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Experimental estimation of the quantum Fisher information from randomized measurements
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The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. It quantifies
the metrological potential of quantum states in quantum parameter estimation measurements, and is intrinsically
related to quantum geometry and multipartite entanglement of many-body systems. Using a nitrogen-vacancy
center spin in diamond, we experimentally demonstrate a randomized-measurement method to extract the QFI of
the qubit, for both pure and mixed states. We then apply this scheme to a 4-qubit state, using a superconducting
quantum computer, and show that it provides access to the sub-QFI, which sets a lower bound on the QFI for
general mixed states. We numerically study the scaling of statistical error, considering N-qubit states, to illustrate
the advantage of our randomized-measurement approach in estimating the QFI and multipartite entanglement.
Our results highlight the general applicability of our method to different quantum platforms, including solid-state
spin systems, superconducting quantum computers, and trapped ions.
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I. INTRODUCTION

Quantum technologies promise appealing advantages in
various practical applications. As a prime example, quantum
metrology [1] exploits quantum resources such as entangle-
ment [2], coherence [3], squeezing [4], and criticality [5–8]
to achieve unprecedented measurement performance. This
has applications in a variety of fields, including precision
measurements in physics [9–11], material science [12], and
biology [13]. The metrological potential of quantum resource
states is quantified by the quantum Fisher information (QFI)
[14], which is an extension of the Fisher information [15] in
the quantum realm. According to the quantum Cramér-Rao
bound, the inverse of the QFI sets a fundamental limit on the
accuracy of parameter-estimation measurements [16].

Besides its role in quantum metrology, the QFI also rep-
resents a fundamental concept in quantum physics. It has
been shown to exhibit deep connections with multipartite
entanglement [17–20]. From a geometric perspective, the
QFI characterizes the distinguishability between neighboring
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quantum states in parametric space, which is closely related
to the concept of the quantum geometric tensor [21]. It thus
plays a significant role in numerous quantum phenomena
[22], including quantum phase transitions [5], quantum Zeno
dynamics [23], as well as in a variety of quantum information
processing protocols.

Identifying experimental methods to extract the QFI of
arbitrary quantum states is an outstanding challenge, which is
currently under intense investigation [24–27]. Indeed, the QFI
is not a linear function of quantum states and it is not related to
any observable that can be directly accessed [14]. In principle,
one can obtain the value of the QFI for general quantum
states (pure or mixed) based on quantum state tomography.
However, the number of required measurements increases
rapidly with the system size, hence resulting in exception-
ally heavy experimental overheads for many-body quantum
systems. One route is provided by dynamical susceptibilities
[20], which can be probed spectroscopically [28,29] and give
access to the QFI of thermal states. Although it is possible to
extract the Fisher information based on the Hellinger distance
[24], the experimental determination of the QFI for general
states still remains a challenging task as it requires, by defini-
tion, the determination of the optimal measurement for which
the Fisher information is maximized [14].

In this work, we experimentally explore the possibility
of estimating the QFI of spin systems using a randomized-
measurement approach. In the case of a single qubit, which we
experimentally explore using a nitrogen-vacancy (NV) center
spin, our method allows for the accurate extraction of the
QFI, for both pure and mixed states generated by noise. In
the multiqubit case, which we study using a superconducting
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quantum computer (IBM Q), our method gives access to the
sub-QFI [30], which is equivalent to the QFI for pure states
and sets a lower bound on the QFI for general mixed states.
Our scheme only relies on random measurements performed
on single copies of the quantum system [31], and it does not
require full quantum state tomography. Such a unique feature
can significantly relax the experimental requirements on non-
local operations or the number of measurements. It is worth
noting that techniques based on randomized measurements
have been exploited in different physical contexts, such as the
estimation of the nth moment of general quantum states [32],
the Rényi entanglement entropy [33,34], the overlap of two
mixed states [35], the mixed-state entanglement [36,37], and
the many-body Chern number [38].

II. BASIC PRINCIPLE

We start by considering the standard scenario of quantum
parameter estimation, in which the information of the param-
eter θ is encoded in a parameter-dependent quantum state
ρθ . The maximum available information to extract θ is deter-
mined by the QFI, denoted as Fθ . As dictated by the quantum
Cramér-Rao bound, the ultimate precision of quantum pa-
rameter estimation is given by δθ = 1/

√
Fθ . For a general

quantum state, spectrally decomposed as ρθ = ∑
λ pλ|λ〉〈λ|,

with pλ and |λ〉 its eigenvalues and corresponding eigenstates,
the QFI can be written as [39]

Fθ (ρθ ) =
∑
λ,λ′

2|〈λ|∂θρθ |λ′〉|2
pλ + pλ′

, (1)

where the sum only includes the terms with pλ + pλ′ �= 0. A
direct way to measure the QFI would be to fully reconstruct
the density matrices ρθ and ρθ+dθ , by performing quantum
state tomography [26,40]. However, quantum state tomogra-
phy requires a rapidly increasing number of measurements as
the system dimension grows.

Starting from the superfidelity [41], defined as

g(ρ1, ρ2) = [
Tr(ρ1ρ2) +

√(
1 − Trρ2

1

)(
1 − Trρ2

2

)]
, (2)

one can introduce a quantity FG(ρθ ) that provides a lower
bound to the QFI of any general quantum state:

Fθ (ρθ ) � FG(ρθ ) ≡ D2
G(ρθ , ρθ+dθ )

(dθ )2
, (3)

where D2
G(ρ1, ρ2) = 8[1 − g1/2(ρ1, ρ2)] denotes the modified

Bures distance between two quantum states ρ1 and ρ2 [41].
We note that FG(ρθ ) was introduced recently in [30], where it
was coined “sub-QFI”. Thus, by measuring the superfidelity,
one is able to extract the lower bound of the QFI for any
general quantum state. We stress that the inequality in Eq. (3)
becomes an equality, and hence, the sub-QFI becomes equiv-
alent to the QFI, when the quantum state is pure. Moreover,
in the case of a single qubit, QFI and sub-QFI are strictly
equivalent for both pure and mixed states, as we will illustrate
below using an NV-center spin.

In experiments, we first perform random local measure-
ments on the states ρθ and ρθ+dθ . This allows us to obtain
the values of the state overlap Tr(ρθρθ+dθ ) and the state purity
Tr(ρ2

θ ) and Tr(ρ2
θ+dθ ), following the methods of Refs. [32–35]

and the detailed protocol described in Appendix A. The re-
sults provide the modified Bures distance D2

G(ρθ , ρθ+dθ ), the
polynomial fit to which leads to the value of the sub-QFI
FG(ρθ ); see Eq. (3). The approach demonstrated here can be
generalized to a collective observable suitable for many-body
systems (see Appendix A).

III. EXPERIMENTAL DEMONSTRATION
USING A SOLID-STATE SPIN

In our experimental study, we first measure the QFI of
quantum sensor states encoded by a single nitrogen-vacancy
(NV) center spin in diamond [42–44]. By applying an external
magnetic field Bz along the NV axis, we lift the degeneracy
of the spin states ms = ±1 of the NV center and encode a
qubit using the two spin sublevels ms = 0,−1 with an energy
gap ω0 = D − γeBz, where D = (2π )2.87 GHz is the zero-
field splitting and γe is the electronic gyromagnetic ratio. The
external magnetic field is chosen as Bz � 510 G such that the
associated nitrogen nuclear spin in proximity to the NV center
is polarized by optical pumping. The measurement protocol
in our experiment is shown in Fig. 1(a). The NV-center spin is
prepared in the state |ψφ (0)〉 = cos(φ/2)|0〉 + sin(φ/2)| − 1〉
by applying a microwave pulse Ŷφ with frequency ω to rotate
the spin around the ŷ axis by an angle φ after the optical
initialization. The NV-center spin evolves as

ρ(t ) =
[

cos2(φ/2) 1
2 sin(φ)eiθ−(t/T ∗

2 )2

1
2 sin(φ)e−iθ−(t/T ∗

2 )2
sin2(φ/2)

]
, (4)

where θ =�t with �=ω − (D − γeBz ) is the unknown pa-
rameter, from which one can infer the accurate value of the
magnetic field Bz. The dephasing noise causes the decay of
the NV-center spin coherence at a rate of (T ∗

2 )−1.
In our experiment, the randomized measurement is re-

alized by a spin-dependent fluorescence measurement fol-
lowing three microwave pulses [Fig. 1(a)], which imple-
ment a random unitary transformation of the form U =
Rx(α)Ry(β )Rx(γ ), where Rv (ϕ) denotes the rotation around
the v̂ axis by an angle ϕ. The rotation angles α, β, γ are
chosen in a random way such that the unitary transforma-
tion U acting on the NV-center spin belongs to the circular
unitary ensemble [33]. The subsequent fluorescence mea-
surement is equivalent to the projective measurement on the
state ρ(t ) along a random basis |u〉 = U †|0〉, the outcome
of which is given by p(t ) = Tr[|0〉〈0|Uρ(t )U †] = 〈u|ρ(t )|u〉.
From the random measurements, we can obtain the fidelity
of the quantum state ρ(t ) with respect to the initial state as
F (t ) = Tr[ρ(t )ρ(0)] = 6〈p(t )p(0)〉 − 1, where 〈· · · 〉 denotes
the average over n random matrices U ; see Eq. (A12) (Ap-
pendix A). The result in Fig. 1(b) shows a good agreement
with the standard deterministic projective measurement.

In a similar way, we proceed by performing local measure-
ments on the states ρθ =ρ(t ) and ρθ+dθ =ρ(t + dt ) with dθ =
�dt , which allows us to obtain the values of Tr(ρθρθ+dθ ),
Tr(ρ2

θ ), and Tr(ρ2
θ+dθ ) [32–35]; using Eq. (2), this eventu-

ally provides the modified Bures distance D2
G(ρθ , ρθ+dθ ). The

polynomial fit to D2
G(ρθ , ρθ+dθ ) is shown as the dashed line

in Fig. 1(c), while the solid line only includes the quadratic
term. The good agreement between the two curves indicates
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FIG. 1. (a) The pulse sequence for measuring the sub-QFI
(which is equivalent to the QFI in the present scenario) in a Ramsey
experiment, using an NV-center spin quantum sensor in diamond.
The NV-center spin is initially polarized in the state |0〉 by apply-
ing a green laser pulse and the φ-dependent resource state |ψφ (0)〉
is prepared via a microwave pulse Ŷφ (i.e., a rotation around the
ŷ axis by an angle φ). The free evolution of duration t results
in the parameter-dependent quantum state ρθ = ρ(t ) with θ = �t ;
see Eq. (4). The random measurement is implemented by three
microwave pulses (blue), with random parameters, followed by spin-
dependent fluorescence measurement. (b) The fidelity between the
evolved state ρ(t ) and the initial state |ψφ (0)〉 obtained from random-
ized measurements (circle) is compared with standard deterministic
projective measurement (diamond). (c) The modified Bures distance
D2

G between the states ρθ0 and ρθ as a function of dθ = θ − θ0 =
�dt with θ0 = 3π/2. The dashed curve is the polynomial fit to
the experiment data (circles), while the solid curve represents the
quadratic fit, the coefficient of which provides an estimation for the
value of the QFI [see Eq. (3)]. The experiment parameters in (b) and
(c) include the detuning � = (2π )1.459 MHz, the angle φ = π/2,
and the number of random measurements n = 400. The coherence
time of the NV-center spin is estimated to be T ∗

2 = 2.58 ± 0.2 μs.
(d) The QFI Fθ and the purity P = Tr[ρ2(t )] of the evolved state as
a function of the free evolution time t . The noise causes decoherence
and the system evolves into mixed states, which is evidenced by the
decrease of the QFI. (e) The QFI Fθ and the coherence C = |ρ12(t )|
of the states after a free evolution time t = 3π/(2�) from different
initial resource states |ψφ (0)〉 = cos(φ/2)|0〉 + sin(φ/2)| − 1〉. The
detuning is � = (2π )1.459 MHz.

the suitable range of dθ within which the QFI can be extracted
from the coefficient of the quadratic term. According to the
Taylor expansion of the superfidelity between the states ρθ

and ρθ+dθ , namely D2
G(ρθ , ρθ+dθ ) = FG(ρθ )dθ2 + O(dθ3),

we can extract FG(ρθ ) from the coefficient of the quadratic
term. In the present single-qubit case, the superfidelity is
equivalent to the Uhlmann-Jozsa fidelity for both pure and
mixed states [41]; we thus obtain the exact QFI through Fθ =
FG(ρθ ); see Eq. (3).

We show in Fig. 1(d) the measured dynamical evolution
of the QFI for the state ρ(t ). The result shows the influence
of dephasing noise on the QFI and thereby the metrological
potential of the evolving state. The system becomes mixed
as evidenced by the purity P = Tr[ρ2(t )], which is obtained
from local random-measurement results on the evolved state
ρ(t ), following the protocol detailed in Appendix A. We note
that the evolution of the QFI may serve as an indicator of
the environmental noise properties in open quantum systems,
e.g., non-Markovianity [26]. The present technique does not
require any prior information on the system and thus provides
a powerful tool to investigate general open quantum sys-
tems using the concept of the QFI. Furthermore, we measure
the QFI of the evolved state ρ(t ) for different initial states
|ψφ (0)〉 = cos(φ/2)|0〉 + sin(φ/2)| − 1〉, to establish the re-
lation between the QFI and the coherence of the resource
states [as quantified by the off-diagonal element of the density
matrix C = |ρ12(t )|]. From the results displayed in Fig. 1(e),
we find that ρ(t ) is indeed mixed due to the influence of noise,
and that both the QFI and the coherence increase as the initial
angle φ is increased toward π/2. The experimental data agree
well with the exact value of the QFI, which demonstrates the
validity of the present scheme in measuring the QFI for both
pure and mixed quantum states.

IV. EXTENSION TO MULTIQUBIT STATES

As a second demonstration, we generate a 4-qubit GHZ
state (with estimated fidelity of 78%; see Appendix B)
and measure the sub-QFI from randomized measurements
using the Qiskit by IBM Quantum Experience; the cor-
responding quantum circuit is shown in Fig. 2(a). We
consider the parametrized state ρθ = e−iθJzρeiθJz , where Jz =∑4

j=1 σ
( j)
z /2, and apply local random unitary transformations

u j from the classical compact group, where u j is determined
by the random parameters λ j, θ j, ϕ j through

u j =
[

cos
( θ j

2

) −eiλ j sin
( θ j

2

)
eiϕ j sin

( θ j

2

)
ei(ϕ j+λ j ) cos

( θ j

2

)
]
. (5)

The overlap is calculated by the formula Tr[ρθρθ+dθ ] =
N

∑
s,s′ (−d )D[s,s′]〈pθ (s)pθ+dθ (s′)〉 [34,35] for local random

measurement, where pθ (s) = Tr[|s〉〈s|UρθU †], d is the size
of the local Hilbert space, and D[s, s′] is the Hamming dis-
tance between states s, s′. The purity can be also obtained via
the similar method. We experimentally determine the modi-
fied Bures distance D2

G(ρθ0 , ρθ ) for different values of θ , and
perform the polynomial fit correspondingly; see Fig. 2(b).
The coefficient of the quadratic term provides the sub-QFI,
FG(ρθ0 ) = 4.301 ± 0.22, which is in good agreement with the
value FG = 4.4807 obtained from quantum state tomography;
see Appendix B. The measured FG provides the lower bound
of the exact QFI, which is Fθ = 6.5147 in this case.

We now explore the applicability of our sub-QFI mea-
surement in the context of many-body quantum physics
[17], setting the focus on entanglement dynamics in an
open N-qubit system. We again consider a GHZ state
[45], obtained by applying the unitary operation UN =
exp(iπJx/2) exp(iπJ2

z /2) exp(iπJx/2) on an initialized state
|00 . . . 0〉; here Jα = ∑N

j=1 σ
( j)
α /2, where σ

( j)
α is the Pauli
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FIG. 2. (a) Quantum circuit for the measurement of the sub-QFI
for a four-qubit entangled state. The Hadamard gate and the control-
NOT gates are used to prepare the GHZ state, which is used for the
estimation of the parameter θ as induced by the rotation Rz(θ ). Local
random matrices uj are applied to realize randomized measurements.
(b) The modified Bures distance D2

G between the state ρθ0 and ρθ

as a function of dθ =θ − θ0; here we set θ0 =0. The dashed curve
is the polynomial fit to the experiment data (circles) generated by
the IBM Quantum Falcon Processor (ibmq_belem v1.0.3), while the
solid curve represents the quadratic fit. The experimental sub-QFI
FG = 4.301 ± 0.22 is compatible with the value FG = 4.4807 ob-
tained from quantum state tomography (see Appendix B). This result
provides a lower bound for the exact QFI, which is Fθ = 6.5147.
The number of randomized measurements is n=400.

matrix along the α direction of the jth qubit. We describe
the dynamical evolution of the system by a quantum master
equation, whose dissipator is taken in the form

Lρ =
N∑

j=1

LjρL†
j − 1

2
(L†

j L jρ + ρL†
j L j ), (6)

where the Lindblad operator Lj = √
γ σ

( j)
z describes the

dephasing of the jth qubit with a dephasing rate γ . To
measure the sub-QFI of the mixed state ρθ = e−iθJzρeiθJz ,
we design random matrices through the time-evolution op-
erator U = ∏K

m=1 e−iHmT , where Hm = ∑N
j=1 �

( j)
m σ

( j)
z + Hs.

The first term �
( j)
m σ

( j)
z represents an on-site disorder drawn

from a normal distribution with the standard deviation δ,
while the second term Hs denotes the Ising Hamiltonian
that can be implemented in trapped-ion systems [46,47],
namely Hs = ∑

(k<l ) g|k − l|−ασ (k)
x σ (l )

x + �
∑N

k=1 σ (k)
x , with

0 < α < 3 and g the nearest-neighbor coupling.
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FIG. 3. (a) The number of required measurements n in order to
achieve an average relative error � ε of the QFI (circles, γ = 0) and
the sub-QFI (triangles, γ /g = 0.01) as functions of the number of the
ions. The dashed line and the dash-dotted line are the correspond-
ing exponential fits 2a+bN with a = 10.63 ± 0.93, b = 0.21 ± 0.14
and a = 10.89 ± 0.82, b = 0.23 ± 0.12. The parameters are chosen
as α = 1.5, K = 20, dθ = 1.6/N , and g = � = δ = 1/T , ε = 9%.
(b) The QFI and the QFI density as functions of the evolution time for
an 8-ion system (solid line for γ = 0 and dashed line for γ /g = 0.01)
during the generation of GHZ state. The dash-dotted line shows
the lower bound of the QFI and the QFI density as γ /g = 0.01.
The circles and the triangles are the results obtained by random
measurements. The number of random measurement is n = 1000;
the other parameters are the same as in (a): K = 20, α = 1.5, and
g = � = δ = 1/T .

We proceed by performing a scaling analysis of the exper-
imental overhead as the system size increases. By choosing
two independent sets of random unitary gates to obtain the
purity and the state overlap respectively, we obtain a simple
formula for the error propagation; see Eq. (C1) in Appendix C.
Figure 3(a) shows the scaling of the number of randomized
measurements that are required to achieve an average relative
error on the sub-QFI that is smaller than some threshold
�ε = 9%. In the absence of noise (γ = 0), the system is
in a pure state, and the number of required measurements
is shown to scale as ∼2(0.21±0.14)N (dashed line). We remark
that such a scaling represents a significant improvement over
quantum state tomography, for which the number of required
measurements scales as ∼22N [48]. The improvement is also
evident for the mixed states generated by noise. In this case,
the number of required measurements scales as ∼2(0.23±0.12)N

(dash-dotted line). Importantly, the QFI is known to serve
as a witness of multipartite entanglement [18,19]: a gen-
eral quantum state ρ must be (m + 1)-partite entangled if
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the QFI density Fθ /N > m. In Fig. 3(b), we show the QFI
(resp. sub-QFI) for pure (resp. mixed) states, together with
the corresponding density Fθ /N as a function of the evolution
time. These results demonstrate the efficiency of our scheme
in measuring the lower bound of the QFI, and hence the
dynamics of multipartite entanglement, in open many-body
quantum systems.

V. CONCLUSIONS AND OUTLOOK

We used several quantum platforms to demonstrate an ef-
ficient method to determine the sub-QFI of general quantum
states based on randomized measurements. Our method does
not rely on full quantum state tomography, and in fact, it
exhibits significantly enhanced efficiency over quantum state
tomography when applied to many-body quantum systems.
Importantly, the sub-QFI is equivalent to the QFI in single
qubits or pure multiqubit states, and it provides an instruc-
tive lower bound on the QFI in more general cases. The
application of our approach to other quantum systems could
provide a powerful method to estimate the QFI in different
contexts, allowing for the experimental exploration of the QFI
in various quantum phenomena.

Note added in proof. We note a related work on quantum
Fisher information from randomized measurement [49].
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APPENDIX A: EXTRACT QUANTUM STATE
INFORMATION VIA GENERAL RANDOM

MEASUREMENTS

The key for the estimation of the sub-QFI in the main text is
the measurement of quantum state overlap in order to obtain
the superfidelity; see Eqs. (2) and (3). Here, we present the
details on how to obtain quantum state overlap by perform-
ing random measurements introducing random global unitary
gates prior to a projective measurement. Given a random uni-
tary matrix U in the Hilbert space HN with the dimension N ,
we can obtain the identity

UU † = 1, (A1)

which means that the mth diagonal term of UU † is

N∑
n=1

UmnU
∗
mn = 1. (A2)

If U is a random matrix distributed according to the Haar
measure, i.e., chosen in the circular unitary ensemble (CUE),
one can prove that [32]

〈UmnU
∗
mn〉 = 1/N, (A3)

which is a special case of the general result

〈UklU
∗
mn〉 = δkmδln/N. (A4)

Here Ukl and U ∗
mn are the matrix elements of U and the

corresponding complex conjugate respectively. 〈· · · 〉 denotes
the average over the distribution of random unitaries. Higher-
order averages follow from the Isserlis (“Gaussian-moments”)
theorem [32,33,50] including

〈UmkU
∗
nkUm′k′U ∗

n′k′ 〉 = 1

N2 − 1
(δmnδm′n′ + δkk′δmn′δm′n)

− 1

N (N2 − 1)
(δmn′δm′n + δkk′δmnδm′n′ ).

(A5)

Random measurements can be implemented by first apply-
ing random unitary gates which transform the density matrix
ρ1 as

U (ρ1) = Uρ1U
† =

∑
m,n,l,l ′

ρ (1)
mnUlmU ∗

l ′n|l〉〈l ′|, (A6)

where ρ (1)
mn is the element of ρ1, i.e., ρ (1)

mn = 〈m|ρ1|n〉, and {|n〉}
forms a basis. The subsequent measurement in a single basis
state |k〉 ∈ HN gives the probability P1(k) as

P1(k) = Tr[|k〉〈k|U (ρ1)] =
∑
m,n

ρ (1)
mnUkmU ∗

kn, (A7)

the corresponding average of which is thus given by [accord-
ing to Eq. (A4)]

〈P1(k)〉 =
∑
m,n

ρ (1)
mn 〈UmkU

∗
nk〉 =

∑
m,n

ρ (1)
mnδmn/N = 1/N, (A8)

where we have used the identity Tr(ρ) = ∑
m ρmm = 1. Sim-

ilarly, the probability P2(k) can be obtained by the same
random unitary U acting on another density matrix ρ2 as

P2(k) =
∑
m,n

ρ (2)
mnUkmU ∗

kn. (A9)

In order to obtain the overlap between ρ1 and ρ2, i.e.,
Tr[ρ1ρ2], we further investigate the correlation between P1(k)
and P2(k), which is

〈P1(k)P2(k)〉 =
∑

m,n,m′,n′
ρ (1)

mnρ
(2)
m′n′ 〈UkmU ∗

knUkm′U ∗
kn′ 〉. (A10)

By making use of the Isserlis theorem in Eq. (A5), the above
correlation is found to be

〈P1(k)P2(k)〉 =
∑

m,n ρ (1)
mmρ (2)

nn + ∑
m,n ρ (1)

mnρ (2)
nm

N (N + 1)

= 1 + Tr(ρ1ρ2)

N (N + 1)
, (A11)

which leads to the following result:

Tr(ρ1ρ2) = N (N + 1)〈P1(k)P2(k)〉 − 1. (A12)
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Furthermore, one can replace N in Eq. (A12) by the inverse
of the average of the probability 1/P1(2)(k) to make the result
more accurate when N is a finite value; see Ref. [32]. We note
that the result gives the state purity if we choose ρ2 = ρ1.

In the above discussion, the probability P1(k), see Eq. (A7),
is measured in an arbitrary N-dimensional basis state (|k〉)
of the Hilbert space HN [32–38,51]. We remark that it only
requires the projective measurement result on one single basis
state, which makes it more convenient in both experiment and
numerical calculation as compared with the method based on
local random unitaries [34,35], which requires the measure-
ment outcome on a complete set of basis states.

It is also worth noting that for a system consisting of K d-
dimensional objects (i.e., N = dK ), it may be more feasible to
measure the probability P1(ŝα ) corresponding to the collective
observable ŝα = ∑K

j=1 |α〉 j j〈α|/K , where |α〉 j denotes an ar-
bitrary d-dimensional basis state for the jth particle. In this
case, we have

P1(ŝα ) = 1

K

K∑
j=1

Tr[|α〉 j j〈α|U (ρ1)]. (A13)

For the total system, there will be Nm
A = K!(d − 1)K−m/

[m!(K − m)!] eigenstates, in which m particles are in the

state |α〉. Therefore, the probability P1(ŝα ) can be expanded
as

P1(ŝα ) = 1

K

K∑
m=1

Nm
A∑

lm=1

mTr[|m, lm〉〈m, lm|U (ρ1)]. (A14)

By making use of the Eq. (A8), the average of P1(ŝα ) over the
random unitary gates is given by

〈P1(ŝα )〉 = 1

KN

K∑
m=1

mNm
A , (A15)

which means the dimension of the total system can be experi-
mentally obtained by

N =
K∑

m=1

mNm
A /[K〈P1(ŝα )〉]. (A16)

Then we consider the same random measurement acting on
another density matrix ρ2 and obtain the probability P2(ŝα ).
To calculate the overlap between ρ1 and ρ2, we can multiply
P1(ŝα ) by P2(ŝα ),

P1(ŝα )P2(ŝα ) = 1

K2

∑
m,m′

∑
lm,lm′

mm′Tr[|m, lm〉〈m, lm|U (ρ1)]Tr[|m′, lm′ 〉〈m, lm′ |U (ρ2)]. (A17)

Based on Eq. (A5), the corresponding average can be obtained
as

〈P1(ŝα )P2(ŝα )〉 = c1
1 + Tr(ρ1ρ2)

N (N + 1)
+ c2

N − Tr(ρ1ρ2)

N (N2 − 1)
,

(A18)
where

c1 = 1

K2

∑
m

m2Nm
A ,

c2 = 1

K2

∑
m

[
m2Nm

A

(
Nm

A − 1
) +

∑
m′ �=m

mm′Nm
A Nm′

A

]
.

This leads to the following inverse formula to calculate the
overlap between ρ1 and ρ2:

Tr(ρ1ρ2) = N (N2 − 1)〈P1(ŝα )P2(ŝα )〉 + c1 − (c1 + c2)N

c1N − (c1 + c2)
.

(A19)
In order to verify the above result, we choose the collective

observable

ŝ0 = 1

8

8∑
j=1

|0〉 j j〈0|, (A20)

and use Eqs. (2) and (3) in the main text to simulate the sub-
QFI for an 8-ion system in Fig. 4. The parameter-dependent
state ρθ and the relevant parameters are the same as those
of Fig. 3(b) in the main text with γ = 0. The solid line
is the theoretical prediction and the circles are the corre-
sponding results obtained via random measurements based

on the collective observable ŝα . The good agreement between
the theoretical description and the random measurement out-
comes verifies the validity of our analytical derivation.

APPENDIX B: ADDITIONAL EXPERIMENTAL DATA

In Fig. 5, we also show the modified Bures distance
D2

G(ρθ0 , ρθ ) as functions of dθ for different values of θ0.
The solid, dashed, and dash-dotted curves represent the corre-
sponding quadratic fit of the experiment data, the coefficients

0 /4 /2 3 /4 5 /4 3 /2
0

10

20

30

40

50

60

0

1

2

3

4

5

6

7

8

Q
F

I 
d
en

si
ty

FIG. 4. The QFI and the QFI density obtained from the collective
observable ŝ0 = ∑8

j=1 |0〉 j j〈0|/8 [see Eq. (A19)] as functions of the
evolution time for the same 8-ion system as that of Fig. 3(b) in the
main text. The relevant parameters are chosen as γ = 0, dθ = 0.1,
n = 2000, K = 20, α = 1.5, and g = � = δ = 1/T .
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FIG. 5. The modified Bures distance D2
G(ρθ0 , ρθ ) between the

states ρθ0 and ρθ as a function of dθ = θ − θ0 = �dt for θ0 = 5π/2
(circles), 9π/2 (squares), and 11π/2 (triangles). The solid, dashed,
dash-dotted curves are the quadratic fit of the experiment data, the
corresponding coefficients of which provide the values of the QFI
as 0.94 ± 0.13, 0.69 ± 0.10, and 0.56 ± 0.10. The other relevant
experimental parameters are the detuning � = (2π )1.459 MHz, the
angle φ = π/2, and the number of random measurements is n =
400. The coherence time of the NV-center spin is estimated to be
T ∗

2 = 2.58 ± 0.2 μs. We note that the experimental operations are
the same as those of Fig. 1 in the main text.

of which provide estimations for the sub-QFI. Moreover, the
values of the sub-QFI that are extracted in this way correspond
to the circles of Fig. 1(d) in the main text.

We generate a 4-qubit GHZ state with the IBM Quantum
Falcon Processor (ibmq_belem v1.0.3) using the circuit as
shown in Fig. 2(a) of the main text. Due to the imperfection
of the gates, the prepared state is not an ideal pure GHZ state.
Instead, the state is a mixed state. We perform full quantum
state tomography, and the entries of the corresponding density
matrix that we obtain are shown in Fig. 6. This allows us to
estimate that the fidelity of the prepared state with respect to
the 4-qubit GHZ state reaches 78%. Based on the density ma-
trix obtained from quantum state tomography, we calculate the
parameter-dependent evolution ρθ0 = e−iθ0Jzρeiθ0Jz and ρθ =
e−iθJzρeiθJz , where Jz = ∑4

j=1 σ
( j)
z /2 and dθ = θ − θ0. Thus,

we can obtain the modified Bures distance D2
G(ρθ0 , ρθ ) with

dθ = 0,±0.1,±0.2,±0.3 and perform the quadratic fit of
D2

G(ρθ0 , ρθ ) � FG(ρθ0 )dθ2 to get the theoretical value of the
lower bound of the QFI [following Eqs. (2) and (3) in the main
text]. Similarly, by calculating the Uhlmann-Jozsa fidelity be-
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FIG. 6. Density matrix elements of the prepared four-qubit state
ρ obtained via Qiskit using the IBM Quantum Falcon Processor
(ibmq_belem v1.0.3). The fidelity with respect to the GHZ state is
estimated to be 78%.

tween ρθ0 and ρθ we can obtain the exact value of the QFI
Fθ = 6.5147.

APPENDIX C: SCALING OF STATISTICAL
ERROR IN SUB-QFI

From a statistical viewpoint, FG(ρθ ) in Eqs. (2) and (3)
is a function of Tr ρ2

θ , Tr ρ2
θ+dθ , Tr(ρθρθ+dθ ). To simplify the

analysis, we assume different sets of unitaries to obtain these
three quantities via random measurements. In Fig. 3(a) of the
main text, the random unitary matrices were generated using
random quenching. The uncertainty of sub-QFI becomes

σ 2
FG

=
(

∂FG

∂ Tr (ρθρθ+dθ )
σTr (ρθ ρθ+dθ )

)2

+
(

∂FG

∂ Tr ρ2
θ

σTr ρ2
θ

)2

+
(

∂FG

∂ Tr ρ2
θ+dθ

σTr ρ2
θ+dθ

)2

. (C1)

Based on the previous analysis in Refs. [51,52], we can
treat the estimators as random variables obeying a normal
distribution, i.e., Tr(ρ2

1 ) ∼ N (μ1, σ1), Tr(ρ2
2 ) ∼ N (μ2, σ2),

Tr(ρ1ρ2) ∼ N (μ12, σ12). Therefore, we can obtain numerical
scaling of statistical error for the sub-QFI following Eq. (C1).
In Table I, we compare the relative standard deviation (i.e., the
ratio between the standard deviation and the average value of
the sub-QFI) obtained from the above theoretical analysis and
the result from numerical simulation [as shown in Fig. 3(a)
of the main text], which demonstrates that the theoretical
analysis gives results very similar to those of our numerical
simulation.

TABLE I. Relative standard deviation of the sub-QFI.

Number of qubits

3 4 5 6 7 8

Pure state:
Theoretical analysis (%) 9.2 8.6 8.6 8.7 8.5 8.4
Numerical simulation (%) 9.7 9.0 9.0 9.1 8.9 8.7
Number of random measurements 0.85×103 1.50×103 1.85×103 2.05×103 2.25×103 2.35×103

Mixed state:
Theoretical analysis (%) 9.0 9.0 8.9 8.9 8.9 9.0
Numerical simulation (%) 9.0 9.0 8.8 8.9 8.9 9.0
Number of random measurements 1.12×103 1.86×103 2.33×103 2.78×103 3.06×103 3.24×103
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