PHYSICAL REVIEW RESEARCH 3, 043103 (2021)

Robustness of chiral edge modes in fractal-like lattices below two dimensions: A case study
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One of the most prominent characteristics of two-dimensional quantum Hall systems are chiral edge modes.
Their existence is a consequence of the bulk-boundary correspondence and their stability guarantees the
quantization of the transverse conductance. In this paper, we study two microscopic models, the Hofstadter
lattice model and an extended version of Haldane’s Chern insulator. Both models host quantum Hall phases
in two dimensions. We transfer them to lattice implementations of fractals with a dimension between one and
two and study the existence and robustness of their edge states. Our main observation is that, contrary to their
two-dimensional counterpart, there is no universal behavior of the edge modes in fractals. Instead, their presence
and stability critically depends on details of the models and the lattice realization of the fractal.
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I. INTRODUCTION

The last decade has seen a lot of activity in the classifica-
tion and realization of insulating electronic states that can be
characterized by topological indices. One of the milestones
in the field has been the classification scheme known as the
“ten-fold way” or the “periodic table” of noninteracting in-
sulating states [1-3]. The two key ingredients in the scheme
are the spatial dimension and symmetries, such as chirality,
time-reversal, and parity. For a certain combination of these,
it allows to determine whether a topological index can be
defined or not, and of which type it is. Importantly, the pe-
riodic table does not require the existence of specific lattice
symmetries, implying that it also works in the presence of
symmetry-preserving disorder.

In more recent years, numerous extensions of this classi-
fication scheme have been introduced: crystalline topological
insulators [4], non-Hermitian Hamiltonians [5], driven non-
equilibrium systems [6], or the so called higher-order
topological insulators [7,8], to name some of the prominent
ones.

An alternative path, pursued here, is to extend the clas-
sification scheme to allow for noninteger dimensions. The
“tenfold-way” holds only for integer dimension, and an im-
portant question is what happens in between. Or more directly,
when precisely does a topological state cease to exist? Fractal
structures can be defined as possessing noninteger Hausdorff
dimension d; [9]. Recently, lattices with fractal features have
been manufactured in the laboratory in a variety of ways. This
includes the use of molecular assembly [10-16], templating,
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and coassembly methods [17,18]. Furthermore, fractal lattices
were created by scanning tunneling microscope techniques
[19] and with arrays of waveguides [20].

Following the experimental developments, the theoretical
interest in the physics of fractals has also been reviewed.
Recent works include investigations of the topology and the
conductivity in Sierpinski carpets and gaskets [21-29], but
also studies of Floquet fractals [30], p-wave superconductors
[31], amorphous matter [32], and even anyons in fractals [33].

A special place in the “periodic table” is taken by the
class A. In two dimensions, this corresponds to the class of
the integer quantum Hall (IQH) effect, characterized by the
absence of all of the above mentioned symmetries. In the IQH
in two dimensions, it is possible to define a bulk topological
invariant, the Chern number, which is an integer and directly
related to the measurable transverse conductance oy, [34].
IQH systems are exceptionally robust due to their lack of
symmetries. They are not protected by symmetries but instead
by the bulk gap. This robustness of bulk properties directly
translates to the edge properties. The edges of the otherwise
gapped IQH system host one-dimensional chiral modes. Each
of these edge modes carries one quantum of conductance e? /h
and admits ballistic transport, meaning that they are protected
against backscattering from impurities. As a consequence
thereof, the transverse Hall conductance is quantized in units
of e?/h,ie., Oxy = ne*/h. The integer n is related to the Chern
number of the bands below the Fermi energy, but also counts
the number of protected chiral edge modes in the finite system.

In this paper, we study the existence and the robustness
of edge modes when two-dimensional models of the IQH
effect are transferred to fractal geometries with a Hausdorff
dimension between one and two. In practice, this means
that we consider lattice implementations of fractals that are
embedded in two dimensions and study microscopic tight-
binding models belonging to the IQH class. Specifically, we
study two microscopic models, the Hofstadter model [35]
and a generalized version of the Haldane-Chern insulator [36]
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inspired by Ref. [37]. Both models exhibit stable edge modes
in two dimensions, but they differ in one main aspect: The
flux pattern in the Hofstadter model corresponds to a physical
magnetic field, but the one in the Haldane-Chern insulator
model does not.

We study both models on two different fractal lattice im-
plementations, the Sierpinski carpet and the Sierpinski gasket
(or triangle). Our main finding is that there is no generic
and universal stability of the edge modes, in contrast to their
two-dimensional counterpart. Instead, the existence of current
carrying edge modes strongly depends on microscopic details
of both the fractals and its edge construction, as well as the
models themselves.

The paper is organized as follows: We introduce the con-
struction principle and the lattice implementations of the
Sierpinski carpet and gasket/triangle in Sec. II. Subsequently,
we discuss the two microscopic models and their key prop-
erties in Sec. III. We then present the computational method
to calculate the transport properties in Sec. IV. In Sec. V and
Sec. VI, we present results related to Hall transport on the
respective carpet and gasket fractal lattice implementations
and finish with a conclusion in Sec. VII. The more technical
parts are relegated to Appendices.

II. FRACTALS AND THEIR LATTICE
IMPLEMENTATION

The fractals considered in this paper are defined in the limit
of an infinite iteration of a dilution scheme in the contin-
uum that is specific to the fractal. On a lattice, this iteration
comes to a natural halt, once the lattice scale is reached.
This implies that all the fractals considered in this paper are
only approximate fractals, on a scale that is larger than the
underlying lattice scale. We study two different implementa-
tions of fractals in this paper, the Sierpinski carpet and the
Sierpinski gasket. They differ in two important aspects: their
fractal dimension and their edge connectivity. Especially, the
latter plays a crucial role in our studies and is an important
factor in determining the stability of the edge modes.

A. The Sierpinski carpet

The Sierpinski carpet is a fractal that is constructed starting
from a simple square through the iterative application of the
cutting rule illustrated in the left-hand side of Fig. 1. One first
divides a regular square into 9 squares of equal size. Then
the central square is removed and one is left with 8 smaller
squares surrounding the empty central one. The procedure
is then repeated on each of the remaining squares. The full
fractal is obtained in the limit of an infinite repetition of this
procedure.

Fractal Hausdorff dimension: An illustrative and simple
way to determine the Hausdorff dimension of the Sierpinski
carpet is to investigate its scaling properties. We consider the
scaling exponent of the area under a single cutting procedure.
The square count is 8 instead of 9 because the center was
removed. We then proceed to relate this rescaled area to the
rescaled length of the outer square via the effective Hausdorff

(a)

b)

FIG. 1. A graphical representation of the algorithm used to con-
struct a Sierpinski carpet fractal. (a) The recursive procedure of
cutting out the centers of every square. (b) Lattice implementation
where a natural cut-off for the cutting procedure arises causing the
recursion to stop.

dimension dy,

8 = 3% with
log8
dy = 2% ~ 1.893. (1
log 3

A graphical illustration of the scaling procedure applied to the
Sierpinski carpet is presented in Fig. 2.

Lattice implementation: In order to connect the fractal with
a tight-binding model, we have to define a lattice version of
the above procedure. For obvious reasons, the square lattice
provides the most straightforward starting point for this. On
a finite lattice, the fractal always has a maximal depth, i.e., a
maximum possible number of iterations for the cutting proce-
dure. This is illustrated in the right-hand side of Fig. 1, where
we regularize the lattice by placing sites on the centers of the
squares in the Sierpinski carpet. Technically, this construction
should be named the dual Sierpinski carpet [38], but for
brevity we will simply refer to it as the Sierpinski carpet.

Since the maximal depth is related to the size of the lattice,
we can parametrize the side length of the square lattice as

I =3%, (2)

where a is the lattice spacing. The variable G denotes the size
generation, and is the maximal depth to which the fractal can
be cut.

Given a lattice corresponding to a specific size generation
G, we are always free to not cut to the maximal depth and
instead stop at any earlier iteration of the cutting procedure.
This proves to be a useful strategy for studying the edges.
Therefore, we introduce the quantity F, named fractal gen-
eration, which denotes the number of cuts actually applied to
our system. It is obvious that F < G holds at all times.

(a) (b)
=> T = I

FIG. 2. The scaling method for determining the Hausdorff di-
mension applied to the Sierpinski carpet (b) in contrast to a regular
square (a).
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FIG. 3. Iterative construction of the Sierpinski gasket for fractal
generation F =0, .., 3.

aj

B. The Sierpinski gasket

The Sierpinski gasket (SG) is constructed starting from an
equilateral triangle in a very similar manner. We first connect
the centers of all three sides. This forms another equilateral
triangle sitting in the inside of the original triangle, but upside
down. In a next step we remove it, which leaves us with three
triangles. Afterwards, the procedure is iterated on each of the
remaining triangles, see Fig. 3.

Fractal Hausdorff dimension: The fractal Hausdorff dimen-
sion of the Sierpinski gasket, analogously to the discussion
above, can be obtained by considering the scaling exponent of
the area with a single cutting procedure according to

3=2% with
log 3
dy = 282 ~ 1,585, 3)
log?2

Lattice implementation: In the SG, Fig. 4(a), the underlying
triangular lattice is centered on the corners of the resulting
triangles, thus, under the cutting procedure, some sites needs
to be removed, and some bonds need to be cut, indicated by
dashed red lines. Consequently, the remaining triangles share
corners. One could also build the dual SG, Fig. 4(b), which has
the same Hausdorff dimension, but different connectivity and
lacunarity. The construction proceeds by assigning a lattice
site to the center of each triangle in the SG.

While both procedures produce the same thermodynamic
limit, the effect on the finite systems is very relevant, as the
lacunarity is distinct. In Sec. VI, we compare the two different
lattice versions. We find that the microscopic choice changes

FIG. 4. Two alternative regularization protocols. Protocol (a):
Sierpinski gasket (SG) places the sites on the vertices of the trian-
gles. Protocol (b): Dual Sierpinski gasket (DSG) puts the sites on
the centers of the triangles. For nonzero F, in (b) only sites are
removed whereas in (a) also bonds are cut, as indicated by red dashed
lines. In the thermodynamic limit, the two procedures yield the same
Hausdorff dimension.

(F.G)=(1,0)

(F,.G)=(2,1) ‘/I\a (F,G)=(2,0)

(F.G)=(3.2) (F,G)=(3,1) (F.G)=(3,0)

FIG. 5. A third regularization scheme, which places sites on both
the corners and centers, which is not studied in this paper.

details of the physics, but not the overall conclusion that is
drawn in this paper.

Note that these are by no means the only ways to imple-
ment the Sierpinski gasket on a triangular lattice. One may for
instance place the lattice points on both the corners and the
edges [10,19], leading to a set of lattices displayed in Fig. 5.
This lattice will, however, not be studied in this paper.

III. THE MODELS

We consider two prototypical models that both exhibit the
IQH effect in two dimensions. Specifically, we consider the
Hofstadter lattice model and a version of Haldane’s Chern
insulator, which we represent on a square lattice for computa-
tional convenience.

A. The Hofstadter model

We only shortly review the salient features of the Hofs-
tadter model and defer the interested reader to the existing
literature for more details [35,39,40].

In its original version, the Hofstadter model is formulated
on the square lattice [35]. Spinless electrons, created (annihi-
lated) by aiT (a;), hop on a square lattice under the influence of
ahomogeneous magnetic field that pierces all of its plaquettes.
The corresponding tight-binding Hamiltonian reads

_ T 1A;j
Hp=—t Y (aja,e™ +H.c.), )
(i,j)eL

where the magnetic field is implemented by means of the
Peierls gauge connection A;; =e/h f A .dl. Here, L is
the set of nearest neighbors with support on the lattice.
For concreteness, the magnetic field and the associated flux
can be implemented in the Landau gauge A = B(y, 0). We
parametrize its strength via B = 27w ®/a?, where ® is the
magnetic flux piercing every plaquette. For future reference,
®y = h/e is the quantum of flux, such that a flux of &,
can be trivially gauged away. The Hofstadter model is most
famous for its spectrum versus flux diagram, which reveals
the butterfly structure, Fig. 6. Additionally, the gaps have
been labeled by their respective Chern numbers, which have
been calculated following the TKNN formula [34]. They are
in one-to-one correspondence with the Hall conductivity. Im-
portantly, by virtue of the bulk-boundary correspondence, the
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FIG. 6. Spectrum of the Hofstadter model. The gaps are labeled
with the respective Chern numbers and the associated Hall conduc-
tivity. Courtesy of Refs. [41,42].

Chern number is equal to the number of protected chiral edge
modes.

B. A Haldane-type Chern insulator

The Haldane-Chern insulator is a paradigmatic model that
describes electrons hopping on the honeycomb lattice. Its
main feature is that it exhibits quantum Hall physics without
Landau levels, as well as without a net magnetic flux [36].
Here, we study a variant of this model introduced in Ref. [37].
Contrary to the aforementioned paper, we consider a spinless
version, which explicitly breaks time-reversal symmetry. This
is facilitated by complex next-nearest-neighbor hoppings in

J

N 1 A
t :
Hy = 2 _:W(i,j) <B‘77 - ZU’V> Vi1
L]

-0 © ©® 0@
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FIG. 7. Nonzero phases ® can be acquired on closed loops that
include next-nearest-neighbor hopping, as well as nearest-neighbor

hopping.

addition to nearest-neighbor hopping. The model is again
formulated on the square lattice and features two degrees of
freedom per site, called a and b. The hopping pattern, shown
in Fig. 7, does not correspond to a net flux through the plane
(the two degrees of freedom are graphically represented as
black and red).

In real space the Hamiltonian reads H = H, + H; + H| +
H, +H_+H,+H\ + H, + Hx, and the arrow on each
element of the total Hamiltonian indicates the direction in
which an electron hops (and agrees with the sketch in Fig. 7).
The term H, describes the on-site energy,

Hy =" (M = 8B)o™ Y ),
ij

where ¥ is a two-component wave function, whose entries
correspond to the two degrees of freedom, i.e., lﬁ,- = (a;, b)T
and 0% are the standard Pauli matrices acting in this sub-
space. The nearest-neighbor hopping terms are given by

R 1\
H =3 ¥, (BUZ + Zo)>‘/f(i,j—l)v
i

&)
H_, = Z %&(Ti,j) (Bo’Z + le(fx> &(H-l,j)’ H_ = Z 1&51) (Bo'Z — 2llo'x> lﬁ(i—l,j)’
i,j LJ
and the next-nearest-neighbor hopping terms by
H/v = Z l&('ri,j) (Eo’z + %UX + %O—y>v/}(i+l,j+l)’ H\ = Z l&(‘;,j) (Bo'z — 4%0/‘ + %0’)’)&0_“’]‘_])’
i,j ij
A - 1 1\ - A | I\ -
H, = Z 2% (BUZ - EUXZU’%”«—L;—I), Hx = Z Vi iy (BUZEUX - Z“)W—l,m» (©)
i,j LJ

The index i (j) describes the corresponding site’s x co-
ordinate (y coordinate) The parameter M is related to the
difference in the local potentials between the a and b degrees
of freedom, while B (B) is proportional to the (next-)nearest-
neighbor hopping between the degrees of freedom of the same
type. The absolute amplitude of both the nearest-neighbor and
next-nearest-neighbor hoppings between different degrees of
freedom are in the following set to B = B = 1, leaving M the
only tunable parameter. While the net flux through each unit
cell is zero, the model involves complex hopping parameters
in a way to cause a quantum anomalous Hall effect (see
Fig. 7).

The Chern number C can be computed in momentum
space [40]. After imposing periodic boundary conditions and

(

performing a Fourier transformation, the Hamiltonian can be
written in the more compact form

H=Y W5 dk)¥, @)
with '
sink, + cosk, sink,
d(k) = | —sink, + cosk, sink, |, ®)
fk)
and

f(k) =M — 2B[2 — cos ky — cos k]
—4B[1 — cosk, cos ky]. ©)]
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M =5

(c) Mm=10
E

FIG. 8. The band structure for a ribbon geometry with a width
of 30 sites with two orbitals each. The amount of in-gap boundary
bands corresponds to the Chern number. The counter-propagating
edge states represented in (b) and (c) are at opposing ends of the
cylinder.

The wave function reads Wy = (ay, bx)", and & is the vector
composed of the Pauli matrices, i.e., & = (6%, ¥, 0%).

The Chern number for this model can be easily calculated
according to C = 41_7: I dkedkyd - (,d x 8;9,3), with d =
d / |3 |. We can identify three topologically distinct regions of
the phase diagram, depending on the value of M, i.e.,

-1, O0<M <S8,
C={-2 8<M<12 (10)
0 else.

The number of protected chiral edge states is identical to the
absolute value of C (the sign of C indicates the direction of
propagation) for a given set of parameters. We illustrate the
connection between the Chern number and the number of edge
modes on a cylinder geometry in Fig. 8.

In the trivial phase (C = 0), we see the band structure of
an insulating system with no in-gap states. In the C = —1
phase, there are two dispersive in-gap states, one living on
the upper boundary of the cylinder, while the other one lives
on the lower boundary. The states have opposite group ve-
locities, i.e., the slope of the eigenvalues have opposite signs,
which means that the states travel in opposite directions. For
the C = —2 phase, we find two additional in-gap states. An
analysis of the group velocities and localization reveals that
edge states that have the same directionality are also localized
on the same edge, meaning they are chiral and there are two
of them per boundary.

C. The Hofstadter model on the triangular lattice

This model is formally equivalent to the one discussed in
Sec. IIT A, in that it is described by the same Hamiltonian.
The main difference, however, is that the smallest closed loop
is not given by a plaquette but by a triangle, and the choice
of gauge is slightly more involved. The smaller loop means
that the system is not 2z periodic in the phase picked up per
plaquette, but is 47 periodic, see Fig. 9(a).

The spectrum of the “butterfly” as a function of the flux &
through a lattice is shown in Fig. 9(b). While it looks different
than the one in the square lattice, it has very similar features.
It also shows large regions with bulk gaps, where the system

Triangular Lattice
)

n 2n
Sierpinski Gasket Dual Sierpinski Gasket
(SG) (DSG)

(d)

FIG. 9. (a) The triangular lattice and the flux & picked up around
a triangle. The gray area is the unit cell (or unit plaquette), which is
4r periodic in the flux 2®. (b) The spectrum of the Hofstadter model
on a triangular lattice as a function of the dimensionless flux ®. The
spectrum of the Sierpinski gasket strongly depends on whether it is
regularized as a gasket (c) or a dual gasket (d).

is a IQH system characterized by an integer quantized Hall
conductance. For all practical purposes, the system behaves
similarly to the more conventional square lattice version. The
main difference will be where we put the leads, as detailed in
Sec. VI. In Figs. 9(c) and 9(d), we contrast the spectra of the
SG and the dual SG both from the triangular lattice, as well
as from each other. The main observation is that the spectra of
SG and dual SG are markedly different as a consequence of
the two distinct cutting procedures.

IV. THE METHOD

We use two complementary methods to study the prop-
erties of the edge states: eigenstate spectroscopy and the
non-equilibrium Green function technique. The former one
is straightforward, so we do not comment on it any further.
The latter, on the level it is used here, is equivalent to the
Landauer-Biittiker approach. We implement it numerically
and in order to achieve larger system sizes, we combine it with
the recursive Green function method. The setup we study for
square-based geometries is shown in Fig. 10. It also applies
to the triangular systems, although with slightly modified lead
locations. Four leads are connected to the central scattering re-
gion (S) that hosts the fractal. The leads can in principle sit at
different temperatures 7;, and at different chemical potentials
o (@a=1,2,3,4).

The main advantage of this setup is that it allows to study
both the diagonal voltage drop V,, and the Hall or transverse
voltage drop V,,, which provide complementary insights.

Following a standard Keldysh Green function treatment,
one can derive the following expression for the current into
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FIG. 10. Four terminal setup, which allows to access both the
diagonal and the transverse voltage drop.

lead a:
e 4
=23 / do Ty (@) fu(@) = fy(@)], (1)
b=1

where
Ty p(w) = Tr[Fa(w)Gf,b(w)Fb(w)Gﬁ,b(w)] (12)

is the transmission function between leads a and b. The trace
in Eq. (12) extends over all internal indices, such as for in-
stance orbitals and the sites along the length of the interface.
Gfi(,f) and fo;‘” are the retarded (advanced) Green functions
describing propagation from lead a to lead b and vice versa
(these are generically large matrices that have to be handled
numerically). The broadening function I',(w) describes the
hybridization function of lead a with the scattering region S.
It is given by

r,=:1(zf-3x2),
(13)
Ea = VS*)GGHVH*)Ss

where G, is the lead Green function, meaning the Green
function of the decoupled lead at the interface. This quantity
is also calculated numerically.

Furthermore, f, denotes the Fermi-Dirac distribution
within lead a,

fa(w) = {1 +exp[—Balw — u)} ", (14)

where B, = (kgT,)~' describes the inverse temperatures and
Wq 1s the chemical potential of the respective lead a. In the
following analysis, we always consider zero temperature in
the leads, implying that the distribution function is the step
function. Consequently, the current into lead a reads

e 4 2
L=i Y / T, ) (15)
e 4
= ;Wb — VO Tn(1) (16)

Energy E/t

0 025 0.5
/D,

075 1

FIG. 11. The Hofstadter model phase diagram, in terms of p,
for a full depth fractal of a generation 5 Sierpinski carpet. Picture
from Ref. [22].

where in the last line we assume pi,p) = 1 + Vap) and
To.p(w) = T, (). In this paper, we are mostly concerned with
calculating the transverse resistance and, to a lesser extent,
the longitudinal one. The pattern of currents that allows us
to access both is given by Iy, b, I3, Iy = Iy, —1y, 0, 0. If we
ground, e.g., lead no. 4, i.e., V4 = 0, we can determine all the
potentials and the Hall resistivity is given by

Pxy = 7+ (7

The main advantage of the above formulation in terms of
Green functions is that we are able to express the transmis-
sion in terms of only a very limited number of elements of
it. This allows to use a very efficient numerical technique,
the recursive Green function method. The algorithm has the
benefit of reducing computation time significantly. Instead of
inverting the whole central scattering region S, one can do it
iteratively, slice by slice. However, it needs to be adapted to
accommodate the presence of more than two leads. Technical
details on the Recursive Green function formalism and slicing
procedure are given in Appendices A and B for the interested
reader.

V. EDGE STATES AT THE BOUNDARY OF THE
SIERPINKSI CARPET FRACTAL

In this section, we discuss the physics of the edge states
on the Sierpinski carpet of both the Hofstadter and the Chern
insulator model. Our main finding is that the stability of the
edge states of both two dimensional models differ signifi-
cantly upon rendering the lattice fractal.

In a strictly two-dimensional setting, the Hall conductivity
oy is quantized according to oy, = Ce?/h, where C is the
Chern number of the underlying electronic structure. Alterna-
tively, the transverse conductivity can be considered from the
point of view of chiral edge modes in the system, following
the bulk-boundary correspondence. It is important that the
bulk itself is gapped. Then, the Hall conductivity is quantized
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Hall Resistance, pxy,
(b) (G,

Energy E/t

F)=(5,5) (c) (G,F)=(6,6)

0.40 0.45]0.35 0.40 0.45

®/®y=0.4375

FIG. 12. Zoom-in on the Hall resistance for three consecutive generations (4,4), (5,5), and (6,6). The large scale structure of the edge
modes is already present in generation (4,4). The difference between the various panels is the amount of high-frequency variations, as seen in
the two cuts at fixed /P, in the lower panel. The color scheme is the same as in Fig. 11. Picture from Ref. [22].

as |oy| = ne®/h, where n is the number of protected chiral
edge modes. Since the Chern number is only properly defined
and quantized for gapped systems in two dimensions (or more
generally, in even dimensions), we will henceforth not talk
about the Chern number but only about oy , (and py,,), since
this quantity is always well defined.

A. The Hofstadter model on a Sierpinski carpet

In this section, we investigate the generalization of the
Hofstadter model to a fractal geometry. Some of the results
have already been published elsewhere [22], and we only
give a very condensed version here. The main results are
summarized in Figs. 11 and 12. Similar results have also been
obtained in Ref. [26] using the Kubo-Bastin formula for Hall
conductivity.

Figure 11 shows the Hall resistivity for a generation 5
fractal at full depth G = F. The x axis denotes the flux value
per plaquette of the parent square lattice, in units of the flux
quantum. On the y axis, we show the energy in units of the
elementary hopping introduced in Eq. (4). The color scale
shows the dimensionless transverse resistivity p,, in units of
h/e*. Compared to the square lattice, Fig. 6, the number of
regions with perfect quantization is massively reduced.

It was found that the vital quantity that determined the
maximum number of edge modes was not G or F, but the
difference between them, the “fractal distance”

A=G-F. (18)

We will see that this quantity plays a crucial role also in the
systems that we consider in this paper. This becomes more
apparent in Fig. 12, which shows a zoom-in into the upper

panel of Fig. 11. From left to right, we increase the fractal gen-
eration (all at full depth, A = 0), making sure that the results
have converged. In the lower panel, we see a corresponding
cut at fixed flux, again for different generations.

For some fluxes we find plateaus, whereas for others no
quantization is visible. This suggests that generically the
quantum Hall physics of two dimensions is unstable to modi-
fying the dimension. From the point of view of Chern numbers
and the periodic table, this is not unexpected [1-3]. It is not
obvious how to define Chern numbers if the dimension is
not two, and therefore one could expect that for fractals the
quantization, in general, is gone.

The specific problem with fractals is that even if the
embedding space is two dimensional the system does not
possess any finite period, which prevents the formation of a
two-dimensional Brillouin zone. One can artificially impose
periodic boundary conditions on any finite-size fractal. How-
ever, these “periodic” systems would have just as many bands
as there are sites in the fractal, and this number would grow
with system size, preventing the number of bands from being
a well defined quantity in the thermodynamic limit.

Alternative methods are currently being developed to de-
scribe the topology in systems lacking translation invariance.
These include calculations in real space [43], perpendicular
space [44], or using noncommutative geometry techniques
[45-47]. The real-space calculations on Sierpinski fractals
have been attempted in Refs. [21] and [22], but as far as we
are aware, these do not guarantee quantization.

Since the quantization of the Hall conductivity is also re-
lated to the existence of chiral edge states (assuming there
is a bulk gap), this begs the question of what happens to
them.
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FIG. 13. Upper row: The structure of edge states at /P, = 0.375 for all depths of a fractal of generation 3. The states chosen lie in an
energy range with quantized p,, in Fig. 12. Note how all the states are essentially localized to the outermost site, which enables their stability
also at full depth of the fractal. Middle row: Inner edge states at the same value of flux. These states behave like edge states localized around
the holes of the Sierpinski carpet. Lower row: Bulk states outside of the zoom in Fig. 12. In all figures random uniform onsite disorder in the

range € € [—1, 1] - 0.01z is added to break residual lattice symmetries.

A priori nothing forbids the existence of edge states in a
fractal between one and two dimensions. In order to analyze
this, we consider the modes that correspond to states at the
Fermi level in one of the plateaus shown in Fig. 12. We
choose a flux of ®/®y = 0.375 and identify edge states at
all depths of a fractal of generation 4, see Fig. 13 (upper
row). Given that edge modes can survive on the exterior
edges, it is natural to ask whether the same is true also on
the interior edges, which are formed by the holes that are cut
away from the fractal. Indeed, as shown in the middle panel
of Fig. 13, one may identify states that are localized on the
inner edges as well (note that we have added weak disorder
in all plots to remove accidental degeneracies due to lattice
symmetries). These states are also identified in Fig. 14 via
a Hall resistance measurement involving leads placed on the
inner edges instead of the outer ones. In the figures, the leads
are placed in the central, F/ =1, “hole” and p, , is computed
for A=0,1,2 and G = 3, 4,5. We find, again, that A de-
termines whether or not edge modes are stable on the inner
edge, just like on the outer ones. The key to understanding
the stability and the associated quantization plateau is that for
some energies the wave function is localized on the outermost
boundary sites. This is a fine tuned situation and it renders

the system less stable against adding disorder, as some of us
showed in Ref. [22]. For reference, a number of typical bulk
states are shown in the lower panel of Fig. 13 for the same
cutting depths.

B. The Haldane-Chern insulator on a Sierpinski carpet

We now turn our attention to the Haldane model defined in
Eq. (7). The setup we consider is of the type shown in Fig. 10.
Our starting point is the square lattice in the scattering region
S, to which we then apply the cutting algorithm to generate
the Sierpinski carpet. We first investigate the Hall resistance
for signatures of quantization, in the sense of the IQH effect.

Starting from a two-dimensional system of size G = 5, we
compute the Hall resistance for different cutting depths, i.e.,
for F values between 0 and 5. The results are shown in Fig. 15.

A low number of cuts leaves the Hall resistance largely
intact. However, starting from cutting depth F' = 3, the quan-
tization appears less stable and completely vanishes for F = 4
or F = 5. We will discuss later that this is related to the space
accessible to a boundary mode.

This behavior is also observed for other system sizes, as
can be seen in Fig. 16. We find that the relevant measure for
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-1.0 -0.5 0.0
E/t

— (G,F)=(3,3-4) (G,F)=(4,4-1) —— (G,F)=(55-A)
FIG. 14. Hall resistance for leads placed on the interior of the
largest hole in the Sierpinski carpet, at a fixed flux ®/®y = 0.375,
and fractal distance A = 2, 1, 0. It should be evident that one can
detect the signature of interior edge modes even at the largest depths,

A = 0, just like for the outer edge modes in Figs. 12 and 11.

the breakdown of the quantization is not the fractal genera-
tion G itself but the “fractal distance” A =G —F.If A > 2,
the quantization is intact and the Hall resistivity remains un-
changed. For A < 2, no well-defined region with a finite Hall
current exists. This holds for regions with one edge mode, as
well as regions with two edge modes in the nonfractal system.
At A = 2, there are still regions with a finite Hall resistivity,
however they show features of instability.

An interpretation for A can be found by considering the
boundary of our system. Since A refers to the difference
in number of actual cuts made compared to the maximum
number of cuts possible, it measures the width of the system
boundary that is still intact. The relation between the number
of sites that have not yet been touched by the cutting proce-
dure, i.e., the boundary width b and A is given by

b=3%.

This relation holds independently of the size of the full sys-
tem. A graphical representation for some values of A is given
in Fig. 17.

Since the quantized Hall current is carried by edge modes,
details of the edge along which they are traveling should
indeed have an impact on their stability. Understanding why
for any boundary with a width of 9 sites or less (A < 2) the
Hall resistance becomes unstable requires a closer look at the
edge states themselves.

We consider a cylinder geometry, like the one shown in
Fig. 18, and investigate the spatial dependence of the wave
function transverse to the edge direction. By performing a
Fourier transform on only the x component, we may study
the localization of the edge modes in the finite y direction.
The resulting Hamiltonian is given by Hrivpon = ) [Ho (k) +

Hy (k) + H\(k)], where

w
Hy(k)=Y_ Wi Isin(k)oy + (M — 8B + 2B cos(k))o~ 1Y,

y=1

w
— 1
Hy(k) = Z 1/,;,),[7’ cos(k)o™ + E(sin(k) +1)o”
y=1
+B(1+2 cos(k))az} Yiy+1
4 + ! 1 . ,
H (k) = Z ‘pk,y 3 cos(k)o™ + z(sm(k) —1)o?
y=1

+B(1 + 2005(k))0{| Yiy—15 (19)

and W is the width of the ribbon shown in Fig. 18.

In Fig. 19, we show the edge states on the nonfractal square
lattice for a system size corresponding to generation G = 5
(F = 0). This serves as reference point for the following dis-
cussion. We show the absolute value of the wave functions
as a function of the distance to the edge for the first 25 sites.
There is no visible difference between the shown curve and
that of G = 4, from which we conclude that for the system
sizes considered, finite-size effects are not important. We now
compare the typical extension to the length scale defined by
the cutting procedure.

Vertical lines indicate at which points a cut would effec-
tively terminate the intact boundary of a fractal system for
a given A. For A =0 (A = 1) this implies that there are
already missing sites in the second (fourth) row of atoms
of the system. What this means in practice is that a siz-
able weight of the wave function will be localized around
holes, which leads to situations where the different parts of
the wave function are effectively counter-propagating, see
Fig. 19(d).

Such systems can therefore not sustain stable edge modes
and it is not surprising that the quantization of the Hall con-
ductivity breaks down in these cases, as shown in Fig. 16.
If, however, the boundary is larger than A = 2, the weight
of the wave function is far enough from any holes in the
sample. Therefore, for A > 2 the Hall resistance in Fig. 16
is hardly influenced by the presence of cuts. The case A =2
marks the threshold between both behaviors. There, the main
peak of the wave function still gets supported by the lattice.
However, already the second peak in Figs. 19(a) and 19(b)
cannot completely fit into the boundary when the fractal gets
cut out. This explains why, in the Hall resistance plots, we
can still find an area with well defined edge modes, but in
combination with additional substructures that come from the
presence of another cut-out edge hybridizing with the outer
modes.

Further insight can be gained by considering the stability of
edge modes on the fractal under the influence of disorder. We
implement disorder via a random on-site potential €, which is
chosen in the range € € [—€max, €max]- The results are shown
in Fig. 20 for the parameter value M = 4. Since edge modes
were already shown to be unstable for A < 2, these cases will
not be considered. The results in Fig. 20 were calculated for
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FIG. 15. A comparison of Hall resistance at all possible iterations of the cutting procedure for a system with size G = 5. While edge modes

survive the first few cuts, they break down for F > 3.

G = 5 fractals, but smaller systems show the same qualitative
behavior. As in the two-dimensional case, i.e., F = 0, there
exists a critical disorder at which edge modes cease to ex-
ist. This critical threshold also exists in the fractal system.
However, the value for such a threshold becomes slightly
smaller as A decreases. At A =2, we see some features
already for small disorder, but in general there still seems
to be some stable Hall current. This can be explained by the
finite size of the edge modes making them unstable on smaller
boundary sizes, as was previously discussed.

We end this section with a comment. The reader might
wonder if there is a different explanation for the breakdown
of topology that does not rely on the mechanism of inner
and outer counter-propagating edge modes being gaped out
by the presence of the fractal cuts. For instance, the pertur-
bation introduced by fractal formations could affect different
single-particle states differently. One could then imagine that
the periodicity that is introduced by a certain fractal depth

happens to be commensurate with electron states that bear
the largest Berry curvature Q2(k). Those states may then be
strongly scattered by the newly added fractal perturbation and
may open up trivial gap due to Weiss oscillations [48,49]. It is
thus justified to wonder what the fate is of the edge modes if
one instead of fractal cuts perform periodic cuts of the same
size as the cuts at a certain “fractal-distance” A.

We have not pursued this direction in this paper, but it
makes an interesting follow up study. One may argue that
if the hybridization of edge modes is not important, then
topologically nontrivial band structures would persist even at
“periodic” cuts of A =1 or A =0, for at least some range
of M. One could (but we have not) test this hypothesis by
making periodic cuts of finer and finer size, and compare with
the fractal cuts. The type of “periodic” deformations described
above would also allow for a multiband Brillouin zone to still
exist, and if the number of bands is reasonably small, one
could still compute Chen numbers in the infinite system.

—-1.00

-1.25

-1.50

-1.75

—2.00

FIG. 16. Hall resistance dependence on A for size generations G = 3, 4, 5. The critical value A = 2 applies for all sizes.
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FIG. 17. The boundary width b is dependent on the cutting depth
(colored regions). Independent of the size of the fractal, for any given
A, b remains the same.
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FIG. 18. The cylinder setup with width W used for calculating
the wave functions of edge modes. In the x direction the system has
periodic boundary conditions.
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FIG. 19. [(a),(b)] Wave functions of edge modes for the parame-
ters M = 1 and M = 10, and generation G = 5. In the M = 10 case
(b) there exist two edge modes. The plot shows the zero-energy
solution at k = 0. Further, the shape of the wave functions agrees
perfectly with the solution for G = 4, suggesting that this is the
shape also in the infinite system. (c) Schematic representation of
the effects of A on the boundary width. (d) In the region between
the sample edge and the hole in the sample, there are effectively
counter-propagating modes that are not protected from scattering.
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FIG. 20. Hall resistance for M =4 and G =5 in the presence
of disorder for SC fractals with various cutting depths. The critical
disorder becomes smaller as the boundary size decreases.

VI. THE SIERPINSKI GASKET

We return to the Hofstadter model, but on an underlying
triangular lattice and the Sierpinski gasket geometry.

Since we are interested in the Hall voltage, this begs the
question of how to define the Hall voltage. In this geometry,
we adapt the “standard” Hall measurement to the triangular
setup by putting two of the leads on the same side. The
measurement then proceeds in the standard way, by running
a current between “opposite” leads and measuring oy, on the
remaining two leads (Fig. 21).

A. Lead placement and shallow cuts

Here, we explore two different placements of the leads in
order to stabilize the Hall voltage measurement, see Fig. 21.
In setup (a), leads 1 and 3 are placed symmetrically over
the pinching points that appear already in the first frac-
tal generation G = 1. In setup (b), the leads 1 and 3 are
placed asymmetrically next to the G = 1 pinching points, but

(a)

FIG. 21. The two different lead setups considered in this paper.
The leads are scaled to be 1/4 of the length of the triangle side. For
purposes of Hall voltage, the setup in (b) yields a more stable reading
of pyy.
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1/21

1/37
1/57-

Px,y

— ®/®o=0.07
— ®/®g=0.3

FIG. 22. Transmission and Hall resistivity in a nonfractal triangle
for ® /Py = 0.07 and & /Py = 0.3 with size G = 7 and with the lead
setup shown in Fig. 21(a). The Hall resistivity p, ,. Inset: Transmiss-
ion from lead 1 to lead 3, 7;_,3. For ®/®y = 0.07, bands of Chern
numbers up to 5 can be identified, with the corresponding Hall
voltage being quantized at p,, = 1/5h/€*. For ®/®, = 0.3, a large
energy gap with one edge mode is observed in the energy range
0<E <35.

centered on the pinching points for the second fractal genera-
tion G = 2.

As a reference, we study the nonfractal system first. The
results are displayed in Fig. 22, where we show the Hall volt-
age at low field ®/®y = 0.07 and high field ®/Py = 0.3. In
the low-field regime, Landau bands with up to Chern number
5 can be identified by the quantization of p, ,, whereas in the
high-field regime, the spectrum is dominated by the large gap
0 < E < 3.5, with only a single edge mode. Note that in the
nonfractal case the two different lead placements in Fig. 21
lead to equivalent results (not shown).

The SG differs substantially from the SC in that already at
the shallowest cut F' = 1, the edge contains pinching points,
which are only one lattice site wide. A direct consequence
is that these can only allow for one edge mode to pass and
this limits the maximal transport through the pinching point
to be at most 1. This also means that we should only expect a
quantized Hall voltage that is either p,, = 0, &1.

In Fig. 23, we investigate whether there is a preferred
way to place the leads to detect this one edge mode. We
here focus on the case ®/®y = 0.3 and compare the p,, for
both the SG and dual SG regularizations with respect to the
placement of the leads in Fig. 21. For this purpose, we only
make a single cut F =1 to try and detect the possibility of
a single edge mode. For the “symmetric” placement, we see
that p, , shows strong high-frequency fluctuations precisely in
the region where a quantized p, , response could be expected.
We speculate the these high-frequency oscillations are due
to the symmetrically placed leads acting as strong impurities
and interfering with the path of the edge mode, as it tries to
navigate the pinching point, which acts like a point contact.

On the other hand, in the “asymmetric” lead placement
(lower panel) a clear Hall plateau is observed for the SG

pX,y

IHUNII'

e

-2 -1 0 1 2 3
E/t

Triangle Dual Sierp. Gasket Sierp. Gasket
— F=0 F=1 F=1

FIG. 23. The Hall voltage for ®/®¢ = 0.3 with G =7 and F =
0 and F' = 1 with the lead setup shown in (a) and (b) in Fig. 21. In
setup (a), Vi J has trouble picking up any signals of Hall quantization.
In setup (b), some quantization can be seen in Vy, but it does depend
on the lattice regularization. We conclude that the lead setup in
Fig. 21(b) is preferable over setup (a) for the purposes of detecting a
quantized Hall response.

system. The same can, unfortunately, not be said for the dual
SG system in this energy range. We note however that in
the range —1.5 < E < —1 both the SG and dual SG lattices
show a quantized Hall response. This shows that at least for a
shallow cutting, both lattices are able to support edge modes.
We conclude that the “asymmetric” placement of the leads is
preferred for detecting edge modes, and we will thus only use
that one in what follows.

We note that a further consequence of the pinching points
at F =1 is that “bulk” and “edge” currents will need to pass
though the same point. This will lead to the possibility of
mixing between the transverse and longitudinal resistivity.
Indeed, the oscillatory behavior of the Hall resistivity shown
in Fig. 23 is similar to the behavior of Hall measurement in 2D
electron gasses that occurs when partially filled Landau levels
cross the Fermi level as the B field is increased. In the current
setup, longitudinal resistivity cannot really be measured, as
this would require a 6 terminal setup. Our computational
method can easily be modified to include also a 6 terminal
setup, but it starts to become computationally expensive, and
would introduce another layer of finite-size effects, so we
choose not to do it in this paper. Thus, we cannot conclusively
say that the longitudinal and transverse resistances are not
mixed.

B. Fractal cuts

Next, we perform cuts at maximal depth, such that the
fractal depth is F = G — 1. The result is displayed in Fig. 24
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FIG. 24. The Hall voltage for ®/®; = 0.3 and ®/d¢ = 0.07,
and F=G—1 for G=5,6,7 with the lead setup shown in
Fig. 21(b). In each panel, only a segment of the spectrum is shown.
The value of p, , is shifted by 0.1 between the three generations for
increased readability. In addition, values of p,, that deviate from
h/e* are made successively whiter to suppress noise in p,, and to
highlight the regions where p, , is quantized. Note that for all three
system sizes roughly the same behavior of p, , is observed and that
the different system sizes share the same regions with quantized p,.,.
It is thus reasonable to suspect that these plateaus will be present also
for larger system sizes.

for two different magnetic fields ®/®y = 0.07, 0.30 and both
the SG and dual SG setup, and G =5, 6, 7. For increased
readability, the curves are shifted relative to each other. Fur-
ther, to highlight the regions with quantized Hall resistivity
Ox,y, deviations from o, , = h/ ¢? are fading towards white.
In the panels of Fig. 26, we can see that for all three system
sizes, roughly the same behavior of p, , is observed. Also, we
note that the different system sizes share the same regions with
quantized p, y. It is thus tempting to conclude that the fractal
is able to support topological states in the thermodynamic
limit. Indeed, by diagonalizing the Hamiltonian without leads,
we find clearly distinguishable edge modes in the full depth
fractal. These are depicted in panels (a) and (b) of Fig. 25.

C. Interior transmission

Interestingly enough, from the point of view of the pinch-
ing points, there is no particular reason why the edge states
of the Sierpinski gasket have to run only on the outside of the
gasket. In fact, the interior of the gasket forms an edge that
is just as valid as the exterior edge. Indeed, in Figs. 25(c)
and 25(d), one can see edge states at the interior of the
gasket.

If we place leads around the inner holes of the main tri-
angle, as depicted in Fig. 26, we can clearly see regions of
quantized Hall resistivity. We note two things: (i) The regions
of quantized resistivity are the same for the inner and the outer

(d)

FIG. 25. Eigenstates situated at: (a) /Py = 0.07, E = —0.83;
(b) &/Py=033, E=-271; (c) &/Py=0.07, E =—-0.79;
(d) &/Py =0.33, E = —2.65. In all figures, a disorder we =€
[—0.1,0.1]¢ is used.

placement of the leads and (ii) here p,, = —h/ ¢? instead of
Py = +h/é?, as in the outer placement.

From the second observation, we conclude that for the
inner placement the edge modes are propagating as | — 2 —
4 — 3 — 1, whereas in the outer placement the circulation
directionis 1 - 3 — 4 — 2 — 1, as indicated by the arrows
in Fig. 25.
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FIG. 26. The Hall voltage for ®/®;, = 0.3 and &/P, = 0.07
and F = G — 1 for G = 5, 6, 7, with the lead setup shown in the left
panel. In each panel, only a segment of the spectrum is shown. The
value of p,, is shifted by 0.1, just like in Fig. 24. Also here, the
different system sizes share the same regions with quantized p,.,.
Furthermore, the regions with stable Hall resistivity are the same as
in Fig. 24.
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FIG. 27. The Sierpinski gasket (d) can be likened wit a net-
work of connected quantum Fabry-Perrot interferometers (c) or as
a pinched Corbino disk. In both cases, counter-propagating edge
modes need not gap each other out completely.

Combining the second observation with the first observa-
tion that the interior and exterior quantization happens in the
same energy range, we draw the conclusion that the pinch-
ing points of the gasket are not enough to gap out the edge
modes. Rather, it looks as if the pinching point is alternating
between sustaining propagation on the exterior and interior
edges, allowing these in practice to coexist for the purposes of
transport.

The observation of coexisting transport can be understood
from the perspective of a quantum Fabry-Perrot interferome-
ter, as shown in Fig. 27(a). In an interferometer of this kind,
edge modes can circulate on each of the regions I-III without
being destroyed by the quantum point contacts connecting
them. At the same time, currents may tunnel between region
I and II (or II and III) coherently. An analogous situation can
be found in the case of the Sierpinski gasket with F = 1. The
three triangles that are formed at F' = 1 can alternatively be
thought of as forming a Fabry-Perrot interferometer necklace,
Fig. 27(c), or as a pinched Corbino geometry. In both cases,
the counter-propagating edge modes do not gap each other
out completely allowing for coexistence and a quantized Hall
resistivity response on the inside, as well as the outside bound-
ary.

VII. CONCLUSION AND DISCUSSION

In this paper, we investigated the stability of the IQH effect
when paradigmatic models are transferred onto lattices that
implement fractals with dimensions between one and two,
specifically the SC, SG, and the dual SG. On general grounds,
starting from bulk considerations, one should not expect a
robust quantization of the transverse conductance: The Chern
number is only well defined in two spatial dimensions.

The question can also be investigated from the point of
view of protected edge modes. They are known to exist in
two-dimensional IQH systems by virtue of the bulk-boundary
correspondence. We study how their stability is compromised
by rendering the lattices increasingly fractal. We use a spec-
troscopic method and the Green function method.

Our main finding is that under generic circumstances, the
edge channels become unstable and no quantization can be
expected. The main reason for the instability is rooted in
the fact that the fractal introduces new edges on the in-
side of the sample. The associated “inner edge states” are

counter-propagating with respect to the outside edge states
and can hybridize. This eventually gaps them out. The only
exceptions we find are in situations where either the edge
states are extremely localized or where the fractal does not
extend all the way to the edges due to the cutting depth. We
show that in those situations, the protection against disorder
is also strongly reduced compared to the two-dimensional
counterpart.

We stress, however, that even though a robust quantization
of the transverse conductance is not expected, there are fine
tuned situations where it still exists. In these situations, many
of the topological features that are observed are also scale
invariant, in that they only depend on the fractal distance,
A = G — F,and not on G or F individually.

For future, it would be interesting to investigate other
classes of topological insulators on fractal geometries, and
also the connection with Weiss oscillations [48,49] on peri-
odic structures with the same length scale as the fractal cuts.
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APPENDIX A: THE RECURSIVE GREEN
FUNCTION METHOD

In Sec. IV, we introduced the transmission function T (w)
that depends on the Green functions. In principle, the retarded
or advanced Green function of our system can be calculated
by inverting the Hamiltonian of the full system,

G (w) = [(w £ in) —H]™",

H = HCenter + HLeads» (Al)

where, in the following, whenever not strictly necessary, we
will neglect the infinitesimal regulator n < 1. Assuming that
we are able to integrate out the lead contribution to the full
Hamiltonian, the Green function has the same dimensionality
as the center Hamiltonian Hcepeer, 1.€., it grows with system
size. In our case, if we consider a system of length L and
width W, the matrix we need for a full Hamiltonian or Green
function will have [Nog, (L + 2)W]? elements. The factor Ny,
counts the possibility of multiple orbitals on each site, as
featured e.g., in the Hamiltonian (6). Having L + 2 sites in
one direction instead of only L is a result of adding one layer
of sites representing the leads on either side. This means that
using exact diagonalization, by directly solving Eq. (Al), in
order to calculate the Green functions is not feasible for larger
systems.

Fortunately, the transmission function Eq. (12) does not
depend on knowing the full Green function matrix. Instead,
it is enough to know the part of the Green function respon-
sible for propagation from left to right together with the lead
contributions.
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FIG. 28. Visualization of the propagation that Green function
describes.

In order to visualize the dimensionalities of different parts
of the Green function, we can write it as a matrix of matrices

. Gri. Gic Grg
Gw)=|Gecr Gece Ger
Grr Grc Grr
W x W W x LW W x W
=N [Lw xw LwsLw  Iwxw |,

W xW W x LW W x W

the interpretation of which is depicted in Fig. 28. Note, that
while the amount of matrix elements in the whole system
grows with the volume of the scattering area, the corner el-
ements Gp g, G r that describe propagation from one lead
to another only grow as the surface of the leads attached
on the sides. The same holds for the other corner elements
Ggrr and Gp , which will be required to compute the lead
contributions I'y, and I'g in Eq. (13). Therefore, if there is
a way to compute them without solving the whole system,
we will be able to compute the transmission function (12)
for much larger system sizes. In the following, we will show
that this is indeed achievable using a recursive approach, a
flowchart of which is shown in Fig. 29.

Since we are interested in the transport from the left to the
right lead, the starting and ending point of the recursion are

always given by the leads themselves. Thus, the first Green
function to be computed is always the surface Green function
of the left lead Gy, before it is attached to the scattering
region S. For a semi-infinite lead described by, e.g., a sim-
ple tight-binding chain, G can even be solved exactly, but
in more complicated situations G; needs to be determined
numerically.

Each slice contains the sites to which the system from the
previous step directly connects, and that were not considered
before. In a simple square geometry, this implies that the cuts
are equivalent to taking all sites that share the x coordinate x =
j + 1 if the previous slice ended at x = j. This remains true
even if a fractal is cut into that square geometry. An example
of a simple linear slicing is shown in the left panel of Fig. 30.

For each slice, interaction matrices V._ and V_, are deter-
mined by taking the appropriate terms out of the Hamiltonian
that connects both slices. For the Haldane model in (6), this
implies that if we attach a slice that connects sites with x coor-
dinate j + 1 to the previous slice, where x = j, the interaction
matrices are symbolically given by

Vo, =H. +H,+H,
N (A2)
Ve: <—+H\+H/7

where it is understood that only terms containing elements on
both column j and j 4 1 and included. Note that on a fractal
geometry, some of these Hamiltonian elements may not exist
due to missing lattice sites. This implies that the amount of
sites that connect to a slice, as well as the size of a slice
itself are not constant, and therefore the dimensions of the
interaction terms and Green functions vary.

If we let G(") denote the Green’s function from slice j into
slice k after n shces have been attached, and H,, denote the
Hamiltonian of the nth slice, the recursive algorithm reads

Gs =G = (0 —H, — V' G""_v*)",

n—1l,n—1"—

Gr = Gy, = Gy, ,VL G, (A3)
We may take GE)()) = Glead to denote the initial semi-infinite
lead. Note how Gy and G get updated as more slices are
added to the system, whereas G(”k refers to a specific setup.
In the last step of the algorithm n = N + 1, the right lead
needs to be attached to the scattering area. In this step, the

bare Green function of the new slice gets replaced by the lead

calculate Gg on
the current slice

Ggand G start
as the left lead
Green function

attach next slice

calculate GT
function from the
left to the current
slice

Stop, if current
slice is the end
of the right lead

StoreGgand_ Gt

intoG
for ne)%t

ndG

FIG. 29. A flowchart depicting the steps taken in the recursive Green function algorithm. Each step is described in the text in Appendix A.
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FIG. 30. Slicing procedure for a two-lead setup (left) compared to a four-lead setup (right). Each color indicates one step in the slicing

procedure.
Green function again, such that

_ AN N+1 A yN+1y 7]
GR~R_GN+1,N+1_(GLead_Ve GN,NV» ) ’

— oW+ _ ~WN)y N+ ~(N+1)
GLr = Gy = Go V=" Gy -

Note that the transmission (12) as well as the recursive al-
gorithm (A3) require the lead Green’s function Gy ,qg. Since it
is needed as a starting point for the recursive algorithm, it has
to be found before applying the recursion method. However,
computing it is closely related to finding the surface function
G'") in the recursion Eq. (A3) with the addition that, for a
semi-infinite system, adding another slice does not change the
surface Green function. This implies that we need to solve the
self-consistency equation

Glead = (w — Hg — V(—GLeadV—>)717

where here, Hg refers to the Hamiltonian on the surface of
a semi-infinite lead. In this paper, the leads are assumed to
be simple tight-binding chains with nearest-neighbor inter-
action, which in the case of Haldane model do not couple
the two orbitals of the scattering area. Thus here, Hy is a
one-dimensional tight binding chain with a length equal to the
width of the scattering area.

APPENDIX B: RECURSIVE GREENS FUNCTION SLICING
FOR FOUR LEADS

In this paper, we are studying a scattering area with more
than two leads. As a result, the slicing procedure that was
discussed briefly in Appendix A needs to be adjusted.

—1
—1 A
6o — (w CH VG v - Y v,l.kcggadvx,n) |

In the treatment of the leads, the direction in which they
extend infinitely was integrated out exactly, such that they can
be coupled to the scattering area as an effective self-energy.
On the inverse Green function level, this self-energy affects
the sites that directly couple to the leads only. Thus, in order
for the recursive method to work, we need to be careful when
we add a slice of our scattering area that is connected to
an external lead. To be precise, we need to slice our system
such that each lead is attached to one, and only one, slice.
In Fig. 30 we give an example for a slicing procedure in a
four-lead setup, in direct comparison to the slicing of the same
scattering area for a two-lead system.

Furthermore, the simple fact that we consider currents
between more than two leads, as shown in Fig. 10, means
that the target sites for which we calculate the transmission
Green function will not always sit in the very last slice. Thus,
when a slice labeled by index 7 is attached, in addition to the
computation of the surface Green’s function Gy = GY") and

transmission Green function Gy = Gf,”i from the left lead to

the right, one must now keep track of one G(TM for each slice
that is attached.

For this purpose, we now distinguish V", which labels
hopping from slice n — 1 to slice n, and V,_,, which labels
hopping from lead A to slice n. Just like V" o §,,_1, also
Vi.n & 8p, » 1s nonzero only for one specific n = n;.

When new leads are attached together with a slice n, the
surface Green function Gg gets modified with the Green func-
tions for the new leads as

B

Any=n

The update of the transmission Green function from the leads to the latest slice then depends on whether the lead was added

at step n or previously,

G(n) yn G(Vl— 1)

nn’ < >n—1,1" n=>n,
G(Vl) — G(n)V G()») — (BZ)
n,h n.n n,AY ead * n=n,,
(A)
Gl » n > ny.

043103-16



ROBUSTNESS OF CHIRAL EDGE MODES IN ...

PHYSICAL REVIEW RESEARCH 3, 043103 (2021)

Finally, the transmission Green’s function between the leads is also updated as follows:

(n—1
G v Go)

n,A2

(n—1) (n)
G yn GgU

n,Ay ?

)\1,7‘171

G(n) _ ri,n—1

G (et

(n—1)
+ Gll,lz

niy ?

Ny, Ny, <n

ny, <n=mn,, (B3)

ny, =n>n,,

G(M) V)L],nG(n)Vn,AZG(AZ) n, =n=n,.

Lead n,n

Lead ° 1

In this notation, the upper index n again refers to the recursion step, i.e., the slice that gets attached.
After the final slice n = N, i.e., after lead 2 is attached in Fig. 30, the lead transmission function in Eq. (12) can be

computed directly from Eq. (B3), by identifying Gf , = G(AI:],)M and G} ; = G

A A"
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