
PHYSICAL REVIEW RESEARCH 3, 043116 (2021)

Verifying single-mode nonclassicality beyond negativity in phase space
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While negativity in phase space is a well-known signature of nonclassicality, a wide variety of nonclassical
states require their characterization beyond negativity. We establish a framework of nonclassicality in phase
space that addresses nonclassical states comprehensively with a direct experimental evidence. This includes
the negativity of phase-space distribution as a special case and further analyzes quantum states with positive
distributions effectively. We prove that it detects all nonclassical Gaussian states and all non-Gaussian states of
arbitrary dimension remarkably by examining three phase-space points only. Our formalism also provides an
experimentally accessible lower bound for a nonclassicality measure based on trace distance. Importantly, this
foundational approach can be further adapted to constitute practical tests in two directions looking into particle
and wave nature of bosonic systems, via an array of nonideal on-off detectors and coarse-grained homodyne
measurement, respectively. All these tests are practically powerful in characterizing nonclasssical states reliably
against noise, making a versatile tool for a broad range of quantum systems in quantum technologies.
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I. INTRODUCTION

Describing a quantum state of light or matter in phase
space, e.g., Wigner function [1], is profoundly important to
study quantum dynamics. It is a crucial tool to delineate the
boundary between classical and quantum physics widely used
in quantum optics [2], continuous variable (CV) quantum
informatics [3,4], and other fields of quantum science [5]. As
a classical phase-space distribution takes non-negative values
like a probability distribution, a negativity emerging in quan-
tum distribution is regarded as a signature of nonclassicality.
However, negativity is just one aspect of multifaceted non-
classicality characterizing only a subset of nonclassical states.
There exist quantum states with positive distributions that can
nevertheless be classified as nonclassical, e.g., a squeezed
state of light that is a key resource for CV quantum infor-
matics [4] and single photons under a high-loss channel that
are elementary information carriers for quantum informatics
[6,7].

Nonclassical states are essential resources broadly for
quantum informatics generating entangled states [8–12],
providing advantage for quantum metrology [13–15] and
quantum computation [16,17], etc.. A recent resource theory
identified all quantum non-Gaussian states, even with positive
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Wigner functions, as a resource for quantum tasks, e.g., sub-
channel discrimination [18], which was further generalized to
all CV nonclassical states [19]. It is thus crucial to establish a
framework that can widely analyze nonclassical states beyond
negativity. Specific properties were often used to character-
ize nonclassical states such as squeezing and photon-number
statistics (sub-Poissonian) [20–23] extended also to multi-
mode cases [24,25]. Distillation of nonclassicality can also be
used to verify the nonclassicality of an initial state, however,
requiring multiple copies of the same nonclasscial state and
postselection [26–28]. More broadly, a quantum state tomog-
raphy may be used to obtain complete information on a state
thereby confirming nonclassicality [29]. However, it requires
extensive measurements for sufficient data, and more seri-
ously, an optimization process to find a physical state closest
to obtained data. The data itself does not directly represent
a legitimate quantum state rendering its significance weaker.
It is necessary to characterize nonclassicality by examining
phase space in a faithful and resource-efficient way.

Adhering to negativity as a nonclassical feature, some
works proposed to display negativity by modifying phase-
space distributions, e.g., a regularized P function under
filtering process [30,31]. Other distributions closely related to
the so-called s-parametrized functions [2] were also studied
in view of photon statistics from on-off detectors [32,33].
Phase-space inequalities were also obtained by combining
different s-parametrized functions useful to some extent
[34]. Nevertheless, it is worth asking if the original Wigner
function contains substantial information on nonclassicality
beyond negativity. In this respect, Banaszek and Wódkiewicz
proposed a Bell test examining four phase-space points
to manifest nonlocality of two-mode states with positive
Wigner functions [35], which were extended to generalized
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quasiprobability distributions [36] and genuine multipartite
nonlocality [37–39]. The works in [40,41] demonstrated
Bell-like tests also for single-mode nonclassicality and quan-
tum non-Gaussianity. While conceptually remarkable and
practically useful, these methods do not address a broad range
of nonclassical states, e.g., squeezed states with purity <0.86
are out of reach.

In this article, we propose a hierarchy of nonclassicality
criteria in phase space that yields an efficient and broadly
applicable test for CV systems. Our formalism addresses the
Wigner function at n(n+1)

2 phase-space points progressively
(n = 1, 2, . . . ). It includes the negativity of Wigner function
at n = 1. Remarkably, it can detect all nonclassical Gaussian
states and all non-Gaussian states of arbitrary dimension at the
next level n = 2, i.e., looking into three phase-space points
only. This opens a new possibility for a faithful and efficient
test. We show that our foundational approach can constitute
two practical tests characterizing nonclassical states reliably
and efficiently from a particle and a wave point of views,
respectively. It thus makes our method a versatile tool for
a wide range of CV systems in quantum physics and tech-
nologies. We illustrate the practical power of our approach
by examples. Our proposed approach is fruitful also in other
aspects. It provides an experimentally accessible lower bound
for nonclassical distance defined via trace norm [42], which
is hard to obtain even theoretically. It can also be further
extended to identify quantum non-Gaussianity [43–57] under
energy constraint.

II. CRITERIA

Let us start with a general condition on classicality. A
classical state, i.e., a mixture of coherent states, must satisfy∫

d2αPρc (α)| f (α)|2 � 0, (1)

for an arbitrary f (α) since its Sudarshan-Glauber-P function
Pρc (α) is positive definite [58,59]. Our aim is to establish crite-
ria that deal with the Wigner function at discrete phase-space
points by choosing f (α) properly. Not only providing a fun-
damental insight, the Wigner-function approach also leads to
two general practical tests broadly applicable for CV systems,
as shown later.

To our aim, invoking the convolution between the P func-
tion and the s-parametrized function [2]

Wρ (α; s) = 2

π (1 − s)

∫
d2βPρ (β )e− 2|β−α|2

1−s , (2)

we choose f (α) = ∑n
i=1 cie−|α−βi|2 (s = 0 for Wigner

function, ci, βi: arbitrary complex numbers). It yields∫
d2αPρ (α)| f (α)|2 = ∑n

i, j=1 c∗
i c jM(n)

i j � 0, where

M(n)
i j = π

2
Wρ

(
βi + β j

2

)
e− 1

2 |βi−β j |2 . (3)

For the classicality to hold for arbitrary ci’s, we deduce the
following theorem.

Theorem. An n × n matrix M(n) with its elements given
by Eq. (3) must be positive semidefinite for a classical state,
i.e., M(n) � 0 for all n ∈ [1,∞), with arbitrary {β1, β2, ...βn}.

In other words, we verify nonclassicality if there exists a
nonpositive M(n) � 0 for any n.

III. HIERARCHY

By its construction, M(n+1) � 0 implies M(n) � 0 since
the matrix M(n+1) includes M(n) as its submatrix. That is,
there naturally occurs a hierarchy of criteria with n increasing.
If nonclassicality is confirmed at the level of n, it must be so
at the next levels of n + 1, etc., but the converse is not always
true.

Our formulation includes the negativity of Wigner function
at the lowest n = 1, M(1) = π

2 W (β ) � 0. Then, it is funda-
mentally interesting, and practically important, to know how
many phase-space points are required to verify noclassicality
for states with positive Wigner functions. We prove below that
our method can detect nonclassical states comprehensively
using only three points {β1,

β1+β2

2 , β2} on a line, i.e., M(2) � 0
with

M(2) = π

2

(
W (β1) W

(
β1+β2

2

)
e− 1

2 |β1−β2|2

W
(

β1+β2

2

)
e− 1

2 |β1−β2|2 W (β2)

)
.

(4)

IV. GEOMETRIC INTERPRETATION

Before demonstrating its usefulness, let us briefly
discuss the meaning of the classicality condition
M(2) � 0. One readily finds that all coherent states
satisfy Wcoh( β1+β2

2 )e− 1
2 |β1−β2|2 = √

Wcoh(β1)Wcoh(β2) yielding
M(2) � 0 for arbitrary {β1, β2}. The linearity of M(n) with
respect to states, M(2)∑

piρi
= ∑

piM(2)
ρi

, then makes a general

classicality condition M(2) � 0 for a mixture of coherent
states. For a classical state, we thus see that the Wigner
function at midpoint β1+β2

2 must be bounded by the geometric
mean of the Wigner functions at end points β1 and β2,
importantly with a scaling factor e− 1

2 |β1−β2|2 . In fact, this
factor results from the commutator [â, â†] = 1 representing
the size of vacuum fluctuation.

Gaussian states. Every single-mode Gaussian state can be
expressed as a displaced squeezed thermal state

σ = D̂(γ )Ŝ(r, φ)ρth(n̄)Ŝ†(r, φ)D̂†(γ ). (5)

Here Ŝ(r, φ) = exp[− r
2 (e2iφ (â†)2 − e−2iφ â2)] is a squeezing

operator with strength r and angle φ of squeezing axis.
ρth(n̄) = ∑∞

n=0
n̄n

(n̄+1)n+1 |n〉〈n| is a thermal state with mean

number n̄. We can readily show M(2) � 0 by taking three
points along a squeezed axis [Fig. 1(a)], with two end points
at a distance 2d and the middle point at the origin. Our test
turns out to be successful for a wide range of d as shown
in Fig. 1(c). Without loss of generality, we consider an x-
squeezed thermal state (γ , φ = 0), whose Wigner function
is given by Wσ (q, p) = 2μ

π
e−2e2(r−rc )q2

e−2e−2(r+rc ) p2
, with purity

μ = (1 + 2n̄)−1 and critical squeezing rc = − 1
2 log μ. Sec-

tion S1 of the Supplemental Material (SM) [60] gives its
lowest eigenvalue of M(2) as

λmin,σ = −2μe−(r−rc ) coth(r−rc ) sinh(r − rc) < 0, (6)
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FIG. 1. Wigner function of (a) squeezed vacuum (r = 0.5) and
(b) a lossy single photon 0.6|0〉〈0| + 0.4|1〉〈1|. Red dots in con-
tour plot represent the phase-space points for M(2) test. (c) R =

Wρ (−d )Wρ (d )
Wρ (0)2 exp(−4d2 )

for x-squeezed states with squeezing r − rc = 0.1 (red
solid) r − rc = 0.2 (gray dashed) r − rc = 0.4 (black dot-dashed)
and (d) R = Wρ (0)Wρ (2d )

Wρ (d )2 exp(−4d2 )
for a Fock state |n〉 under 80% loss

channel for n = 1 (red solid), n = 2 (gray dashed), n = 3 (black
dot-dashed). R < 1 (shaded region) confirms nonclassicality for a
wide range of displacement d .

confirming nonclassicality for every squeezed state r > rc,
pure or mixed.

Non-Gaussian states. More importantly, the three-points
test M(2) � 0 can detect a broad range of non-Gaussian states.
We first demonstrate its success for all non-Gaussian states of
arbitrary truncation in Fock space. This includes as examples
all noisy Fock states having positive Wigner functions. In Sec.
S3 of SM [60], we further demonstrate that it can be extended
to states of practical relevance having infinite Fock-state com-
ponents.

The Wigner function of an arbitrary Fock-space truncated
state (FSTS), ρ = ∑N

i, j=0 ρ jk| j〉〈k|, takes a form Wρ (α) =∑N
i, j=0 ρ jkW| j〉〈k|(α), with W| j〉〈k|(α) given in Sec. S2 of SM

[60]. As the case of negative Wigner functions is already
treated at n = 1, we focus on the case of positive Wigner
functions. Choosing β1 = 2deiϕ and β2 = 0 gives det M(2) =
π2

4 [Wρ (2deiϕ )Wρ (0) − W 2
ρ (deiϕ )e−4d2

]. We thus look into

R(d ) = Wρ (2deiϕ )Wρ (0)

W 2
ρ (deiϕ )e−4d2 whose value less than 1 verifies non-

classicality. R(d ) is a continuous function of d satisfying
R(0) = 1. For the FSTS, we always find limd→∞ R(d ) = 0
with details in Sec. S2 of SM [60]. Therefore, there must

be a finite d satisfying R(d ) < 1 confirming nonclassicality.
Remarkably, it works regardless of ϕ, i.e., insensitive to the
axis of three points.

As an illustration, in Fig. 1, we plot the ratio R for (c)
squeezed states and (d) Fock states under a 80%-loss chan-
nel. We confirm nonclassicality, R < 1, for a broad range of
displacement d .

V. NONCLASSICALITY DISTANCE

It is also a topic of great interest to quantify the degree of
nonclassicality for a given state ρ. A typical approach is to
measure a distance between ρ and its closest classical state ρc

as Nd (ρ) ≡ 1
2 minρc∈C ||ρ − ρc||1, with || · ||1 the trace norm

and C the set of classical states. This is, however, very hard to
obtain even if the state is completely known. Our formalism
provides a lower bound for this nonclassical distance [42,61]
enabling its practical estimation. With details in Sec. S4 of
SM [60], we obtain

Nd (ρ) � −λmin

2n
, (7)

where λmin is the least eigenvalue of M(n) at the level n.
At n = 1, Eq. (7) shows that a negative value in phase space

directly provides a reliable estimate for nonclassical distance.
We can further estimate the nonclassical distance of a state
with a positive Wigner function by using M(2). For instance,
for a general Gaussian state σ ,

Nd (σ ) � μ

2
e−(r−rc ) coth(r−rc ) sinh(r − rc), (8)

using Eq. (6), which is beyond the results in Refs. [42,61]
addressing only pure Gaussian states. We also establish con-
nection between our approach and nonclassical depth [62] in
S9 of SM [60].

VI. QNG

Furthermore, our formalism also leads to a crite-
rion on quantum non-Gaussianity (QNG) manifesting
that a state cannot be a mixture of Gaussian states.
[40,43–50,54,56]. QNG has recently attracted much attention
in CV quantum informatics as there exist numerous quan-
tum tasks essentially requiring it beyond Gaussian resources,
e.g., quantum computation [63,64], entanglement distillation
[65–67], and error correction [68].

With details in Sec. S5 of SM [60], if the least eigenvalue
of M(2)

ρ for a state ρ with energy E satisfies

λmin < B(E ) ≡ − 2
√

E

(
√

E + 1 + √
E )

√
1+E−1

. (9)

it confirms QNG. In Fig. 2, we plot �λmin = B(E ) − λmin for
a non-Gaussian state ρ = Ŝ(r){ f |2〉〈2| + (1 − f )|0〉〈0|}Ŝ†(r)
with squeezing Ŝ(r) = e

r
2 (a† )2− r

2 a2
. As seen from Fig. 2(a),

our criterion detects QNG with f < 1
2 (positive Wigner func-

tion) for a squeezing r � 0.237. Note that the squeezing
operation does not create QNG as it is a Gaussian opera-
tion. In this context, the result also represents the QNG of
f |2〉〈2| + (1 − f )|0〉〈0| without squeezing. A recent ion-trap
experiment realized a measurement in squeezed Fock basis,
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FIG. 2. (a) �λmin = B(E ) − λmin for the state Ŝ(r){ f |2〉〈2| +
(1 − f )|0〉〈0|}Ŝ†(r) with r = 0 (blue dot-dashed), r = 0.2 (red
dashed) and r = 0.5 (black solid). The QNG-detectable region,
�λmin > 0, broadens with squeezing r. (b) The QNG of a four-
component cat state |C〉 ∼ |γ 〉 + |γ ei π

2 〉 + |γ eiπ 〉 + |γ ei 3π
2 〉 [70] is

confirmed under a loss channel (T : transmittance) for each γ . Black
solid represents the minimum T above which QNG is verified by
Eq. (9). The yellow region represents the case of positive Wigner
function.

{Ŝ(r)|n〉 : n = 0, 1, · · · } [69]. This can be adopted to verify
QNG of states Ŝ(r)ρnGŜ†(r) without performing squeezing on
a non-Gaussian state ρnG enhancing the range of QNG de-
tection. Fig. 2(b) gives another example of a positive Wigner
function with its QNG verified.

VII. PRACTICAL TESTS

The Wigner function corresponds to the number parity
after displacement, i.e., Wρ (α) = 2

π
tr[D̂†(α)ρD̂(α)(−1)n̂]. It

is routinely measured in various systems, e.g., ion-trap [40,71]
and circuit-QED [72], for which our proposed test M(2)

can thus directly characterize nonclassicality. On the other
hand, we can also derive alternative, practical, schemes out
of Wigner-function framework, which can test nonclassicality
reliably and efficiently against experimental imperfections.
First, we present a generalized formalism to use on-off de-
tectors registering photons without photon-number resolving
(PNR). Second, we also present a marginal version of Wigner-
function test, i.e., using M(q) = ∫

d pWρ (q, p), which can be
measured by homodyne detection well established for a wide
variety of quantum systems including quantum optics [29],
trapped ion [73], atomic ensemble [74], circuit cavity QED
[75,76], and optomechanics [77,78]. Both of our proposed
tests are powerful against noise with wide applicability.

On-off detector array. When an input light is equally di-
vided via beam splitting to impinge on N on-off detectors, the
probability of k detectors clicking is [79]

pk[ρ] = tr

[
ρ :

N

k!(N − k)!
(e− ηn̂

N )N−k (1 − e− ηn̂
N )k :

]
, (10)

with η detector efficiency and : Ô : normal-ordering. The
counting statistics pk above can also be obtained via the
time-multiplexing approach using a single detector [33].
We first generalize our criterion to s-parametrized function
Wρ (α; s) [2] to use the counting statistics pk[ρ] from on-off

detectors. Choosing f (α) = ∑n
i=1 cie− |α−βi |2

1−s in Eq. (1) with
the convolution in Eq. (2), we obtain

∫
d2αPρ (α)| f (α)|2 =

FIG. 3. (a) Testing a Fock state |n = 2〉 under 50% loss channel
mixed with a thermal photon n̄ = 0.05 using N = 1 on-off detectors.
R = Wρ (d1;s)Wρ (d1+2d;s)

Wρ (d1+d;s)2 exp(−4d2 )
(s = −1.86, red solid) against displacement

d with d1 = 1. (b) Homodyne test for a phase-diffused squeezed state

with R = Mσ
ρ [−n]Mσ

ρ [n]

Mσ
ρ [0]2 exp(−4n2σ 2 )

(red solid) against n with binning size σ =
0.1. n: bin number for quadrature q = nσ . Grey shades represent the
size of error due to finite data (a) ∼105 and (b) ∼106.

∑n
i, j=1 c∗

i c jM(s,n)
i j � 0, where

M(s)
i j = π (1 − s)

2
Wρ

(
βi + β j

2
; s

)
e− 1

1−s

|βi−β j |2
2 . (11)

Our classicality condition is readily generalized to M(s,n) � 0
for an arbitrary s using elements in Eq. (11).

We find the connection between the s-parametrized
functions and the counting statistics pk in S6 of SM
[60] as ⎛

⎜⎜⎜⎝

Wρ (α; s0)
Wρ (α; s1)

· · ·
Wρ (α; sN−1)

1

⎞
⎟⎟⎟⎠ = T −1

⎛
⎜⎜⎜⎝

p0

p1

· · ·
pN−1

pN

⎞
⎟⎟⎟⎠, (12)

with each sm = 1 − 2N
(N−m)η (m = 0, · · · , N − 1). Equa-

tion (12) means that N different s-parametrized distribu-
tions Wρ (α; sm) are determined by the counting statistics
{p0, · · · , pN } obtained for a displaced state D̂†(α)ρD̂(α). Fur-
thermore, we prove in Sec. S2 of SM [60] that M(s,n=2)

(three points test) can detect all nonclassical Gaussian and
non-Gaussian states (FSTSs), importantly for an arbitrary s.
This broader applicability beyond Wigner function makes our
test robust against noise.

Let us illustrate the case of testing a Fock state |n〉 under
50% loss channel mixed with a thermal photon n̄ = 0.05
by using only N = 1 on-off detector of efficiency η = 0.7
[80]. We further consider an error due to finite data acquisi-
tion ∼105 (Sec. S8 of SM [60]). Our 3-points test adopting
Wρ (α; s = −1.86) is accomplished with sm = 1 − 2N

(N−m)η for
m = 0. As shown in Fig. 3(a), there exists a range of displace-
ment to detect nonclassicality substantially beating the error.
For instance, we have the signal to noise ratio as 1−R

�R = 2.48
at d = 1.1. We also demonstrate the successful detection for
other noisy Fock states with error analysis in Sec. S8 of
SM [60].

Homodyne test. We next present a test using a marginal
distribution M(q) = ∫

d pWρ (q, p). Homodyne detection to
measure M(q) is highly efficient, but requires a careful
analysis. It is because that the actual homodyne data is coarse-
grained due to finite binning, which may lead to a false
detection of nonclassical effects [81–83]. Let σ be the binning
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size of homodyne data. Then all data in the range [−σ/2, σ/2]
belong to the same bin yielding a coarse-grained distribution
Mσ

ρ [n] ≡ ∫ σ/2
−σ/2 dδMρ (nσ + δ) (n: bin number representing

mean quadrature q = nσ ). A classicality condition M(H ) � 0
then emerges with its elements

M(H )
i j ≡ π

2
Mσ

ρ [mi + mj + k]e−2(mi−mj )2σ 2
, (13)

where k can be either 0 or 1, with details in Sec. S7 of
SM [60].

We prove in SM [60] that this marginal test even with a
coarse-grained information detects all nonclassical Gaussian
and non-Gaussian states (FSTSs). In Fig. 3(b), we show the
result for a squeezed state (r = 0.3) under phase diffusion,

D[ρ] = ∫
dφ

√
1

2π�2 e− φ2

2�2 ein̂φρe−in̂φ leaving no squeezing at
� = 1.2. Our homodyne test under coarse-graining (σ = 0.1)
clearly manifests nonclassicality over 7 standard deviation,
1−R
�R = 7.11. We also illustrate other cases in Sec. S8 of

SM [60].

VIII. CONCLUSION

A phase-space approach usually provides us with a valu-
able insight into quantum physics [84]. While negativity is one
manifestation of nonclassicality, recent studies made it clear
that all nonclassical states even without negativity are valu-
able resources for quantum information science [8–11,18].
It is thus critically important to establish a comprehensive
framework of addressing nonclassical states with and without
negativity covering a wide range of quantum systems. We
have introduced a hierarchy of nonclassicality conditions that
can address nonclassicality beyond negativity effectively and
efficiently. Our approach makes it possible to analyze all
nonclassical Gaussian states and non-Gaussian states using
three phase-space points. Our formalism further provides a
lower bound for nonclassical distance and a criterion to de-
tect quantum non-Gaussianity with positive Wigner functions.

Remarkably, our foundational approach also constitutes two
practical tests looking into particle nature (number parity) and
wave nature (marginal distribution), making a versatile tool
for CV systems broadly. We illustrated the practical power of
our tests adopting nonideal on-off detectors without resolv-
ing photon numbers and coarse-grained homodyne detection,
respectively.

We hope our paper could further stimulate works related
to nonclassical effects from both a fundamental and a prac-
tical perspective. Our approach here clearly indicates that
the information on nonclassicality is sufficiently imbedded in
phase space even at a few points. Our geometric interpretation
on classicality has stipulated the relation among the values
of Wigner function, which is fundamentally associated with
quantum fluctuation represented by a commutation relation or
uncertainty principle. This seems worthwhile to further purse
in studying nonclassicality for quantum multipartite systems
as well. In the near term, we anticipate our framework can
be useful for both theoretical and experimental analysis of
quantum systems. In particular, our proposed tests can address
all different CV systems including quantum optics, nano- or
optomechanics, atomic ensemble, and circuit cavity QED, and
so on.

Note added. We became aware of a closely related work by
Bohmann, Agudelo and Sperling [85]. We note that our main
idea and some results were earlier presented at an international
conference [86].
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