 10 outer-core nodes (OCNs), and
(iii) 20 periphery nodes (PNs).

The nodes are connected as follows:
(i) The ten OCNs for a circular graph have fully reciprocal

connections to their four nearest neighbors.
(ii) The OCNs all connect to the CCN with reciprocal

connections.
The weights associated with these connections are drawn

from U (5, 10). The connections with the PNs are as follows:

TABLE IX. Some characteristic properties of the Fediverse
mesoscale network.

Mean SD Median Min Max

In-degree 21.3 82.6 4 0 2271
Out-degree 21.3 77.8 5 0 2038
CCbin

tot 0.68 0.37 0.86 0 1
Weight 0.045 0.14 0.0029 6.0 × 10−7 1
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FIG. 6. Distribution of in- and out-degrees (in orange and yellow,
respectively) and weights in the mouse connectome.

(i) Each OCN receives one connection from every other
PN, starting with the first or second PN depending on the
OCN’s evenness.

(ii) The OCN reciprocates the connections with probability
0.5.

(iii) The PNs are connected among themselves following
an Erdős-Rényi scheme of density 0.05.

Weights associated with connections involving PNs are
drawn from U (0.05, 0.5).

2. Watts-Strogatz network

The original Watts-Strogatz network [30] consists of a reg-
ular lattice basis (characterized by a coordination number k)
that is then modified, rewiring each edge with a probability
p. For directed networks, we used a generalization of that
method implemented in NNGT which is strictly equivalent
except for the fact that edges are now directed:

(1) Start from a directed regular lattice with coordination
number k and reciprocity r (taken as 1 in this paper).

(2) Rewire each edge with probability p.

FIG. 7. Distribution of in- and out-degrees (in orange and yellow,
respectively) and weights in the Fediverse instances.

The original lattice L(N, k, r) has 1
2 Nk(1 + r) edges, lead-

ing to the limit cases (i) 1
2 Nk edges if r = 0, like the

undirected lattice, and (ii) Nk edges if r = 1, with all con-
nections being reciprocal.

3. Network properties for Fig. 2

In the Watts-Strogatz network used in Fig. 2, we used a
coordination number k = 20 and a rewiring probability p =
0.03.

The Erdős-Rényi network is generated to have an average
degree of 15, whereas the scale-free network is generated via
a degree list drawn from a power-law distribution with an
exponent of 1.2 and normalized to get an average degree of
15.

The weights of the Watts-Strogatz network are drawn from
an exponential distribution of parameter 1.5 and shifted by
+0.1 so that they are all nonzero.

The weights or the “noise” networks are either all equal
to 10−4 or drawn from a second exponential distribution of
parameter 0.05, shifted by +10−4.

(a) (b)

FIG. 8. Different structures of local closure in the mouse brain and Fediverse. The panels compare the local closure of directed patterns
for the mouse brain (a) and Fediverse (b). The original values are compared with the averages over an ensemble of graphs with the same
adjacency matrix but shuffled edge weights. For the mouse brain, 10 uniformly shuffled networks; for Fediverse, 200 shuffling across all
outgoing edges of a each node (to preserve out-strength normalization). (a) The local closure also shows an increase for patterns promoting
redundancy of information flow in the mouse brain (fan-in and fan-out motifs are higher in the original graph). (b) For the Fediverse, only fan
out is significantly stronger than in the random graphs. Patterns where the original values are significantly greater (smaller) than the randomized
ones are marked by a + (−) and the initial of the method (brown Z, Zhang-Horvath method; orange C, continuous method; yellow O, Onnela
method). The original closure is considered to be significantly higher (lower) if 75% of the points are above (below) the dotted identity line.
The addition of * denotes one-sided fractions greater than 95%.
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TABLE X. Number of nodes (N) and edges (E) and fraction of
single-triangle (1-T) nodes in several collaboration and gene associ-
ation networks.

Network N E 1-T nodes (%)

NetScience 1589 2742 23
CompGeo 7343 11 898 21
CE-CX 15 229 245 952 8
CE-HT 2617 2985 2
HS-HT 2570 13 691 7
SC-HT 2084 63 027 5

APPENDIX F: REAL-WORLD NETWORKS

1. Mouse mesoscale connectome

The mouse mesoscale connectome network was obtained
from Ref. [22] and contains 426 nodes corresponding to brain
regions of intermediate scale connected by 65 465 edges. It
is a symmetric version of the original network that separates
nodes from both hemispheres. Each node is associated with
a “name” property composed of an abbreviated denomination
for the corresponding brain region, as well as a suffix (left or
right) corresponding to the hemisphere. Edges are associated
with three attributes: a “weight,” a “p value,” and a “distance”
(corresponding to the Euclidean distance from the source to
the target node). See Table VIII and Fig. 6.

2. Fediverse mesoscale network

The Fediverse mesoscale network was obtained from Ref.
[25] (data are available [26]). It contains 3825 nodes rep-
resenting servers (instances) that are connected via 81 371
edges. Each node is associated with two attributes: a “name”,
corresponding to the server domain, and a “size”, Si, corre-

sponding to the number of users registered on that server.
Edges are associated with four attributes: “num follows”, de-
fined as Fi j , the number of followers from i to j; “follow/size”,
defined as Fi j/Si; a “weight” given by wi j = Fi j/Fi, the ratio
between the number of followers from i to j divided by the
total number of followers from i; and a “distance” giving the
Euclidean distance between the two servers on the latitude-
longitude plane. See Table IX and Fig. 7.

3. Closure in the shuffled networks

The results obtained for the local closure confirm those
obtained using the clustering coefficient for the mouse brain
and Fediverse networks, as shown in Fig. 8. Namely, we see
an overexpression of fan-in and fan-out patterns for the mouse
network and a discrepancy between those two patterns for the
Fediverse network.

4. Networks with a high number of single-node triangles

The presence of nodes participating in a single triangle
is frequent in very sparse networks such as collaboration or
gene-protein interaction networks.

Table X details several such networks: NetScience in-
volves coauthorship in the network science community [31],
CompGeo involves collaborations in computational geome-
try [32], CE-CX is a graph of gene associations inferred
from the coexpression pattern of two genes (based on
high-dimensional gene expression data) for Caenorhabdi-
tis elegans, CE-HT is for gene associations inferred from
high-throughput protein-protein interactions for C. elegans,
HS-HT is for gene associations inferred from high-throughput
protein-protein interactions for Homo sapiens, and SC-HT is
for gene associations inferred from high-throughput protein-
protein interactions for Saccharomyces cerevisiae.

Gene functional association networks [33] were down-
loaded [34].
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