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Dynamic formation of quasicondensate and spontaneous vortices in a strongly interacting Fermi gas
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We report an experimental study of quench dynamics across the superfluid transition temperature Tc in a
strongly interacting Fermi gas by ramping down the trapping potential. The nonzero quasicondensate number
N0 at temperatures significantly above Tc in the unitary and the BEC regimes is consistent with the pseudogap
physics via preformed pairs. Below Tc, a rapid growth of N0 is accompanied by the spontaneous generation of
tens of vortices. We observe a power-law scaling of the vortex density versus the quasicondensate formation
time, consistent with the Kibble-Zurek theory. Our work provides an example of studying emerged many-body
physics by quench dynamics and paves the way for studying the quantum turbulence in a strongly interacting
Fermi gas.
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I. INTRODUCTION

In pursuit of correlated quantum physics in strongly in-
teracting Fermi gases, great efforts have been devoted to
studying equilibrium phases and transitions [1–6]. This has
shed light on the understanding of high-Tc superconductiv-
ity [7–9] and the modeling of equation of states of dense
neutron stars [10]. Of equal importance would be to probe the
nonequilibrium dynamics during a temperature quench across
the superfluid transition temperature Tc, where the superfluid
growth is closely connected to the generation of spontaneous
vortices.

For bosonic systems, the quench dynamics has been in-
tensively studied [11–17] and can be well described by the
Kibble-Zurek (KZ) theory [18,19]. Very recently, the obser-
vation of KZ scaling was also reported in Fermi gases [20].
However, it is expected that the quench dynamics of strongly
interacting Fermi systems should possess much richer physics
due to the complexity of fermionic superfluid formation.
Fermionic atoms have to pair into bosonic degrees of free-
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dom, Cooper pairs or bound molecules, for the formation of
a superfluid. In addition to the transition temperature Tc, there
exists another characteristic temperature T ∗, characterizing
the onset of pair formation. In the weak-coupling BCS limit,
pair formation and pair condensation occur essentially at the
same temperature, leading to a rapid growth of superfluid
fraction as the temperature T is lowered across Tc. How-
ever, as the pairing strength increases, these two temperatures
become distinct, and pairs can preform far above Tc. This
leads to a pseudogap in the fermionic excitation spectrum.
At the same time, isolated superfluid islands having random
relative phases may also appear above Tc. As the temperature
decreases, they may merge to generate vortices spontaneously.
Finally, superfluidity with global phase coherence is gradu-
ally established with the annihilation of these vortices and
antivortices. Therefore, the quench dynamics offers a great
opportunity for understanding the interplay among the for-
mation of bosonic pairs, superfluid phase coherence, and
spontaneous vortices.

Here, we report an experimental study of the real-time
dynamics of superfluid growth and spontaneous vortex for-
mation in a strongly interacting Fermi gas of 6Li atoms. We
rapidly ramp down the potential of the oblate optical trap
so that the system is effectively thermally quenched across
the superfluid transition. For a given ramping time, the qua-
sicondensate number N0 (consisting of bosonic pairs in the
vicinity of zero momentum) is recorded in real time, while
the spontaneously generated vortex density ρv is measured
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FIG. 1. Illustration of the real-time formation dynamics of qua-
sicondensate and spontaneous vortices, at unitarity (832 G) with
tramp = 600 ms. The top row shows the absorption images of the
cloud after 10-ms time of flight (TOF) at t = 520, 580, and 700 ms,
respectively, from left to right. Here, t is defined as the evolution time
of the system, i.e., t = 0 marks the start of the quench. Plots in the
bottom row are central line cuts of the column density distribution.
The solid lines are the fits with a Gaussian plus Thomas-Fermi
distribution, and the dashed lines indicate the Gaussian part alone.
The fitting yields the quasicondensate fraction N0(t )/N0,sat ≈ 0.1,
0.5, and 1 (from left to right), corresponding to the initial increase,
rapid growth, and saturation stages of the quasicondensate number,
respectively.

upon N0 reaching saturation. The observed growth dynamics
of N0 agree with calculations based on the pairing fluctuation
theory [21,22], by assuming that the system temperature T
decreases linearly with the evolution time t during the ramp.
The evolution of the growth dynamics of N0 is consistent with
the pseudogap physics via preformed pairs throughout the
BCS-BEC crossover. At unitarity, for normal quenches with a
ramping time tramp � 600 ms, the quasicondensate formation
time tf linearly increases with tramp and the growth dynamics of
N0 nicely collapse onto a single universal curve. In contrast,
for fast quenches with tramp � 400 ms, tf drops significantly
as tramp increases, and the growth curves of N0 exhibit a
significant deviation from the collapse, both of which hint
at the breakdown of the quasiequilibrium condition. Further-
more, by using tf as the quench time, which is less sensitive
to the pseudogap physics, a power-law scaling of ρv vs tf
is observed for normal quenches, and the extracted critical
exponent agrees quantitatively with that predicted by the KZ
theory.

II. EXPERIMENTAL METHOD

The main experimental setup and method for preparing the
6Li superfluid have been described in our previous works [23].
We start by preparing a spin-balanced mixture of 1 × 107

atoms at 832.18 G in an elliptical optical dipole trap [1/e2

radius 200 μm and 48 μm (in the gravity direction)]. Further
evaporative cooling is performed by ramping down the trap
depth and holding for 3 s, yielding a superfluid of 3.9(1) ×
106 atoms at about 0.3Tc. With a short ramping time, i.e., tramp

varies from 200 to 1500 ms, a temperature quench across the

FIG. 2. Real-time dynamics of quasicondensate number N0 with
tramp = 600 ms, at the magnetic field of 809 G (red diamonds,
BEC side), 832 G (blue circles, unitarity), and 861 G (green
squares, BCS side). Each data point is an average of about ten
individual measurements with standard statistical error. The curves
represent the theoretical results calculated based on the pairing fluc-
tuation theory, which have been rescaled and horizontally shifted to
fit the experimental data. The arrows indicate locations of superfluid
transition from theory. The inset shows the phase diagram of a 3D
homogeneous Fermi gas in the BCS-BEC crossover as a function
of 1/kFa, which manifests a pseudogap region between Tc and T ∗.
Here, kF and a denote the Fermi momentum and the s-wave scattering
length, respectively.

superfluid transition can be achieved, during which plenty of
vortices are spontaneously generated [12,13,15].

To probe the quasicondensate and vortices, the optical trap
is suddenly switched off and the magnetic field is rapidly
ramped to 720 G. After expansion for a total time of 10 ms,
strong saturation absorption imaging along the gravity direc-
tion is performed. The quasicondensate number N0 is then
obtained by fitting the density profile of the cloud with a Gaus-
sian plus Thomas-Fermi distribution. The dynamic formation
of vortices is clearly visible, as shown in Fig. 1. When N0

is small, the vortex cores are blurred with very low contrast
and are distributed in a small spatial region. As N0 increases,
the vortices become more visible and spread over the entire
cloud. This gives a direct and vivid illustration of the evolution
of superfluid coherence and the formation of spontaneous
vortices. We mention that owing to the oblate trap geometry,
the cloud expands rapidly in the gravity direction, resulting
in a reduced imaging resolution. Nevertheless, upon satura-
tion of N0, a high contrast of vortex cores is still achieved
[see Fig. 1(c)], suggesting a straight alignment of the vortex
lines.

III. QUASICONDENSATE GROWTH IN THE
BCS-BEC CROSSOVER

We first investigate the growth dynamics of the quasi-
condensate in the BCS-BEC crossover for tramp = 600 ms.
Figure 2 shows the quasicondensate number N0 as a function
of t for three typical magnetic fields of 809, 832, and 861 G.
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FIG. 3. Real-time dynamics of the quasicondensate N0 at unitarity. Each data point represents an average of about ten individual
measurements with the standard error bar. (a) Growth curves with tramp ranging from 200 to 1500 ms, where the solid curves are guides
to the eye. (b) Formation time tf and delay time td (inset) vs tramp. Solid lines are linear fittings. (c) N0/N0,sat vs (t − td)/tf, for normal quenches
with tramp � 600 ms. The data are fitted with a smoothing spline (solid line). (d) N0/N0,sat data for fast quenches with tramp � 400 ms, compared
with the solid curve for normal quenches.

Here, t is the evolution time of the system, starting at the
beginning of the quench. All three N0 curves seem to have
a similar shape, with an initial slow increase, followed by a
rapid condensate formation, and finally a nearly flat satura-
tion. A closer look at the growth of N0 reveals the qualitative
difference as the magnetic field increases. In the initial slow
increase phase, N0,ini is clearly nonzero at 809 G (BEC) and
832 G (unitarity), while it remains nearly zero for 861 G
(BCS). During the rapid growth stage, the formation rate of
the quasicondensate monotonically increases from the BEC
to the BCS regimes [24].

To better understand the dependence of the N0 growth on
the interaction strength (magnetic field), we numerically cal-
culate the equilibrium quasicondensate number N th

0 based on
the pairing fluctuation theory [25]. The pair dispersion �q ≈
h̄2q2/2M − μpair, or equivalently the effective pair mass M
and the chemical potential μpair, can be extracted from the pair
propagator or the particle-particle scattering T matrix. Given
the temperature and interaction strength, we are able to calcu-
late the fermionic chemical potential μ, the pairing gap �, and
the superfluid order parameter �sc in the trap using the local
density approximation. Note that the measured quasiconden-
sate number contains bosonic pairs with both zero and small

finite momenta. Thus, we choose a small energy cutoff �c,
and obtain the density profile of the quasicondensate n0(r) by
summing over all the pairs with energy h̄2q2/2M < �c, i.e.,
n0(r) = ∫

q<�

d3q
(2π )3 b(�q(r)), where b(x) = 1/(ex/kBT − 1) is

the Bose distribution function and the cutoff � = √
2M�c.

Here, the energy cutoff is simply taken as �c = kBT/2, in
accordance with the experimental measurements [26]. Finally,
we obtain the quasicondensate number N0 = ∫

d3r n0(r) as a
function of T .

To compare with the experimental growth dynamics of
N0, we assume a simple linear relation between evolution
time t and temperature T before N0 saturates at very low T ,
especially during the condensate formation stage. The theory
curves are scaled in a way to match the saturation value N0,sat

at low T and the slope at half saturation of their experimental
counterpart. The arrows in Fig. 2 indicate the superfluid tran-
sition from theory, which correspond to a “critical time” tc,
when the temperature crosses Tc in the evolution of the quench
dynamics. It is known that, above Tc, a pseudogap in the
fermionic excitation spectrum can emerge and bosonic pairs
of fermionic atoms can already preform. The pair-formation
temperature T ∗ depends on the atom-atom interaction. For il-
lustrative purposes, the phase diagram for a three-dimensional
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(3D) homogeneous Fermi gas is shown in the inset of Fig. 2,
where a pseudogap region is present between Tc and T ∗. In
general, T ∗ is above Tc, except in the BCS limit, where the
two temperatures merge. In the unitary and the BEC regimes,
a small but nonzero quasicondensate already forms before
the critical time tc or above Tc. Since the correlation length
ξ is small above Tc, the superfluid coherence is yet to be
established over large distances, and hence the growth of N0 is
slow. As T is lowered across Tc (or equivalently t > tc), ξ can
be as large as the linear size of the system, so that N0 enters a
rapid-growth period until its saturation. In contrast, in the BCS
regime, where the pseudogap is absent, the pair formation and
pair condensation roughly occur at the same temperature. As a
result, N0 remains nearly zero during the initial slow increase
stage before entering an abrupt rapid growth immediately
after tc, as seen in the experimental data at 861 G. Therefore,
our experiment can be naturally explained by the pseudogap
physics described in the theory.

Next, we study the dependence of the quench dynamics
on the ramping time tramp. Shown in Fig. 3(a) are the growth
curves of N0 at unitarity for tramp ranging from 200 to 1500 ms.
As tramp becomes longer, the saturated quasicondensate num-
ber N0,sat also increases because of less atom loss during
the evaporative cooling. It is seen that for quenches with
tramp � 600 ms, N0 roughly reaches its saturation at the end
of quench. In contrast, for quenches with tramp � 400 ms, the
rapid formation of N0 has barely started by t = tramp, and
the much suppressed N0,sat is not reached until a much later
time. To better describe the quench dynamics, we introduce
two timescales, delay time td and formation time tf, corre-
sponding to the starting time and the duration of the rapid
formation of N0, respectively. In practice, they are determined
via N0(td)/N0,sat = 0.2 and N0(td + tf )/N0,sat = 0.8, respec-
tively [27]. As shown in Fig. 3(b), td follows a nice linear
increasing function of tramp for all the quenches. However, as
tramp increases, tf first decreases until it reaches a minimum
around tramp ≈ 400 ms, and then increases linearly. Based on
this observation, we classify the quenches into two types,
normal and fast ones, which are separated at tramp ∼ 500 ms
for our system. By plotting N0(t )/N0,sat vs (t − td)/tf, we find
that all experimental data for normal quenches can be well
described by a single universal curve [see Fig. 3(c)], while
those for fast quenches exhibit a significant deviation from
this curve [Fig. 3(d)].

IV. KZ SCALING OF SPONTANEOUS VORTICES

We now study the spontaneous generation of vortices in
the quench dynamics, by measuring the vortex density ρv

at the saturation of the quasicondensate for each tramp. It is
known that near the superfluid transition Tc, a diverging corre-
lation length develops as ξ ∼ |T − Tc|−ν and the relaxation
time diverges as τ ∼ ξ z, with ν and z being the static and
dynamic critical exponents, respectively [18,19]. Under the
condition that the temperature T varies linearly with time near
Tc, the KZ theory predicts that ρv decays algebraically with
the quench rate 1/τQ as ρv ∼ τ

−αKZ
Q , where the exponent αKZ

is determined by ν and z. Experimentally, the measurement
of temperature evolution in the quench dynamics is a great
challenge for strongly interacting Fermi gases. In previous

FIG. 4. Log-log plot of vortex density ρv vs tf. The error bar for
each point represents the standard statistical error over 30 indepen-
dent measurements. The solid straight line is the power-law fitting
curve based on the KZ theory. The inset shows ρv as a function
of tramp, where blue circles and red squares denote normal and fast
quenches, respectively.

studies, τQ ∼ tramp has been reported [13,20,28,29], and thus
we first attempt to plot ρv vs tramp. As shown in the inset
of Fig. 4, an approximate power-law decay is observed for
normal quenches, while for fast quenches the tramp dependence
of ρv clearly deviates from the KZ scaling.

To understand the normal and fast quenches better, we
revisit the relaxation dynamics of an out-of-equilibrium sys-
tem. For a superfluid, there are two types of excitations, i.e.,
low-energy density waves and high-energy vortices. Typically,
the relaxation of low-energy modes is much faster than the
annihilation of vortex and antivortex pairs. The quasiequilib-
rium condition is assumed that, at each evolution time, the
low-energy modes have been sufficiently relaxed while the
vortices remain excited. For normal quenches, the quasiequi-
librium condition is supported by the observations that the
formation time tf of the quasicondensate increases linearly
with tramp [see Fig. 3(b)], N0 almost reaches N0,sat at the end
of the quench, and that the saturated vortex density ρv decays
algebraically. On the other hand, the unusual tramp dependence
of tf and ρv , as well as the barely started growth of N0 by
t = tramp, suggest that the quasiequilibrium condition is bro-
ken for fast quenches.

In Fig. 4, the data points of ρv vs tf for normal quenches
agree well with a power-law scaling. Indeed, tf reflects the
linear growth period of N0 and the linear decrease of tempera-
ture with time. Unlike tramp, it is insensitive to the (somewhat
arbitrary) initial temperature of the system (T at t = 0) as well
as the complications caused by the pair-formation process
during the slow incubation stage. Therefore, it is inversely
proportional to the quench rate near Tc and thus may naturally
play the role of τQ in the KZ theory. Fitting the experimental
data with a power-law function ρv ∼ t−αKZ

f , we obtain the
KZ exponent αKZ = 2.25(17). In a 3D harmonic trap, the
KZ exponent has been predicted to be αKZ = 2(1 + 2ν)/(1 +
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νz) [30,31]. According to the F model, ν = 2/3 and z = 3/2
for a 3D system [32], which yields αKZ = 7/3. Our experi-
mental result is in quantitative agreement with this theoretical
value, demonstrating the validity of using tf to characterize the
quench rate for normal quenches.

V. CONCLUSIONS

In conclusion, we have studied the quench dynamics of
a strongly interacting atomic Fermi gas by ramping down
the trapping potential. Our experiment directly demonstrates
the interplay between the real-time dynamics of quasicon-
densate growth and spontaneous vortex formation. The good
agreement between theoretical calculations and experimen-
tal data demonstrates that our data can be explained by the
pseudogap physics, which leads to significant differences
in the growth dynamics of the quasicondensate between
the BEC and BCS regimes. We find that the quench pro-
cesses can be classified into normal and fast quenches. The
unusual nonmonotonic tramp dependence of the quasiconden-
sate formation time tf and the vortex density ρv suggests

that the quasiequilibrium condition is broken during the
fast quench processes. For normal quenches, by using tf to
characterize the quench time of the system, the KZ scal-
ing of strongly interacting Fermi gas is observed and the
extracted KZ exponent agrees well with the theoretical pre-
diction. Our work may serve as a starting point for exploring
rich quantum phenomena of quasi-two-dimensional (2D) vor-
tices, such as Berezinskii-Kosterlitz-Thouless physics in a
quasi-2D trap [33], holographic liquids [34], and quantum
turbulence [35–37].
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