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Level attraction and idler resonance in a strongly driven Josephson cavity
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Nonlinear Josephson circuits play a crucial role in the growing landscape of quantum information and
technologies. The typical circuits studied in this field consist of qubits, whose anharmonicity is much larger than
their linewidth, and also of parametric amplifiers, which are engineered with linewidths of tens of MHz or more.
The regime of small anharmonicity but also narrow linewidth, corresponding to the dynamics of a high-Q Duffing
oscillator, has not been extensively explored using Josephson cavities. Here, we use two-tone spectroscopy to
study the susceptibility of a strongly driven high-Q Josephson microwave cavity. Under blue-detuned driving, we
observe a shift of the cavity susceptibility, analogous to the AC Stark effect in atomic physics. When applying a
strong red-detuned drive, we observe the appearance of an additional idler mode above the bifurcation threshold
with net external gain. Strong driving of the circuit leads to the appearance of two exceptional points and a level
attraction between the quasimodes of the driven cavity. Our results provide insights on the physics of driven
nonlinear Josephson resonators and form a starting point for exploring topological physics in strongly-driven
Kerr oscillators.
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I. INTRODUCTION

Circuit quantum electrodynamics (cQED) [1], based on
nonlinear superconducting circuits, has laid the foundation for
the current tremendous growth of the superconducting quan-
tum technology field. Microwave circuits inheriting a large
anharmonicity from the nonlinear nature of Josephson junc-
tions have been used to engineer artificial atoms [2], for Fock
and cat state generation [3–5], for synthesizing arbitrary quan-
tum states of light [6], to demonstrate the lasing effect from a
superconducting qubit [7], and for engineering single photon
sources [8]. Josephson circuits where the nonlinearity does
not exceed the cavity decay rate have been equally success-
ful. These have been utilized as a platform to investigate the
dynamical Casimir effect [9,10], as systems to perform disper-
sive readout of superconducting qubits [11,12] and have been
recently used for the realization flux-mediated optomechan-
ical systems [13–16] and photon-pressure systems [17,18].
Also in the context of small nonlinearities, a common appli-
cation is the engineering of Josephson parametric amplifiers
(JPAs) [19–25]. Such systems have approached quantum-
limited amplification [26,27] and allowed for squeezing of
vacuum fluctuations [28,29].
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Typically the nonlinear circuits utilized for the realization
of JPAs are designed to be highly overcoupled and with a large
decay rate in order to optimize their gain bandwidth ratio.
However, there has been a growing interest lately in strongly
driven high-quality-factor (high-Q) Josephson circuits. For
example, they have recently been used to cool a nanobeam
with a blue-detuned pump in flux-mediated optomechanical
systems [13], to study the quantum nature of nonlinear damp-
ing in microwave circuits [30] or for high-sensitivity current
detection by upconversion [31]. Furthermore, circuits with a
flux-tunable nonlinearity have also been used to explore the
crossover between a classical Duffing oscillator and a Kerr
parametric oscillator [32,33].

Bringing a nonlinear oscillator far beyond its bifurcation
point is a regime, which has been explored in the context
of driven micromechanical resonators [34], optical systems
[35,36], and has been recently used for the detection of
squeezing of a mechanical mode [37,38]. Past its bifur-
cation threshold the system enters a regime of bistability
where two stable solutions exist [39,40]. In superconduct-
ing circuits the switching between these bistable branches
has been explored close to bifurcation for the engineering
of the Josephson bifurcation amplifier [41,42], a technol-
ogy, which was later on utilized for fast measurement and
single-shot read-out of superconducting qubits [43]. Going
further beyond the bifurcation limit, however, is a regime,
which is typically unexplored within JPAs as this sup-
presses the maximum achievable gain of an amplifier [44].
Nevertheless, superconducting circuits could be a power-
ful platform to explore this regime as they grant a large
design flexibility and can be operated in well controlled
environments.
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Here we explore the physics behind a weakly nonlinear
high-Q Josephson circuit, which is driven far beyond its bifur-
cation point. We study the two-tone response of the resonator
for a pump tone placed above or below the cavity resonance
and investigate the modification to its driven susceptibility by
extracting the pump-modified resonance frequency and decay
rates seen by the probe. While a blue detuned pump gives rise
to the well known AC stark shift [45], a red detuned pump
will bring the system above its bifurcation threshold and place
the oscillator in a bistable operation regime. In addition to a
strong modification of the cavity mode susceptibility, which
we later define as signal mode, a second idler mode exhibiting
a net output gain will emerge upon probing the system with a
weak tone. After investigating the characteristics of these two
new modes, we focus on the dependence of the driven cavity
state on intracavity photon number and uncover the existence
of level attraction between the signal and idler modes. Our re-
sults provide insights on the understanding of strongly driven
high-Q Kerr oscillators and reveal the potential for operating
these systems well above their bifurcation threshold.

II. RESULTS

The device we study here consists of a microwave Joseph-
son cavity capacitively coupled to a coplanar waveguide
feedline by means of a coupling capacitor Cc, and contain-
ing a superconducting quantum interference device (SQUID).
Optical images of the full device and a zoom-in of the
10 μm × 10 μm SQUID including its two nanobridge Joseph-
son junctions are shown in Figs. 1(a) and 1(b), respectively.
When an external magnetic field is applied to the device,
the Josephson inductance of the SQUID and therefore the
cavity resonance frequency can be tuned. In the absence of
an applied magnetic flux in the loop, i.e., at the SQUID cavity
sweet-spot, the circuit model of the device can be simplified
to a LC resonator, where most of its capacitance 2C comes
from two symmetric interdigitated capacitors (IDCs) and its
total inductance L

2 + LJ arises from a combination of two
inductor wires of inductance L and the sweet-spot Josephson
inductance LJ representing the SQUID. In the paper reported
here the cavity will always be operated at its sweet spot. A
simplified schematic of the circuit is shown in Fig. 1(c), once
the device is mounted in a dilution refrigerator with a base
temperature of approximately Tb ≈ 15 mK.

When probing the system with a weak tone, we observe an
absorption dip in the reflected signal, as shown by the cavity
response |S11| in Fig. 1(d). From a fit we extract a resonance
frequency ω0 = 2π × 5.8157 GHz, a total decay rate κ =
2π × 157 kHz, an external decay rate κe = 2π × 12.5 kHz
and an internal decay rate κi = 2π × 144.5 kHz. Furthermore,
the ratio between internal and external decay rates κe/κi ∼ 0.1
tells us that the power is mostly dissipated inside the cav-
ity, what is usually considered as an undercoupled detection
scheme (κe/κi < 1).

In Fig. 2 we present data exploring the cavity response
under the excitation from two microwave tones: a pump tone
ωp, which strongly drives the circuit and a weak probe tone ωpr

that has low enough power to not drive, but only to measure
the response of the device. Figure 2(a) shows a colormap of
the reflection magnitude |S11| versus probe detuning �pr =
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FIG. 1. A lumped element Josephson cavity. Panel (a) shows
a micrograph of the full device and corresponding labeling of the
main circuit elements. The coupling capacitor is Cc = 2 fF, each
of the interdigitated capacitors (IDC) is given by C = 0.5 pF and
the linear inductance contribution of the circuit by two wires that
link the IDCs and the SQUID as L/2 = 742 pH. The SQUID is
visible at the top part of the image, and a zoom-in in which the
two nanobridge Josephson junctions (JJ) are shown, is presented
in (b). Panel (c) shows a schematic representation of the circuit
model where LJ = 20 pH is the SQUID inductance. In panel (d) the
measured reflection magnitude |S11| and its corresponding fit are
shown as red circles and black line, respectively. From the fit param-
eters we extract a resonance frequency of ω0 = 2π × 5.8157 GHz,
a total decay rate κ = 2π × 157 kHz and an external decay rate
κe = 2π × 12.5 kHz

ωpr − ω0 and on-chip pump power Pp for a blue-detuned
pump. The pump frequency ωp is chosen slightly above the
cavity resonance ω0 with detuning �p = ωp − ω0 < κ , as in-
dicated by the dashed-black line.

The first and most obvious experimental observation is the
gradual resonance frequency shift towards lower values as the
pump power is increased. The origin of this shift emerges
from the Josephson nonlinearity of the cavity: Increasing the
pump power raises the intracavity photon number nc and re-
sults in a dressed resonance frequency ωs that is subsequently
detected by the weak probe signal, analogously to the AC
Stark shift in atomic physics [45]. To quantify this, we fit the
cavity response S11 with the reflection response function of a
linear LC circuit

S11 = 1 − κeχc (1)
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FIG. 2. Observation of the AC stark shift and TLS losses of a Josephson cavity using two-tone spectroscopy. In panel (a) the normalized
cavity response |S11| is shown in a colormap as a function of on-chip pump power Pp and probe detuning from the bare cavity resonance
�pr = ωpr − ω0, for a pump tone sitting at the point indicated by the dashed black line with detuning �p/2π = 80 kHz. Here the pump power
was increased in steps of 0.1 dBm. For each horizontal line of the colormap presented in (a) we fit the response spectrum with Eq. (1) and
extract parameters such as dressed resonance frequency ωs, and internal and external linewidths, κi and κe. Additionally, we estimate the
intracavity photon number nc from a second fit of the cavity response based on the theoretical model of a driven Kerr cavity (see Appendix C).
Panel (b) shows the extracted resonance frequency shift δω0 = ωs − ω0 versus nc. Together with the data we plot the theoretically predicted
resonance frequency shift (black line) for an anharmonicity K/2π = −2.5 kHz, which arises from the nonlinear inductance of the circuit.
This is consistent with the measured pump line attenuation of ∼107 dB. In panel c we plot the extracted decay rates as function of nc. While
the external linewidth κe (blue circles) stays approximately constant over the presented range (κe ≈ 2π × 13 kHz), the internal loss rate κi

(teal circles) shows a considerable decrease with photon number, reaching a value of 2π × 50 kHz. Such behavior is well described by the
saturation of dielectric losses from two-level systems (TLSs), as shown by the fit curve represented by the black line.

with the susceptibility χ−1
c (ω) = κ

2 + i(ω − ωs), and extract
the cavity parameters such as decay rate and resonance fre-
quency. We note that in this regime our system can still be
treated as a linear cavity with a modified resonance frequency.
In Fig. 2(b), we plot the extracted resonance frequency shift
between the dressed and the bare resonance frequency δω0 =
ωs − ω0 as a function of the intracavity photon number nc. The
latter was estimated from a fit using a theoretical model based
on the linearized equation of motion of a Kerr cavity (see
Appendix C). The theoretically predicted frequency shift for
a resonator with a Kerr nonlinearity is plotted simultaneously
with the experimental data as black line and red circles, re-
spectively. For the theory line we use an anharmonicity value
of K/2π = −2.5 kHz, which is consistent with the measured
pump line attenuation. Based on this value, we can model
our SQUID cavity as a harmonic oscillator with a weak Kerr
nonlinearity K � κ . Additionally, we can also analytically
estimate the device anharmonicity based on the circuit pa-
rameters K = − e2

4C ( 2LJ
L+2LJ

)3 = −2π × 380 Hz, a considerably
smaller value compared to the one extracted from the mea-
surements. An explanation for this discrepancy could be an
asymmetry between the individual Josephson junctions induc-
tance.

In addition to the frequency shift, a closer look to Fig. 2(a)
shows evidence of the cavity resonance getting sharper and
deeper as the pump power is increased. This suggests that the
internal loss rate of the cavity is decreasing with increasing
pump power. To investigate this, we plot the extracted ex-
ternal κe and internal κi decay rates versus nc in Fig. 2(c).
Interestingly, we observe a strongly power dependent internal
loss rate. Such an observation is common in superconducting

resonators [46] and can be attributed to the saturation of
dielectric losses due to two-level systems (TLSs), which are
known to be located at material interfaces and film surfaces
[47]. We fit the extracted internal decay rate κi (teal circles)
with a TLS model κi = κ0 + κ1√

1+nc/ncrit
, shown as dark gray

line in Fig. 2(c). The model describes well the experimental
data for κ1 = 2π × 175 kHz, ncrit = 1 and the saturation value
κ0 = 2π × 40 kHz, showing the significant increase of the
cavity internal quality factor when the system is driven by a
strong pump. The external cavity decay rate κe (blue circles) is
found to be approximately constant for all pump powers with
an average value of 2π × 13 kHz (navy-blue line).

An intriguing experimental setting is to investigate the cav-
ity response when a strong pump is placed red-detuned from
the bare cavity resonance. The outcome of this measurement
is shown in Fig. 3(a), where the reflection magnitude |S11| is
plotted as a function of probe detuning �pr and on-chip pump
power Pp for a red-detuned pump with �p/2π = −1.16 MHz.
Whereas for the case of a blue-detuned pump the dressed
cavity resonance shifts away from the drive for increasing
power, for the red-detuned case the dressed cavity resonance
moves towards the pump, which leads to a further increase in
intracavity photon number. When the driving power reaches
a specific threshold, the cavity hits its bifurcation point and
the system subsequently enters a bistable regime with two
possible solutions in response to the pump field: a high-
amplitude and a low-amplitude branch, in which the currents
oscillating in the circuit at the pump frequency have either
a low or high amplitude. Crossing the bifurcation threshold
allows the cavity to operate in either of these regimes and
to even punctually switch between them, as visible by the
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FIG. 3. Detection of an idler mode with net output gain in a regime beyond bifurcation. Panel (a) shows a colormap of the cavity response
|S11| as a function of on-chip pump power Pp and probe detuning from the bare resonance �pr = ωpr − ω0. The pump tone is fixed at a constant
detuning from the bare resonance �p/2π = −1.16 MHz as indicated by the black dashed line. When the pump power is increased above
a certain threshold (Pp = −97 dBm), there is an abrupt jump from a faint dip to a dip-peak region. A linescan above the switching point
(Pp = −96 dBm) is shown in (b) and is indicated by the black arrow. Panel (b) displays a linescan showing the dressed cavity mode and a
prominent idler-resonance. Red circles are data and the black line is a theory line used with Eq. (3). The large amplitude of the pump tone,
which is a single frequency point in the experimental data is ignored in the fit routine. (c) A schematic diagram is depicted for a probe tone at
�pr/2π ∼ −0.5 MHz, indicated by the black arrow in (b). The cavity density of states is shown as a blue Lorentzian curve, while the probe
and pump tones are represented by the green solid and black dotted arrows, respectively. The idler (ISB) and signal (SSB) sidebands, generated
by four-wave mixing, are presented in red and blue arrows. The cavity nonlinearity is responsible for this mixing mechanism and when the
signal or the idler sideband falls within the cavity linewidth, it gives rise to parametric amplification.

abrupt jump of the cavity to the other side of the pump around
Pp = −97 dBm [cf. Fig. 3(a)]. This indicates that the cavity is
afterwards operated on the high-amplitude branch and from
there onwards, the dressed cavity response shifts similarly
to the case of a blue-detuned pump. Note that although the
cavity is in a nonlinear bifurcated state in response to the
strong pump, the susceptibility seen by the weak probe is still
that of a linear response, with a Lorentzian lineshape that is
downshifted in frequency compared to the unpumped circuit.

The most peculiar outcome of crossing the cavity bifurca-
tion point is the appearance of an additional mode that has
a net output gain at a frequency symmetric to the dressed
cavity resonance with respect to the drive. This is clearly
displayed in Fig. 3(b), which shows a linescan of |S11| straight
after the switching point, for an on-chip pump power of −96
dBm. To understand the physics behind the appearance of
this feature, we additionally illustrate the intracavity fields
in Fig. 3(c), for the specific case of a probe tone frequency
indicated by the label (c) in Fig. 3(b). Here, the pump and
probe intracavity fields, which are generated by external input
signals, are shown in black dotted and green solid arrows,
respectively. In this driving configuration, the nonlinearity of
the cavity generates two additional intracavity fields (red and
blue arrows) via a four-wave mixing process. A field with the
same frequency as the input probe tone, commonly referred as
the signal sideband (SSB) and the field arising symmetrically
on the other side of the pump tone, commonly referred to
as the idler sideband (ISB) in the nomenclature of parametric
amplifiers. As the amplitude of the internally generated fields
depends on the driven Kerr cavity susceptibility

χg = χp(0)

1 − K2n2
cχp(0)χ∗

p (2�pp)
, (2)

with χ−1
p (�) = κ

2 + i(�pr − 2Knc + �) and �pp = ωp −
ωpr, when the probe scans through the opposite side of the
dressed cavity mode, it will also detect an additional line-
shape, which we refer to as idler-resonance. This happens as
the probe field constructively interferes with the signal side-
band generated by four-wave mixing. In fact, the appearance
of an idler-resonance should also happen below the bifurca-
tion threshold. However, the low intracavity photon number
in this regime suppresses the signal sideband field amplitude
below the noise level, and therefore the mode remains experi-
mentally undetected.

As evident from the cavity reflection coefficient greater
than unity, the signature of an idler resonance is accompanied
by amplification of the intput field. This is visible in the
colormap shown in Fig. 3(a) and emphasized in the linecut
presented in Fig. 3(b), where the black line shows the magni-
tude of the theoretically predicted response

S11 = 1 − κeχg. (3)

This amplification is common in JPAs, where it is typically
occurring within the cavity lineshape. In our case, however, as
the cavity is highly undercoupled, we do not observe output
field amplification when the signal is resonant with the cavity.
Instead we see a deeper absorption dip. This occurs as the
intracavity field amplification effectively brings the system
closer to critically coupled, leading to a deeper dip in the
response spectrum |S11|. Observing amplification of the out-
put field in the signal resonance condition would require a
sufficiently large intracavity amplification overcome all inter-
nal losses in the device (see Appendix F for an example of
such data). This is different, however, for the case of the idler
resonant condition where we detect a net output gain, as show
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FIG. 4. Frequency locking of a Kerr cavity to a strong parametric drive. (a) The cavity response |S11| as a function of pump detuning �p

and probe detuning �pr for a on-chip pump power of −127 dBm. The frequency of the pump tone was reduced in steps of 5 kHz. Panel
(b) shows a corresponding colormap of the cavity response computed with Eq. (3). The device parameters were kept constant as extracted
from the analysis of Figs. 1 and 2: Line attenuation of ∼107 dB, κe/2π ∼ 13 kHz, K/2π = −2.5 kHz and the power-dependent internal loss
rate κi. In (c) we plot the magnitude of the experimentally detected |S11| on resonance with the signal (blue circles) and idler (red circles)
modes, and in (d) we plot the signal linewidth versus �p. The experimental values were obtained by fitting the full spectrum with a reflection
response function that contains two individual modes in the region where the idler is detectable (see Appendix B). The dotted lines present the
analytically estimated values for the high-amplitude branch (gray for signal and red for idler). The dashed black line corresponds to the signal
mode of the low-amplitude branch and the full lines are used in the region where there is only a single solution (gray for signal and red for
idler). In panel (c), the magnitude of idler mode for the low-amplitude branch has been omitted for clarity. We point out that we find a higher
level of agreement between the experimental data and the theory by reducing the parameter κ1/2π by 15 kHz.

in Fig. 3(b). Here the input signal is not resonant with the
cavity and therefore the interference between the probe and
amplified fields is not affected by the cavity resonance. The
frequency matching between the idler sideband and the cavity
resonance, however, provides a high density of states for the
idler photons, a necessary condition for parametric amplifica-
tion, resulting in the detection of output field amplification
even when the input signal is detuned by many linewidths
outside of the cavity resonance.

Although until now we have only explored the impact of
driving power on the cavity response, we can also investigate
the phenomenon of idler-resonance by playing with another
knob, which is sweeping the pump frequency for a fixed
power. In Fig. 4(a) the cavity response |S11| is shown as a
function of pump and probe detuning from the bare cavity
resonance frequency. The on-chip pump power is chosen to be
sufficiently large (Pp = −127 dBm) to bring the cavity across
its bifurcation point.

As we sweep the pump frequency from higher to lower
values and approach the bare cavity resonance, the system
experiences a locking mechanism to the drive. This is visible
by the frequency dragging of the signal mode, i.e., the dressed
cavity resonance, with decreasing pump frequency. Moreover,
as the idler mode always emerges mirrored with respect to the
drive tone, this one will also experience a similar dragging as
the dressed cavity. Once again, while the cavity is identified
by a dip in the spectrum (blue features in Fig. 4), the idler is
visible as a peak above the background level (red features in
Fig. 4). Simultaneously with the locking, also the intracavity
pump field becomes larger as the drive comes nearer the bare
cavity lineshape, and continues to increase as the pump is
detuned further down towards negative values. The increase in
drive photons arising from attempting to reduce the detuning
between the pump and the dressed cavity mode will enhance
the signal and idler sidebands, thereby intensifying the signa-

ture of both modes upon a probe reflection measurement and
achieving higher intracavity field amplification.

Similarly to what was observed in Fig. 3, in Fig. 4(a)
we also detect a sharp modification of the cavity response
spectrum for a pump detuning around �p/2π = −0.38 MHz,
which in this case reveals a transition from the high-amplitude
to the low-amplitude branch solution. Once the cavity has
switched branches and is no longer operated in a metastable
regime, the intracavity field amplification is reduced and the
idler mode becomes experimentally undetectable. We note
that in contrast with the data presented in Fig. 3, here we
observe some fast switching between two branches around the
transition point, which is most probably triggered by noise.

Figure 4(b) shows a colormap of the response based on the
analytical model described in Appendix C, i.e., on Eq. (3). A
clear difference between the data and the theoretical model
is the fact that the switching point is predicted to occur
for a pump detuning below the range of our measurement.
In fact, while in the experiment the cavity switches from a
high-amplitude to a low-amplitude branch, the theoretically
predicted transition only happens when the system reaches
the regime of a single solution. We note though, that the
branch where the system ends up on is highly sensitive to the
exact history of the system and to the noise in the device.
Therefore, the experimental transition point can happen at
any frequency when the system is operated above its bifur-
cation point. In spite of this somewhat expected mismatch,
the analytical model shows an excellent qualitative agree-
ment with the experiment as shown in Fig. 4(b). Here the
horizontal dashed gray line represent the bifurcation point,
which would also be the transition frequency that the cavity
would experience if it had been operated in the low-amplitude
branch. At last, we quantitatively investigate the agreement
between theory and experiment by extracting the magnitude
of the response spectrum |S11| on resonance with the signal
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and idler modes, and the cavity decay rate. These are com-
pared with the analytically estimated values in Figs. 4(c) and
4(d), respectively. While the magnitude of the signal mode
|S11(ωs)| (full-black line) is decreased as we initially reduce
the pump detuning, the idler magnitude |S11(ωi )| (full red
line) is increased further above the background, reaching a
maximum output gain of ∼2 dB. We note that in this region
the system still operates in a single solution regime. As shown
in Fig. 2, the total cavity linewidth should be dependent on the
intracavity photon number, thereby decreasing as we reach the
bifurcation point. Past this limit, two new branches emerge.
From our theoretical calculations we see that the cavity re-
mains in the high-amplitude branch for just a small detuning
range after crossing its bifurcation threshold and shortly after
it switches to the low-amplitude branch where the idler mode
is afterwards undetectable. For more details on additional
experimental data where we achieve ∼8 dB gain of output
gain at the idler resonance see in Appendix F.

The transition between the two amplitude branches of a
driven nonlinear system might appear abrupt and experimen-
tally difficult to predict. Nevertheless, carefully exploring this
transition regime can unravel interesting phenomena. For this
purpose we once again fix the pump on the red side of the
cavity, but this time only slightly detuned from its bare reso-
nance frequency with |�p| < κ . After this the pump power
is slowly increased and the probe strength is kept low to
avoid triggering the cavity to prematurely switch. A colormap
of the cavity response |S11| versus probe detuning �pr and
on-chip pump power Pp is shown in Fig. 5(a). Whereas the
cavity is initially attracted to the drive tone, once the power
reaches a certain threshold (Pp ∼ −129 dBm) the signal mode
jumps onto the other side of the pump and the idler mode
simultaneously emerges. By further increasing the power, the
modes are pushed further away from the pump and continue
resonating symmetrically with respect to the drive tone with
complex resonant solutions

ω̃i/s = ωp + i
κ

2
± √

(�p − Knc)(�p − 3Knc), (4)

where the resonance frequency of the idler and signal modes
are given by ωi/s = Re (ω̃i/s ) and their linewidths by κi/s =
2Im (ω̃i/s ).

We fit each of the linescans of Fig. 5(a) with a double-
mode reflection response function (see Appendix B) and for
each of them extract the resonance frequency of each of the
modes. We note that due to the small amplitude of the idler
mode in the linescans below the jump, its experimental reso-
nance frequency remains unfortunately undetected. However
for completeness, in this region we plot the idler resonances as
mirrors of the signal mode as one would expect from Eq. (4).
The frequency difference between the signal/idler modes and
the pump δs/i = ωs/i − ωp is plotted versus intracavity photon
number in Fig. 5(b). Besides clearly depicting the frequency
symmetry between the two modes, which had already been
evident in previously presented data, Fig. 5(b) also unveils
a very interesting regime where both modes overlap in fre-
quency. This has been observed in other systems [48–53] and
it has been refereed to as level attraction [49]. The exceptional
point (EP) where their resonance frequencies meet marks the
beginning of a instability regime in which the resonant so-
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FIG. 5. Level attraction between the signal and idler modes.
Panel (a) shows the response spectrum magnitude |S11| vs probe
detuning �pr and on-chip pump power Pp. The dashed horizontal line
identifies the frequency of the pump, which is placed slightly below
the cavity bare resonance frequency with �p/2π = −100 kHz. For
every linescan we perform a fit of the full response and extract the
signal and idler resonance frequencies. Simultaneously, for every
linecut we estimate the intracavity photon number nc based on a fit to
the normalized response using the full Kerr model (see Appendix C).
In panel (b) we plot the extracted signal (δs) and idler (δi) resonance
frequency differences from the pump frequency ωp versus nc as
blue and red circles, respectively. The black line is a theory curve
based on Eq. (4). We observe level attraction between the two modes
and the emergence of two exceptional points (EP). This pinpoints
the appearance of an instability region where the signal and idler
overlap in frequency. A regime, which is characterized by the emer-
gence of an additional imaginary component in the complex resonant
solutions ω̃i/s, meaning that in this region the modes will acquire
different linewidths. Furthermore, we do not show any experimental
data in the instability region as the presence of the drive and the
fast switching of the cavity between the two sides enclosing the
instability region imposes several challenges in the fitting routine.

lutions ω̃i/s will develop an additional imaginary component.
This leads to the modes acquiring an inverse modification to
their bare linewidth. In Appendix D we show the theoretical
predictions for the change in linewidth of the modes in the
level attraction region. The appearance of such an exceptional
point discloses the high susceptibility of a Kerr cavity to noise
inducing fluctuations in its intracavity photon number, as in
this regime the presence of noise can have a strong impact on
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its resonance frequency. This is more critical when the cavity
is operated closer to the instability regime, as the bending near
to the exceptional point is more accentuated (see Appendix E
for more details).

III. DISCUSSION

We have conducted an experimental study of a Josephson
cavity operating in the strong-driving limit and accurately
modelled its two-tone response by means of the linearized
equation of motion of a Kerr cavity, including its power de-
pendent losses. Besides modeling the cavity dispersive shift
and its TLS losses, we have detected the emergence of an idler
mode upon approaching and crossing the bifurcation thresh-
old of the system. We provide an intuitive physical picture for
the origin of this mode and present quantitative predictions
for its amplitude. The appearance of an idler resonance allows
us to amplify signals far outside of the cavity lineshape, with
the advantage that the interference between the probe and
the amplified signals is not affected by the cavity response.
While most applications of parametric amplifiers operate their
systems below their bifurcation point, here we show that for
the case of a high-Q resonator, operations above the bifurca-
tion threshold do not necessarily compromise the maximum
achievable output gain.

Furthermore, in this paper we have uncovered an interest-
ing phenomenon where the system hits an exceptional point
and there is a level attraction between the eigenfrequencies
of the driven resonator. While this has been studied in other
systems, it has only now been observed between the signal
and idler modes of a weakly damped nonlinear circuit. In
the context of Kerr optomechanics, understanding the ap-
pearance of this level attraction could be extremely valuable
for engineering systems that maximize the driving power
of a red-sideband cooling tone. In addition to the expanded
possibilities regarding the manipulation of Josephson circuits
beyond their bifurcation threshold, our results ultimately al-
low for topological control of strongly driven Kerr resonators
by encircling its exceptional points upon the implementation
of a tunable two-dimensional parameter space [49,53].

Data and processing scripts of the results presented in this
paper are available [54].

ACKNOWLEDGMENTS

This research was supported by the Netherlands Organ-
isation for Scientific Research (NWO) in the Innovational
Research Incentives Scheme – VIDI, Project 680-47-526.
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant Agreement No.
681476 - QOMD) and from the European Union’s Horizon
2020 research and innovation programme under Grant Agree-
ment No. 732894 - HOT.

F.F.S. conceived and conducted the experiments. D.B. and
I.C.R. designed and fabricated the device. F.F.S. and I.C.R.
performed the data analysis and prepared the first draft of
the manuscript. D.B. formulated the theoretical model. All
authors discussed the data and the manuscript. G.A.S. super-
vised the project.

The authors declare no competing interests.

APPENDIX A: DEVICE AND SETUP

The device studied here is the SQUID cavity belonging to
the photon-pressure system studied in Ref. [17]. The cavity
was patterned by means of electron beam lithography (EBL)
and subsequently loaded into a sputtering machine where a
20-nm layer of aluminum was deposited. After the deposition,
the chip was placed in the bottom of a beaker containing a
small amount of anisole and inserted in a ultrasonic bath for
a few minutes. After this fabrication process, we proceeded
with the patterning of the remaining structures of the photon-
pressure system. A step-by-step description of the fabrication
is given in the Supplementary Material of Ref. [17].

All the experiments reported here were performed in a
dilution refrigerator operating at a base temperature close to
Tb = 15 mK. The printed circuit board (PCB), onto which the
sample was glued and wirebonded, was placed in a radiation
tight copper housing and connected to a coaxial line used as
input/output port. As the device was measured in a reflec-
tion geometry, the input and output signals were split via a
directional coupler on the 15 mK stage. The output signal
subsequently went into a cryogenic HEMT (high electron
mobility transistor) amplifier operating between 4–8 GHz.

Outside of the fridge we used two different setup config-
urations. For the single-tone measurements we used a vector
network analyzer to characterize the reflection parameter S11.
For the two-tone spectroscopy we in addition utilized a signal
generator as pump tone. The tone subsequently went through
a high pass filter and was afterwards combined with the probe
signal coming from the VNA by means of a power combiner.
Note that the data presented in Appendix F was taken in an
earlier cooldown and there the pump tone was combined with
the probe by means of a room-temperature directional coupler,
where the probe was attached to the coupled port and therefore
attenuated by 10 dB.

APPENDIX B: FITTING ROUTINE

1. Single-mode response spectrum S11

The S11 response function of a parallel LC circuit capaci-
tively coupled to a transmission line in a reflection geometry
is given by

S11 = 1 − 2κe

κi + κe + 2i�
(B1)

with detuning from the resonance frequency

� = ω − ω0. (B2)

We used this expression to model the single-mode lines-
cans of the data presented in main text.

2. Double-mode response spectrum S11

When the cavity is driven close/beyond its bifurcation point
we witness the appearance of an idler mode. In this regime
the modes resonance frequencies can be extracted by fitting
the full response spectrum with a double resonance response
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function given by

S11 = 1 − 2κs
e

κ + 2i�s
− 2κ i

e

κ + 2i�i
, (B3)

where κs
e, κ

i
e are the effective external decay rates of each

mode, and where the detuning from the signal and idler reso-
nance frequencies are given by

�s = ω − ωs, (B4)

�i = ω − ωi. (B5)

3. Real response spectrum S11 and fitting routine

When analyzing the measured cavity response, we consider
a frequency-dependent complex-valued reflection background
with amplitude and phase modulations originating from a
variety of microwave components in our input and output lines
and possible interfering signal paths,

Sback
11 = (α0 + α1ω)ei(β1ω+β0 ). (B6)

Taking into account the impact of this background on the ideal
response functions, the measured response spectrum is given
by

Smeas
11 = (α0 + α1ω)S11ei(β1ω+β0 ), (B7)

where we include an additional rotation of the resonance circle
with the phase factor eiθ . The first step in the fitting routine
removes the cavity resonance part from the data curve and fits
the remaining background with Eq. (B6). After removing the
background contribution from the full dataset by complex di-
vision, the resonator response is fitted using the ideal response
function Eq. (B1) for the single mode data. In the final step,
the full function is refitted to the bare data using as starting
parameters the individually obtained fit numbers from the first
two steps. From this final fit, we extract the final background
fit parameters and remove the background of the full dataset
by complex division.

We note that for the data where both signal and idler modes
are present, we calculate the background based on a fit from
a single mode linescan and afterwards divide it off from the
data. Posterior to this procedure, the double-mode normalized
data is fitted with Eq. (B3) for the extraction of the resonance
frequencies and with Eq. (3) for the extraction of the intracav-
ity photon number. For the data presented in Fig. 4, as we do
not have access to the phase information of the signal due to
the measurement scheme used for the acquisition of the data,
we exceptionally resorted to a magnitude fitting routine where
the background offset was included in the fit model.

APPENDIX C: THEORY OF A DRIVEN
JOSEPHSON CAVITY

1. Equation of motion

We model the classical intracavity field α of the Josephson
cavity using the equation of motion

α̇ =
[
i(ω0 + K|α|2) − κ

2

]
α + i

√
κeSin (C1)

where ω0 is the bare cavity resonance frequency, K is the
Kerr nonlinearity, κ is the total linewidth, κe is the external

linewidth, and Sin is the input field. The intracavity field is
normalized such that |α|2 = nc corresponds to the intracavity
photon number nc and |Sin|2 to the input photon flux (photons
per second).

2. Single-tone response

With a single tone drive field Sin = Spei(ωpt+φp ) and the
Ansatz α = αpeiωpt , where Sp and αp are chosen to be real-
valued, we get[κ

2
+ i�p

]
αp − iKα3

p = i
√

κeSpeiφp (C2)

with �p = ωp − ω0 the detuning between the drive and the
undriven cavity resonance frequency. From this, by multipli-
cation with its complex conjugate, we obtain a third order
polynomial for the intracavity photon number nc = α2

p , which
is given by

K2n3
c − 2K�pn2

c +
(

�2
p + κ2

4

)
nc − κeS2

p = 0. (C3)

To obtain the full, complex intracavity field with respect to the
drive field, we also need the phase φp, which is given by

φp = atan2

(
−κ

2
,�p − Knc

)
. (C4)

The intracavity field is then given by α = √
nce−iφp and the

cavity response spectrum by S11 = 1 + i
√

κe
α
Sp

.

3. Data on single-tone power dependence

In Fig. 6 we show the single-tone response of the Joseph-
son cavity for increased values of VNA probe power. While
for low on-chip powers the cavity exhibits a linear response,
i.e. an absorption dip with a Lorentzian lineshape, for higher
powers (Ppr ∼ −137 dBm) the cavity starts bending towards
lowers values and we detect a typical Duffing response where
there is an abrupt jump from the maximum cavity absorp-
tion amplitude to the background level. In addition to the
bending of the cavity lineshape, which arises from the Kerr
non-linearity, the response magnitude on resonance also gets
initially deeper. This effect displays the impact of two level
system on the cavity internal quality factor. Once the internal
decay rate of the cavity reaches its saturation value, the cavity
anharmonicity is the only mechanism altering its response and
therefore the magnitude on resonance becomes more shallow
with power.

Once the cavity crosses its bifurcation point, Eq. (C3) will
have three real solutions, where two of them are stable (be-
longing to the high-amplitude and low-amplitudes branches)
and a third unstable solution. Since we scan the probe from
lower to higher frequencies, the cavity is mostly operated
in the low-amplitude branch. Although for the highest pow-
ers we curiously do observe some switching between the
branches, which is most probably triggered by noise in the
system.

4. Two-tone response

If the Josephson cavity is driven by a strong drive field and
a weaker second input field at frequency ωpr, we write for the

043111-8



LEVEL ATTRACTION AND IDLER RESONANCE IN A … PHYSICAL REVIEW RESEARCH 3, 043111 (2021)

�pr /2��(MHz)
0.2

|S
11

| (
dB

)

0.40-0.2-0.4

0

5

10

15

20

FIG. 6. Observation of the cavity Duffing response through
single-tone spectroscopy. The background corrected cavity response
magnitude |S11| is plotted for different values of on-chip probe power.
The power used in the first curve is Ppr = −141 dBm and this is
increased in steps of 2 dB in the subsequent curves. Furthermore,
each of the linescans is up-shifted by 3 dB for clarity. More details
are given in the text.

total input field

Sin = Spei(ωpt+φp ) + Spre
iωprt (C5)

and as Ansatz for the intracavity field we choose

α = αpeiωpt + γ−eiωprt + γ+ei(2ωp−ωpr )t (C6)

with complex-valued amplitudes γ− and γ+.
Inserting these into the equation of motion, going to the

frame rotating with the signal ωpr, linearizing the solution
by dropping all terms not linear in γ−, γ+ and sorting the
equation by frequency components yields three individual
equations:

[κ

2
+ i(�p − Knc)

]
αp = i

√
κeSpeiφp , (C7)

[κ

2
+ i(�pr − 2Knc)

]
γ− − iKncγ

∗
+ = i

√
κeSpr, (C8)

[κ

2
+ i(�pr − 2Knc + 2�pp)

]
γ+ − iKncγ

∗
− = 0, (C9)

where �pp = ωp − ωpr and �pr = ωpr − ω0. The first of these
equations is exactly the same as the one we obtained for
single-tone driving. With the procedure described in the pre-
vious section, the intracavity field αp, the intracavity photon
number nc and the phase φp can be determined. Having solved
for nc allows then to solve also for γ− and γ+.

We write the second and third equations as
γ−

χp(0)
− iKncγ

∗
+ = i

√
κeSpr, (C10)

γ+
χp(2�pp)

− iKncγ
∗
− = 0, (C11)

where we defined

χp(�) = 1
κ
2 + i(�pr − 2Knc + �)

. (C12)

We solve for γ+ and get by complex conjugation

γ ∗
+ = −iKncχ

∗
p (2�pp)γ− (C13)

Inserting this into the equation for γ− gives

γ− = i
χp(0)

1 − K2n2
cχp(0)χ∗

p (2�dp)

√
κeSpr (C14)

= iχg(0)
√

κeSpr (C15)

where in the last step we defined

χg(�) = χp(�)

1 − K2n2
cχp(�)χ∗

p (� + 2�pp)
. (C16)

a. Cavity response function

The reflection of the driven cavity for a single input probe
tone is given by

S11 = 1 + i
√

κe
γ−
Spr

(C17)

= 1 − κeχg. (C18)

b. Signal and idler modes

To find the probe tone resonances of the driven Kerr os-
cillator, we solve for the complex frequencies ω̃p, for which
χ−1

g = 0. This is equivalent to

1 − K2n2
cχp(0)χ∗

p (2�̃pp) = 0 (C19)

After multiplying out and sorting for terms with ω̃p, we can
write down the two complex solutions as

ω̃i/s = ωp + i
κ

2
± √

(�p − Knc)(�p − 3Knc), (C20)

where the resonance frequency of the idler and signal modes
are given by ωi/s = Re (ω̃i/s ) and their linewidths by κi/s =
2Im (ω̃i/s ).

APPENDIX D: LEVEL ATTRACTION

1. Modification to the bare decay rates

As described in the main text, upon entering the instability
regime characteristic of level attraction, i.e., the regime where
the signal and idler mode overlap in frequency, the modes also
acquire different decay rates. This is captured by the emer-
gence of an additional imaginary component in the complex
resonant solutions given by Eq. (4).

Our major experimental resource to study this regime is
the cavity response S11 and within the range enclosed by the
two exceptional points we observe that the system displays
a single resonance dip in the spectrum. Even though this
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FIG. 7. Modification of the signal and idler decay rates within
the regime of level attraction. The red/blue lines describe the mod-
ification to the idler/signal decay rates versus intracavity photon
number. The black line describes the region where their linewidths
overlap. The lines are the result of analytical calculations for the
parameter regime of Fig. 5. Outside of the region enclosed by the two
exceptional points (EP) the signal and idler modes display identical
linewidths and distinct resonance frequencies. For the instability
region where the modes overlap in frequency, they also acquire
different linewidths. While the idler decay rate decreases, the signal
decay rate is enhanced. In the operation regime of Fig. 5 of the main
text, the maximum modification to their bare linewidths is predicted
to reach ∼2π × 120 kHz.

resonance lineshape is modified due to the frequency over-
lap of the two modes, as the total response of the system
still remains a single resonance dip, for a small difference
between their decay rates the result of a standard S11 fit be-
comes inaccurate. Furthermore, as the cavity and idler modes
simultaneously overlap with the pump tone, fitting the cav-
ity response becomes challenging. Nevertheless, by using
the parameters resulting from the fit of the data presented
in Fig. 5 we can plot the theoretical estimated values for
the change in linewidth of the signal and idler modes. Note
that here we did not take into account the power dependent
internal losses but only the effects arising from the level
attraction.

As shown in Fig. 7, outside of the instability regime, the
signal and idler modes should have identical decay rates.
However, as the systems enters this range enclosed by the
two exceptional points, the idler (red line) should have a
reduction in total decay rate while the signal (blue line) should
acquire a larger linewidth. For the cavity parameters used in
Fig. 5 we estimate that the signal and idler modes should
have a maximum modification to their bare decay rates of
∼2π × 120 kHz.

APPENDIX E: LIMITATIONS OF RED-SIDEBAND
DRIVING IN KERR OPTOMECHANICS

A question that arises upon being aware of the instability
region characteristic of the level attraction between the signal
and the idler modes, is how does this impacts a system, which
relies on a strong drive field with a fixed frequency distance to
the dressed mode. For example, in the field of optomechanics
a strong drive tone is crucial to cool mechanical degrees

of freedom far below their thermal bath temperatures. As
the cooling rate increases with intracavity photon number,
the community strives for large pump powers to enhance the
multi-photon coupling rates. Furthermore, in cooling proto-
cols the detuning between the cavity and pump is not arbitrary
and has to accurately meet the mechanical resonance fre-
quency �m, i.e., �p = ωp − ω0 = −�m. The further away the
pump is from the red-sideband frequency, the larger is the
reduction in the up-scattering rate of pump photons, thereby
also reducing the removal of thermal excitations from the
mechanical mode.

In Kerr optomechanics this protocol becomes more chal-
lenging as the cavity frequency will shift with power, thereby
generating an undesired frequency offset from the cavity
red-sideband. An idea to counter this problem would be
to initiate the protocol with a pump tone further detuned
from the cavity red-sideband and afterwards increase its
power, thereby maximizing the intracavity photon number
for the right detuning between the signal mode and the
drive.

We explore this possibility in Fig. 8. Here the frequency
difference between the signal/idler mode and the pump is
plotted for a variety of pump detunings. Note that in the
case of a Kerr cavity the pump detuning �p refers to the
frequency difference between the bare cavity resonance and
the pump tone. From a look to Fig. 8(a) it might appear that
the right detuning between the signal mode and the pump can
be achieved for arbitrary values of photon numbers, just by
altering the bare detuning �p. However this ideal scenario
is disturbed by the appearance of the exceptional point (EP)
already described in Fig. 5. In fact, as we increase the detun-
ing �p, we need to operate the system closer and closer to
this exceptional point in order to preserve the red-sideband
driving condition, meaning that the signal mode responsiv-
ity to changes in the intracavity photon number will be
enhanced.

In Fig. 8(b) we plot the pump photon responsivity of the
signal mode versus normalized photon number. The normal-
ization factor of each of the curve is given by the intracavity
photon number of their respective exceptional point, as this
one also depends on �p. Figure 8(b) confirms that the signal
mode responsivity increases as we approach the exceptional
point. Here, the plotted stars correspond to the pump photon
responsivity of the signal mode for the four points described
in Fig. 8(a), i.e., where ωp − ωs = −�m.

From this figure it becomes clear how the signal mode
becomes more susceptible to changes in the intracavity photon
number in a cooling protocol using larger values of �p. While
for an initial detuning between the bare cavity and the pump
of −10 MHz one photon changes the signal frequency by
10 kHz, when �p/2π = −60 MHz one photon shifts the
signal frequency by 75 kHz, a value in the order of magnitude
as typical decay rates of microwave cavities. Experimentally
this can impose several challenges on the cooling of me-
chanical modes, as the system becomes highly susceptible
to fluctuations of the cavity bare resonance frequency, which
subsequently leads to a modification of �p and changes in
the intracavity photon number. For certain detunings, these
fluctuations can lead to frequency shifts on the order of a
linewidth or even trigger the system to switch between the two
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FIG. 8. Level attraction dependence on �p. In panel (a) we
plot the frequency difference between the cavity/idler mode and
the pump, for different values of bare pump detuning �p = ωp −
ω0. Here �p1 = −2π × 10 MHz, �p2 = −2π × 20 MHz, �p3 =
−2π × 40 MHz, and �p4 = −2π × 60 MHz. The horizontal red
dashed line corresponds to the point where the signal mode and the
pump are detuned by one mechanical frequency �m = 2π × 2 MHz.
The black dots represent the exceptional point for each pump detun-
ing. The intracavity photon number necessary to hit the red-sideband
driving condition is nc = 1255, nc = 2626, nc = 5313, and nc =
7985 for �p1, �p2, �p3, and �p4, respectively. In panel (b) we show
the pump photon responsivity of the signal mode versus normalized
photon number for each �p, where the normalization factor is the
intracavity photon number of their respective exceptional point nEP.
As expected, the responsivity versus normalized photon number is
independent of �p. Details are given in text.

sides of the instability regime confined by the two exceptional
points (cf. Fig. 5).

APPENDIX F: MAXIMIZING THE CAVITY OUTPUT GAIN

Figure 9 shows a similar dataset to the one of Fig. 4. Here
the pump frequency is once again swept from higher to lower
values, in such way that it crosses the bare cavity resonance
frequency. Figure 9(a) shows the normalized cavity response
spectrum |S11| versus probe detuning �pr and pump detuning
�p. In contrast to the data presented in the main paper, in this
dataset the cavity remained operating in the high-amplitude
branch for the whole range of the measurement. The fact
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FIG. 9. Observation of net output gain in the signal and idler
modes. Panel (a) shows a colormap of the normalized cavity response
spectrum |S11| (dB) versus probe detuning �pr and pump detuning
�p. The on-chip pump power used here was Pp = −147 dBm. As
the pump is swept from higher to lower values the intracavity photon
number is enhanced and also the amount of parametric amplification
in the device. Note that, contrarily to the data presented in Fig. 4,
here the cavity remains in the high-amplitude branch for the whole
range of detunings. In panel (b) we show a linescan corresponding to
the lowest detuning of panel (a). Red points are data, the black line
is a fit using Eq. (3). The dashed vertical line represents the pump.
Here both the signal and idler modes appear as peaks that go above
the background level, reveling a regime where the effective internal
decay rate of the system is been reduced below zero.

that the cavity did not jump sooner to the low-amplitude
branch comes from the fact that we used a smaller probe
power compared to Fig. 4. Furthermore, this data was taken
during an earlier cooldown where the device was mounted
inside a magnetic shield and possibly there was less noise in
measurement setup that could trigger the cavity to switching
branches. As the system lingered in this operation regime for a
wide range of pump detunings, the intracavity photon number
strongly exceeded the maximum amount of drive photons of
Fig. 4, which in that case was achieved immediately prior
to the cavity switching point. As shown in Fig. 9, here not
only the idler emerges as a peak above the background, but
also the signal mode has turned into a peak. This happens
as we reach enough parametric amplification to overcome the
internal losses of the cavity.

Figure 9(b) shows a linescan corresponding to the lowest
pump detuning �p in Fig. 9(a). Here the signal maximum
output gain is approximately 3 dB and the idler reaches a value
as high as 8 dB. This is the largest output gain obtained with
this device. This limit could in principle be surpassed in future
devices by engineering a higher bare external decay rate.
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