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Unconventional pairing in few-fermion systems tuned by external confinement
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We study the ground-state properties of a two-component one-dimensional system of a few ultra-cold fermions
with attractive interactions. We show that, by ramping up an external potential barrier felt by one of the
components, it is possible to induce regions of exotic superfluid phases, characterized by a tunable finite net
momentum of the Cooper pair, without changing the overall spin populations. We show that these phases, which
are the few-body analogs of the celebrated Fulde-Ferrell-Larkin-Ovchinnikov state, can be distinguished by
analyzing a specific two-particle correlation encoded in the noise correlation function. Our theoretical results
can be addressed in current experiments with cold atoms confined in spin-selective optical traps.
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I. INTRODUCTION

Ultra-cold atoms provide an exceptional experimental plat-
form to simulate condensed matter systems in a controlled
way [1,2]. One of the most spectacular collective phenomena
in solids is superconductivity, where electrons with oppo-
site spin and momenta bind into Cooper pairs due to an
effective attractive interaction mediated by the crystal vi-
brations. In the presence of a mismatch between the two
spin populations, generated, for instance, by an applied Zee-
man field, the conventional Bardeen-Cooper-Schrieffer (BCS)
pairing mechanism becomes unstable, as some electrons will
inevitably end up without partners. The spin-imbalanced sys-
tem can nevertheless remain superconducting, at the price
of adopting a new pairing mechanism harnessing the ex-
cess fermions. A well-known example of superconductivity
coexisting with a partial spin polarization is the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [3,4], where Cooper pairs
condense at a finite momentum. This implies that the associ-
ated order parameter becomes spatially modulated, with the
excess fermions sitting at the nodes of the wave, where they
are less detrimental to superconductivity.

The modulated phase is currently investigated in different
physical systems, including one- and two-dimensional organic
superconductors [5], hybrid structures [6], and quark-gluon
plasma [7]. Over the last decade atomic Fermi gases have also
emerged as a valid alternative to study this exotic state of mat-
ter (for a recent review see [8–10]) for a number of reasons: (i)
the two spin states correspond to two hyperfine levels, whose
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populations are fixed at the beginning of the experiment via a
radio-frequency field, without generating vortices; (ii) there is
no disorder; (iii) fermions can be confined in low-dimensional
geometries, where the FFLO state is more robust. In par-
ticular, the ground state of one-dimensional (1D) systems
with attractive contact interactions is known both theoretically
[11–13] and numerically [14–17] to be of the FFLO type for
any finite value of the spin imbalance. The phase diagram of
a spin-imbalanced attractive 1D Fermi gas in a harmonic trap
was predicted in [18,19] and experimentally verified in [20].
In particular, the density profiles of the two spin components
develop a two-shell structure, with the central part being a
FFLO phase, while the wings are either fully paired or fully
polarized, depending on the overall spin polarization. These
predictions were also confirmed by density matrix renormal-
ization group (DMRG) studies of the Fermi Hubbard model
[21]. To date, obtaining direct experimental evidence of the
modulated phase with cold atoms is still challenging. Several
detection schemes have been discussed, based on the analysis
of collective oscillations [22], the sudden expansion of the gas
[23–25], interaction quenches [26], noise correlations [27,28],
spectroscopy measurements [29–32], and the coupling to a
Bose gas [33].

An interesting problem is to investigate the FFLO pairing
in 1D Fermi gases in the presence of spin-dependent external
potentials, so that the effective Zeeman field, corresponding
to the semi-difference between the local chemical potentials
of the two spin components, is no longer uniform throughout
the atomic cloud. A natural question then arises: Can one
tune the external confinement to induce different supercon-
ducting phases in the Fermi gas, without changing the overall
spin populations? To answer this intriguing question, in this
paper we investigate theoretically a 1D spin-1/2 system of
a few attractively interacting fermions, confined in a box
trap with an additional spin-dependent potential barrier at
the trap center. Our main objects of interest are the pairing
correlations present in this system, which can be analyzed
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by means of the noise correlation distribution. Depending on
the local population imbalance, the system behaves either as
a BCS superconductor or a FFLO state, distinguishable by
a nonzero center-of-mass momentum of Cooper pairs. We
show that by appropriately tuning the height and width of the
potential barrier, it is possible to switch the system between
different pairing types, even though the atom numbers of both
components remain unchanged.

Although superconducting pairing mechanisms are typi-
cally studied for bulk many-body systems, here we explicitly
focus on few-body systems far from the thermodynamic limit.
In this way our work connects to ongoing experiments on few-
body samples [34], such as those being currently undertaken
in Jochim’s group [35–39].

This work is organized as follows. In Sec. II, we describe
the model system under study. In Sec. III we examine the pair
correlations that arise in the box trap, without the potential
barrier, and show how they can be analyzed through noise
correlation distributions. In Sec. IV, we describe the effect
of the potential barrier, showing how the dominant net pair
momentum changes as the barrier parameters (height and
width) are modified. In Sec.V, we describe the particular case
where the component split by the potential barrier has an odd
number of fermions. Section VI contains the conclusions.

II. MODEL

In this work we consider a one-dimensional system of
a few fermions of mass m in two different internal states
σ ∈ {A, B}, playing the role of effective spins. Motivated by
state-of-the-art experiments with ultra-cold atoms in two hy-
perfine levels, we assume that the particle numbers NA and
NB of the two spin components are fixed integers. We as-
sume that atoms are strongly confined along two orthogonal
directions, using, for instance, a tight two-dimensional optical
lattice, so that their motion along these directions reduces
to zero-point oscillations. Under this assumption the system
behaves kinematically as one dimension and is described by a
second-quantized Hamiltonian of the form

Ĥ =
∑

σ

∫
dx�̂†

σ (x)

(
− h̄2

2m

d2

dx2
+ Vσ (x)

)
�̂σ (x)

+ g
∫

dx n̂A(x)n̂B(x), (1)

where the fermionic field operator �̂σ (x) annihilates a
σ -fermion at position x and obeys the conventional
fermionic anticommutation relations {�̂σ (x), �̂σ ′ (x′)} = 0
and {�̂σ (x), �̂†

σ ′ (x′)} = δσσ ′δ(x − x′). For convenience, we
introduced the single-particle density operators n̂σ (x) =
�̂†

σ (x)�̂σ (x). In the following we take the external potential
Vσ (x) as

Vσ (x) =
⎧⎨
⎩

Vσ , |x| � D,

0, D < |x| � L,

∞, L < |x|,
(2)

with VA = V and VB = 0, respectively. It means that the par-
ticles are confined in an infinite square well of length 2L,
and the component A additionally feels a potential barrier of
width 2D and height V in the center of the box. From an

experimental point of view, a spin-dependent external poten-
tial can be achieved, e.g., by using a focused laser beam or
magnetic-field gradient to induce a spatially localized spin-
selective energy shift [40–43]. The interparticle interactions
are modeled as contact interactions between fermions of op-
posite species with strength g. The interaction strength g
is related to the three-dimensional s-wave scattering length
[44,45] and can be tuned by magnetic Feshbach resonances
[46,47] or by adjusting the confinement in the transverse di-
rections [44].

For convenience, throughout the rest of this paper we em-
ploy dimensionless units, i.e., we express all energies, lengths,
and momenta in units of h̄2/mL2, L, and h̄/L, respectively.
In these units the interaction strength is expressed in units of
h̄2/mL. Without losing the generality of the final conclusions,
throughout this paper we set the strength of attractive inter-
actions to g = −5. Importantly, we consider 1D systems of
few (up to 12) fermions and assume that the external potential
has fixed spatial size L. For this reason, our results cannot
be straightforwardly extrapolated to the thermodynamic limit,
where the size of the system has to be changed together with
the number of particles to keep the average density constant.

To numerically obtain the many-body ground state for
the given number of particles and external potential con-
figuration, we first solve the corresponding single-particle
eigenproblems for each component separately. Then, we use
the lowest-energy eigenorbitals to construct the noninteracting
many-body Fock basis {|Fi〉}. Specifically, each Fock state |Fi〉
is a product of two Slater determinants of NA and NB orbitals,
describing the many-body state of the A and B components,
respectively. The resultant many-body basis, in general, in-
cludes all the possible combinations of single-particle orbitals
of the NA + NB fermions. Since the many-body basis grows
exponentially with the number of particles, we limit the basis
to Fock states which have a noninteracting energy below a
properly chosen value Emax, according to the recipe given in
[48]. This procedure is based upon the assumption that very
high-energy Fock states will be only negligibly represented
in the ground-state wave function of the system. Then the
many-body Hamiltonian (1) is expressed as a matrix in the
basis {|Fi〉} and diagonalized using the implicitly restarted
Arnoldi method [49]. In this way, the ground state |G〉 is found
as its decomposition in the basis {|Fi〉} and used for further
calculations. In the end, we confirm that the obtained results
do not change quantitatively upon the increase of the cutoff
energy Emax. Thus, the method gives practically exact results,
in the sense that the ground-state many-body wave function is
known almost exactly, i.e., further increase of the Fock basis
does not change the results significantly.

III. PAIRING IN THE TRAPPED SYSTEM

For the attractive intercomponent interactions (g < 0),
fermions of opposite species form strongly correlated pairs.
It has been shown that these pairs may display many differ-
ent features of the Cooper pairs known from the theory of
superconductivity [37,50–53]. Identifying the type of pair-
ing that arises (i.e., pairing with zero or nonzero net pair
momentum) requires a detailed knowledge of the supercon-
ducting correlation function. It has been previously shown
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FIG. 1. The momentum noise correlation G(pA, pB ) in the
ground state, calculated for systems with g = −5, potential barrier
V = 0, and different particle numbers (NA, NB). Each row includes
systems with different imbalance �N = NB − NA. For balanced sys-
tems (�N = 0), one sees an enhancement of correlations along the
line pA = −pB (indicated by the dashed line), signaling BCS-like
pairing of fermions with opposite momenta. For imbalanced systems,
the enhanced correlations instead form along the lines pA = −pB ±
q0 (indicated by dashed lines), signaling the creation of FFLO-like
pairs with net momentum ±q0. Momentum is given in units of h̄/L,
noise correlation in units of L2/h̄2.

[27,28,54] that such information can also be obtained from the
two-point noise correlation G between the two components,
which is directly experimentally accessible from two-body
density measurements [55–57]. In the momentum domain, the
distribution of the noise correlation is given by

G(pA, pB) = 〈π̂A(pA)π̂B(pB)〉 − 〈π̂A(pA)〉〈π̂B(pB)〉, (3)

where the momentum density operators π̂σ (p) =
�̂†

σ (p)�̂σ (p) are expressed straightforwardly in terms
of Fourier-transformed field operators �̂σ (p) =∫

dx�̂σ (x) exp(−ipx/h̄). The noise correlation is the
difference between the two-particle density distribution,
and the product of individual single-particle densities. For a
noninteracting system G(pA, pB) is zero everywhere. It means
that G(pA, pB) expresses the distribution of correlations
forced by interparticle interactions that cannot be captured
by a single-particle description, excluding the spurious
correlations that arise from single-particle densities.

To demonstrate that different types of correlated pairs are
well captured by the noise correlations, in Fig. 1 we show the
distribution G(pA, pB) in the absence of the potential barrier
(V = 0) and different imbalances �N = NB − NA. For all
balanced systems (�N = 0), an enhancement of intercom-
ponent correlations (G > 0) is visible along the antidiagonal
pA = −pB. It means that the probability of finding a pair of

fermions with exactly opposite momenta is enhanced, which
is a footprint of the standard Cooper-like pairing mechanism
with zero pair momentum. For imbalanced systems (�N >

0), the situation is different. The region of enhanced corre-
lations is split into two ridges, located along the two dashed
lines, corresponding to net momenta pA + pB = ±q0, with q0

having a nonzero value, a hallmark of FFLO pairing.
The net FFLO pair momentum q0 in the box trap is

expected to be equal to the difference �pF = pFB − pFA

between the Fermi momenta pFσ = Nσπ/2 of the two spin
components [58]

q0 = �pF = �Nπ/2. (4)

Note that q0 depends only on the population imbalance
�N and not on the values NA and NB separately, unlike in
nonuniform (e.g., harmonically trapped) systems [28]. The
relation (4) is confirmed by Fig. 1: for larger particle num-
bers, the noise correlation enhancement is concentrated into
two clear, narrow maxima located at pA ≈ ±NAπ/2, pB ≈
∓NBπ/2 (red spots); in contrast, the probability of Cooper
pairing between fermions with momenta pointing along the
same direction is strongly suppressed (blue spots). Separately,
it is worth noting from Fig. 1 that the intensity of the noise
correlations diminishes for higher particle numbers because
in 1D systems interactions effects are reduced as the particle
density increases [18]. In particular the relevant dimensionless
parameter is γ = gm/(h̄2n), where n = (NA + NB)/(2L) is the
total particle density (notice that we reintroduced all physical
units for better clarity). The parameter γ can range from the
weakly interacting mean-field regime (γ 	 1) to the strongly
correlated regime (γ 
 1). Within our units convention the
interaction parameter then reduces to γ = 2g/(NA + NB). For
instance, for NA = NB = 4 we find γ = 1.25 for g = −5,
implying that the system is in between the weakly and the
strongly interacting regimes.

To identify more clearly the most probable net momentum
of the pair, q0, we use a method previously proposed in [28]. It
involves integrating the noise correlation with an appropriate
filtering function F (k):

Q(q) =
∫

d pAd pB F (pA + pB − q)G(pA, pB). (5)

For the filtering function, we choose a simple Gaussian func-
tion F (k) = (πw)−1/2 exp(−k2/2w2). The width parameter
w = 0.5 is of the order of the perpendicular width of the
enhanced correlation area. We checked that the form of Q(q)
is not significantly affected by small adjustments of w. Note
that Q(q) = Q(−q), due to the symmetry of G. Therefore, for
simplification, throughout the rest of this paper, we show its
values only for positive q. In Fig. 2 we plot the function Q(q)
for systems with different particle numbers. The momentum
q at which the function Q takes its maximum value can be
identified with the most likely net momentum q0 of the Cooper
pairs in the system. Figure 2(a) refers to systems with identical
population imbalance �N = 2, but varying particle numbers
NA and NB (they correspond to the third row in Fig. 1). In all
these cases, the maximum of Q(q) falls at the same position
q � π , in agreement with the prediction (4). Conversely, in
Fig. 2(b) we show Q(q) for NA = 2 and different particle im-
balances (corresponding to the second column in Fig. 1). The
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FIG. 2. (a) The function Q(q), whose maxima indicate the most
probable values of correlated pair momentum q0, for few-body
systems with fixed particle imbalance �N = 2 and different par-
ticle numbers (NA, NB ). The maximum in each case is present
approximately at the value q = π (dashed line), equal to the Fermi
momentum mismatch �pF . (b) The function Q(q) in systems with
NA = 2 and different values of NB = NA + �N . Note that the �N =
0 curve is scaled by 1/5. Dashed lines indicate the theoretically
predicted momenta �Nπ/2. (Inset) The location of the maximum q0

in Q(q) (circles) as a function of the theoretically predicted Fermi
momenta mismatch �pF . Different points correspond to different
particle numbers and imbalances (see the numerical data and expla-
nation in the Appendix for details). The dashed line corresponds to
a theoretically predicted exact agreement q0 = �pF . Momentum is
given in units of h̄/L, Q(q) in units of L/h̄.

balanced system (�N = 0) with BCS pairing is characterized
by a clear maximum at q � 0. As the particle imbalance in-
creases, the maximum occurs at increasingly higher momenta,
in each case very close to the predicted value (4), indicated
by the vertical dashed lines. This point is further illustrated
in the inset in Fig. 2, showing the most likely pair momen-
tum q0, defined through the function Q(q), versus the Fermi
momentum mismatch �pF , for various particle numbers and
imbalances (see the numerical data and explanation in the
Appendix for details). All data points fall very close to the
dashed straight line, corresponding to q0 = �pF as predicted
by Eq. (4), confirming that the the most likely net momentum
of the Cooper pairs basically coincides with the mismatch
between the Fermi momenta across a wide variety of system
sizes. Additionally, we verified that this result does not change
qualitatively as the interaction strength is varied, although
the intensity of the noise correlation distribution reduces by
approaching the weakly interacting regime.

IV. ROLE OF THE INTERNAL BARRIER

So far we assumed that both spin components feel the same
external (flat box) potential. Let us now consider the effects

of changing the barrier height V felt solely by the component
A. As V increases, the A-fermions are progressively pushed
towards the lateral wings until the central region is completely
emptied. In the high-barrier limit, the A-fermions effectively
experience a symmetrical double-well potential with negligi-
ble tunneling between the two wells. Since each separate well
has width 1 − D, we see from Eq. (4) that the most likely net
momentum q0 of Cooper pairs is given by

q0 = �N ′π/(1 − D). (6)

Here �N ′ = N ′
B − N ′

A, where N ′
σ is the number of fermions of

component σ found within a given well. The expected value
of N ′

σ can be determined by integrating the corresponding
density profile nσ (x) = 〈n̂σ (x)〉 over the the well domain.

A. Barrier with varying height

To demonstrate the effect of changing the barrier, let us
consider a system with NA = 4 and NB = 6 fermions. In
Fig. 3(a), we examine its ground-state properties for increas-
ing V , assuming that the barrier width is fixed to D = 1/3. We
plot the single-particle densities nA(x) and nB(x), along with
the corresponding noise correlation distributions G(pA, pB)
and the function Q(q) reflecting the pair momentum distribu-
tion. In the homogenous case [V = 0, top row in Fig. 3(a)],
both densities (left column) are roughly evenly distributed
throughout the box. Due to the population imbalance, the
noise correlations in the system support the FFLO-like pair-
ing. The pair momentum calculated from Eq. (4) is q0 = π , as
seen from the locations of the positive maxima in G (middle
column).

As V increases, the component A is gradually pushed out
of the barrier region. Due to the symmetry of the system, the
density nA(x) is evenly split between the two side regions.
Meanwhile, the density nB(x) is essentially unchanged (except
for the slight modifications due to the attractive interaction).
The particular choice D = 1/3 means that approximately one-
third of the B population (two fermions) is located within
each lateral region. As a result, for high V , the population
within the lateral regions becomes balanced. This is addition-
ally supported by the fact that densities nA(x) and nB(x) in
these regions become almost identical. Thus, in this regime,
the pairs created within the lateral regions are standard BCS
Cooper-like pairs with zero net momentum. This phenomeno-
logical reasoning is supported by the noise correlations — for
the large V case (last row) the maxima are found close to the
antidiagonal pA = −pB. The maxima become gradually more
indistinct and stretched along the pA direction as V increases,
which can be explained by the increasing uncertainty of pA as
the A fermions are squeezed into a smaller space.

The transition between FFLO and BCS pairing can be
explained in greater detail by inspection of the function Q(q)
[right column in Fig. 3(a)]. For V = 0, Q(q) displays a max-
imum at q0 = π , exactly as predicted for this imbalanced
system from the difference in Fermi momenta. As V increases,
this maximum gradually vanishes, while simultaneously an-
other maximum emerges at q0 = 0. In particular, for V = 30
one can distinguish two separate maxima at the two locations.
This indicates that the change between the FFLO and BCS
pairings is not a gradual decrease of q0, but rather a direct
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FIG. 3. The gradual transition of a system with FFLO-like pair-
ing to BCS-like pairing as the potential barrier height V is tuned. The
system parameters are NA = 4, NB = 6, g = −5, D = 1/3. (a) Left
column: The one-particle densities nσ (x) in the ground state of
the system for increasing V , for component A (thin dashed purple
lines), and B (thicker solid green lines). Vertical dashed lines indicate
the edges of the potential barrier −D � x � D. As V is increased,
the A-component fermions are pushed out to the lateral regions,
while the distribution of the B-fermions remains essentially un-
changed. Middle column: Noise correlation distributions G(pA, pB )
of the system for increasing V . At V = 0, clear maxima are visible
at pA + pB ≈ π . For increasing V these maxima gradually vanish,
replaced with more indistinct maxima close to the pA = −pB antidi-
agonal (marked by dashed lines). Right column: The function Q(q)
for increasing V . At V = 0 a clear maximum is present near q = π .
For increasing V , the peak near q = π gradually vanishes while a
maximum emerges at q = 0, indicating the switch from FFLO to
BCS pairing. (b) The quantity ξ , defined in Eq. (7) and expressing
the dominance of non-BCS pairing, as a function of V . Here the
value of V is smoothly changed over the entire range from V = 0
to V = 85. Circles indicate the values of V depicted in the above
plots. As V is increased and the BCS pairing becomes dominant, ξ

decreases to zero. Energy is given in units of h̄2/mL2; position in
units of L; density nσ in units of 1/L; momenta in units of h̄/L; noise
correlation in units of L2/h̄2; Q(q) in units of L/h̄.

switch between two distinct pairing mechanisms. A separate
effect is that for small barrier heights V , the maximum at
q0 = π shifts towards slightly larger momenta, which can

be explained by the fact that the momentum of A-fermions
slightly increases due to the higher external potential energy.

From an experimental point of view, it is useful to define
an additional measurable quantity that indicates whether the
ground state of the system displays BCS or FFLO pairing. For
this purpose, we define the dimensionless quantity

ξ =
∫

[Q(q) − Q(0)]θ [Q(q) − Q(0)]dq∫
Q(q)θ [Q(q)]dq

, (7)

where θ (z) is the Heaviside step function. If the maximum
of Q(q) is located at q = 0, ξ is exactly zero, while if the
maximum falls at any other position then ξ > 0. The value
of ξ can therefore be interpreted as an indicator for FFLO
pairing. In Fig. 3(b) we show in more details the dependence
of ξ on the barrier height for the NA = 4, NB = 6 system. As
V increases, ξ gradually diminishes and eventually vanishes
around V � 35, signaling the transition towards the standard
BCS pairing.

B. Tuning the barrier width

The FFLO pair momentum q0 can also be controlled
by tuning the width of the barrier. To demonstrate this, in
Fig. 4(a) we show results for a system with NA = 4, NB =
9 particles obtained by progressively increasing the barrier
width D, assuming a fixed barrier height V = 150. The later
choice ensures that the middle region is nearly emptied of
A-fermions. The single-particle densities nσ (x) (left column)
give an approximate view of the changing population differ-
ence in the lateral regions.

The first row shows the case of a system without a po-
tential barrier. As seen from the noise correlation distribution
G(pA, pB) and the function Q(q) [middle and right columns
in Fig. 4(a), respectively], in this case FFLO-like pairs are
formed with a nonzero momentum, q0 = 5π/2. The subse-
quent rows show the effect of changing D to different values.
At the values D = 1/9, 3/9, 5/9, the expected value of N ′

B is
a clearly defined integer number (four, three, and two, respec-
tively). Meanwhile, N ′

A remains close to two in all cases. For
these values of D, the noise correlation distribution and the
function Q(q) show that the most probable pair momentum
q0 changes to the value predicted from Eq. (6) indicated by
vertical dashed lines (q0 = 9π/4, 3π/2, and 0, respectively).
Additionally, we show the cases of intermediate widths (D =
2/9, D = 4/9) which lie in between the above values. In such
cases the value N ′

B is noninteger, implying that the ground
state is a superposition of different quantum states with dif-
ferent numbers of B-particles in the left and right wells. For
instance, for D = 2/9 there could be four B-fermions in the
left well and three B-fermions in the right one or the other
way round.

These results clearly show that adjusting the barrier widths
allows tuning the FFLO momentum q0, as well as switching
from FFLO pairing to BCS pairing. This point is further
illustrated in Fig. 4(b), showing the behavior of ξ as a function
of D when D is smoothly varied. In particular ξ decreases
monotonically as D increases, and ultimately vanishes around
D � 0.4, marking the dominance of BCS pairing.
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FIG. 4. The gradual change of the FFLO momentum as the bar-
rier width parameter D is tuned. The system parameters are NA =
4, NB = 9, g = −5,V = 150. (a) Left column: The one-particle den-
sities nσ (x) in the ground state of the system for increasing D.
Vertical dashed lines indicate the edges of the potential barrier −D �
x � D. Middle column: Noise correlation distributions G(pA, pB ) of
the system for increasing D. As D increases, the maxima become
broader and more indistinct, owing to the increased uncertainty of
momentum pA. Dashed lines indicate the predicted locations of max-
ima pA + pB = q0 for given D. Right column: The function Q(q)
for increasing V . For the values of D where population N ′

B is well
defined, dashed lines indicate the predicted location of the preferred
net momentum q0, calculated from the difference of Fermi momenta.
Particularly, at D = 1/9 and D = 3/9, where the population of A and
B in the lateral regions is integer but different, the system exhibits
a FFLO pairing with a changing net momentum. Meanwhile, for
D = 5/9, the populations become not only integer but also equal,
thus the BCS pairing with q0 = 0 dominates. On the other hand,
for widths not supporting integer N ′

B, particle number in the lateral
region has significant variance and the pairing correlation visible in
the noise cannot be easily associated with a single pairing mechanism
(see the main text for details). (b) Value of the quantity ξ as a function
of D, for D smoothly varied between D = 0 and D = 0.6. Circles
indicate the values of D depicted in the above plots. It is seen that the
BCS pairing becomes dominant for D � 0.4. Position and barrier
width is given in units of L; density nσ in units of 1/L; momenta in
units of h̄/L; noise correlation in units of L2/h̄2; Q(q) in units of
L/h̄.
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FIG. 5. The gradual change of a balanced system with odd NA

as the potential barrier height V is tuned. The system parame-
ters are NA = 5, NB = 5, g = −5, D = 1/5. (a) Left column: The
one-particle densities nσ (x) in the ground state of the system for
increasing V . Vertical dashed lines indicate the edges of the potential
barrier −D � x � D. For V = 0 the two densities are exactly identi-
cal. For a high potential barrier V , the A fermions are pushed out to
the lateral regions. As the number of A fermions is odd, the density
nA(x) within each well represents the contributions from density
profiles corresponding to two or three fermions. Middle column:
Noise correlation distributions G(pA, pB) of the system for increasing
V . For a high barrier, two distinct maxima can be distinguished at
p1 + p2 = 0 and p1 + p2 = ±5π/4 (marked by dashed lines). Right
column: The function Q(q) for increasing V . For a very high barrier,
two maxima can be distinguished at q0 = 0 and q0 = 5π/4. Energy
is given in units of h̄2/mL2; position in units of L; density nσ in units
of 1/L; momenta in units of h̄/L; noise correlation in units of L2/h̄2;
Q(q) in units of L/h̄.

V. ODD PARTICLE NUMBER NA

So far we considered systems with an even particle number
NA. In those cases, the introduction of the potential barrier
leads (on average) to an equal distribution of A-fermions in
the two lateral regions. A more complicated situation occurs
for systems with odd NA, as the presence of the barrier leads
to unequal numbers of A-fermions in the two wells. As a
consequence, the pair momentum q0 can also take distinct
values in the two lateral regions. To demonstrate this, we
focus on the balanced case with NA = NB = 5 particles. The
single-particle densities, noise correlation, and the function
Q(q) for increasing values of V and fixed D = 1/5 are shown
in Fig. 5. For V = 0, the population of both components is
exactly balanced and the system is characterized by BCS-like
pairing with net pair momentum q0 = 0. For very high V
the most probable distribution is that of two A-fermions in
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FIG. 6. The gradual change of an imbalanced system with odd
NA as the potential barrier height V is tuned. The system param-
eters are NA = 5, NB = 7, g = −5, D = 1/7. (a) Left column: The
one-particle densities nσ (x) in the ground state of the system for
increasing V . Vertical dashed lines indicate the edges of the potential
barrier −D � x � D. Middle column: Noise correlation distributions
G(pA, pB) of the system for increasing V . At V = 0, clear maxima
are visible at p1 + p2 = π (marked by dashed lines). For a high
barrier, two distinct maxima can be distinguished at p1 + p2 = 0 and
p1 + p2 = ±7π/6. Right column: The function Q(q) for increasing
V . At V = 0, a single peak is present at q0 = π while for a very
high barrier two peaks can be distinguished at q0 = 0 and q0 = 7π/6.
Energy is given in units of h̄2/mL2; position in units of L; density nσ

in units of 1/L; momenta in units of h̄/L; noise correlation in units
of L2/h̄2; Q(q) in units of L/h̄.

one well, and three A-fermions in the other. In contrast, the
expected number of B-fermions in either of the two wells is
two due to the chosen barrier width. Thus the imbalance �N ′
is different in both wells, resulting in a dominance of two dif-
ferent values of net pair momentum, q0 = 0 and q0 = 5π/4,
corresponding to a BCS and a FFLO state, respectively. This
effect is indeed visible in the noise correlation G(pA, pB) and
the function Q(q), where distinct separate maxima are visible
at the predicted values of q (last row in Fig. 5).

For completeness, we also investigate the imbalanced case
NA = 5, NB = 7, where the system exhibits FFLO pairing al-
ready at V = 0. In Fig. 6 we show the single-particle densities,
noise correlations, and the function Q(q) in this imbalanced
system for increasing values of V and a fixed barrier width
D = 1/7. At V = 0, the system exhibits a FFLO pairing with
a preferred net momentum q0 = π . For very high V the most
probable distribution is again that of two A-fermions in one
well, and three A-fermions in the other, while the expected
number of B fermions in each well is three. In this regime

Q(q) exhibits two separate peaks, q0 = 0 and q0 = 7π/6.
Therefore in the imbalanced odd-NA case, where the system
already exhibits FFLO pairing in the absence of a barrier,
tuning the barrier height V from zero leads to two distinct
effects: (i) it can introduce an additional BCS phase in one
of the two wells, and (ii) it can modify the value of the FFLO
momentum q0.

At this point it is valuable to clarify a general structure
of the many-body ground state in the odd NA case. Due to
the spatial left-right symmetry, the many-body ground state
of the system can be expressed as a general superposition
|G〉 = (|L〉 + |R〉)/

√
2, where |L〉 and |R〉 represent many-

body states describing configurations with the extra A-fermion
placed in the left and right well, respectively. This means that
it is not possible to distinguish whether it is the left or the right
well that contributes to a particular pairing mechanism. In the
limit of very large V , the ground state becomes nearly de-
generate with the first excited many-body state of the system
|G′〉 = (|L〉 − |R〉)/

√
2, having an essentially different single-

particle momentum distribution. As a result, in experimental
practice, a system prepared in this regime may end up in either
one or any superposition of states |L〉, |R〉.

Let us finally investigate the behavior of the system with
NA = 5, NB = 7 as the barrier width D is progressively in-
creased from zero, for a fixed barrier height V = 120. The
obtained results are displayed in Fig. 7. The distributions
Q(q) for no barrier (D = 0) and for D = 1/7 are as shown
previously in Fig. 6, with the preferred FFLO momentum
being q0 = π and q0 = 7π/6, respectively (as marked by
vertical dashed lines in the third column). For D = 3/7, the
expected value of N ′

B is a clearly defined integer number
(N ′

B = 2) and the two momenta are expected to fall at q0 = 0
and q0 = 7π/4. However, it can be seen that the position of
the maximum in Q(q) visibly deviates from the predicted q0 in
this case, although it is reasonably close to the predicted value.
We additionally show the results for two intermediate values
of D (D = 1.5/7, D = 2/7). Since, in these cases the expected
value N ′

B is not a clearly defined integer, the distributions Q(q)
in this case are not straightforward to describe.

VI. CONCLUSION

Few-body cold-atom systems represent an intriguing plat-
form to study pairing phenomena. Here we investigated a
one-dimensional system of few attractively interacting spin-
1/2 fermions confined in a flat box trap, through the numerical
study of the ground-state density profiles and noise corre-
lations. We show that by ramping up a central potential
barrier felt by one of the two components, and thus restricting
pair formation to regions outside the barrier, the system can
undergo different pairing mechanisms without changing the
overall spin populations. Specifically, solely by adjusting the
barrier height and width, the particles in the two wells can
form either BCS-like pairs with zero center-of-mass momen-
tum, or FFLO-like pairs with a tunable finite momentum.
Moreover, we found that for odd particle numbers both BCS
and FFLO type correlations can coexist in different spatial
regions of the system, even in the absence of an overall
spin imbalance, provided the barrier parameters are tailored
appropriately.
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FIG. 7. The gradual change of a system with odd NA as the
potential barrier width parameter D is tuned. The system param-
eters are NA = 5, NB = 7, g = −5,V = 120. (a) Left column: The
one-particle densities nσ (x) in the ground state of the system for
increasing V . Vertical dashed lines indicate the edges of the potential
barrier −D � x � D. Middle column: Noise correlation distributions
G(pA, pB) of the system for increasing V . For D = 0, as well as
D = 1/7, D = 3/7 for which the population N ′

B is well defined,
dashed lines indicate the predicted values of FFLO pair momenta
pA + pB = q0. Right column: The function Q(q) for increasing V .
Dashed vertical lines indicate the predicted locations of q0. Energy
is given in units of h̄2/mL2; position in units of L; density nσ in units
of 1/L; momenta in units of h̄/L; noise correlation in units of L2/h̄2;
Q(q) in units of L/h̄.

Our theoretical results are relevant for current experiments
using quasi-1D atomic samples with few particles per tube. In
these systems the noise correlations were measured with great
accuracy, while the spin-dependent external potential can be
tailored with state-of-the-art optical techniques. Our work
therefore provides a promising route to investigate the FFLO
pairing mechanism starting from experiments with small-size
cold-atoms systems acting as superconducting grains. The
present study can also be generalized to higher dimensions,
assuming that the transverse confinement is reduced so that
some of the excited single-particle states in the transverse
directions become populated. For instance, one can study how
the intensity of the noise correlation function depends on the

numbers of particles in the system, for a fixed system size;
we expect that, contrary to the 1D case discussed here, the
intensity increases as the atom density increases because in-
teraction effects become stronger. It would also be interesting
to understand whether the signatures of FFLO pairing in the
noise correlation function remain visible in higher dimen-
sions, where the exotic superfluid is known to be less robust.

Another promising direction, which directly connects with
π -phases [59] and hybrid Josephson junctions [6] is to con-
sider that both left and right side of the barrier represent
bulk 1D systems with uniform densities (far from the bar-
rier region). This corresponds to taking the thermodynamic
limit Nσ → +∞ and L → +∞, with Nσ /L and the barrier
width D being finite. It is worth stressing that such a limit
is out of reach for the method used in this work because
the computational effort required to obtain convergent results
grows too fast with system size and particle numbers. Other
numerical approaches are more suitable to extract the ground
state properties for bulk systems, including quantum Monte
Carlo or the DMRG. We leave this program for future studies.

TABLE I. The most probable net pair momentum q0 for systems
with different particle numbers NA, NB and imbalances �N = NB −
NA. The system parameters are g = −5 and V = 0. The pair momen-
tum q0 is found as the location of the maximum of function Q(q),
defined in Eq. (5). It is compared to the theoretically predicted Fermi
momentum difference �pF = �Nπ/2. It is seen that q0 ≈ �pF in
all cases, as predicted. Not shown are the entries for NA = NB, for
which in all tested cases q0 = �pF = 0.

NA NB �N �pF /π q0/π

1 2 1 0.5 0.50
2 3 0.47
3 4 0.44
4 5 0.42
5 6 0.40
1 3 2 1 1.09
2 4 1.03
3 5 1.02
4 6 1.01
5 7 1.01
1 4 3 1.5 1.57
2 5 1.56
3 6 1.53
4 7 1.52
1 5 4 2 2.07
2 6 2.05
3 7 2.04
4 8 2.03
1 6 5 2.5 2.57
2 7 2.55
3 8 2.53
1 7 6 3 3.06
2 8 3.04
3 9 3.03
1 8 7 3.5 3.56
2 9 3.54
1 9 8 4 4.06
2 10 4.04
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All numerical data presented in this paper is freely
available online [60].
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APPENDIX: NET PAIR MOMENTA FOR DIFFERENT
PARTICLE IMBALANCES

In Table I we show the data used in the inset of Fig. 2.
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of a few attractive fermions in a harmonic trap, Europhys. Lett.
109, 26005 (2015).

[52] J. Hofmann, A. M. Lobos, and V. Galitski, Parity effect
in a mesoscopic fermi gas, Phys. Rev. A 93, 061602(R)
(2016).
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