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Structural reduction of chemical reaction networks based on topology
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We develop a model-independent reduction method of chemical reaction systems based on the stoichiometry,
which determines their network topology. A subnetwork can be eliminated systematically to give a reduced
system with fewer degrees of freedom. This subnetwork removal is accompanied by rewiring of the network,
which is prescribed by the Schur complement of the stoichiometric matrix. Using homology and cohomology
groups to characterize the topology of chemical reaction networks, we can track the changes of the network
topology induced by the reduction through the changes in those groups. We prove that, when certain topological
conditions are met, the steady-state chemical concentrations and reaction rates of the reduced system are ensured
to be the same as those of the original system. This result holds regardless of the modeling of the reactions,
namely, chemical kinetics, since the conditions only involve topological information. This is advantageous
because the details of reaction kinetics and parameter values are difficult to identify in many practical situations.
The method allows us to reduce a reaction network while preserving its original steady-state properties, thereby
complex reaction systems can be studied efficiently. We demonstrate the reduction method in hypothetical
networks and the central carbon metabolism of Escherichia coli.
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I. INTRODUCTION

Chemical reactions in living systems form complex net-
works [1–3]. They operate in a highly coordinated manner
and are responsible for various cellular functions. Experimen-
tally, high-throughput measurements have been conducted to
study cellular responses to perturbations for the purpose of
elucidating underlying regulatory mechanisms (see, for ex-
ample, Refs. [4–6]). One approach to the theoretical studies
of biological systems is to build elaborated models, employ-
ing particular kinetics, parameter values, and initial/external
conditions. Although these models can provide detailed quan-
titative predictions, a faithful modeling is challenging for
most biological systems, because our prior knowledge about
kinetics and parameter values is limited, and also because
many parameters are difficult to measure experimentally.
Furthermore, the complexity of models may confound model-
independent features with model-dependent ones.

To address these difficulties, it is desirable to reduce
complex reaction systems to simpler ones. A reduction is
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practically useful since it can reduce the number of variables
and parameters needed to be included in the analysis, and
it can also identify features essential to focal phenomena
or properties of interest (such as biomass production of a
metabolic network). It also relates to a conceptual question
of the robustness of biochemical processes [7–14]. Chemical
reaction networks inside living organisms are highly inter-
connected, and yet are robust under internal fluctuations and
environmental perturbations. If a system is insensitive to the
details of its substructure, then it is natural to expect that a re-
duction is possible, in the spirit of renormalization. To the best
of our knowledge, the reduction methods [15,16] of chem-
ical reaction systems studied so far are based on timescale
separation, lumping [17,18], sensitivity analysis [19–21] or
optimizations [22,23]. To apply those approaches, we need de-
tailed information about the reactions. For example, to exploit
the timescale separation, we should know which reactions are
fast and which are slow. The sensitivity analysis also requires
the dependence of the system on various parameters.

In this paper, we develop a systematic method of reduc-
ing chemical reaction networks based on their topology (see
Figs. 1 and 2). One motivation for the reduction method comes
from the law of localization [24–26]; if a certain topolog-
ical index, which we call the influence index, is zero for
a subnetwork, then perturbations inside the subnetwork do
not affect the steady state of the remaining elements of the
network (see Sec. III for the precise statement). This obser-
vation indicates that certain subnetworks are “irrelevant,” as
far as the remaining part of the network is concerned. As
we will show, a reduction can be systematically performed
through the Schur complementation of the stoichiometric
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FIG. 1. Schematic of the reduction procedure. For a given subnetwork γ satisfying a condition called output-completeness, we assign
a nonnegative integer that we call the influence index, λ(γ ). A subnetwork with vanishing influence index is called a buffering structure.
Although an elimination of a subnetwork (γ2 in the figure) generally modifies the steady state of the remaining part of the network, a buffering
structure (γ1) can be reduced while preserving the original steady state of the remaining part.

matrix with respect to a subset of chemical species and
reactions. The well-definedness of the reduction process re-
quires that the subnetwork should satisfy a condition called
the output-completeness. The behavior of the reduced system
depends on the topological nature of the subnetwork. As a
central result, we prove that, when the influence index of
the subnetwork vanishes, the steady-state chemical concentra-
tions and reaction rates of the reduced system are exactly the
same as those of the original system, as far as the remaining
degrees of freedom are concerned.

We emphasize that those conditions are topological ones
and determined solely by the network structure; hence, are in-
sensitive to the details of how the reactions are modeled. Thus,
the result is broadly applicable, because it holds regardless
of the kinetics or parameter values. This is of practical merit
since the kinetics of reactions or the values of parameters are
difficult to identify in many situations. To characterize the

topology of reaction networks, we introduce the homology
and cohomology groups for chemical reaction networks. The
change of the topology of chemical reaction networks under
the reduction is captured by the change of the (co)homology
groups. The tools of algebraic topology are convenient for
tracking those changes. We recommend the readers who are
interested in practical aspects of reduction to directly go to
Sec. IV, where we discuss the reduction procedure with sim-
ple examples.

The rest of the paper is organized as follows. In Sec. II,
we introduce concepts for characterizing the structure of
chemical reaction networks. Further, we introduce the homol-
ogy and cohomology groups for chemical reaction networks,
and the steady-state reaction rates and concentrations are
determined by the elements of the cohomology groups. In
Sec. III, we review the structural sensitivity analysis and the
law of localization. We also show that the influence index is

FIG. 2. Example of the reduction. In a chemical reaction network with a stoichiometric matrix S, if a subnetwork γ with Sγ is output-
complete, the system can be reduced to a smaller system, whose stoichiometric matrix S′ is given by the generalized Schur complement
S′ := S/Sγ . The reduced system can reproduce the same steady-state properties of the original system, if the influence index of the subnetwork
is zero. Note that S′ is in general different from the corresponding submatrix of S (compare the lower-right block of S with S′, where the
difference between them is indicated by the colored components in S′). This alteration is pictorially represented as “rewiring” of the network
(e.g., the head of e5 is rewired to v3). See Fig. 5 for an application to the central carbon metabolism of E. coli.
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submodular as a function over output-complete subnetworks.
In Sec. IV, we introduce the reduction procedure and illustrate
the method with simple examples. In Sec. V, we discuss the
relation between the structural sensitivity analysis and the
reduction method. We show that the reduction of a buffering
structure, that is an output-complete subnetwork with van-
ishing influence index, has a particularly nice property: The
reduced system admits the same steady states as the original
system. In Sec. VI, as an application to realistic networks, we
demonstrate the reduction method for the metabolic pathways
of Escherichia coli. Section VII is devoted to summary and
outlook. In Appendix A, we discuss the Hodge decomposi-
tion and Laplace operators for chemical reaction networks. In
Appendix B, we provide intuitive interpretations of the cycles
and conserved charges of various types that appear in the de-
composition of the influence index. We also illustrate how the
decomposition of the index can be seen visually in the struc-
ture of the A-matrix, which characterizes the response of the
steady state to the perturbations of parameters. In Appendix C,
the role of emergent conserved charges in subnetworks is
discussed. In Appendix D, we provide the details of the
metabolic pathways of E. coli. discussed in Sec. VI.

II. TOPOLOGY OF CHEMICAL REACTION NETWORKS

In this section, we introduce definitions and concepts for
characterizing the topology of chemical reaction networks.
Those concepts will be used to track the change of reaction
networks under reductions.

A. Chemical reaction networks

Definition 1 (Chemical reaction network). A chemical re-
action network (CRN) � is a quadruple � = (V, E , s, t ),
where V is a set of chemical species, E is a set of chemical
reactions, and s and t are source and target functions,

s : E → NV , t : E → NV , (1)

which specify the reactants/products of a reaction. Here, N
indicates nonnegative integers, and the elements of NV are
maps from V to N.

Let us explain the definition in more detail. We will use the
indices i, j, k, · · · for chemical species and A, B,C, · · · for
chemical reactions. Given a reaction eA ∈ E , we have a map,
s(eA) : V → N, and s(eA)(vi ) ∈ N for vi ∈ V indicates how
many vi are needed as reactants for the reaction eA. Similarly,
t (eA)(vi ) ∈ N is the number of vi created in reaction eA. An
element of NV will be referred to as a chemical complex. The
system can be an open reaction network,1 when there is a
reaction whose source or target function is zero for any species
(see the example reactions below). When t (eA)(vi ) = 0 for
any vi ∈ V , the product of reaction eA is deposited to the outer
world. Similarly, a reaction with s(eA)(vi ) = 0 for any vi ∈ V
is sourced from outside. A reaction is usually represented in

1The compositional aspect of open reaction networks has been
studied in the language of category theory [27–29]. Nonequilibrium
thermodynamic analysis of open reaction networks with mass-action
kinetics and with reversible reactions is performed in Refs. [30,31].

the following form:

eA :
∑

i

yiAvi →
∑

i

ȳiAvi, (2)

where vi ∈ V , and yiA and ȳiA are nonnegative integers. Those
integers are given by the source and target functions as

yiA = s(eA)(vi ), ȳiA = t (eA)(vi ). (3)

The stoichiometry of the reaction is specified by the stoichio-
metric matrix S, whose components are given by

SiA := ȳiA − yiA. (4)

Remark 1. There are several equivalent ways to formulate
a chemical reaction network such as a hypergraph [32] or a
Petri net [33,34].

Remark 2. A reaction that involves at most one chemical
species as reactants and products, such as v1 → v2, is called
monomolecular. When all the reactions in the system are
monomolecular, the corresponding reaction network is a usual
directed graph. In this case, the stoichiometric matrix is the
incidence matrix of the graph. If we regard � as a directed
hypergraph, then the stoichiometric matrix is the incidence
matrix of a directed hypergraph.

We consider formal summations of species and reactions
with real coefficients, and consider vector spaces whose bases
are chemical species/reactions. We denote the resulting vector
spaces as

C0(�) :=
{ ∑

i

aivi | vi ∈ V, ai ∈ R

}
, (5)

C1(�) :=
{ ∑

A

bAeA | eA ∈ E , bA ∈ R

}
. (6)

Elements of those spaces are referred to as 0-chains and
1-chains. Higher (n � 2) chains do not exist in the current
setting. The stoichiometric matrix provides us with natural
boundary operators on the spaces of chains,

∂n : Cn(�) → Cn−1(�). (7)

The action of ∂1 is defined by its action on the basis eA ∈
C1(�) and vi ∈ C0(�),

∂1eA =
∑

i

(ST )Ai vi, ∂0vi = 0. (8)

We often use the notation of linear algebra, where an el-
ement

∑
i aivi ∈ C0(�) is represented by the vector a =

(a1, a2, · · · )T , and we also write a ∈ C0(�). For b ∈ C1(�),
the action of the boundary operator is given by the multiplica-
tion of the stoichiometric matrix,

∂1 : b �→ Sb ∈ C0(�). (9)

On the spaces of chains, let us define inner products by

〈eA, eB〉1 = δAB, 〈vi, v j〉0 = δi j . (10)

With these inner products, we can define the adjoint
of the boundary operator, ∂

†
1 : C0(�) → C1(�) such that

〈∂†
1 vi, eA〉1 = 〈vi, ∂1eA〉0. The action on the basis vi ∈ C0(�)
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is given by

∂
†
1 vi =

∑
A

SiA eA. (11)

In the linear-algebra notation, the action of ∂
†
1 is the multipli-

cation of the transpose of S to a ∈ C0(�),

∂
†
1 : a �→ ST a ∈ C1(�). (12)

Example 1. Let us consider a reaction network � =
({v1, v2, v3, v4, v5}, {e1, e2, e3, e4, e5, e6}) given by the fol-
lowing set of chemical reactions,

e1 : (input) → v1, e2 : (input) → v2,

e3 : v1 + v2 → v3 + v4, e4 : v3 → v5, (13)

e5 : v4 → (output), e6 : v5 → (output).

The stoichiometric matrix of the network is

S =

⎛⎜⎜⎜⎝
1 0 −1 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1

⎞⎟⎟⎟⎠. (14)

It can be drawn as

v1

v2

v3

v4

v5

e3
e1

e2

e4

e5

e6

(15)

We represent a monomolecular reaction by a single arrow, and
we use a rectangle to represent a multimolecular reaction. In
this network, e3 is a multimolecular reaction and others are all
monomolecular. The action of the boundary operator is, for
example,

∂1e4 = v5 − v3, ∂1e3 = v3 + v4 − v1 − v2, ∂1e1 = v1,

(16)
and so on. Those are intuitively understood from the figure.
The network is open, since we have inputs from the outside
(e1 and e2) and outputs to the external world (e5 and e6). For
example, s(e1)(vi ) = 0 for any vi ∈ V . The action of ∂

†
1 is

∂
†
1 v1 = e1 − e3, ∂

†
1 v3 = e3 − e4, (17)

for example. Namely, the operator ∂
†
1 measures the net inflow

of the reactions on a vertex.
The chemical concentrations and reaction rates are R-

valued linear maps over 0-chains and 1-chains, respectively,

Cn(�) : Cn(�) → R, (18)

for n = 0, 1. Given an x ∈ C0(�), x(vi ) ∈ R represents the
concentration of the chemical species vi. Similarly, for a
given r ∈ C1(�), r(eA) ∈ R represents the rate of the reaction
eA. We will also use short-hand notations xi := x(vi ) and
rA := r(eA). We will also denote an element as a vector as
x ∈ C0(�) and r ∈ C1(�), where the components of x and r
are given by xi and rA, respectively.

We define a coboundary operator in a usual way using the
boundary operator,

(d0x)(eA) := x(∂1eA) = x

(∑
i

(ST )Ai vi

)
=

∑
i

(ST )Ai x(vi ),

(19)
where we have used the linearity of the map x. Thus, we
can identify the coboundary operator that acts on the chem-
ical concentration x ∈ C0(�) as the multiplication of the
matrix ST .

We define the inner product of n-cochains as2

〈x, y〉0 :=
∑

i

x(vi )y(vi ), 〈r, s〉1 :=
∑

A

r(eA)s(eA), (20)

where x, y ∈ C0(�) and r, s ∈ C1(�). With these inner prod-
ucts, the adjoint of the coboundary operator dn, d†

n :
Cn+1(�) → Cn(�) is defined by

〈 fn+1, dngn〉n+1 = 〈d†
n fn+1, gn〉n. (21)

Following the definition, we can identify d†
0 as follows:

〈r, d0x〉1 =
∑

A

r(eA) (d0x)(eA)

=
∑
i,A

SiAr(eA)x(vi )

:=
∑

i

(d†
0 r)(vi) x(vi )

= 〈d†
0 r, x〉0, (22)

where r ∈ C1(�) and x ∈ C0(�). Thus, the action of d†
0 is

given by

(d†
0 r)(vi) :=

∑
A

SiAr(eA). (23)

By construction, the adjoint of coboundary operator satisfies
(d†

0 r)(vi) = r(∂†
1 vi ).

B. Homology, cohomology, and steady states

With the (co)chains and (co)boundary operators defined
above, we can discuss (co)homology groups. We have the
following chain complex,

0 C1(Γ)
∂1

C0(Γ) 0 . (24)

Noting that the action of ∂1 is the multiplication of the stoi-
chiometric matrix S, we can identify the homology groups as

H0(�) = C0(�)/∂1C1(�) = C0(�)/im S = coker S, (25)

H1(�) = ker S. (26)

2More generally, one may define the inner product with a weight
function as

〈 f , g〉n :=
∑

c∈Cn (�)

w(c) f (c)g(c),

where w is a R-valued function over Cn(�).
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Remark 3. Note that C0(�) is endowed with a standard
inner product, with respect to which we can take the or-
thogonal linear subspace (im S)⊥. Moreover, the restriction
of the quotient map C0(�) → coker S to (im S)⊥ induces an

isomorphism (im S)⊥
∼=−→ coker S. Therefore, we can always

regard coker S as a linear subspace of C0(�). Note also that
the orthogonal subspace (im S)⊥ is the same as the kernel of
the transpose of S, ker ST . Combined with the above obser-
vation, this implies that we can always identify coker S with
ker ST ⊂ C0(�).

Similarly, with the coboundary operator d0, we can define
a complex of cochains as

0 C0(Γ)
d0

C1(Γ) 0 . (27)

The associated cohomology groups are

H0(�) = {d ∈ C0(�) | ST d = 0}
= (im S)⊥ ∼= C0(�)/im S = coker S, (28)

H1(�) = C1(�)/d0C
0(�)

= C1(�)/im ST ∼= (im ST )⊥ = ker S, (29)

where (−)⊥ denotes taking orthogonal spaces with respect to
the standard inner product on C0(�) and C1(�).

An Euler number for this complex can be defined as

χ (�) := |H0(�)| − |H1(�)| = | coker S| − | ker S|, (30)

where |W | indicates the dimension of the vector space W .
Several remarks on the homology and cohomology groups

are in order:
Remark 4. Since we consider the R coefficients, the ho-

mology and cohomology groups are the same, Hn(�) ∼=
Hn(�) for n = 0, 1.

Remark 5. In the chemistry literature, the elements of
H1(�) are referred to as cycles, and this is consistent with the
mathematical terminology.

Remark 6. When the network is monomolecular and the
corresponding network is a directed graph, the dimension
|H0(�)| is the number of connected components.

Remark 7. Similarly to the homology groups of topolog-
ical spaces, Laplace operators can be defined and we can
perform Hodge decomposition of C1(�). See Appendix A.

The cohomology groups defined above are closely related
to the steady states of a reaction network as we see below.
Let us consider the time evolution of spatially homogeneous
chemical concentrations. The change of the chemical concen-
tration is driven by the reactions. The time derivative of the
concentration of species vi is given by the divergence of the
reaction rate,

d

dt
x(vi ) = (d†

0 r)(vi), (31)

which is more explicitly written as

d

dt
xi(t ) =

∑
A

SiA rA. (32)

To solve the rate equations, we have to specify kinetics of
chemical reactions, such as the mass-action kinetics and the

Michaelis-Menten kinetics. A reaction’s kinetics gives the re-
action rate rA as a function of its substrate concentrations (i.e.,
the concentrations of species with yiA > 0) and parameters,
rA = rA(x; kA), where kA represents any one of the parameters
for the Ath reaction; for example, in the Michaelis-Menten
kinetics, kA represents the Michaelis constant or the maximum
rate.

The elements of H0(�) and H1(�)3 characterize the steady
states of chemical reaction networks. The rate equation (32)
at the steady state reads

(d†
0 r)(vi) = 0, or equivalently

∑
A

SiA rA = 0, (33)

which means that the steady-state reaction rate is an element
of the kernel of S, r ∈ ker S ∼= H1(�). The cokernel of S
is related to conserved quantities of the system. Given d ∈
coker S ∼= H0(�), that satisfies

∑
i diSiA = 0, we have

d

dt
〈d, x〉0 = d

dt

(∑
i

dixi

)
=

∑
i,A

diSiArA = 0. (34)

Thus, the linear combination
∑

i dixi is independent of time
and hence is conserved. For this reason, we refer to the
elements of coker S as conserved charges.4 To find the steady-
state solutions, we have to specify the value of all the
conserved charges. A steady state is specified by an element
of H0(�) and H1(�),∑

ᾱ

	ᾱ d ᾱ ∈ H0(�),
∑

α

μα (k, �) cα ∈ H1(�), (35)

where {d ᾱ} and {cα} are basis vectors of H0(�) and H1(�),
respectively. The coefficients μα (k, �) depend on the parame-
ters k and �.

Example 2. We consider a network � =
({v1, v2, v3, v4}, {e1, e2, e3, e4, e5}) with the following
reactions:

e1 : (input) → v1, e2 : v1 → v2, e3 : v2 → (output),

e4 : v1 + v2 → v3 + v4, e5 : v3 + v4 → v1 + v2.

(36)

The network structure can be drawn as

v1 v2

e4 e5

v3 v4

e1 e2 e3

(37)

3Although the natural choice is to consider x and r as the elements
of cohomology groups, we can equivalently consider them as ele-
ments of homology groups, since they are isomorphic in the current
setting.

4“Conserved moiety” may be more chemistry-oriented
terminology.

043123-5



HIRONO, OKADA, MIYAZAKI, AND HIDAKA PHYSICAL REVIEW RESEARCH 3, 043123 (2021)

We here take the mass-action kinetics, and the equations of
motion are written as

d

dt

⎛⎜⎝x1

x2

x3

x4

⎞⎟⎠ =

⎛⎜⎝1 −1 0 −1 1
0 1 −1 −1 1
0 0 0 1 −1
0 0 0 1 −1

⎞⎟⎠
⎛⎜⎜⎜⎝

r1

r2

r3

r4

r5

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
r1

r2

r3

r4

r5

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
k1

k2x1

k3x2

k4x1x2

k5x3x4

⎞⎟⎟⎟⎠, (38)

where xi = x(vi ) and rA = r(eA) are the concentration and
reaction rate for the species vi and reaction eA, respectively.
The kernel and cokernel of the stoichiometric matrix are given
by

ker S = span {(1 1 1 0 0)T
, (0 0 0 1 1)T },

(39)

coker S = span {(0 0 1 −1)T }, (40)

where span {v1, v2, · · · } indicates the vector space spanned by
vectors v1, v2, · · · . The cokernel is one-dimensional and the
system has one conserved charge. To find the steady states,
we need to specify the value of the charge as

	 = x3 − x4. (41)

The steady-state reaction rates and concentrations are

r̄ = k1(1 1 1 0 0)T + k4k2
1

k2k3
(0 0 0 1 1)T

,

(42)

x̄ = ( k1
k2

k1
k3

1
2

(
	 + √

	2 + 4K
)

1
2

(−	 + √
	2 + 4K

))T
,

(43)

where we set K := k4k2
1/k2k3. The vector r̄ is spanned by the

basis vectors of ker S and their coefficients are μα .

C. Subnetworks

Let us consider a subset of chemicals and reactions, γ ⊂ �,
which we specify by γ = (Vγ , Eγ ) with Vγ ⊂ V and Eγ ⊂ E .
Correspondingly, we have a submatrix Sγ of the stoichiomet-
ric matrix S, whose components are given by

(Sγ )iA = SiA, (44)

where the indices are restricted to those of the subnetwork,
vi ∈ Vγ , eA ∈ Eγ . We denote the space of relative chains by

Cn(γ ) := Cn(�)/Cn(� \ γ ), (45)

where � \ γ := (V \ Vγ , E \ Eγ ) is the complement of the
subnetwork γ . The homology and cohomology groups for the
subnetwork can be defined similarly. The chain complex for a
subnetwork γ is

0 C1(γ)
∂1

C0(γ) 0 , (46)

where the action of the boundary operator ∂1 on the basis of
C1(γ ) is defined with the partial stoichiometric matrix Sγ ,

∂1eA =
∑

i

(
ST

γ

)
Ai vi. (47)

The associated homologies with the complex (46) are

H0(γ ) = C0(γ )/∂1C1(γ ) = C0(γ )/im Sγ = coker Sγ , (48)

H1(γ ) = ker Sγ . (49)

The Euler number for a subnetwork is given by

χ (γ ) := |H0(γ )| − |H1(γ )|. (50)

Note that

χ (γ ) = |H0(γ )|−|H1(γ )| = |C0(γ )| − |C1(γ )| = |Vγ |−|Eγ |.
(51)

The value of the concentrations and reaction fluxes inside
a subset γ are given by R-valued functions over the space of
chemicals and reactions,

Cn(γ ) : Cn(γ ) → R. (52)

The cohomology for subnetworks can be defined similarly to
the homology.

D. Mayer-Vietoris exact sequence

In this subsection, we give a long exact sequence of ho-
mology groups that connects local and global information.
Suppose that there are two subnetworks γ1, γ2 ⊂ �, which
consist of γ1 = (Vγ1 , Eγ1 ) and γ2 = (Vγ2 , Eγ2 ). We can con-
sider the intersection and union of the subnetworks,

γ1 ∩ γ2 := (
Vγ1 ∩ Vγ2 , Eγ1 ∩ Eγ2

)
,

γ1 ∪ γ2 := (
Vγ1 ∪ Vγ2 , Eγ1 ∪ Eγ2

)
. (53)

The exact sequence (56) below explains the relationship
among cohomology groups of γ1 ∪ γ2, γ1, γ2 and γ1 ∩ γ2.
Regarding the family {γ1, γ2} as a “covering” of γ1 ∪ γ2, we
can think of Eq. (56) as an analog of the Mayer-Vietoris
sequence associated with an open covering of a topological
space. Following the usual technique in topology, we will
derive the long exact sequence from a short exact sequence of
chain complexes. We have the following short exact sequence
of chain complexes:

(54)
where the horizontal maps are given by

fn : c �→ (c,−c), gn : (c1, c2) �→ c1 + c2. (55)
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By applying the snake lemma to Eq. (54), we obtain

0 H1(γ1 ∩ γ2) H1(γ1) ⊕ H1(γ2) H1(γ1 ∪ γ2)

H0(γ1 ∩ γ2) H0(γ1) ⊕ H1(γ2) H0(γ1 ∪ γ2) 0.

(56)
In general, if there is an exact sequence of finite-dimensional
vector spaces, then the alternating sum of the dimensions of
them is equal to zero. Therefore, the exact sequence (56)
implies

χ (γ1 ∪ γ2) = χ (γ1) + χ (γ2) − χ (γ1 ∩ γ2). (57)

III. LAW OF LOCALIZATION

A sensitivity analysis studies the response of the system to
the perturbations of reaction parameters or initial conditions
(conserved charges). In the context of metabolic networks, a
theoretical framework called the metabolic control analysis
has been developed [35–39].

Under the mass-action framework, biologically insightful
results have been obtained regarding the sensitivity to con-
served charges [11,14] as well as stability properties of stable
states [40–43], although the mass-action law is not necessarily
appropriate for some biological systems. Among the stud-
ies on sensitivity analysis, the structural sensitivity analysis
[44–46] aims at constraining the response of reaction systems
from the network structure alone.

In this section, we first review the structural sensitivity
analysis and the law of localization [24–26]. For a given
subnetwork, we assign a nonnegative integer, which we call
the influence index. The influence index is determined from
the topology of the subnetwork, and plays a decisive role in
structural sensitivity. When the influence index is zero, the
perturbation of the parameters and conserved charges inside
the subnetwork does not affect the rest of the network. Such
a structure is called a buffering structure. In Sec. III C, we
prove that the influence index is submodular as a function over
subnetworks. As a corollary of this property, we show that
buffering structures are closed under intersection and union.

A. Structural sensitivity analysis

At the steady state, the reaction rates and the chemical
concentrations satisfy∑

A

SiArA(x(k, �), kA) = 0, (58)∑
i

d ᾱ
i xi(k, �) = 	ᾱ, (59)

where {d ᾱ} is a basis of coker S and the second equation
specifies the values of conserved charges. Considerable effort
has been devoted to the study of the existence or uniqueness
of steady states under the mass-action kinetics [47]. In the cur-
rent analysis, we assume the existence of a steady state, and
we focus on how it is perturbed under the change of parame-
ters. The steady-state values of the concentrations and reaction
rates are determined by the values of rate parameters and
conserved charges, {kA, 	ᾱ}. The reaction rates rA(x(k, �), kA)
have explicit dependence on kA, and also dependence on k and

� through xi(k, �). Equation (58) means that the reaction rates
are in the kernel of S and can be expanded using a basis {cα}
of ker S as

rA(x(k, �), kA) = −
∑

α

μα (k, �)cα
A. (60)

We are interested in the sensitivity of the reaction rates and
concentrations under the perturbation of the parameters,

kA �→ kA + δkA, 	ᾱ �→ 	ᾱ + δ	ᾱ. (61)

By taking the derivative of Eqs. (59) and (60) with respect to
kB and 	β̄ , we obtain the following equations:∑

i

∂rA

∂xi

∂xi

∂kB
+ ∂rA

∂kB
= −

∑
α

∂μα

∂kB
cα

A, (62)

∑
i

∂rA

∂xi

∂xi

∂	ᾱ
= −

∑
α

∂μα

∂	ᾱ
cα

A, (63)

∑
i

d ᾱ
i

∂xi

∂kA
= 0, (64)

∑
i

d ᾱ
i

∂xi

∂	β̄
= δᾱβ̄ . (65)

Note that rA(x(k, �), kA) depends explicitly on kA and also
depends implicitly on k and � through x. The equations can
be compactly written in the matrix form,

A

(
∂Bxi

∂Bμα

)
= −

(
∂BrA

0

)
, A

(
∂β̄xi

∂β̄μα

)
=

(
0

δᾱβ̄

)
, (66)

where ∂B := ∂/∂kB, ∂β̄ := ∂/∂	β̄ , and we have introduced a
partitioned square matrix,

A :=
(

∂irA cα
A

d ᾱ
i 0

)
, (67)

where the upper-left block is an |A| × |i| matrix whose (A, i)th
element is given by ∂rA

∂xi
evaluated at the steady state, the

upper-right one an |A| × |α| matrix consisting of the basis {cα}
of ker S, the lower-left one d ᾱ

i an |ᾱ| × |i| matrix consisting
of the basis {d ᾱ} of coker S, and the lower-right one the
|ᾱ| × |α| zero matrix. Here, we use the notation that index
i for chemicals runs from 1 to |i|. The matrix A is square due
to the identity,

|i| + |α| = |A| + |ᾱ|. (68)

One can see from Eq. (66) that the response to the change
of the parameter is determined by the inverse of the matrix A,(

∂Bxi

∂Bμα

)
= −A−1

(
∂BrA

0

)
,

(
∂β̄xi

∂β̄μα

)
= A−1

(
0

δᾱβ̄

)
. (69)

We refer to A as the A-matrix (“A” indicates that it is an
augmented matrix). Its inverse, −A−1 determines the sensi-
tivity of the system and is called the sensitivity matrix. If we
partition A−1 as

A−1 =
(

(A−1)iA (A−1)iᾱ

(A−1)αA (A−1)αᾱ

)
, (70)

and noting that ∂BrA is a diagonal matrix, ∂BrA ∝ δBA, then
the responses of steady-state concentrations and reaction
rates [or equivalently, the coefficients μα in Eq. (60)] to the
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perturbations of kA and 	ᾱ are given by

∂Axi ∝ (A−1)iA, ∂ᾱxi ∝ (A−1)iᾱ,

∂ᾱμα ∝ (A−1)αᾱ, ∂Aμα ∝ (A−1)αA. (71)

In this paper, we consider the following class of chemical
reaction systems:

Definition 2 (Regularity of a chemical reaction network
with kinetics). A chemical reaction network with kinetics is
called regular, if it admits a stable steady state and the associ-
ated A-matrix is invertible.

Note that whether a reaction system is regular or not de-
pends on the choice of kinetics. Throughout the paper, we
assume the regularity unless otherwise stated so that A is
invertible and the response of the system is well-defined. The
regularity implies the asymptotic stability of the steady state,
through the relation between det A and the determinant of the
Jacobian [26].

B. Law of localization

Definition 3 (Output-completeness). When a subnetwork
γ = (Vγ , Eγ ) satisfies the condition that Eγ includes all
the chemical reactions affected by Vγ , γ is called output-
complete.

Definition 4 (Influence index). For an output-complete
subnetwork γ , the influence index is defined by

λ(γ ) := −|Vγ | + |Eγ | − |(ker S)supp γ | + ∣∣P0
γ (coker S)

∣∣.
(72)

The definitions of the spaces that appear in the influence
index are given as follows:

(ker S)supp γ := {
c
∣∣ c ∈ ker S, P1

γ c = c
}
, (73)

P0
γ (coker S) := {

P0
γ d

∣∣ d ∈ coker S
}
, (74)

where S is the stoichiometric matrix, P0
γ and P1

γ are the pro-
jection matrices to γ in the space of chemical species and
reactions, respectively. Namely, (ker S)supp γ is the space of
vectors of ker S supported inside γ , and P0

γ (coker S) is the
projection of coker S to γ . Here, recall from Remark 3 that
we regard coker S as a subspace of C0(�) via the identifi-
cation coker S ∼= (im S)⊥. We will use similar identifications
throughout this paper.

Remark 8. The influence index is nonnegative, λ(γ ) � 0,
for a regular chemical reaction network. It will be shown in
the proof of Theorem 1.

Theorem 1 (Law of localization). Let γ be an output-
complete subnetwork of a regular chemical reaction network
�. When γ is a buffering structure, λ(γ ) = 0, chemical
concentrations and reaction rates outside γ do not change
under the perturbation of rate parameters or conserved charges
inside γ .

Definition 5 (Buffering structures). For a given chemical
reaction network �, an output-complete subnetwork γ with
the vanishing influence index, λ(γ ) = 0, is called a buffering
structure.

FIG. 3. Structure of the A-matrix. The numbers c and d are given
by c = |(ker S)supp γ | and d = |P0

γ (coker S)|.

Example 3. The influence index of the empty subnetwork
is zero. The index of the whole network � is also zero,

λ(�) = −|C0(�)| + |C1(�)| − | ker S| + | coker S|
= |H0(�)| − |H1(�)| − (|C0(�)| − |C1(�)|)
= 0.

(75)

This is natural in the sense that there is no “outside” of the
whole network.

Example 4. Let us take the same network as Example 2.
The A-matrix of this system is

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 1 0

r2,1 0 0 0 1 0
0 r3,2 0 0 1 0

r4,1 r4,2 0 0 0 1
0 0 r5,3 r5,4 0 1
0 0 1 −1 0 0

⎞⎟⎟⎟⎟⎟⎠, (76)

where rA,i := ∂rA/∂xi and it is evaluated at the steady state.
With this matrix A, the responses of the concentration and
reaction rates to the change of parameters and the value
of conserved charges can be obtained by Eq. (69). The
subnetwork γ1 = ({v3, v4}, {e5}) is output-complete and is a
buffering structure, since λ(γ1) = −2 + 1 − 0 + 1 = 0. The
output-complete subnetwork γ2 = ({v3, v4}, {e4, e5}) is also a
buffering structure, λ(γ2) = −2 + 2 − 1 + 1 = 0, which con-
tains a cycle supported on γ2. This explains the fact that
x1 and x2 do not depend on the value of conserved charge
	 = x3 − x4. The subnetwork γ3 = ({v1, v3, v4}, {e2, e4, e5})
is also a buffering structure, λ(γ3) = −3 + 3 − 1 + 1 = 0,
and hence x2 does not depend on k2, k4, k5, and 	.

Proof. The law of localization follows from the structure
of the matrix A. Given an output-complete subnetwork γ , we
can bring the rows and columns associated with γ in the way
shown in Fig. 3. All the component of the lower-left part is
zero, because the reaction rate rA outside γ does not depend
on the chemical species in γ (since γ is output-complete),
and those cycles are supported in γ . The index λ(γ ) mea-
sures how far the black rectangle on the upper-left corner
is from a square matrix. The numbers c and d in Fig. 3
are given by c = |(ker S)supp γ | and d = |P0

γ (coker S)|, which
appear in Eq. (72). Because of the assumption of regularity,
we have det A �= 0, and the black rectangle on the upper-left
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corner should be vertically long (if it is horizontally long, the
determinant vanishes), which is equivalent to the condition
λ(γ ) � 0.

When λ(γ ) = 0, the black box in the upper-left corner is a
square matrix. Then, A−1 inherits the same structure,

A−1 =
(∗ ∗

0 ∗
)

. (77)

Namely, if we denote the generic index of (A−1) as μ, ν, · · ·
and write the index inside and outside γ as μ� and μ′, respec-
tively, then we have (A−1)μ′ν� = 0. Because of this structure,

∂A�xi′ ∝ (A−1)i′A� = 0, (78)

which means that the concentrations out of γ do not depend
on the parameter kB inside γ . Consequently, we have

∂A�rA′ ∝
∑

i′
∂i′rA′∂A�xi′ = 0, (79)

where we used the fact that rA′ only depends on the
concentrations outside γ because of the output-completeness.
The same is true for the perturbation of the conserved charge,

∂ᾱ�xi′ ∝ (A−1)i′ᾱ� = 0, ∂ᾱ�rA′ ∝
∑

i′
∂i′rA′∂ᾱ�xi′ = 0. (80)

�

C. Submodularity of the influence index

The influence index λ(γ ) can be regarded as a function
over subnetworks. We here show that the influence index sat-
isfies an inequality. As a corollary, we show that the buffering
structures are closed under union and intersection. This fact
is useful in enumerating buffering structures in large reaction
networks.

We first note that:
(1) Given output-complete subnetworks γ1, γ2 ⊂ �, the

union and intersection, γ1 ∪ γ2 and γ1 ∩ γ2, are also output-
complete. This follows from the definition of output-
completeness.

(2) A function f (γ ) over a set is called submodular, when
it satisfies

f (γ1 ∪ γ2) � f (γ1) + f (γ2) − f (γ1 ∩ γ2). (81)

When � is replaced with �, the function satisfying the re-
placed equation is called supermodular.

Theorem 2. Let γ1, γ2 ⊂ � be output-complete subnet-
works. The influence index satisfies

λ(γ1 ∪ γ2) � λ(γ1) + λ(γ2) − λ(γ1 ∩ γ2). (82)

Namely, λ(γ ) is a submodular function over output-complete
subnetworks.

Proof. We show that

λ(γ ) = −|Vγ | + |Eγ | − |(ker S)supp γ | + ∣∣P0
γ (coker S)

∣∣ (83)

is submodular. Recall that χ (γ ) = |Vγ | − |Eγ | = |H0(γ )| −
|H1(γ )| is the Euler number for subnetwork γ = (Vγ , Eγ ). We
note that χ (γ ) is a modular function, meaning that it satisfies

χ (γ1 ∪ γ2) = χ (γ1) + χ (γ2) − χ (γ1 ∩ γ2), (84)

which is derived from the Mayer-Vietoris exact sequence (56).
Thus, it suffices to show that the last two terms on the right-
hand side (RHS) of Eq. (83) are submodular. In fact, we show
that each of them is submodular.

Let us first look at |P0
γ (coker S)|. If denote W := coker S,

then the submodularity of |P0
γ (coker S)| reads∣∣P0

γ1∪γ2
W

∣∣ �
∣∣P0

γ1
W

∣∣ + ∣∣P0
γ2

W
∣∣ − ∣∣P0

γ1∩γ2
W

∣∣. (85)

We prove this equation just after this proof. Thus, we have
shown the submodularity of |P0

γ (coker S)|.
Next, we show that |(ker S)supp γ | is supermodular. Con-

sider the following vector space,

Z := (ker S)supp γ1 + (ker S)supp γ2 . (86)

Its dimension is given by

|Z| = |(ker S)supp γ1 | + |(ker S)supp γ2 |
− |(ker S)supp γ1 ∩ (ker S)supp γ2 |

= |(ker S)supp γ1 | + |(ker S)supp γ2 | − |(ker S)supp γ1∩γ2 |.
(87)

Since any element of Z is supported in γ1 ∪ γ2, we have
(ker S)supp γ1∪γ2 ⊃ Z , which implies |(ker S)supp γ1∪γ2 | � |Z|.
Thus, we have shown that |(ker S)supp γ | is a supermodular
function, and −|(ker S)supp γ | is submodular.

Therefore, |P0
γ (coker S)| and −|(ker S)supp γ | are both sub-

modular function, and we obtain the claim. �
Proof of Eq. (85). Let us pick a basis of the space W as

{w1, · · · ,wn} and we denote the basis as a matrix, wi j . The
set of possible row and column indices are denoted as V and
N , respectively. For a subset of indices v ⊂ V , we denote the
corresponding submatrix of wi j as w[v, N]. With this nota-
tion, the dimension of a projected subspace of W is written as
|P0

γ W | = rank w[vγ , N] for a subnetwork γ = (vγ , eγ ).
Let us pick two subnetworks γ1 and γ2 and denote the

sets of chemical species by v1 and v2, respectively. We
consider the submatrix w[v1 ∩ v2, N]. We can pick a row
basis as {aT

i | i ∈ α1∩2}, where α1∩2 ⊂ v1 ∩ v2. Here, |α1∩2| =
rank w[v1 ∩ v2, N]. We can form a row basis of w[v1, N] by
adding row vectors from w[v1 \ v2, N] to α1∩2. Let α1 be the
picked indices, then

|α1∩2| + |α1| = rank w[v1, N]. (88)

We can further pick row vectors from w[v2 \ v1, N] and form
a basis of w[v1 ∪ v2, N]. Let us denote the added indices as
α2, then

|α1∩2| + |α1| + |α2| = rank w[v1 ∪ v2, N]. (89)

Since the vectors specified by the indices α1∩2 ∪ α2 are
linearly independent and α1∩2 ∪ α2 ⊂ v2, we have |α1∩2| +
|α2| � rank w[v2, N]. This can be written as

rank w[v1 ∪ v2, N] � rank w[v1, N] + rank w[v2, N]

− rank w[v1 ∩ v2, N]. (90)

This is equivalent to Eq. (85). �
Corollary 1. Let � be a regular chemical reaction network.

The union and the intersection of two buffering structures
inside � are also buffering structures.
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Proof. Suppose γ1 and γ2 are buffering structures inside
�. Then λ(γ1) = λ(γ2) = 0. From the submodularity of the
influence index, we have

λ(γ1 ∪ γ2) + λ(γ1 ∩ γ2) � 0. (91)

Since influence indices are nonnegative for a regular chem-
ical reaction network, we have λ(γ1 ∪ γ2) = λ(γ1 ∩ γ2) = 0.
Thus, we obtain the claim. �

IV. REDUCTION OF CHEMICAL REACTION NETWORKS

Generically, a reduction is a process to reduce the number
of degrees of freedom while keeping some features of the
original system. Let us here introduce a reduction method
which consists of the following two steps:

(1) Identify a subnetwork to be reduced.
(2) Perform the reduction for given a subnetwork.
As a result, we obtain a new reaction network with fewer

chemical species and reactions,

� −→ �′. (92)

The reduced network is characterized by a new stoichiometric
matrix,

S −→ S′. (93)

Crucial points are how to identify a subnetwork to be elim-
inated and how to obtain the new stoichiometric matrix S′,
which determines the structure of the reduced network. In this
section, we mainly discuss step (2). We will discuss more on
the choice of a subnetwork in Sec. V.

A. Reduction procedure

Let us here illustrate a method of reduction based on the
network topology. We denote the whole reaction network
by � = (V, E ), where V and E are the sets of chemical
species and reactions, respectively. We choose a subnetwork
γ = (Vγ , Eγ ), where Vγ ⊂ V and Eγ ⊂ E , and eliminate the
degrees of freedom inside γ . We refer to the chemical species
and reactions inside γ as internal, and those in � \ γ as
boundary. For the given subnetwork γ , we separate the chem-
ical concentrations and reaction rates as

x =
(

x1

x2

)
, r =

(
r1

r2

)
, (94)

where 1 and 2 correspond to internal and boundary degrees of
freedom, respectively. Accordingly, the stoichiometric matrix
S can be partitioned as

S =
(

S11 S12

S21 S22

)
. (95)

Note that the submatrix S11 is the same matrix as Sγ that
appeared in Sec. II C. Hereafter we use S11 for notational
convenience. With the separation of internal and boundary
degrees of freedom, the rate equations of the whole reaction
system is written as

d

dt

(
x1

x2

)
=

(
S11 S12

S21 S22

)(
r1

r2

)
=

(
S11r1 + S12r2

S21r1 + S22r2

)
. (96)

While the internal reaction rates r1 = r1(x1, x2) in general
depend on both of the internal and boundary chemical con-
centrations, when γ is chosen to be output-complete, the
boundary reaction rates r2 = r2(x2) do not depend on the
internal chemical concentrations x1. The first equation of
Eq. (96) can be solved for r1 as

r1 = S+
11

d

dt
x1 − S+

11S12r2 + c11, (97)

where S+
11 is the Moore-Penrose inverse of S11, and c11 ∈

ker S11. Substituting this to the second equation of Eq. (96),
we get

d

dt
(x2 − S21S+

11x1) = (S22 − S21S+
11S12)r2 + S21c11. (98)

When the following condition is satisfied,

ker S11 ⊂ ker S21, (99)

S21c11 = 0 and the second term of the RHS of Eq. (98) van-
ishes.5 Then, the rate equation is written as

d

dt
(x2 − S21S+

11x1) = S′r2, (100)

where S′ is the generalized Schur complement,

S′ = S/S11 := S22 − S21S+
11S12. (101)

As long as steady states are concerned, the subnetwork
(x2, r2) satisfies the rate equation whose stoichiometric matrix
is S′. This motivates us to consider the subnetwork (x2, r2)
whose rate equation is given by

d

dt
x2 = S′r2(x2). (102)

Based on the considerations above, we define the reduction of
a reaction system in the following way:

Definition 6 (Reduction). Let � = (V, E ) be a chemical re-
action network with stoichiometric matrix S and γ = (Vγ , Eγ )
be an output-complete subnetwork whose stoichiometric ma-
trix is denoted by S11. We define a reduced network �′ = (V \
Vγ , E \ Eγ ) obtained by eliminating γ from �, by a stoichio-
metric matrix S′ given by the generalized Schur complement
(101). We denote the resultant reaction network by �′ = �/γ .
Accordingly, the chemical concentrations and reaction rates of
the reduced system (x′, r′) are obtained from the original ones
(x, r) as

x =
(

x1

x2

)
−→ x′ = x2, (103)

r(x) =
(

r1(x1, x2)
r2(x2)

)
−→ r′(x′) = r2(x2), (104)

and the rate equation of the reduced system is given by

d

dt
x′ = S′r′(x′). (105)

5As we discuss later, this condition is the same as the absence of
emergent cycles in γ . See the text around Eq. (183).
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Remark 9. The structure of the reduced network is de-
termined by the generalized Schur complement (101) of
the stoichiometric matrix. The second term in Eq. (101)
represents the rewiring of the network associated with the
elimination of γ .

Remark 10. The reduced system can be always defined if
γ is output-complete; otherwise, the reduction is ill-defined
since the reduced system would depend on x1 through r2.
We emphasize that the output-completeness is a topological
condition determined by the stoichiometry and the details
of the reactions, namely, the kinetics, are irrelevant. Thus,
the reduction is applicable to any kind of kinetics. How the
reduced system is related to the original system depends on
further nature of γ . In the following sections, we will discuss
more on the features of the subnetworks that behave nicely
under reductions. In Sec. V C, we prove that, when γ has a
vanishing influence index (see Sec. III), which is determined
by the network topology, the steady state of the reduced sys-
tem is assured to be the same as the steady state of the original
system.

Remark 11. In Sec. IV C, we show that the reduction
we introduced here can be regarded as a morphism of
reaction networks that “shrinks” a subnetwork to a point, fol-
lowed by the removal of degenerate (chemically meaningless)
reactions.

Remark 12. We note that the elements of the matrix S′ are
rational, since the Moore-Penrose inverse of an integral matrix
is rational [48]. The matrix S′ can be always transformed into
an integral matrix by columnwise rescaling of S′ together with
the rescaling of reaction rates.

Remark 13. The stoichiometric matrix given by the gen-
eralized Schur complement has appeared previously in flux
balance analysis [49,50]. The current method is different from
the ones discussed for reaction networks with the mass-action
kinetics in detailed balanced [51] and complex balanced [52]
situations, where the Schur complementation is performed
for the weighted Laplacian similarly to the Kron reduction
of electrical circuits [53–55]. In the current formulation, the
Schur complementation is performed for the stoichiometric
matrix.

B. Simple examples of reduction

To illustrate the reduction procedure, here we discuss sim-
ple examples. In Sec. VI, we discuss the reduction of the
metabolic pathway of E. coli as a more realistic example.

Example 5. We consider a monomolecular reaction net-
work that consists of (V, E ) = ({v1, v2}, {e1, e2, e2}). We take
a subnetwork γ = ({v1}, {e2}) to be reduced. Under the reduc-
tion, the stoichiometric matrix changes as

S =
v1 −1 1 0
v2 1 0 −1

e2 e1 e3

S11

S = ( )v2 1 −1
e1 e3

(106)

where we have brought the reduced part to the upper-left part.
The reduction looks like

v1 v2
e1 e2 e3

γ

v2
e1 e3

(107)
The original rate equation is

d

dt

(
x1

x2

)
=

(−1 1 0
1 0 −1

)⎛⎝r2(x1)
r1

r3(x2)

⎞⎠, (108)

where x1 = x(v1), r2 = r(e2), and so on. If we eliminate
r2(x1), then

d

dt
(x2 + x1) = (1 −1)

(
r1

r3(x2)

)
. (109)

The reduced equation of motion is obtained by replacing x2 +
x1 with x2 on the left-hand side.

To compute the steady-state solutions, let us for example
employ the mass-action kinetics,⎛⎝r2(x1)

r1

r3(x2)

⎞⎠ =
⎛⎝k2x1

k1

k3x2

⎞⎠. (110)

The steady-state reaction rates and concentrations are given
by ⎛⎝r̄2

r̄1

r̄3

⎞⎠ = k1

⎛⎝1
1
1

⎞⎠,

(
x̄1

x̄2

)
=

(
k1/k2

k1/k3

)
. (111)

The steady-state solutions of the reduced system are(
r̄1

r̄3

)
= k1

(
1
1

)
, x̄2 = k1

k3
. (112)

Note that this solution of the reduced system is exactly the
same as the solution (111) of the original system for the
boundary concentrations and rates. Indeed, this is a special
property of buffering structures. In this example, the subnet-
work has a vanishing influence index, λ(γ ) = −1 + 1 − 0 +
0 = 0, and hence is a buffering structure. Generically, when
the reduced subnetwork is a buffering structure, the steady-
state solution of the reduced system is the same as the original
system, and this is the content of Theorem 4. Although we
used the mass-action kinetics in this example, the theorem
applies to any kind of kinetics. We give a proof of the theorem
in Sec. V C.

Example 6. (V, E ) = ({v1, v2, v3}, {e1, e2, e3}). The stoi-
chiometric matrices of the original and reduced system are
given by

S =

v1 −1 0 1
v2 1 −1 0
v3 0 1 −1

e1 e2 e3

S =
v2 −1 1
v3 1 −1

e2 e3

S11
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where we reduced the subnetwork γ = ({v1}, {e1}). The re-
duction is visually expressed as

v1

v2

v3

e1 e2

e3

γ

v2

v3

e2

e3 (113)

Suppose that we take the mass-action kinetics,⎛⎝r1(x1)
r2(x2)
r3(x3)

⎞⎠ =
⎛⎝k1x1

k2x2

k3x3

⎞⎠. (114)

The system has one conserved charge and we specify the
value as 	 = x1 + x2 + x3. The steady-state reaction rates of
the original system are⎛⎝r̄1

r̄2

r̄3

⎞⎠ = 	K

⎛⎝1
1
1

⎞⎠, (115)

where K is defined by 1
K := 1

k1
+ 1

k2
+ 1

k3
. In the reduced sys-

tem, 	′ = x2 + x3 is a conserved charge. The steady-state rates
in the reduced system are(

r̄2

r̄3

)
= 	′K ′

(
1
1

)
, (116)

where 1
K ′ := 1

k2
+ 1

k3
. Note that, if we want to have the same

steady-state in the reduced system as the one in the original
system, we have to choose the parameters so that 	K = 	′K ′.
This is in contrast to Example 5, where no fine-tuning of the
parameters is needed. The difference is attributed to the fact
that the subnetwork γ is not a buffering structure and the index
is nonzero, λ(γ ) = −1 + 1 − 0 + 1 = 1.

Example 7. (V, E ) = ({v1, v2, v3, v4}, {e1, e2, e3, e4, e5,

e6}). The stoichiometric matrix changes under reduction as

S =

⎛
⎜⎝

⎞
⎟⎠

v1 −1 0 1 0 1 0
v2 1 −1 0 0 0 0
v3 0 1 0 −1 0 −1
v4 0 0 0 1 −1 0

e2 e3 e1 e4 e5 e6

S11

S =
v3 1 −1 1 −1
v4 0 1 −1 0

e1 e4 e5 e6

(117)
where we chose the subnetwork γ = ({v1, v2}, {e2, e3}) to be
reduced. The reduction is visually expressed as

v1 v2 v3

v4

γ
e1 e2 e3

e4e5

e6

v4

v3
e1

e4e5

e6

(118)
The subnetwork is a buffering structure, λ(γ ) = −2 + 2 −
0 + 0 = 0.

Example 8. (V, E ) = ({v1, . . . , v9}, {e1, . . . , e13}) with the
following stoichiometric matrix,

.

We choose the subnetwork γ =
({v3, v4, v5, v7, v8}, {e5, e6, e7, e8, e9, e11, e12}) to be reduced.
The reduced subnetwork is given by

S′ =

⎛⎜⎝
⎞⎟⎠v1 1 0 −1 0 0 0 0

v2 0 1 0 −1 0 0 0
v6 0 0 1 1 −2−1 0
v9 0 0 0 0 1 0 −1

e1e2 e3 e4 e10 e13 e14

The subnetwork γ is a buffering structure: λ(γ ) = −5 + 7 −
2 + 0 = 0. The reduction is visually expressed as

v1 v2

v3 v4

v5 v6

v7 v8

e12

v9

e1 e2

e3 e4

e5

e6 e7

e8

e9 e10

e11
e13

e14

γ

v1 v2

v6

v9

e1 e2

e3 e4

e10

e14

e13

(119)
We note that, under the reduction, the stoichiometries for
reactions e3, e4, e10 are changed from the original ones. In
particular, e10, which is originally monomolecular, becomes
nonmonomolecular, 2v6 → v9. To reproduce steady states of
the original system, the rate r10 is required to be the same as
before the reduction; for example, in the mass-action kinetics,
r10 is given by r10(x6) = k10x6 rather than by r10(x6) = k10x2

6,
even after the reduction.

C. Reduction as a morphism of chemical reaction networks

The structure of a reduced network is characterized
by the generalized Schur complement (101). Here, let us
show that this form arises if we consider a map between
chemical reactions that shrink a subnetwork to a point.
The morphisms of chemical reaction networks have been
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discussed, for example, in Ref. [56]. Let us prepare some
terminologies.

Definition 7. (Degenerate reactions) A reaction e ∈ E is
said to be degenerate in stoichiometry if s(e)(vi ) = t (e)(vi )
for any vi ∈ V .

A degenerate reaction is a trivial reaction since it does not
change anything, and the removal of degenerate reactions does
not affect the chemical properties of the reaction network.
A degenerate reaction is represented as a 0-column in the
stoichiometric matrix.

Let us slightly extend the definition of CRNs for technical
reasons.

Definition 8 (Generalized CRNs). A generalized chemical
reaction network � is a quadruple � = (V, E , s, t ), where V is
a set of chemical species, E is a set of chemical reactions, and
s and t are source and target functions,

s : E → RV , t : E → RV . (120)

Compared with the previous definition of a CRN, N is
replaced with real numbers, R. We also call an element of
RV as a chemical complex. In the remainder of this paper, we
will mean a generalized CRN when we write a CRN. This
extension is needed because reductions we consider do not
necessarily preserve the integrality of the source and target
functions. However, we note that the integrality can be always
recovered by reactionwise rescaling, if the original s and t
functions are valued in integers.

Definition 9 (CRN morphisms). A CRN morphismϕ from
� = (V, E , s, t ) to �′ = (V ′, E ′, s′, t ′) is a pair of maps,
(ϕ0, ϕ1), where

ϕ0 : RV → RV ′
, (121)

ϕ1 : E → E ′, (122)

which we call a chemical complex map and a reaction map,
respectively, such that the following diagrams commute:

E
s

ϕ1

R
V

ϕ0

E
t

ϕ1

R
V

ϕ0

E
s

R
V E

t
R

V .

(123)

We introduce the matrix representation of a chemical com-
plex map and a reaction map,

ϕ0(vi ) =
∑

i′
(ϕ0)ii′ vi′ , (124)

ϕ1(eA) =
∑

A′
(ϕ1)AA′ eA′ . (125)

On the spaces of chains, a CRN morphism induces the follow-
ing commutative diagram:

C1(Γ)

ϕ1

∂1
C0(Γ)

ϕ0

C1(Γ )
∂1

C0(Γ )

(126)

where ∂ ′
1 is the boundary operator on C1(�′). Namely,

ϕ0 ◦ ∂1 = ∂ ′
1 ◦ ϕ1. (127)

In terms of the matrix components,∑
i

SiA (ϕ0)ii′ =
∑

A′
(ϕ1)AA′ S′

i′A′ . (128)

We write this relation in the matrix form,

ϕT
0 S = S′ϕT

1 . (129)

Now we are ready to discuss a morphism that corresponds
to the reduction:

Definition 10 (Reduction morphisms). We define a reduc-
tion morphism from � to �′, associated with a subnet-
work γ ⊂ �, as a CRN morphism satisfying the following
properties:

(1) The chemical complexes and reactions in � \ γ are
unchanged.

(2) All the chemical complexes in γ are collapsed into one
chemical complex c̄ in � \ γ , in such a way that image of all
the reactions in γ are degenerate in stoichiometry.

Let us here show that a reduction morphism gives rise to
the reduced stoichiometric matrix given by the generalized
Schur complement (101). We consider the matrix represen-
tation of a reduction morphism. From property 2 of reduction
morphisms, the chemical complex map and the reaction map
are both identity on vi ∈ V�\γ and eA ∈ E�\γ ,

ϕ0|�\γ = 1, ϕ1|�\γ = 1. (130)

Furthermore, we can always set ϕ1|γ = 1 without affecting
the chemical properties, since degenerate reactions do nothing
chemically. By arranging the rows and columns, the species
and reaction maps of a reduction morphism can be written in
the following form:

ϕ0 =
(

F T

1

)
, ϕ1 = 1, (131)

where F is some matrix (see examples later in this section).
The explicit form of F does not matter here.6 By plugging
Eq. (131) into the commutativity condition (129), we find that
S′ is written as

S′ = (F 1)

(
S11 S12

S21 S22

)
= (FS11 + S21 FS12 + S22).

(133)
From the condition that the image of the reactions in γ under
a reduction morphism is degenerate reactions, we have

FS11 + S21 = 0. (134)

This condition implies

ker S11 ⊂ ker S21. (135)

6In the case of a directed graph (i.e., a monomolecular reaction net-
work), F has one row whose elements are all 1 and other components
are all zero,

F =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0
...

...

1 · · · 1
...

...

0 · · · 0

⎞⎟⎟⎟⎟⎟⎠. (132)
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This is because, if c ∈ ker S11, Eq. (134) implies S21c = 0, we
have Eq. (135). A generic solution to Eq. (134) for F is written
as

F = −S21S+
11 + D, (136)

where D is a matrix satisfying DS11 = 0. The stoichiometric
matrix S′ can be now written as

S′ = (0 S22 − S21S+
11S12 + DS12). (137)

The term DS12 vanishes if and only if

coker S11 ⊂ coker S12. (138)

Note that the combination S21S+
11S12 does not depend on

the choice of the pseudoinverse, as long as Eqs. (135) and
(138) are satisfied. After removing degenerate reactions from
Eq. (137), which does not change the chemical property of the
system, we arrive at the generalized Schur complement (101)
that we introduced earlier. In this way, a CRN morphism that
shrinks a subnetwork gives rise to the reduced stoichiometric
matrix given by the Schur complement.

What we have just shown can be summarized as the fol-
lowing statement:

Theorem 3. Under a reduction morphism associated with
γ ⊂ �, the stoichiometric matrix of �′ can be written
uniquely (up to the changes of rows and columns) in the form

S′ = (0 S22 − S21S+
11S12), (139)

if and only if the following conditions are satisfied for the
subnetwork γ 7:

ker S11 ⊂ ker S21, coker S11 ⊂ coker S12. (140)

Conversely, for a given output-complete subnetwork such
that Eq. (140) is satisfied, we can construct the following
reduction map by

ϕ0 =
(

(−S21S+
11 + D)T

1

)
, ϕ1 = 1, (141)

where D is a matrix satisfying DS11 = 0. The commutativity
condition reads

S′ = (S21(1 − S+
11S11) S22 − S21S+

11S12 + DS12). (142)

Since (1 − S+
11S11) is a projection matrix to ker S11 and we

have ker S11 ⊂ ker S21 by assumption, the matrix S21(1 −
S+

11S11) is a zero matrix. Furthermore, DS12 = 0 by the
assumption coker S11 ⊂ coker S12. Thus, we arrive at the re-
duced stoichiometric matrix of the form (139).

Below, let us illustrate reduction morphisms in simple ex-
amples.

7We note that the condition (135) is equivalent to the absence of
“emergent cycles,” which can be written as c̃(γ ) = 0 in the notation
of Sec. V. We show this equivalence in Sec. V below Eq. (182).
The condition (138) implies the absence of “emergent conserved
charges,” which can be written as d̃ (γ ) = 0, but the converse is
not true. We discuss more on the meaning of emergent cycles and
conserved charges in Appendix B.

Example 9. Let us consider the following closed directed
graph. We consider the morphism, which can be pictorially
represented as

v1 v2 v3 v4
e1 e2 e3

γ

v1 v3 v4
e1 e3

e2

(143)
The reduction shrinks the vertices in γ to a single complex,
c̄ = v′

3. The species and reactions are mapped as

ϕ0(v1) = v′
1, ϕ0(v2) = v′

3, ϕ0(v3) = v′
3, ϕ0(v4) = v′

4,

(144)

ϕ1(e1) = e′
1, ϕ1(e2) = e′

2, ϕ1(e3) = e′
3. (145)

In the matrix form,

ϕ0 =

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

v2 0 1 0

v1 1 0 0

v3 0 1 0

v4 0 0 1

v′
1v

′
3v

′
4

, ϕ1 = 13. (146)

Using the consistency condition (129), the stoichiometric ma-
trix of �′ can be written as

S′ =
⎛⎝0 1 0 0

1 0 1 0
0 0 0 1

⎞⎠
⎛⎜⎝−1 1 0

0 −1 0
1 0 −1
0 0 1

⎞⎟⎠13

=

⎛⎝ ⎞⎠v′
1 0 −1 0

v′
3 0 1 −1 .

v′
4 0 0 1

e′
2 e′

1 e′
3

(147)

This is indeed of the form of Eq. (139).
Example 10. � = ({v1, v2, v3}, {e1, e2}). We consider the

reduction of γ = ({v1}, {e1}). The corresponding reduction
morphism is visualized as

γ

v1

v2

v3

e1 e2

v2

v3

e1 e2

(148)
The chemical complex map and the reaction map are given by

ϕ0(v1) = v′
2 + v′

3, ϕ0(v2) = v′
2, ϕ0(v3) = v′

3, (149)

ϕ1(e1) = e′
1, ϕ1(e2) = e′

2. (150)

The action ϕ0(v1) is determined so that the image of e1 be
degenerate in stoichiometry. The image of e1 is the following
degenerate reaction,

e′
1 : v′

2 + v′
3 → v′

2 + v′
3. (151)
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In the matrix form,

ϕ0 =
( )

v1 1 1
v2 1 0
v3 0 1

v′
2 v′

3

, ϕ1 = 12. (152)

The stoichiometric matrix of �′ is written as

S′ =
(

1 1 0
1 0 1

)⎛⎝−1 0
1 −1
1 1

⎞⎠ =
(

0 −1
0 1

)
. (153)

V. REDUCTION AND BUFFERING STRUCTURES

We here explore the close connection between the struc-
tural sensitivity analysis and the reduction method we
introduced in the previous section. The structural sensitivity
analysis works as a guide to identify “unimportant” subnet-
works. In this section, we present a key result of this paper:
we show that, when a subnetwork is a buffering structure, the
reduced network has exactly the same steady-state solution as
the original reaction network. The proof will be completed in
Sec. V C.

The structure of this section is as follows: In Sec. V A,
we show that the influence index allows for a decomposition
in terms of the numbers of cycles and conserved charges. In
Sec. V B, we construct a short exact sequence of the chain
complexes for a subnetwork γ ⊂ �, under some conditions.
This short exact sequence automatically derives a long exact
sequence of homology groups. Using this exact sequence,
we can describe the relationship among cycles and conserved
charges of γ , �, and �′. In Sec. V C, we show the main result,
that is, that the steady state of the reduced network is the same
as the one of the original network, under some conditions. In
the proof, the long exact sequence prepared in subsection B
plays an important role. In Sec. V D, we study the situation
where we have nested subnetworks γ ′ ⊂ γ ⊂ �. In this case,
we have a subnetwork γ /γ ′ ⊂ �/γ ′. We will show that the
reduced network �/γ is the same as (�/γ ′)/(γ /γ ′). This
ensures that the eventual network does not depend on the
ordering of the reductions.

A. Decomposition of the influence index

As we detailed in Sec. II, steady-state properties are cap-
tured by cycles and conserved charges, which are the elements
of homology groups. In this subsection, we study their mean-
ing in more detail, and discuss the relation between the
influence index λ(γ ) and cycles/conserved charges in γ , �,
and �′. We introduce a decomposition of the influence index
in terms of the spaces of cycles/conserved charges of certain
classes.

We first note that the index can be written as

λ(γ ) = −|Vγ | + |Eγ | − |(ker S)supp γ | + ∣∣P0
γ (coker S)

∣∣
= | ker S11| − |(ker S)supp γ | + ∣∣P0

γ (coker S)
∣∣

− | coker S11|, (154)

where we used Eq. (51). With the first two terms, we define

c̃(γ ) := | ker S11| − |(ker S)supp γ |. (155)

The number c̃(γ ) is a nonnegative integer, because there is an
injective map from (ker S)supp γ to ker S11. Indeed, an element

of (ker S)supp γ is written as c = (c1
0 ) satisfying the condition(

S11 S12

S21 S22

)(
c1

0

)
=

(
S11c1

S21c1

)
= 0. (156)

Consider an injective map c �→ c1. Equation (156) indicates
that the image of this map is always included in ker S11,

(ker S)supp γ � c �→ c1 ∈ ker S11. (157)

Thus, we have c̃(γ ) � 0.
Now let us turn to the latter two terms in Eq. (154). Note

that8∣∣P0
γ (coker S)

∣∣ = | coker S| − ∣∣im P̄0
γ ∩ coker S

∣∣, (159)

where P̄0
γ := 1 − P0

γ . The second term of the RHS of Eq. (159)
is the number of the conserved charges of � supported in
� \ γ ,

d̄ ′(γ ) := ∣∣im P̄0
γ ∩ coker S

∣∣ = |D̄′(γ )|, (160)

where the space D̄′(γ ) is given by

D̄′(γ ) :=
{(

d1

d2

)
∈ coker S

∣∣∣∣ d1 = 0
}
. (161)

We divide the space coker S according to the following dis-
tinctions:

(1) Projection to γ is also a conserved charge in γ .
(2) Projection to γ is not a conserved charge in γ .
Correspondingly to the two distinctions above, we intro-

duce the following spaces,9

D(γ ) := X (γ )/D̄′(γ ), (162)

D′(γ ) := coker S/D(γ ) ∼= (coker S)/X (γ ) ⊕ D̄′(γ ), (163)

where we defined

X (γ ) :=
{(

d1

d2

)
∈ coker S

∣∣∣∣ d1 ∈ coker S11

}
. (164)

8For a vector space V and a projection matrix P,

|PV | = |{Pv | v ∈ V }| = |V/(im P̄ ∩ V )| = |V | − |im P̄ ∩ V |,
(158)

where P̄ := 1 − P.
9Note that we can regard the element of D(γ ) as a vector in

coker S by the isomorphism X (γ )/D̄′(γ ) ∼= X (γ ) ∩ [D̄′(γ )]⊥. The
isomorphism in Eq. (163) can be derived as follows:

(coker S)/D(γ ) = (coker S)/
(
X (γ ) ∩ [D̄′(γ )]⊥

)
∼= (coker S) ∩ (

X (γ ) ∩ [D̄′(γ )]⊥
)⊥

= (coker S) ∩ (
[X (γ )]⊥ + D̄′(γ )

)
= (coker S)/X (γ ) ⊕ D̄′(γ ),

where we used the relations V/W ∼= V ∩ W ⊥, (V ∩ W )⊥ = V ⊥ +
W ⊥ for vector spaces W ⊂ V , and [X (γ )]⊥ + D̄′(γ ) = [X (γ )]⊥ ⊕
D̄′(γ ) since [X (γ )]⊥ ∩ D̄′(γ ) = 0.
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Namely, we have the following decomposition of coker S:

coker S ∼= D(γ ) ⊕ D′(γ )
∼= D(γ ) ⊕ (coker S)/X (γ ) ⊕ D̄′(γ ). (165)

The dimension of coker S is written as

| coker S| = d (γ ) + d ′(γ ), (166)

where d (γ ) := |D(γ )|, and d ′(γ ) := |D′(γ )|. We now have
the expression∣∣P0

γ (coker S)
∣∣ = d (γ ) + d ′(γ ) − d̄ ′(γ ). (167)

To rewrite | coker S11|, we introduce the following spaces:

D11(γ ) :=
{

d1 ∈ coker S11

∣∣∣∣ ∃d2 such that

(
d1

d2

)
∈ coker S

}
,

(168)

D̃(γ ) := coker S11/D11(γ ). (169)

The elements of D11(γ ) are conserved charges in γ that can
be extended to a global conserved charge, while those in D̃(γ )
are emergent conserved charges that are only conserved in the
subnetwork γ .

Observe that D(γ ) ∼= D11(γ ). Indeed, there is a surjection

X (γ ) �
(

d1

d2

)
�→ d1 ∈ D11(γ ). (170)

The kernel of this map is D̄′(γ ), and the induced map D(γ ) =
X (γ )/D̄′(γ ) → D11(γ ) is an isomorphism. Thus, |D11(γ )| =
|D(γ )| = d (γ ) and we have the decomposition

| coker S11| = d (γ ) + d̃ (γ ), (171)

where d̃ (γ ) := |D̃(γ )| is the number of charges that cannot be
obtained as the projections of conserved charges in �.

Combining Eqs. (155), (167), and (171), we find that the
influence index is written as

λ(γ ) = c̃(γ ) + dl (γ ) − d̃ (γ ), (172)

where we defined

dl (γ ) := d ′(γ ) − d̄ ′(γ ) = |(coker S)/X (γ )|. (173)

The decomposition (172) is the central result of this subsec-
tion. Each term of Eq. (172) allows for the following intuitive
interpretations:

(1) The first term c̃(γ ) = | ker S11/(ker S)supp γ | represents
the number of emergent cycles in γ . Namely, c̃(γ ) is the
number of cycles in γ , which are not cycles in �.

(2) The second term dl (γ ) = |(coker S)/X (γ )| is the di-
mension of the space of lost conserved charges by focusing on
γ , namely, those that are conserved in � but their projection
to γ are not.

(3) The third term d̃ (γ ) = |D̃(γ )| is the number of emer-
gent conserved charges in γ . It is the number of conserved
charge in γ that cannot be extended to conserved charges
in �. The meaning becomes evident if we note that D̃(γ ) is
isomorphic to the space that consists of d1 ∈ coker S11 that are
orthogonal to the vectors that can be extended to conserved
charges in coker S.

For more detailed explanations with examples, see
Appendix B 1. In Appendix B 2, we show that the decom-
position (172) can be visually understood from the structure
of A-matrices.

An element of D′(γ ) can be regarded as a conserved charge
in �′ via an injective map ϕ̄0 : D′(γ ) → coker S′, which we
will construct as follows. We define ϕ̄0 on each compo-
nent of D′(γ ) = (coker S)/X (γ ) ⊕ D̄′(γ ). The map D̄′(γ ) →
coker S′ is given by (

0
d2

) �→ d2, which is obviously injective, and

is well-defined since d2 belongs to coker S′ by

dT
2 S′ = dT

2 (S22 − S21S+
11S12) = 0. (174)

Note that the second equality follows from dT
2 S22 = 0 and

dT
2 S21 = 0, which hold by the assumption ( 0

d2
) ∈ D̄′(γ ). Next

we construct an injection (coker S)/X (γ ) → coker S′. For
[(d1

d2
)] ∈ (coker S)/X (γ ), we can always choose a represen-

tative (d1
d2

) such that d1 ∈ (coker S11)⊥ and (d1
d2

) ∈ [D̄′(γ )]⊥.

Using dT S = 0,

dT
2 S′ = dT

2 S22 − dT
2 S21S+

11S12

= −dT
1 S12 + dT

1 S11S+
11S12

= −dT
1 (1 − S11S+

11)S12. (175)

Since (1 − S11S+
11) is a projection matrix to coker S11, we have

dT
1 (1 − S11S+

11) = 0, and thus d2 ∈ coker S′. This defines an
injective map (coker S)/X (γ ) → coker S′.

Thus, we have obtained a map ϕ̄0 : D′(γ ) =
(coker S)/X (γ ) ⊕ D̄′(γ ) → coker S′. To see the injectivity
of ϕ̄0, since it is injective on each component, it suffices to
show that the intersection of the images of (coker S)/X (γ )
and D̄′(γ ) by ϕ̄0 is zero. To show this, let us pick an arbitrary
element d2 ∈ ϕ̄0[(coker S)/X (γ )] ∩ ϕ̄0[D̄′(γ )]. It suffices
to show that d2 = 0. Since d2 comes from (coker S)/X (γ )
by assumption, there is an element (d1

d2
) ∈ coker S such that

d1 ∈ (coker S11)⊥. Since d2 is also in the image of D̄′(γ ), we
have d1 = 0, and ( 0

d2
) ∈ D̄′(γ )⊥. This means that d2 = 0 as

desired.
We also define ϕ̄0 for the elements of D(γ ) by ϕ̄0|D(γ ) = 0.

Hence, ϕ̄0 is now defined as a map from coker S to coker S′,
and its kernel and coimage are given by ker ϕ̄0 = D(γ ) and
coim ϕ̄0 = D′(γ ).

In general, the conserved charges in �′ consists of those
obtained from the conserved charges of � and emergent ones,

| coker S′| = d ′(γ ) + d̃ ′(γ ), (176)

where d̃ ′(γ ) := |(coker S′)/im ϕ̄0| indicates the number of
emergent conserved charges in �′.

B. Long exact sequence of a pair of chemical reaction networks

The reduction of a reaction network naturally induces the
reduction of (co)homology groups, which are the steady-state
characteristics of reaction networks. Suppose that we have a
reaction network �, and choose a subnetwork γ ⊂ �, and re-
duce it to obtain �′ = �/γ . The inter-relations of homologies
of γ , �, and �′, can be systematically treated using a long ex-
act sequence for a pair of chemical reaction networks, which
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we define momentarily. We consider the following short exact
sequence of chain complexes:

0 0 0

0 C1(γ)
ψ1

∂γ

C1(Γ)
ϕ1

∂

C1(Γ )

∂

0

0 C0(γ)
ψ0

C0(Γ)
ϕ0

C0(Γ ) 0

0 0 0

(177)

where the space of chains in �′ is given by Cn(�′) :=
Cn(�)/Cn(γ ). In the linear-algebra notations, the boundary
maps are given by the following multiplications of matrices
on vectors,

∂γ : c1 �→ S11c1, ∂ : c =
(

c1

c2

)
�→ Sc, ∂ ′ : c2 �→ S′c2.

(178)
We define the horizontal maps by

ψ1 : c1 �→
(

c1

0

)
, ϕ1 :

(
c1

c2

)
�→ c2, (179)

ψ0 : d1 �→
(

d1

S21S+
11d1

)
, ϕ0 :

(
d1

d2

)
�→ d2 − S21S+

11d1.

(180)

The exactness of the rows of Eq. (177) can be checked easily.
Note that ϕ is the reduction morphism (141) followed by

the removal of degenerate reactions. One can check that the
diagram (177) commutes when the following condition is
satisfied:

S21(1 − S+
11S11)c1 = 0, (181)

where c1 ∈ C1(γ ). The matrix (1 − S+
11S11) is the projection

matrix to ker S11, and Eq. (181) is equivalent to

ker S11 ⊂ ker S21. (182)

This condition is the same as the condition that an arbitrary
term in Eq. (98) vanishes.

The condition (182) has a natural interpretation in terms
of cycles: Eq. (182) is equivalent to c̃(γ ) = 0, namely, the
absence of emergent cycles, which can be checked as follows.
When c̃(γ ) = | ker S11/(ker S)supp γ | = 0, any c1 ∈ ker S11 is a
cycle in � by an inclusion to C1(�). Thus, c1 satisfies(

S11 S12

S21 S22

)(
c1

0

)
= 0. (183)

This implies S21c1 = 0 and we have ker S11 ⊂ ker S21. Con-
versely, when ker S11 ⊂ ker S21 is true, the map ker S11 �
c1 �→ (c1

0 ) ∈ (ker S)supp γ is a bijection. This implies c̃(γ ) = 0.
Thus, we have shown that diagram (177) commutes if and
only if γ has no emergent cycle.

Applying the snake lemma to Eq. (177), we obtain a long
exact sequence,

0 H1(γ)
ψ1

H1(Γ)
ϕ1

H1(Γ )
δ1

H0(γ)
ψ̄0

H0(Γ)
ϕ̄0

H0(Γ ) 0, (184)

where ψ̄0 and ϕ̄0 are induced maps of ψ0 and ϕ0. The map δ1 :
H1(�′) → H0(γ ) is called the connecting map. For a given
c2 ∈ H1(�′), the connecting map is given by10

δ1 : c2 �→ [S12c2] ∈ H0(γ ) = coker S11, (185)

where [...] means to identify the differences in im S11.
Let us look at the consequences of the long exact sequence

(184). Suppose that we choose γ so that its homology groups
are trivial,

H1(γ ) ∼= ker S11
∼= 0, H0(γ ) ∼= coker S11

∼= 0. (186)

10The connecting map is identified as follows. An element c2 ∈
H1(�′), can be included in C1(�′). ϕ1 is surjective and there

exists c = (c1
c2

) such that ϕ1(c) = c2. From the commutativity of

the diagram (177), we have ϕ0(Sc) = S′c2 = 0. From the exact-
ness of the row of Eq. (177), there exists d1 ∈ C0(γ ) such that
ψ0(d1) = Sc. We obtain [d1] ∈ H0(γ ) by identifying the differences
in im S11. More explicitly, [d1] = [S11c1 + S12c2] = [S12c2]. The
mapping c2 �→ [S12c2] is the connecting map. The well-definedness
of the map (indifference to the choice of c1) is obvious in this
expression.

Then, we have the isomorphisms,

H1(�) ∼= H1(�′), H0(�) ∼= H0(�′), (187)

equivalently,

ker S ∼= ker S′, coker S ∼= coker S′. (188)

Thus, the spaces of cycles and conserved charges before
and after the reduction are isomorphic when γ has trivial
homologies. Example 6 in Sec. IV corresponds to this sit-
uation, where the partial stoichiometric matrix is given by
S11 = (−1), whose kernel and cokernel are trivial.

The exact sequence applies as long as the commutativity
condition, ker S11 ⊂ ker S21, is satisfied, and we can consider
more general cases with ker S11 �= 0. If the connecting map
δ1 : H1(�′) → H0(γ ) is a zero map, then the long exact se-
quence (184) results in the following two exact sequences:

0 H1(γ) H1(Γ) H1(Γ ) 0 ,

(189)

0 H0(γ) H0(Γ) H0(Γ ) 0 .

(190)
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FIG. 4. Long exact sequence and conserved charges/cycles of various types.

This implies the isomorphisms,

ker S/ ker S11
∼= ker S′, coker S/ coker S11

∼= coker S′.
(191)

Note that ker S11 consists of only locally supported global
cycles, due to the assumption ker S11 ⊂ ker S21. The iso-
morphisms (191) represent equivalence of chemical reaction
networks up to locally supported global cycles and locally
supported global conserved charges (emergent conserved
charges are also absent when δ1 is a zero map, as we see
below).

Let us examine the condition when the connecting map is
a zero map. δ1 is a zero map if

S12c2 ∈ im S11 = (coker S11)⊥, (192)

for any c2 ∈ H1(�′). Below we show that, if every conserved
charge in γ is obtained by the projection of a global conserved
charge in � (namely, when there is no emergent conserved
charge), the connecting map δ1 is a zero map. For a given d1 ∈
coker S11, there exists an element of coker S, dT = (dT

1 , dT
2 ).

The condition dT S = 0 reads

dT
2 S21 = 0, (193)

dT
1 S12 + dT

2 S22 = 0, (194)

where we used dT
1 S11 = 0. Let us pick c2 ∈ H1(�′) = ker S′.

The quantity dT
1 S12c2 can be shown to vanish as follows:

dT
1 S12c2 =

(194)
−dT

2 S22c2 =
S′c2=0

−dT
2 S21S+

11S12c2 =
(193)

0.

(195)
Therefore, we have shown dT

1 S12c2 = 0 for any d1 ∈
coker S11 and c2 ∈ ker S′. This is equivalent to S12c2 ∈
(coker S11)⊥.

The relation between the long exact sequence and the
numbers of cycles and conserved charges of various types
is summarized in Fig. 4. The vertical lines represent the
spaces, and the kernels are shown in black. Since it is an
exact sequence, the kernel and image coincide at each space,
such as im ψ1 = ker ϕ1 and so on. The exactness is the key
to the connections between cycles and conserved charges of
particular types. Let us see an example. The image of δ1 is
the space of emergent conserved charges, im δ1 = D̃(γ ). They
are emergent, because the image of δ1 is the kernel of ψ̄0, and
there is no counterpart in �. The connecting map δ1 provides

us with a one-to-one mapping between an emergent cycle in
�′ and an emergent conserved charge in γ (elements of ker δ1

are not emergent, since they can be written as an image of ϕ1

due to the exactness). The numbers d (γ ), d ′(γ ) in Fig. 4 are
the same as the dimensions of the spaces (162) and (163) that
we defined previously.

Compare Fig. 4 also with Fig. 7 in the Appendix B 2,
where we discuss the relation between the numbers of cycles
and conserved charges and the structure of the A-matrix. The
long exact sequence is valid when c̃(γ ) = 0 (i.e., when the
diagram(177) commutes). This implies d̃ ′(γ ) = 0 and there is
not emergent conserved charge in �′, since ϕ̄0 is surjective.

C. Reduction of buffering structures

Here we present the main result, regarding the reduction
of buffering structures. The following theorem represents a
particularly nice property of buffering structures under reduc-
tions. We show that the steady-state concentrations and rates
of the network obtained by reducing a buffering structure are
exactly the same as those of the network before reduction,
without any modification of parameters. Thus, the reduction
of a buffering structure preserves the steady-state properties of
the boundary degrees of freedom. The theorem only relies on
topological information of the network and is true regardless
of the kinetics.

Theorem 4. Let � be a regular chemical reaction network
with kinetics r(x) and let γ be an output-complete subnetwork
of �. We assume that the subnetwork γ does not have an
emergent conserved charge. We consider a reduced network
�′ = �/γ .

If γ is a buffering structure, then we have the isomor-
phisms,

ker S/ ker S11
∼= ker S′, coker S/ coker S11

∼= coker S′.
(196)

Furthermore, when (r, x) is steady-state reaction rates concen-
trations of �, whose components we separate into those in γ

and � \ γ as

r =
(

r1

r2

)
, x =

(
x1

x2

)
, (197)

then, (r2, x2) is a steady-state solution of �′.
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Remark 14. Let us comment on the assumption of the
absence of emergent conserved charges. Under the assump-
tion of the regularity, the appearance of emergent conserved
charges in an output-complete subnetwork γ is quite unlikely.
In fact, in the case of monomolecular reaction networks, we
can prove d̃ (γ ) = 0 for a connected and output-complete
subnetwork γ , assuming that � is regular (see Appendix C
2), and this condition is redundant. So far, the examples of
buffering structures with nonzero emergent conserved charges
are pathological in some sense. Presently, we have not been
able to prove the absence of emergent conserved charges for a
generic (sound) reaction network, and thus it is assumed. We
have more discussions on this point in Appendix C.

Remark 15. We note that there is a possibility that the
reduced system might have some solutions which are not al-
lowed in the original system, depending on the kinetics.11 This
can occur when the reactions in a subnetwork have limitations
in the values of reaction rates. When such a subnetwork is
removed, the reduced system does not have the restrictions,
and there may appear additional solutions. Let us illustrate
this in an example. We consider a reaction network � =
({v1, v2, v3}, {e1, e2, e3, e4, e5, e6, e7}) given by the following
set of reactions:

e1 : v1 → v2,

e2 : v2 → (output),

e3 : 2v3 → 3v3,

e4 : v3 → (output),

e5 : (input) → v3,

e6 : v3 → v1.

e7 : 3v3 → (output). (198)

Let us here choose the kinetics as⎛⎜⎜⎜⎜⎜⎜⎜⎝

r1(x1)
r2(x2)
r3(x3)
r4(x3)

r5

r6(x3)
r7(x3)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1x1
c1+x1

k2x2

k3(x3)2

k4x3

k5

k6x3

k7(x3)3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (199)

For reaction r1, we adopted the Michaelis-Menten kinetics,
and we chose the mass-action kinetics for other reactions. The
rate equations read

d

dt
x1 = r6(x3) − r1(x1) = k6x3 − k1x1

c1 + x1
, (200)

d

dt
x2 = r1(x1) − r2(x2) = k1x1

c1 + x1
− k2x2, (201)

d

dt
x3 = −k7(x3)3 + k3(x3)2 − k4x3 + k5 − k6x3

=: −k7(x3 − d1)(x3 − d2)(x3 − d3), (202)

11We appreciate the anonymous referee for pointing out this possi-
bility.

where we reparametrized the equation for d
dt x3 using d1, d2,

and d3 such that d1 < d2 < d3. From Eq. (202), we get two
candidates of stable steady-state values, x̄3 = d1, d3 (note that
d2 is unstable). However, those candidates may not lead to the
solutions of whole equations when the reaction rate r1 has a
bound, as in the current example. Using Eq. (200), the steady-
state value of x1 is given by

x̄1 = c1k6x̄3

k1 − k6x̄3
. (203)

If the denominator of Eq. (203) is negative, then it is not a
valid solution. Thus, depending on the values of d1 and d3, the
original network may have no, or one, or two solutions. The
subnetwork γ = {(v1), (e1)} is a buffering structure, and we
can consider the corresponding reduced network �′ = �/γ .
In the reduced network, such a restriction on the values of
(internal) reaction rates is invisible. Hence, the reduced sys-
tem may admit more solutions that were not possible in the
original system.

Proof. The regularity of � requires λ(γ ) � 0 (Remark 8).
In the absence of the emergent conserved charges, we have

λ(γ ) = c̃(γ ) + dl (γ ) = 0. (204)

Since c̃(γ ) and dl (γ ) are nonnegative integers, we have
c̃(γ ) = 0 and dl (γ ) = 0. Since c̃(γ ) = 0, we can use the long
exact sequence (184). Because there is no emergent conserved
charge, d̃ (γ ) = 0, by assumption, the connecting map δ1 is a
zero map in the long exact sequence. This proves Eq. (196).

Let us proceed to the latter part of the claim. The steady-
state condition of � is written as

Sr(x) = 0, (205)

d ᾱ · x = 	ᾱ. (206)

As usual, we divide the degrees of freedom to those in γ and
� \ γ . Then Eq. (205) is written as(

S11 S12

S21 S22

)(
r1(x1, x2)

r2(x2)

)
= 0. (207)

The reactions r2(x2) depend only on x2, because γ is chosen
to be output-complete. The first equation can be solved for r1

as r1 = −S+
11S12r2 + c11, with c11 ∈ ker S11, and we have

S′r2(x2) = −S21c11 = 0, (208)

where the last equality is due to c̃(γ ) = 0, that is equivalent
to ker S11 ⊂ ker S21.

Let us turn to the conserved charges. Recall that dl (γ ) is
written as dl (γ ) = |(coker S)/X (γ )|. Because of the decom-
position (165), when dl (γ ) = 0, the space coker S is written
as the direct sum of D(γ ) and D̄′(γ ),

coker S ∼= D(γ )⊕ (coker S)/X (γ )⊕ D̄′(γ ) ∼= D(γ )⊕ D̄′(γ ).

(209)

Correspondingly, we can divide the basis vectors of coker S
into two classes, {d ᾱ} = {d ᾱγ , d ᾱ′ }, where {d ᾱγ } is a basis of
D(γ ), and {d ᾱ′ } is a basis of D̄′(γ ). The basis vectors are of
the form

d ᾱγ =
(

d ᾱγ

1

d ᾱγ

2

)
with d ᾱγ

1 �= 0, d ᾱ′ =
(

0
d ᾱ′

2

)
. (210)

043123-19



HIRONO, OKADA, MIYAZAKI, AND HIDAKA PHYSICAL REVIEW RESEARCH 3, 043123 (2021)

With this basis of coker S, Eq. (206) is written as

d ᾱγ

1 · x1 + d ᾱγ

2 · x2 = 	ᾱγ , (211)

d ᾱ′
2 · x2 = 	ᾱ′

. (212)

In fact, d ᾱ′
2 is a conserved charge in �′, d ᾱ′

2 ∈ coker S′, as
we see in the following. Since d ᾱ′ ∈ coker S, it satisfies(

0
(
d ᾱ′

2

)T )(S11 S12

S21 S22

)
= ((

d ᾱ′
2

)T
S21

(
d ᾱ′

2

)T
S22

) = 0.

(213)
This implies that d ᾱ′

2 satisfies(
d ᾱ′

2

)T
S′ = (

d ᾱ′
2

)T
(S22 − S21S+

11S12) = 0, (214)

hence d ᾱ′
2 ∈ coker S′. Thus, we have obtained an injective

map,

coker S � d ᾱ′ =
(

0
d ᾱ′

2

)
�→ d ᾱ′

2 ∈ coker S′. (215)

This map is nothing but the induced map ϕ̄0. It is important
to note that, when c̃(γ ) = 0, this map is a surjection, that
is evident from the long exact sequence (184).12 The equa-
tions satisfied by the boundary part (denoted by 2) of the
concentrations/rates of � are Eqs. (208) and (212). Since all
the conserved charges in �′ is given as a image ϕ̄0, we find
that the set of Eqs. (208) and (212) are exactly the same as the
steady-state condition for the reduced network �′,

S′r′(x′) = 0, (216)

d ᾱ′
2 · x′ = 	ᾱ′

, (217)

where x′ = x2 and r′(x′) = r2(x2). Thus, the steady-state so-
lution of �′ should also be the steady-state solution of �

for the boundary degrees of freedom. This concludes the
proof. �

D. Hierarchy of subnetworks

Let us consider nested subnetworks γ ′ ⊂ γ ⊂ �. Given
the stoichiometric matrix S of the whole network, we denote
the stoichiometric matrices of the subnetworks γ and γ ′ by
Sγ and Sγ ′ , respectively. The submatrices are included in the
following form:

S =
(

Sγ ∗
∗ ∗

)
, Sγ =

(
Sγ ′ ∗
∗ ∗

)
, (218)

where ∗ indicates an arbitrary matrix. Let us consider the
situation where γ and γ ′ has no emergent cycle and emer-
gent conserved charge in �, namely, c̃(γ ) = d̃ (γ ) = 0, and
c̃(γ ′) = d̃ (γ ′) = 0. Under those assumptions, the quotient
formula of the generalized Schur complement [57] holds,

S/Sγ = (S/Sγ ′ )/(Sγ /Sγ ′ ). (219)

12Another way to see this is by Eq. (B13). We have c̃(γ ) = d̃ (γ ) =
0 from the assumption, and c̃′(γ ) = d̃ (γ ) holds by the connecting
map δ1. Thus, we have d̃ ′(γ ) = 0, which means that there is no
emergent conserved charge in �′.

This indicates the isomorphisms of homology groups,

Hn(�/γ ) ∼= Hn[(�/γ ′)/(γ /γ ′)], (220)

for n = 0, 1. Thus, when we perform the reductions of nested
subnetworks that have no emergent cycles and emergent con-
served charges, the order of the reduction of them does not
matter.

VI. EXAMPLE OF REDUCTION: METABOLIC
PATHWAY OF E. COLI

As an application of the reduction method, let us examine
the central metabolism of E. coli. We use the stoichiometric
matrix presented in Ref. [45], which is constructed based
on Ref. [4] with minor modifications. The network structure
is shown in Fig. 5(a), which consists of the glycolysis, the
pentose phosphate pathway (PPP), and the tricarboxylic acid
cycle (TCAC). The list of the reactions for this system is given
in Sec. D 1. Here, we assume that H2O and cofactors such as
ATP and NADH are abundant and do not affect the behavior
of the system. Buffering structures in this network have been
identified in Ref. [24] and there are in total 17 buffering
structures, which we list in Appendix D 2. As we showed in
Sec. III C, the intersections or unions of buffering structures
are also buffering structures. They form a hierarchy, and such
an architecture can be regarded as a source of robustness
against perturbations, since buffering structures work as a kind
of firewalls.

Let us now perform reductions of buffering structures, un-
der which the steady state is ensured to be the same as the
original network as we showed in Sec. V C. We denote the
whole network by �. We can pick a buffering structure γ8,
which is a part of the pentose phosphate pathway [the yellow
subnetwork in Fig. 5(a)] and given by13

γ8 = ({X5P, S7P, E4P}, {17, 18, 19, 20, 21}), (221)

and perform reduction to obtain �1 := �/γ8. The stoichiomet-
ric matrix of the reduced reaction network can be computed
by Eq. (101). The resulting network is shown in Fig. 5(b).
The reduction procedure induces rewiring of reactions, which
are colored in magenta in Fig. 5. Reactions 15 and 22 are
rewired, and 22 is now a degenerate reaction. The fraction
1/2 shown at reaction 15 indicates the weight of the species.
Those reconnections including the change of weights are nec-
essary if we want the steady state to be the same as those of
the original network. Otherwise, the steady state is changed
in general. We can proceed further and reduce the subnet-
work ({G3P,R5P}, {7, 22, 40}) [colored in red and orange in
Fig. 5(a)]. This reduction is the same as reducing γ5 ∪ γ14

from �. The result of the reduction is shown in Fig. 5(c).
Again, rewiring occurs and reactions 5, 6, 15, and 36 are
modified from the original system. Finally, let us focus on
the part colored in green in Fig. 5(a), which consists of the

13In fact, γ8 = γ5 ∩ γ14, and if we allow taking intersections of
buffering structures, then γ8 is redundant. This is consistent with
Corollary 1.

043123-20



STRUCTURAL REDUCTION OF CHEMICAL REACTION … PHYSICAL REVIEW RESEARCH 3, 043123 (2021)

FIG. 5. Central metabolic pathway (a) of E. coli and reduced networks (b), (c), (d). In the reduced networks, rewired reactions under the
reductions are colored in magenta. (b) Reduced network �1 = �/γ8, where γ8 is colored in yellow in panel (a). The fraction 1/2 written in
black indicates the weight in the stoichiometric matrix. (c) �2 = �/(γ5 ∪ γ14), where γ5 ∪ γ14 is colored in yellow, red, and orange in panel
(a). (d) �3 = �/(γ5 ∪ γ7 ∪ γ14), where γ5 ∪ γ7 ∪ γ14 is colored in yellow, red, orange, and blue in panel (a).

following subsets of chemical species and reactions:

({G6P, F6P, F16P, 6PG, Ru5P, DHAP},
{2, 3, 4, 5, 6, 13, 14, 15, 16, 36, 43}). (222)

The complement of the subset (222) is given by γ5 ∪ γ7 ∪ γ14,
which hence is a buffering structure, and a reduction can
be performed. The structure of the reduced network �3 =
�/(γ5 ∪ γ7 ∪ γ14) is given in Fig. 5(d). Compared to the orig-
inal network, we notice that reactions 15 and 43 are rewired.

To demonstrate our theoretical prediction, we numerically
solve the rate equations for the four systems in Fig. 5 (the orig-
inal network � and the reduced ones, �1, �2, �3), using the
same initial condition and reaction rate constants in all of the
four cases (see Appendix D 3 for details of parameter values).
The time series of concentrations are presented in Fig. 6. After
the initial transient dynamics, the original system approaches
a (stable) steady state [Fig. 6(a)]. We can see that the reduced
systems can reproduce the steady-state concentrations that the
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FIG. 6. Time-series of concentrations of DHAP, F16P, F6P, G6P, PG6, Ru5P computed by solving the whole system � (a) and the reduced
systems �1, �2, �3 (b), (c), (d). The same initial condition and reaction rate constants are used in the four cases.

original system eventually reaches, although they have distinct
short-time dynamics [Figs. 6(b)–6(d)].

In this way, buffering structures work as a guide as to
how to perform the reduction and simplify a complex reaction
network. As long as the reduced part is a buffering structure
and we use the generalized Schur complement (101) as a
stoichiometric matrix of a reduced network, the steady-state
concentrations and rates of the remaining part stay the same
as the original ones regardless of the details of the kinetics, as
a consequence of Theorem 4.

VII. SUMMARY AND OUTLOOK

The main focus of the present paper was the relationship
between the structure and functions of the chemical reaction
network. As a characterization of the structure, homology,
and cohomology groups for chemical reaction networks were
introduced, in which the actions of boundary and coboundary
operators are determined by the stoichiometry. The elements
of homology groups correspond to cycles and conserved
charges of chemical reaction networks, and steady states were
shown to be determined by the elements of the cohomology
groups. In a similar way to the homology and cohomology
groups of topological spaces, the Mayer-Vietoris sequence
and the long exact sequence of a pair of chemical reaction
networks were introduced, the latter being particularly useful
for studying the reduction of reaction networks.

We propose a method of reduction of chemical reac-
tion networks. The reduced network is characterized by the
stoichiometric matrix obtained by eliminating the chemical
species and reactions of an output-complete subnetwork via
the Schur complementation. The reduction relies only on the
stoichiometry, which determines the topology of the reaction
networks, and thus is applicable to any kind of kinetics. This
represents an advantage since in many biological systems
it is difficult to experimentally determine the kinetics and
parameters of the reactions. For tracking the change of cy-
cles and conserved charges under the reductions, the tools
of algebraic topology, such as the long exact sequence, have
been useful. We have studied how the law of localization
can be understood from this perspective. We showed that
the influence index is expressed in terms of the numbers of
cycles/conserved charges of particular types, as in Eq. (172).
We also showed that the influence index is a submodular
function over output-complete subnetworks. A corollary of
this is that buffering structures are closed under intersection

and union, which is useful when we enumerate the buffering
structures of a large reaction network. As a central result of
the paper, we showed that buffering structures, which are
subnetworks with vanishing influence index, behave nicely
under the reduction. Namely, under the reduction of a buffer-
ing structure, the steady state of the remaining elements of
the network stays the same as the original network (Theorem
4). The theorem justifies the intuition that buffering struc-
tures are regarded as an ‘irrelevant’ substructures: they can be
safely eliminated through the reduction method proposed here
without changing the long-time behavior of the system. The
reduction procedure introduces rewiring of reactions, which
is necessary so that the steady state is not modified under
the reduction. As an application of the reduction method, we
discussed the reduction of the central metabolic pathway of
E. coli and illustrated that reactions are rewired nontrivially
under the reduction. We also demonstrated the invariance of
the steady state under the reduction of buffering structures
by numerically solving the rate equations before and after the
reduction.14

Our results highlight that special care should be taken
when simplifying a reaction network. A naive elimination of a
subnetwork not of interest would alter steady-state properties
of the original system. As long as the subnetwork has the van-
ishing influence index and reactions are rewired appropriately
using the generalized Schur complement, it can be eliminated
while keeping the steady state intact.

Another significance of our method is that it allows us to
identify the modules in a complex network and facilitates the
biological interpretation of the whole system. For example,
the central metabolic pathway of E. coli consists of three mod-
ules; glycolysis, TCAC, and PPP. Interestingly, the reduced
network in Fig. 5(d) roughly corresponds to the glycolysis.
The fact of glycolysis being a reduced network may suggest
that E. coli can control the glycolysis in an isolated manner,
and the expression levels of enzymes in the TCAC and the
PPP do not affect the physiological states of the glycolysis.

14We remark that, in our analysis of the central carbon metabolism,
cofactors are not included as variables on the assumption that they are
abundant and their concentrations are stable. If this is not the case,
then the identifications of buffering structures will be modified. The
applicability of such assumptions should be examined depending on
the situations one wants to consider.
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For practical applications, one important issue is how to
find the buffering structures efficiently in large-scale reaction
networks. Although we defer this as a future problem, let us
make some comments on this point. One practical way of
finding buffering structures is as follows: We first compute
the sensitivity matrix A−1 by assigning random values to ∂rA

∂xi
.

From this, we can identify, for each parameter kA (and for
each conserved concentration l ᾱ if exists), the subset VA of
chemicals that show nonzero responses to the perturbation of
kA under generic kinetics. The inclusion relation among VA’s
indicates candidate buffering structures (see Figs. 3 and 5 in
Ref. [24] for the illustrations). For example, VA ⊂ VB indicates
the existence of two nested buffering structures. Finally, for
those candidates, we can compute the influence index and
verify if they are indeed buffering structures.

Establishing a combinatorial method for identifying buffer-
ing structures is an amusing problem. We believe that the basic
properties of buffering structures that we showed in this paper
would be useful for this purpose. For example, if a network
contains many small buffering structures, then we can use the
reduction method repeatedly and make the network smaller
one we fine a small buffering structure. This procedure is
possible because the order of reduction does not matter for the
buffering structures, as we showed in Sec. V D. The submodu-
lar property of the influence index and the subsequent closure
property of buffering structures under unions/intersections
would also be useful in enumerating buffering structures.

We believe that the mathematical formulation that we used
to characterize the topology of chemical reaction networks
will be useful for understanding the static and dynamical prop-
erties15 of reaction systems. The eigenvalues of the Laplacian
operators entail the information of the topology of the network
connectivity. Steady states correspond to the eigenvectors with
zero eigenvalues and they incorporate the crudest topological
information of the reaction network. The eigenvectors with
higher eigenvalues are going to be needed if we want to extend
the reduction method to approximate the dynamics as well as
the steady states.
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APPENDIX A: LAPLACE OPERATORS
AND HODGE DECOMPOSITION

In this section, we discuss the Hodge decomposition and
Laplace operators, which are closely related to the cohomol-
ogy groups introduced in the main text.

We can define Laplace operators, �n : Cn(�) → Cn(�), as

�0 := d†
0 d0, �1 := d0d†

0 . (A1)

Recall that the coboundary operator (19) and its adjoint
Eq. (23) are given by (d0a0)(eA) = ∑

i(S
T )Aia0(vi ) for a0 ∈

C0(�) and (d†
0 a1)(vi ) = ∑

A SiAa1(eA) for a1 ∈ C1(�). The
action of the Laplacians are written in the matrix form as

(�0a0)(vi) =
∑

j

(SST )i j a0(v j ),

(�1a1)(eA) =
∑

B

(ST S)AB a1(eB), (A2)

for a0 ∈ C0(�) and a1 ∈ C1(�). Those are generalizations of
the graph Laplacian to hypergraphs. The properties of hyper-
graph Laplacians were discussed recently in Refs. [58–60].
When all the reactions are monomolecular, the Laplacian re-
duces to the graph Laplacian of the directed graph.

The space C1(�) admits the following orthogonal decom-
position,

C1(�) = im d0 ⊕ ker �1. (A3)

This is a natural generalization of the Hodge decomposition
of flows on networks [61] to the case of a hypergraph. Thus,
given a 1-cochain f ∈ C1(�), we can decompose it in a unique
way as

f = d0a + c, (A4)

where c ∈ ker d†
0 ∩ ker d1 is a harmonic cochain and a ∈

C0(�). This is the Hodge decomposition associated with the
complex (27). By acting d†

0 on Eq. (A4), we have

d†
0 f = d†

0 d0a = �0a. (A5)

We can solve this for the potential a as

a = �+
0 d†

0 f + a0. (A6)

Here, �+
0 : C0(�) → C0(�) is the operator defined by

(�+
0 b0)(vi ) := ∑

j (SST )+i jb0(v j ) for b0 ∈ C0(�), where M+
indicates the Moore-Penrose inverse of a matrix M, and a0 ∈
ker �0. The harmonic component c can be obtained by

c = f − d0a = (1 − d0�
+
0 d†

0 ) f . (A7)

Using the properties of the Moore-Penrose inverse, the action
of the operator that appears on the RHS of Eq. (A7) is written
as

[(1 − d0�
+
0 d†

0 )b1](eA) =
∑

B

(1 − S+S)AB b1(eB), (A8)

for an arbitrary b1 ∈ C1(�). The matrix 1 − S+S is the pro-
jection matrix to ker S. Thus, the harmonic component can be
identified by the projection to ker S,

c(eA) =
∑

B

(1 − S+S)AB f (eB). (A9)
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This is consistent with the fact that c ∈ H1(�) = ker S. The
potential a can be obtained by the multiplication of the Moore-
Penrose inverse of S to f ,

a(vi ) =
∑

A

(ST )+iA f (eA) + a0(vi ), (A10)

where a0 ∈ ker �0.

APPENDIX B: CYCLES AND CONSERVED CHARGES

1. Interpretation of c̃(γ ) and dl (γ ) and ˜d(γ )

Let us here discuss intuitive interpretations of the integers
appearing in the decomposition (172). We will refer to the

elements of ker S as “global cycles” and those of coker S as
“global conserved charges.” Similarly, the elements ker S11

and coker S11 are referred to as “local cycles” and “local
conserved charges.” With this terminology, the elements of
(ker S)supp γ are called as “locally supported global cycles.”

We first look at c̃(γ ). We denote the space by

C̃(γ ) := ker S11/(ker S)supp γ . (B1)

Then, c̃(γ ) = |C̃(γ )|. To clarify its meaning, we represent the
space (B1) as follows,

C̃(γ ) = {
c ∈ C1(�) | Sc = P̄0

γ v, P1
γ c = c

}/{
c ∈ C1(�)| Sc = 0, P1

γ c = c
}

= {
c ∈ C1(�) | Sc = v �= 0, v ∈ C0(� \ γ ), P1

γ c = c
}
. (B2)

An element of C̃(γ ) is a local cycle that is not a global cycle,
by which we mean that c ∈ C̃(γ ) has its boundary in � \ γ .
For example, let us take the subnetwork γ = ({v2}, {e1, e2})
of a monomolecular reaction network,

v1 v2 v3 v4
e1 e2 e3

γ

(B3)

Although e1 + e2 ∈ C1(�) has its support in γ , its boundary,16

∂1(e1 + e2) = −v1 + v3, (B4)

is outside of γ . The element e1 + e2 is a local cycle,
since ∂1(e1 + e2) is zero as a relative chain in C0(γ ) =
C0(�)/C0(� \ γ ). Note that the network (B3) as a whole
does not have a cycle and ker S = 0. Thus, we can iden-
tify c ∈ C̃(γ ) to be a local cycle whose boundary is out
of γ . When c is viewed in �, it may be extended to
a global cycle, but it does not have to be. Considering
its meaning, we will refer to the elements of C̃(γ ) as
emergent cycles, which only appear when we focus on a
subnetwork.

Let us illustrate the space C̃(γ ) pictorially. The matrix
S works as a boundary operator on the space of chemical
reactions. Thus, the kernel of S are linear combinations of
reactions without boundaries. Cycles and noncycles can be
drawn pictorially as

Cycles

Non-cycles

,

16Recall that the boundary of each reaction is specified by the
stoichiometric matrix as ∂1eA = ∑

i(S
T )Aivi.

where the boundary of the box is identified.
We consider an output-complete subnetwork γ . The space

ker S11 is spanned by local cycles in γ , for example,

kerS11 =
γ

,

where the inner box represents a subnetwork γ and the red
lines constitute the basis of the space. Here, the symbol •
means that the cut ends are reactions and not chemical species.
See the following two choices for example:

v1 v2 v3 v4
e1 e2 e3

γ1

v1 v2 v3 v4
e1 e2 e3

γ2

For the left one, cut ends are both reactions. For the right one,
the cut ends are a species and a reaction. The both ends have
to be reactions so that the cut cycle can be a local cycle. An
element of ker S11 may be extended to a global cycle, or it may
be a part of a global noncycle.

The space (kerS)supp γ for the same configuration takes into
account only the global cycles supported on γ ,

(kerS)supp γ =
γ

.
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Therefore, the coset space is generated by the following ele-
ments:

kerS11/(kerS)suppγ =
γ

.

As we see in the figure, the space ker S11/(ker S)supp γ consists
of local cycles that are not global cycles.

We can similarly interpret conserved charges. The trans-
pose of the stoichiometric matrix, ST , can be regarded as a
boundary operator acting on C0(�), which is the space of
chemical species. In this sense, an element of coker S has
no boundary, with respect to this boundary operator. We here
visualize this in a similar way to the cycles,

Conserved charges

Not conserved

.

Note that the boundary of the box is identified. The filled
circles • represent a source or a drain of chemical species,
because of which the charge is not conserved.

17We discuss more on this point in Appendix C.

The space coker S represents the global conserved charges,
and P0

γ (coker S) is the projection of coker S to γ ,

P 0
γ (cokerS) =

γ

Here, how the conserved charges are cut does not matter. The
space coker S11 is generated by the red and green elements in
the following figure,

cokerS11 =
γ

Emergent conserved charge

,

where filled and open rectangles mean boundaries with chem-
ical species and reactions, respectively. The parts we denoted
by green lines, —–, are emergent conserved charges, which
are conserved when it is seen in a subnetwork but not con-
served in �. In fact, the appearance of emergent conserved
charges typically leads to “unphysical” systems, in the sense
that either a steady state does not exist or the matrix A is not
invertible and the response of the system to the perturbation
of parameters is not well-defined.17 For example, one can
consider the following network and subnetwork,

v1 v2 v3
e1 e2 e3

γ

The whole network does not have a conserved charge, but the
subnetwork γ has one, v1 + v2 + v3. However, such a reaction
network cannot reach a steady state, since the concentration
of v3 continues to increase. When we take the difference
|P0

γ (coker S)| − | coker S11|, we can count the number of lost
conserved charges minus the number of emergent conserved
charges (if any),

|P 0
γ (cokerS)| − | cokerS11| =

γ

−
γ

,

where the part colored in red in the first term indicates lost
conserved charges, that are conserved in � but their projec-

tions to γ are not. This equation is equal to the latter two terms
of the decomposition (172), dl (γ ) − d̃ (γ ).
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Example 11. Consider a monomolecular network � =
(V, E ) = ({v1, v2, v3}, {e1, e2}) with the following structure,

v1 v2 v3
e1 e2

γ1

We take a subnetwork γ1 = ({v2}, {e1, e2}) that is indicated
by a box. The whole network does not have a cycle, and the
subnetwork γ1 has one emergent cycle given by c = e1 + e2.
Also, � has one conserved charge, d = v1 + v2 + v3. Its pro-
jection to γ1 is given by v2 and it is not a conserved charge
in γ1. So we have one lost conserved charge. Each integer
appearing in the decomposition of λ(γ1) is

c̃(γ1) = 1, dl (γ1) = 1, d̃ (γ1) = 0, (B5)

and λ(γ1) = 2. For the same �, let us consider a different
choice of a subnetwork,

v1 v2 v3
e1 e2

γ2

The subnetwork γ2 does not have a cycle, and there is one lost
conserved charge, so we have

c̃(γ2) = 0, dl (γ2) = 1, d̃ (γ2) = 0, λ(γ2) = 1. (B6)

Example 12. Consider a network (V, E ) =
({v1, v2, v3}, {e1, e2, e3}) with the following structure:

v1 v2

v3

e1

e2e3

γ

If we choose a subnetwork γ = ({v3}, {e2, e3}), then

c̃(γ ) = 1, dl (γ ) = 1, d̃ (γ ) = 0, λ(γ ) = 2. (B7)

The subnetwork γ has one emergent cycle and one lost con-
served charge and the influence index is 2.

2. Embedding of A-matrices

It is useful to look at the A-matrix to visualize the relations
among cycles/conserved charges of various types in subnet-
works and reduced networks.

Let us first summarize the notations. In this section, we
suppress the dependence on γ for notational simplicity. Gen-
eral rules are as follows. Quantities with a tilde are emergent
ones, and we use character c for cycles and d for conserved
charges. The numbers with a prime are associated with �′.
The relevant numbers are listed as follows:

(1) v, v′: number of chemical species in γ , �′
(2) e, e′: number of chemical reactions in γ , �′
(3) c̃, c̃′: number of emergent cycles of γ , �′
(4) d̃, d̃ ′: number of emergent conserved charges of γ , �′

(5) c, c′: number of cycles of �, whose projections to γ , �′
are also cycles of γ , �′

(6) d, d ′: number of conserved charges of �, whose pro-
jections to γ , �′ are also conserved in γ , �′

(7) c̄′, d̄ ′: number of cycles/conserved charges of � that
are locally supported in �′

(8) c, d: number of cycles/conserved charges of � that
have nonzero support in γ

In Fig. 7, we illustrate a more detailed structure of the
matrix A than Fig. 3. In the center is the matrix A of the total
system �. We choose an output-complete subnetwork γ , and
bring the rows/columns related to γ to the upper-left part.
Then the matrix A looks like one in the center of Fig. 7. We
consider an output-complete subnetwork γ , and the A-matrix
of γ , which we denote by Aγ , is shown in the upper-left part of
Fig. 7. The part surrounded by a pink rectangle is the common
part of Aγ and A. The subnetwork γ can in general contain ad-
ditional (i.e., emergent) cycles and conserved charges, whose
numbers are denoted by c̃ and d̃ . Because the matrix Aγ is
square, we have the relation

e + d + d̃ = v + c + c̃. (B8)

This equation is in fact the same as Eq. (51). Similarly, we can
consider the matrix A for the network �′ = �/γ 18 obtained by
reducing γ from �. The numbers of the emergent cycles and
emergent conserved charges in �′ are denoted by c̃′ and d̃ ′.
The matrix A�′ is also square and we have

e′ + d ′ + d̃ ′ = v′ + c′ + c̃′. (B9)

The influence index is given by

λ := e + d + d ′ − d̄ ′ − v − c, (B10)

which measures how far the rectangle in the upper-left part
(indicated by black dashed lines) is from a square matrix. Note
that this expression is consistent with the one in Sec. III B
since d = d + d ′ − d̄ ′. Using Eq. (B8), we can also express λ

as

λ = c̃ + d ′ − d̄ ′ − d̃, (B11)

which is the same the decomposition (172). We can also
consider a similar quantity that measure the nonsquareness of
the lower-right part,

λ′ := v′ + c′ − e′ − d̄ ′ = d̃ ′ + d ′ − d̄ ′ − c̃′, (B12)

where the second expression is obtained using Eq. (B9). In
fact, due to the squareness of the whole matrix A, λ′ is equal
to the influence index, λ = λ′. This results in the following
relation,

c̃ − d̃ + c̃′ − d̃ ′ = 0. (B13)

18When c̃(γ ) > 0, the equation of motion contains some terms that
cannot be determined, as in Eq. (98). Here, we formally consider
a reduced network �′ which is defined with the generalized Schur
complement S′. In this sense, the property of the reduced network
defined this way cannot be fully constrained from the properties of �

and γ .
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FIG. 7. Embedding of the A-matrices for a generic output-complete subnetwork.

APPENDIX C: EMERGENT CONSERVED CHARGES
IN CHEMICAL REACTION NETWORKS

In this section, we discuss the role of emergent conserved
charges in chemical reaction networks.

1. Systems with emergent conserved charges

As far as we observe, the chemical reaction systems with
emergent conserved charges in output-complete subnetworks
are pathological, in either of the following senses:

(A) The steady-state condition,∑
A

SiArA(x(k, �), kA) = 0,
∑

i

d ᾱ
i xi = 	ᾱ, (C1)

does not fully determine the steady-state solution, and arbi-
trary parameters have to be introduced to specify the solution.

(B) No steady-state solution exists.
(C) The reaction kinetics is unphysical.
Below, we discuss some examples of each case.

a Pattern A: Solutions have arbitrary parameters

An example of pattern (A) is given by

d

dt

(
x
y

)
=

(
1 0

−1 −1

)(
r1

r2

)
,

(
r1

r2

)
=

(
k1y
k2y

)
. (C2)

The matrix A for this system is

A =
(

0 k1

0 k2

)
. (C3)

This is not invertible. The steady-state solution for the mass-
action kinetics is given by(

r̄1

r̄2

)
= 0,

(
x̄
ȳ

)
=

(
m
0

)
, (C4)

where m is an arbitrary parameter. If we choose a subnetwork
γ = {x}, then there is an emergent conserved charge. Let us
consider the fluctuations around the steady state,

d

dt

(
δx
δy

)
=

(
1 0

−1 −1

)(
k1δy
k2δy

)
=

(
k1δy

−(k1 + k2)δy

)
, (C5)

where δx(t ) := x(t ) − x̄ indicates the fluctuation from the
steady state. The fluctuation associated with the emergent
charge, δx, is a zero mode. This means that the system is not
asymptotically stable.

Generically, when we have to introduce arbitrary parame-
ters m, the matrix A has a null vector, as we see below. The
steady-state condition reads

rA(x(k, �, m), k) = −
∑

α

μα (k, �, m)cα
A, (C6)∑

i

d ᾱ
i xi(k, �, m) = 	ᾱ. (C7)

By taking the derivative of those equations with respect to m,
we find (

rA,i cα
A

d ᾱ
i 0

)
∂

∂ma

(
xi

μα

)
= 0. (C8)

This means that A has a null vector and det A = 0.
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b Pattern B: No steady-state solution

An example of pattern (B) is given by the following reac-
tion system with the mass-action kinetics:

d

dt

⎛⎝x1

x2

x3

⎞⎠ =
⎛⎝−1 0 1 0

−1 0 0 1
1 −1 0 0

⎞⎠
⎛⎜⎝r1(x1, x2)

r2(x3)
r3

r4

⎞⎟⎠,

⎛⎜⎝r1

r2

r3

r4

⎞⎟⎠ =

⎛⎜⎝k1x1x2

k2x3

k3

k4

⎞⎟⎠. (C9)

The steady-state solution does not exist in general. We need
to fine-tune the parameters to have a solution. When k3 = k4

is satisfied, we have a steady state

r̄ = k3(1 1 1 1)T
. (C10)

The matrix A is

A =

⎛⎜⎝∂1r1 ∂2r1 0 1
0 0 ∂3r2 1
0 0 0 1
0 0 0 1

⎞⎟⎠, (C11)

where ∂ j ri := ∂ri/∂x j and it is evaluated at the steady state.
This matrix is not regular, det A = 0.

Let us choose an output-complete subnetwork γ =
({v1, v2}, {e1}). The matrix A for the subnetwork is

Aγ =
(

∂1r1 ∂2r1

1 −1

)
. (C12)

The subnetwork has an emergent conserved charge, d̃
T
1 =

(1 −1). The time derivative of this charge is

d

dt
d̃

T
xγ = d

dt
(1 −1)

(
x1

x2

)
= r3 − r4 = k3 − k4. (C13)

Although d̃
T

S �= 0, where d̃
T

:= (̃d
T
1 a), for any parameter a,

when the steady state exists, k3 = k4, the combination d̃
T

x
is in fact a conserved charge of the whole system. It is not
conserved unless the parameters are fine-tuned.

Let us consider the fluctuations around the steady state,

d

dt

⎛⎝δx1

δx2

δx3

⎞⎠ =
⎛⎝−1 0 1 0

−1 0 0 1
1 −1 0 0

⎞⎠
⎛⎜⎝δr1(x1, x2)

δr2(x3)
δr3

δr4

⎞⎟⎠. (C14)

The fluctuation associated with the emergent conserved
charge leads to a zero mode,

d

dt
δ(x1 − x2) = δ(r3 − r4) = 0. (C15)

c Pattern C: Example with emergent conserved charges
and unphysical kinetics

Here we discuss an example that has a subnetwork with
vanishing influence index and also has an emergent conserved
charge, while the kinetics is unphysical. The rate equation of

this system is

d

dt

⎛⎜⎝x1

x2

x3

x4

⎞⎟⎠ =

⎛⎜⎝−1 1 1 1
−1 1 1 2

1 0 0 0
0 −2 −1 −1

⎞⎟⎠
⎛⎜⎝r1(x1, x2)

r2(x2, x4)
r3(x3, x4)

r4(x4)

⎞⎟⎠. (C16)

We have added catalytic dependencies in the reactions
r2(x2, x4) and r3(x3, x4). The stoichiometric matrix has a triv-
ial kernel and r̄A = 0 at the steady state. The cokernel of S is
also trivial.

The matrix A is

A =

⎛⎜⎝∂1r1 ∂2r1 0 0
0 ∂2r2 0 ∂4r2

0 0 ∂3r3 ∂4r3

0 0 0 ∂4r4

⎞⎟⎠. (C17)

Its determinant is in general nonvanishing,

det A = ∂1r1 ∂2r2 ∂3r3 ∂4r4. (C18)

Let us consider an output-complete subnetwork γ =
({x1, x2}, {r1, r2}). The index of γ is zero,

λ(γ ) = −2 + 2 − 0 + 0 = 0, (C19)

and hence it is a buffering structure. The matrix A of the local
system reads

Aγ =
⎛⎝∂1r1 ∂2r1 1

0 ∂2r2 1
1 −1 0

⎞⎠. (C20)

Although γ is a buffering structure, the subnetwork γ has one
emergent cycle and one emergent conserved charge.

For the mass-action kinetics,⎛⎜⎝r1(x1, x2)
r2(x2, x4)
r3(x3, x4)

r4(x4)

⎞⎟⎠ =

⎛⎜⎝k1x1x2

k2x2x4

k3x3x4

k4x4

⎞⎟⎠, (C21)

the steady-state concentrations are⎛⎜⎝x̄1

x̄2

x̄3

x̄4

⎞⎟⎠ =

⎛⎜⎝ 0
m1

m2

0

⎞⎟⎠ or

⎛⎜⎝m′
1

0
m′

2
0

⎞⎟⎠, (C22)

where m1, m2, m′
1, m′

2 are arbitrary parameters. With this ki-
netics, det A = 0.

Let us instead employ the following kinetics:⎛⎜⎝r1(x1, x2)
r2(x2, x4)
r3(x3, x4)

r4(x4)

⎞⎟⎠ =

⎛⎜⎝k1(x1 + x2)
k2(x2 + x4)
k3(x3 + x4)

k4x4

⎞⎟⎠, (C23)

where all the concentrations vanish at the steady state, x̄i = 0.
The matrix A is now invertible, det A = k1k2k3k4 �= 0. Al-
though A is regular, the sensitivity is trivial, ∂Ax̄i = 0, since
∂Ar̄B = 0 at the steady state. The kinetics (C23) is not phys-
ically sound, because the reaction r2(x2, x4) can be nonzero
even if the concentration of the reactant x4 is zero (note that
x2 is catalytic). The same is true for r3.
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Let us consider the fluctuations around the steady state of
the emergent conserved charge,

d

dt
(δx1 − δx2) = −δr4(x4) = −r4,4δx4, (C24)

where we denote ri, j := ∂ j ri. The time derivative of δx4 is

d

dt
δx4 = −2(r2,2δx2 + r2,4δx4) − (r3,3δx3 + r3,4δx4)

− r4,4δx4

= −2r2,2 δx2 − r3,3 δx3 + (−2r2,4 − r3,4 − r4,4)δx4.

(C25)

Hence, there is a zero mode when r2,2 = 0 at the steady state,
and then A is not invertible.

d Emergent conserved charges and zero modes of fluctuations

We denote the matrix R whose components are given by
ri, j = ∂ j ri and separate it into block matrices,

R =
(

R11 R12

R21 R22

)
, (C26)

according to the separation x = (x1
x2

). The linear fluctuations
around the steady state satisfy the following equations of
motion:

d

dt

(
δx1

δx2

)
= SRδx =

(
S11R11δx1 + (S11R12 + S12R22)δx2

S21R11δx1 + (S21R12 + S22R22)δx2

)
,

(C27)

where we have also separated the stoichiometric matrix into
submatrices, and we used R21 = 0, which follows from the
output-completeness. We consider the fluctuation associated
with the emergent conserved charge d̃1,

d

dt
d̃

T
1 δx1 = d̃

T
1 S12R22δx2. (C28)

Since it is an emergent charge, d̃
T
1 S12 �= 0. The time derivative

of the RHS of Eq. (C28) reads

d

dt
d̃

T
1 S12R22δx2 = d̃

T
1 S12R22S21R11δx1 + (· · · )δx2. (C29)

Therefore, an emergent conserved charge results in a zero

mode when d̃
T
1 S12R22S21R11 vanishes. We are not aware of a

physical example in which d̃
T
1 S12R22S21R11 does not vanish.

In the example given by Eq. (C16), the first term of Eq. (C29)
is computed as

d̃
T
1 S12R22S21R11δx1

= (1 −1)

(
1 1
1 2

)(
r3,3 r3,4

0 r4,4

)
×

(
1 0
0 −2

)(
r1,1 r1,2

0 r2,2

)(
δx1

δx2

)
= (0 2r4,4r2,2)

(
δx1

δx2

)
. (C30)

When this vanishes, the matrix A acquires a zero mode and is
not invertible.

2. Absence of emergent conserved charges in monomolecular
reaction networks

Here we consider monomolecular reaction networks and
we show that, if there exists a nonzero emergent charge in
an output-complete subnetwork, the index λ(γ ) is necessarily
negative. If the index is negative in an output-complete subnet-
work, then the matrix A is not invertible, and the response of
the system to the parameter-perturbation is not well-defined.
We here show the following statement:

Theorem 5. Suppose that γ is a connected and output-
complete subnetwork of a monomolecular reaction network
�. If d̃ (γ ) > 0, then the influence index λ(γ ) is negative.

Proof. To have an emergent conserved charge in γ , all the
boundaries of γ should be chemical species and not reactions,
in a monomolecular reaction network. Then, all the reactions
in γ should end on the chemical species inside γ , which
means S21 = 0.

Recall that an emergent cycle is c1 ∈ ker S11 which is not a
cycle of the whole network,

S

(
c1

0

)
=

(
0

S21c1

)
�= 0. (C31)

When S21 = 0, there is no such c1 meaning that all the lo-
cal cycles are also a global cycle. Namely, for a given c1 ∈
ker S11, (c1

0 ) ∈ ker S always holds. Thus, we have c̃(γ ) = 0.

This also results in dl (γ ) = d ′(γ ) − d̄ ′(γ ) = 0 as follows.
If d ′(γ ) − d̄ ′(γ ) is nonzero, then there should exist d1 and
d2 such that [recall the definitions of spaces, Eqs. (163) and
(161)]

dT
1 S11 + dT

2 S21 = 0, (C32)

dT
1 S12 + dT

2 S22 = 0, (C33)

dT
1 S11 �= 0. (C34)

However, when S21 = 0, Eqs. (C32) and (C34) are contradic-
tory. Thus, d ′(γ ) − d̄ ′(γ ) = 0 and we have dl (γ ) = 0.

Therefore, we have shown that c̃(γ ) = 0 and dl (γ ) = 0,
and the index is written as

λ(γ ) = c̃(γ ) + dl (γ ) − d̃ (γ ) = −d̃ (γ ), (C35)

which is negative due to the assumption d̃ (γ ) > 0. �

APPENDIX D: METABOLIC PATHWAYS OF E. COLI

We here provide the details of the metabolic pathways
discussed in Sec. VI.

1. List of reactions

1: Glucose + PEP → G6P + PYR.
2: G6P → F6P.
3: F6P → G6P.
4: F6P → F16P.
5: F16P → G3P + DHAP.
6: DHAP → G3P.
7: G3P → 3PG.
8: 3PG → PEP.
9: PEP → 3PG.
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10: PEP → PYR.
11: PYR → PEP.
12: PYR → AcCoA + CO2.
13: G6P → 6PG.
14: 6PG → Ru5P + CO2.
15: Ru5P → X5P.
16: Ru5P → R5P.
17: X5P + R5P → G3P + S7P.
18: G3P + S7P → X5P + R5P.
19: G3P + S7P → F6P + E4P.
20: F6P + E4P → G3P + S7P.
21: X5P + E4P → F6P + G3P.
22: F6P + G3P → X5P + E4P.
23: AcCoA + OAA → CIT.
24: CIT → ICT.
25: ICT → 2-KG + CO2.
26: 2-KG → SUC + CO2.
27: SUC → FUM.
28: FUM → MAL.
29: MAL → OAA.
30: OAA → MAL.
31: PEP + CO2 → OAA.
32: OAA → PEP + CO2.
33: MAL → PYR + CO2.
34: ICT → SUC + Glyoxylate.
35: Glyoxylate + AcCoA → MAL.
36: 6PG → G3P + PYR.
37: AcCoA → Acetate.
38: PYR → Lactate.
39: AcCoA → Ethanol.
40: R5P → (output).
41: OAA → (output).
42: CO2 → (output).
43: (input) → Glucose.
44: Acetate → (output).
45: Lactate → (output).
46: Ethanol → (output).

2. List of buffering structures

γ1 = ({Glucose}, {1}),
γ2 = ({Glucose, PEP, G6P, F6P, F16P, DHAP,G3P,3PG,

PYR, 6PG, Ru5P, X5P, R5P, S7P, E4P, AcCoA, OAA, CIT,

ICT, 2‘-KG, SUC, FUM, MAL, CO2, Glyoxylate, Acetate,

Lactate, Ethanol}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46}),
γ3 = ({F16P}, {5}),
γ4 = ({DHAP}, {6}),
γ5 = ({G3P, X5P, S7P, E4P}, {7, 17, 18, 19, 20, 21, 22}),
γ6 = ({3PG}, {8}),
γ7 = ({Glucose, PEP, 3PG, PYR, AcCoA, OAA, CIT,

ICT, 2‘-KG, SUC, FUM, MAL, CO2, Glyoxylate, Acetate,
Lactate, Ethanol}, {1, 8, 9, 10, 11, 12, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46}),
γ8 = ({X5P, S7P, E4P}, {17, 18, 19, 20, 21}),
γ9 = ({CIT}, {24}),
γ10 = ({2‘-KG}, {26}),
γ11 = ({SUC}, {27}),
γ12 = ({FUM}, {28})
γ13 = ({Glyoxylate}, {35}),
γ14 = ({X5P, R5P, S7P, E4P}, {17, 18, 19, 20, 21, 40}),
γ15 = ({Acetate}, {44}),
γ16 = ({Lactate}, {45}),
γ17 = ({Ethanol}, {46}).

3. Parameter values used in Figure 6

In Fig. 6, for an illustration purpose, we employ the
mass-action kinetics, where the rate of the ith reaction is
given by the product of its substrate concentrations, ri =
ki

∏
A[xA(t )]yiA [see Eq. (3) for the definition of yiA].

In the simulation, the initial concentrations and the reaction
rate constants are chosen randomly: x6PG = 0.8, xAcCoA =
0.8, xAcetate = 0.4, xCIT = 0.3, xCO2 = 0.6, xDHAP =
0.1, xE4P = 0.8, xEthanol = 0.2, xF16P = 0.2, xF6P =
0.5, xFUM = 0.3, xG3P = 0.3, xG6P = 0.2, xGlucose =
0.7, xGlyoxylate = 0.6, xICT = 0.4, xKG2 = 0.5, xLactate =
1., xMAL = 0.4, xOAA = 1., xPEP = 0.6, xPG3 = 1., xPYR =
0.1, xR5P = 0.2, xRu5P = 0.4, xS7P = 0.7, xSUC = 0.1, xX5P =
0.6 and k1 = 1, k2 = 4.7, k3 = 7.8, k4 = 5.7, k5 = 3.8, k6 =
9.7, k7 = 5.0, k8 = 6.2, k9 = 3.5, k10 = 9.8, k11 = 2.5, k12 =
6.1, k13 = 4.0, k14 = 3.8, k15 = 7.8, k16 = 2.6, k17 =
3.8, k18 = 5.5, k19 = 5.7, k20 = 4.7, k21 = 8.0, k22 =
7.3, k23 = 9.2, k24 = 1.1, k25 = 9.6, k26 = 7.4, k27 =
7.4, k28 = 8.3, k29 = 6.2, k30 = 6.4, k31 = 6.2, k32 =
7.9, k33 = 9.1, k34 = 6.7, k35 = 1.6, k36 = 9.6, k37 =
4.7, k38 = 5.1, k39 = 7.3, k40 = 3.8, k41 = 8.4, k42 =
9.7, k43 = 4.8, k44 = 2.0, k45 = 8.0, k46 = 3.7.
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