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Local inhibitory networks support up to (N − 1)!/lnN2 limit cycles
in the presence of electronic noise and heterogeneity
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A paradox in neuroscience is the large number of oscillations of small neural networks compared with
the few oscillations observed in the conscious brain. It remains unclear what is the maximum number of
synchronized oscillations a network can support and whether all or some of these oscillations would survive in
noisy heterogenous circuits. Here, we attempt to answer these questions through a comprehensive study of local
inhibitory networks of Hodgkin-Huxley neurons. We use a neuromorphic platform combining electronic noise
and device-specific heterogeneity with tuneable extrinsic noise, tuneable network connectivity, and controlled
initial conditions. As in the brain, stimuli are instantaneously integrated by analog circuits. This gives us the
computing power needed to map the network dynamics over the entire phase space and demonstrate the full
complement of limit cycles, basins of attraction, and dependence on network parameters. Our main finding is
that the maximum number of limit cycles is equal to the combinatorial number of activation pathways through the
network, allowing for coincident action potentials, and that all limit cycles are equally robust to noise and mild
heterogeneity but highly dependent on inhibition delay and the timing of stimuli. We established the robustness
of individual limit cycles by computing the detailed balance of bifurcations between attractors. This accounts
for all transitions in a system where Lyapunov exponents are both positive and negative depending on phase
space coordinates and noise intensity. Another interesting finding is the unexpected resilience of limit cycles to
mild network heterogeneity. This occurs as stochastic processes recruit quiescent neurons whose subthreshold
periodic oscillations help maintain the synchronization of limit cycles against heterogeneity.
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I. INTRODUCTION

Neuronal synchronization in the brain occurs over a few
frequency bands corresponding to the δ, θ , α, β, and γ brain
waves [1]. The search for mechanisms explaining this syn-
chronization [2–8] and the formation of spatial patterns such
as spindle, radial, and standing waves [9,10] has attracted con-
siderable interest. In contrast, local networks support different
modes of synchronized oscillations activated with appropriate
stimulation. Switching between oscillatory modes is known to
be elicited by stimuli in central pattern generators underpin-
ning escape swimming in Tritonia [11] and the sea slug [12].
Recently, specialized interneurons have been identified that
can elicit different responses from central pattern generators
in tadpoles and zebrafish [13]. Theoretical simulations of a
three-neuron inhibitory network predict up to six stable pat-
terns of spatiotemporal oscillations [14–16]. More generally,
a network of N inhibitory neurons with all-to-all connectiv-
ity is expected to host a huge complement of (N − 1)!/lnN 2
stable oscillatory states [17]. The dynamic limit cycles as-
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sociated with these states are expected to be robust to noise
since moderate noise levels give negative Lyapunov exponents
[18–20]. One may therefore question why so few oscillations
are observed in the brain compared with the huge number of
theoretically possible states; what is the maximum number of
oscillations an experimental network can host; and whether
some or all of these oscillations would survive in the noise
and heterogeneity of the brain.

Here, we investigate the oscillation patterns of two-, three-,
and four-neuron inhibitory networks in a neuromorphic device
with which we demonstrate the maximum number of (N −
1)!/lnN 2 limit cycles in a noisy and heterogeneous environ-
ment. We elicited all possible oscillatory states of the network
by varying the timing of electrical stimuli. We find that the
maximum number of oscillations is strongly dependent on the
delay of the inhibitory postsynaptic potential (IPSC) relative
to the presynaptic action potential (AP). This delay allows
coincident APs and hence coherent and partially coherent
modes of oscillation. A small delay, d = 300 μs (30% of
the AP width), is sufficient to stabilize the maximum num-
ber of oscillations a network can support. Our experiments
also recognize that phasic oscillations may alternatively be
induced by making the IPSC recovery time τ commensurate
with the oscillation period T in the ratio T/τ ≈ 14. This
validates earlier observations [2,21,22]. However, we find that
the commensurability criterion is generally weaker than the
inhibition delay criterion, especially in larger networks (N >

2) where the former requires a minimum inhibition delay.
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FIG. 1. Neuromorphic inhibitory network. (a) Network of four neurons interconnected with inhibitory synapses. The four neurons were
stimulated with current steps of equal amplitude. The steps applied to neurons 2, 3, and 4 were delayed by δt2, δt3, and δt4 relative to neuron
1. (b) Analog inhibitory network comprising six NaKl neurons interconnected with a matrix of 6 × 6 synapses. A single neuron (synapse)
is shown in the green (white) dashed box. (c) Example of spatiotemporal oscillations (solid lines) elicited by delayed current steps (yellow
shading). Oscillations are recorded over the first 50 periods, during which the transient regime evolves into a synchronized state. The state of
the network is represented by the dephasings φ2, φ3, and φ4 of neurons 2, 3, and 4 relative to neuron 1. (d) Orthographic projection of the
three-dimensional space mapping the time evolution of the state vector (φ2, φ3, φ4).

Network-specific heterogeneity came from tolerances on
electronic components. We systematically varied synaptic
conductances to study the network dynamics during the
gradual transition from all-to-all connectivity to a clockwise
projecting neuron ring. We unexpectedly find that the limit
cycles of the all-to-all network remain intact even after 8 out
of 12 synaptic conductances have been halved. We explain
this unexpected stability by the entrainment of subthresh-
old neurons whose periodic oscillations may be transmitted
stochastically. This mechanism is neglected in numerical
simulations [14,15]; however, it efficiently stabilizes the os-
cillatory states of physical networks against heterogeneity.
Intrinsic noise came from 1/ f electronic and thermal noise.
In addition, we applied extrinsic noise by adding Gaussian
noise to current stimuli. This allowed us to study the detailed
balance of transitions between limit cycles and observe the
robustness of limit cycles to noise. These results demonstrate
the one-to-one correspondence of limit cycles to cyclically
ordered activation pathways. They validate the combinato-
rial derivation of the maximum number of oscillatory states
[17]. We discuss possible reasons for which the large number
of predicted oscillations might not have been observed yet
in biological networks. This work also provides satisfaction

in building low-power, scalable devices that can integrate
complex nervous stimuli to provide bioelectronic pacing for
chronic disease [23,24] and brain-machine interfaces [25].

The paper is organized as follows. Section II describes the
neuromorphic device and the method used to construct the
state vector. We then classify the modes of synchronized oscil-
lations according to their interspike interval and plot them in
phase space. Section III reports on the stability of the coherent
state as a function of inhibition delay and synaptic kinetics.
We also report on the effect of inhibition delay, inhibition
recovery time, and amplitude of the current stimulation on the
phase maps of the four-neuron network. Section IV reports
on the effect of network heterogeneity and additive noise on
phase maps. Section V discusses the findings and concludes
the paper.

II. EXPERIMENTAL MODEL AND METHOD

A. Neuromorphic central pattern generator

We built a neuromorphic network connecting each pair
of neurons with mutually inhibitory synapses [Fig. 1(a)].
The device had 6 neurons and 36 synapses allowing for
various network configurations to be studied [Fig. 1(b)].
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The neurons modeled the Na, K, and leak channels (NaKls)
using discrete-component very large scale integration (VLSI)
circuits implementing analog current mirrors [26]. For most
practical purposes the circuit equations [24,27,28] are identi-
cal to those of the Hodgkin-Huxley model [29]. The two main
differences are that the circuit does not replicate the exponents
of gate variables in the Hodgkin-Huxley model, such as n4

and m3h. Secondly, the width of the transition region from
the open to the closed state of a gate is identical for all ionic
gates. This is set by the ratio of the oxide layer capacitance to
the depletion region capacitance in our current mirrors, which
is fixed by the technological process [24,30]. Each analog
neuron has otherwise the same adjustable parameters as in the
Hodgkin-Huxley model. This includes the ion channel con-
ductances, the activation and inactivation voltage thresholds,
and the gate recovery times. These parameters are set by the
nine potentiometers of each neuron circuit [Fig. 1(b), green
dashed box]. Our neurons had an oscillation threshold of
7 μA, above which the oscillation frequency increased mono-
tonically. For example, a current injection of Istim = 30 μA
gave an oscillation period T = 23 ms.

Our inhibitory synapses consisted of a differential pair
integrator circuit [31] which injected a negative IPSC pulse
following stimulation by a presynaptic action potential. The
IPSC wave form was controlled by three parameters set by
the three potentiometers seen in the synaptic circuit [Fig. 1(b),
white dashed box]. The weight parameter sets the maximum
synaptic conductance, ḡ. The integration time parameter set
the decay time, τ , of the IPSC. The threshold parameter was
used to retard the onset of the IPSC pulse by delay d relative
to the depolarization of the presynaptic neuron.

In common with biological networks, our neuromorphic
network is mildly heterogeneous. This has to be kept in
mind when assessing the robustness of rhythmic patterns. Het-
erogeneity arises from component-to-component fluctuations
within the manufacturer tolerances (5–10%), experimental
error in setting neuron and synapse and parameters via
potentiometers (5%). The analog circuit is also subject to
time-dependent perturbations. These include intrinsic noise
in the form of 1/ f electronic noise (as in the nervous sys-
tem) and Johnson noise. Our IPSCs carry an intrinsic noise
σ ≈ 400 nA when the typical IPSC pulse peaks at 12 μA.
Over long periods of time, thermal fluctuations also affect the
transconductances of field effect transistors and can alter net-
work properties when its dynamics is probed over hour-long
experiments. In addition to these time-dependent perturba-
tions, we are able to add white noise to current stimuli to study
the stochastic response of the network.

B. State trajectories

Each neuron in the network was stimulated by current
steps of equal amplitude Istim [Fig. 1(a)] but variable tim-
ing. It was the timing of current stimuli that set the initial
conditions of our network [Fig. 1(b)]. The current steps ap-
plied to neurons n = 2, . . . , N were delayed by δtn relative
to the step applied to neuron 1 and varied in the interval
0 � δtn � T . We constructed the state vector (φ2, . . . , φN )
of the network by measuring the AP dephasings of neurons
2 · · · N relative to the AP of neuron 1 [15,32,33]. The state

trajectory was constructed by tracking the AP dephasings in
each oscillation period from the first (i = 1) onwards (i >

50). For example, the dephasings (φ2, φ3, φ4) of the four-
neuron network in period i = 4 are shown in Fig. 1(c) for
a given set of initial conditions. The trajectory of the state
vector [φ2(i), φ3(i), φ4(i)] was then plotted in phase space for
i = 1, 2, . . . , 50 and orthographically projected in the plane
[Fig. 1(d)].

In order to map the state trajectories emanating from initial
conditions filling the entire phase space, we designed the
following stimulation protocol. Current steps were synthe-
sized by a pair of LABVIEW-controlled data acquisition (DAQ)
cards (NI6259) and voltage-to-current converter electronics.
The stimulation protocol consisted of 800-ms-long epochs in
which the network oscillations were recorded in response to a
given pattern of current steps. Each epoch was separated from
the next by a 200-ms-long interval where no current stimula-
tion was applied allowing the network to return to its quiescent
state. The stimulation protocol of the next epoch was then
applied, and the time series membrane voltage was recorded.
The LABVIEW program varied the δt2, . . . , δtN between 0 and
T in raster scan fashion with a step size of T/30. For example,
we recorded 27 000 sets of 800-ms-long network oscillations
to map the dynamics of the four-neuron network.

A separate MATLAB program was written to analyze these
recordings by detecting the timings of action potentials and
computing their phase differences φ2, . . . , φN over the first
50 oscillations of each epoch. The evolution of the state
vector over each epoch was plotted as a state trajectory in
phase space [Fig. 1(d)]. The trajectories constructed from all
epochs mapped the entire phase space and hence the complete
dynamics of the network. The trajectories converging to the
same phase space coordinates to within T/100 were assigned
the same color. This helped visualize attractors and their
basins.

C. Phase coordinates of synchronized oscillations

The steady-state oscillations of inhibitory networks may
be reliably classified according to the length of their inter-
spike interval (ISI). Assuming an N-neuron network where
S APs are coincident with some of the N − S other APs,
then the ISI is T/(N − S). This ISI is a good invariant for
homogeneous networks as states with the same ISI exhibit
similar dynamics independently of the way in which the
coincident APs are cyclically ordered. The four modes of
synchronized oscillations in our four-neuron network are la-
beled ISI = T/4, T/3, T/2, T/1 [Fig. 2(a)]. The ISI = T/4
mode corresponds to the AP sequence 1234 and its five
cyclically ordered permutations. The phase map coordinates
of the corresponding attractor are (1/4, 2/4, 3/4) + 5 per-
mutations [Fig. 2(b), black dots]. The ISI = T/3 mode has
one coincident and three sequential APs that form the 12
following patterns: {12}34 at coordinates (0, 1/3, 2/3) + 5
permutations, 1{23}4 at (1/3, 1/3, 2/3) + 2 permutations,
and 12{34} at (1/3, 2/3, 2/3) + 2 permutations [Fig. 2(b),
blue dots]. The ISI = T/2 mode has two coincident and two
sequential APs distributed as {12}{34} and 1{234} with at-
tractors located at (0, 1/2, 1/2) + 2 permutations, (0, 0, 1/2)
+ 2 permutations, and (1/2, 1/2, 1/2), respectively, giving
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FIG. 2. Synchronized oscillation patterns of a four-neuron in-
hibitory network. (a) Synchronized modes of spatiotemporal oscil-
lations ranging from sequentially discharging neurons (ISI = T/4),
through partially coherent oscillations (ISI = T/3, T/2), to the fully
coherent state where all neurons fire in phase (ISI = T ). (b) Phase
space coordinates of the stable modes of synchronized oscillations.
Each node is labeled with its AP sequence. The curly brackets indi-
cate neurons firing simultaneously. The colored dots correspond to
the oscillation modes in (a).

seven attractors in total [Fig. 2(b), orange dots]. Finally, the
ISI = T/1 mode has all four neurons firing in phase giving a
single attractor at (0,0,0). The maximum number of oscilla-
tions is therefore T4 = 6 + 12 + 7 + 1 = 26. A combinatorial
study allowing for the coincidence of APs has shown that a
network of N all-to-all inhibitory neurons has a maximum of
TN ∼ (N − 1)!/lnN 2 states [17].

III. RESULTS

A. d-T phase diagrams

We first probed the stability of the coherent state ISI = T/1
to generalize the criteria of synchronization, known from the
mutually inhibitory neuron pair, to local inhibitory networks.
White et al. [34], Van Vreeswijk et al. [22], Lewis and Rinzel
[35], and Kopell and Ermentrout [36] have already established
that phasic synchronization can be induced by certain values
of the ratio T/τ . However, unlike in the mutually inhibitory
neuron pair where synchronization is either phasic or an-
tiphasic, local networks support a full spectrum of partially
coherent oscillations in between, ranging from purely phasic
to purely antiphasic [Fig. 2(a)]. It is therefore relevant to ask
whether the commensurability of T and τ still holds and what
the phasic mode looks like: Is it a fully coherent or partially
coherent state? In addition, we identify the inhibition delay
d as a second important criterion of synchronization. This
delay is the time interval between the onset of depolarization
of the presynaptic neuron and the onset of the IPSC pulse.
We find that when d is at least 30% of the AP duration (d >

300 μs), the network always supports fully coherent oscilla-
tions. This is true whether T and τ are commensurate or not.
The commensurability of T and τ begins to play a role when
d < 300 μs. The fully coherent state is then stabilized by
making T and τ commensurate in the ratio T/τ ≈ 14. Other-
wise, when T/τ �= 14, partially coherent oscillations replace
the coherent state as the new stable states. As d decreases

below d < 150 μs the fully coherent state vanishes to be
replaced with partially coherent states at all values of the
ratio T/τ . A difference between the mutually inhibitory pair
(N = 2) and local inhibitory networks (N > 2) is that fully
coherent oscillations are observed down to d = 0 in the for-
mer and down to a finite value of d in the latter (d = 150 μs
for N = 4).

We verified this in the phase diagrams of the four-neuron
network showing the final state at the end of an 800-ms-long
epoch [Figs. 3(a)–3(c)]. The network was initially prepared
in its coherent state by four coincident current steps δtn = 0,
n = 2, 3, 4, and left to relax into its stable state. All synapses
had the same nominal weight (ḡ = 1.5 μS). The final state is
plotted as a function of inhibition delay d and Istim. Increasing
Istim is equivalent to decreasing the oscillation period T . At
τ = 1 ms, we find that the fully synchronized state (ISI =
T/1) is stable for long inhibition delays, d > 300 μs (30%
of the AP width), independently of the ratio T/τ [Fig. 3(a),
yellow region]. Slowing synaptic recovery, from τ = 1 ms
[Fig. 3(a)] to 2 ms [Fig. 3(b)] and 3 ms [Fig. 3(c)] has the
effect of shifting the coherent domain to larger values of T .
The lowest point of the coherent domain, at d ≈ 150 μs, oc-
curs at a constant value of the ratio T/τ ≈ 14. When d < 150
μs, the coherent state vanishes and is replaced with partially
coherent states (ISI = T/3).

These results are then compared with the phase diagram
of the two-neuron network [Fig. 3(d)]. We similarly find that
phasic oscillations occur at larger d albeit for d > 225 μs.
This confirms that inhibition delay is a key criterion of syn-
chronization. When d < 225 μs, phasic oscillations are only
stabilized on the condition that the commensurability criterion
T/τ ≈ 19 is satisfied. Elsewhere, synchronization is antipha-
sic. The inhibitory pair, however, differs from the four-neuron
network in that the coherent state is observed down to d = 0
provided the commensurability condition is satisfied. This is
consistent with computational studies of pairs of inhibitory
neurons [22,34]. The d-vs-T phase diagrams thus demonstrate
that phasic oscillations can be stabilized in two ways: (i)
through delayed inhibition and (ii) at specific ratios of T/τ

[28].
We now map the complete network dynamics of the four-

neuron network by varying initial conditions. The aim is to
identify the full complement of limit cycles and to study their
dependence on parameters d , T , and Istim.

B. Inhibition delay stabilizes coincident APs

Figure 4(a) shows the effect of increasing inhibition delay
on the IPSC pulse as d increases from 40 to 320 μs. All 12
synapses were configured with the same nominal d , τ = 1 ms,
and ḡ = 1.5 μS. When d < 100 μs, the network hosts six
attractors corresponding to the six sequential discharge pat-
terns of the four neurons [Fig. 4(b)]. These states represent
the limit cycles of winnerless networks [18] with wide basins
of attraction (black lines). Increasing inhibition delay to d =
220 μs [Fig. 4(c)] introduces 12 new basins of attraction (blue
lines) centered on the theoretical coordinates of the {12}34
patterns with ISI = T/3. Further increase in inhibition delay
to d = 320 μs [Fig. 4(d)] stabilizes the seven partially coher-
ent oscillations with ISI = T/2 (orange lines) and the lone

043097-4



LOCAL INHIBITORY NETWORKS SUPPORT UP TO … PHYSICAL REVIEW RESEARCH 3, 043097 (2021)

Istim (µA)
10 20 30 40 50

10 20 30 40 50

27 22 18 15

10 20 30 40 50

0
45

0
15

0
15

0
30

0

0
45

0

d 
(

s)
15

0
15

0
30

0
0

45
0

15
0

15
0

30
0

0
45

0
15

0
15

0
30

0

T/1
T/2
T/3
T/4

T/1
T/2

(a) (b)

(c) (d)

=2ms

71

20 30 40 50107

T /

=3ms

7

14 11 9 736

7

9 7 6 526 27 22 18 1571

=1ms
2N

7

ISI

ISI (2N)

d

-12 A

0

1ms

=1ms

AP

FIG. 3. d-T phase diagrams of four-neuron and two-neuron inhibitory networks. (a) Phase diagram of the four-neuron network plotting
the final state of the network with ISI T/1 (yellow), T/2 (orange), T/3 (pink), or T/4 (black) after the network has been stimulated with
synchronous current pulses (δti = 0) of equal amplitude (Istim = 32 μA). The phase diagrams show the dependence of the final state as a
function of inhibition delay d and the amplitude of current steps Istim. The oscillation period T is plotted on the top axis in units of the synaptic
recovery time τ . Here, τ = 1 ms. Inset: IPSC wave form showing the parameters being varied: inhibition delay d , synaptic recovery time τ ,
and IPSC amplitude 12 μA. (b) τ = 2 ms. (c) τ = 3 ms. (d) Phase diagram of a mutually inhibitory neuron pair for τ = 1 ms.

coherent state with ISI = T/1 (red lines). Inhibition delay
thus increases the number of attractors by allowing coincident
APs in the cyclical discharge patterns of the network. The
larger the delay, the greater the coherence of oscillatory pat-
terns. These experiments show that a physical network holds
up to 26 oscillatory patterns, which is the combinatorially
predicted number of activation pathways in a four-neuron
network. Note that the hardware supports all these oscillations
despite mild network heterogeneity and electronic noise.

IPSCs act as a repulsive force between action potentials.
The effect of inhibition delay is to open a time window during
which the repulsion between coincident spikes is switched off.
If this window is sufficiently long, depolarization will be initi-
ated before inhibition from the antagonist neuron is received.
The larger the time window, the longer the transmission de-
lays it can accommodate. This allows next-nearest-neighbor
neurons to fire in phase with the inhibitory pair producing
larger and larger clusters of coincident action potentials as d

increases. Even in local networks with small transmission line
delays, inhibition delays a few hundred microseconds long are
sufficient to stabilize coherent oscillations. Inhibition delay
constitutes one criterion for phasic synchronization. The other
criterion is the commensurability of T and τ [28,34] as we
now show by varying τ .

C. τ increases network stiffness

Figure 5(a) shows the IPSC pulses measured for different
synaptic recovery times, ranging from τ = 1 ms to τ = 4
ms. All synapses were configured with the same nominal
d = 250 μs, τ , and ḡ = 1.5 μS. Increasing τ has the effect of
increasing the repulsive force between action potentials. As
the network connectivity becomes stiffer, the network adjusts
faster to stimuli. This is seen in the narrowing of the basins
of sequential modes [Figs. 5(b)–5(d), black lines] as state
trajectories converge faster to their attractor. In contrast, the
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FIG. 4. Effect of increasing inhibition delay on phase maps.
(a) IPSC wave forms (colored lines) delayed relative to the presy-
naptic action potential (black line) with delays d = 40-320 μs.
(b)–(d) Phase lag maps of the four-neuron inhibitory network at
increasing inhibition delay: (b) d = 40 μs, (c) d = 220 μs, and
(d) d = 320 μs. State trajectories converge to attractors with ISI =
T/4 (black lines), T/3 (blue lines), T/2 (orange lines), and T/1
(red lines) from different initial states. Parameters: τ = 1 ms, ḡ =
1.5 μS, Istim = 30 μA.

basins of partially coherent states widen. This increase is
most significant in the {12}34 modes (blue lines) and less
pronounced in the {123}4 and {1234} modes (orange and red
lines, respectively). In addition, increasing τ shifts the attrac-
tors of the {12}34 modes towards the outer vertices of the
map [Fig. 5(d)], whereas the attractors of the more coherent
modes, {123}4 and {1234}, stay at the same location. This
occurs as longer inhibition delays allow a residual phase shift
between coincident action potentials. This shift introduces
ISIs of uneven duration in the {12}34 sequence and hence
a shift in attractor coordinates. The same inhibition delay
gives a smaller shift in the {123}4 and {1234} sequences
as it is distributed among three and four coincident APs. As
τ increases from 1 to 3 ms, the ratio T/τ approaches the
optimum ratio that stabilizes phasic oscillations ({1234}). In
our next experiment, we systematically vary T to demonstrate
the commensurability of T and τ as our second criterion of
synchronization.

D. Commensurability of T and τ stabilizes coincident APs

Figure 6(a) plots the experimental dependency of the os-
cillation period T on Istim. All synapses were configured with
the same nominal d = 250 μs, τ = 2 ms, and ḡ = 1.5 μS. We
increased current stimulation from Istim = 20 μA to Istim =
46 μA to vary the ratio T/τ from 14 (commensurability con-
dition) to 8 [Figs. 6(b)–6(d)]. In Fig. 3(b), this is equivalent to
moving along the horizontal line d = 250 μs, from T/τ = 14

(c) (d)

(a)

=1ms
2ms

3ms
4ms

=1ms

=2ms =3ms

1ms

(b)

FIG. 5. Effect of increasing the synaptic recovery time. (a) IPSC
wave forms measured at different synaptic recovery times
τ = 1-4 ms (colored lines). Phase lag map of the four-neuron in-
hibitory network recorded at three values of the recovery time: (a)
τ = 1 ms, (b) τ = 2 ms, and (c) τ = 3 ms. State trajectories con-
verge to attractors with ISI = T/4 (black lines), T/3 (blue lines),
T/2 (orange lines), and T/1 (red lines). Parameters: d = 250 μs,
ḡ = 1.5 μS, Istim = 30 μA.

where the coherent state (ISI = T/1) is stable to 8 where
states T/3 and T/4 are stable. This transition is shown in the
phase lag maps of Figs. 6(b)–6(d), which plot state trajectories
starting from all initial conditions rather than from the coher-
ent state only (Fig. 3). We find that of the 26 attractors initially
observed at T/τ = 14 [Fig. 6(b)] only 18 survive at T/τ = 8
[Fig. 6(d)]. These are the least coherent states with ISI = T/3
and T/4. The commensurability of T and τ therefore allows
local networks to support all attractors simultaneously, rang-
ing from purely phasic to purely antiphasic. Moving away
from the commensurability condition suppresses the coherent
modes leaving increasingly antiphasic oscillations as the sta-
ble states. Our experiment thus provides nuance and expands
earlier findings on mutually inhibitory neuron pairs where
the commensurability of T and τ was associated with purely
phasic synchronization only [22].

IV. STABILITY OF SPATIOTEMPORAL OSCILLATIONS

A. Sparser connectivity

We have so far studied mildly heterogeneous networks with
nominally identical synapses to demonstrate the maximum
number of attractors supported by the network. Increasing
network heterogeneity will eventually reduce this number by
allowing the fastest neurons to switch off the slower neu-
rons. Before this situation occurs, heterogeneity is expected
to introduce ISIs of uneven duration and hence shift the po-
sition of attractors in phase maps [33]. Here, we investigate
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FIG. 6. Effect of increasing neuron stimulation. (a) Empirical
relationship between the amplitude of tonic current stimulation, Istim,
and the period of network oscillations T . Phase lag map of the
four-neuron inhibitory network recorded at three current values: (a)
Istim = 20 μA (T = 27 ms), (b) Istim = 32 μA (T = 20.5 ms), and
(c) Istim = 46 μA (T = 16 ms). State trajectories converge to attrac-
tors with ISI = T/4 (black lines), T/3 (blue lines), T/2 (orange
lines), and T/1 (red lines). Parameters: d = 250 μs, τ = 1 ms, ḡ =
1.5 μS.

whether this theoretically predicted shift actually occurs in
physical networks. We also seek to establish the one-to-one
correspondence between limit cycles and activation pathways
which underpins our calculation of the maximum number of
attractors. We do this by switching off selected pathways. We
then examine the network dynamics in the vicinity of ghost
attractors corresponding to the suppressed pathways [37–39].

In both cases we find significant departures from theory. Al-
though each attractor does relate to an activation pathway,
their maximum number was found to be surprisingly robust
against network heterogeneity. Secondly, trajectories in the
vicinity of ghost attractors are found to diverge rather than
converge towards the remaining attractor(s) [33].

We start from the balanced inhibitory network of Fig. 4(b)
and progressively decrease the conductances of the inner
synapses while leaving the four clockwise projecting con-
ductances equal to ḡ12 = ḡ23 = ḡ34 = ḡ41 = 1.5 μS (Fig. 7).
Without loss of generality, we studied the effect of hetero-
geneity on the six sequential oscillations only [Fig. 7(a)].
Halving the inner conductances from 1.5 μS to 0.75 μS intro-
duces cycle-to-cycle variability in the timing of APs, which
translates into more erratic trajectories [Fig. 7(b)]. Surpris-
ingly, the basin size of the 1234 sequence does not grow
relative to the five other basins. Instead, all six basins remain
equivalent in size. This is unlike simulations predicting the
expansion of the 1234 basin [33,40]. The picture that emerges
from experimental networks is that the timing of an action po-
tential is not determined by only the IPSC from the last firing
neuron in the sequence but rather by all neurons. For example,
in the 1234 sequence, neuron 2 is inhibited by neuron 1 (ḡ12 =
1.5 μS) and by neurons 3 and 4 (ḡ32 = ḡ42 = 0.75 μS). The
IPSC from the last neuron firing in the sequence (neuron 1)
is modulated by the periodic subthreshold oscillations of all
other neurons, which may be transmitted through synapses
through stochastic processes. The entrainment by subthresh-
old neurons is believed to stabilize the six activation pathways,
in particular those with weaker links. This resilience of net-
work oscillations to heterogeneity is finally broken when
the inner conductances are set to zero [Fig. 7(c)]. A single
attractor remains which corresponds to the 1234 sequence.
The state trajectories emanating from the five former basins
thread the entire phase space without converging suggesting
asynchronous network oscillations.

These results thus demonstrate the correspondence be-
tween a limit cycle and a path of propagation of electrical
activity. This explains that the total number of attractors is

FIG. 7. From all-to-all to ringlike connectivity. Effect of introducing sparser network connectivity on the phase lag maps. (a) All-to-all
inhibitory network: All synapses are nominally identical with ḡn �=m = 1.5 μS, d = 40 μs, and τ = 1 ms. (b) Unbalanced network: Synaptic
strengths are halved to ḡn �=m = 0.75 μS except for along the outer ring, where ḡ12 = ḡ23 = ḡ34 = ḡ41 = 1.5 μS. (c) Clockwise projecting
oscillator ring: ḡn �=m = 0 except along the outer ring, where ḡ12 = ḡ23 = ḡ34 = ḡ41 = 1.5 μS.
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FIG. 8. Effect of extrinsic noise on network dynamics. (a) Three-neuron inhibitory network stimulated by timed current steps (20 μA)
superimposed with Gaussian noise σ = 0-1 μA. Inhibition delay d = 300 ms stabilizes all six limit cycles. Phase lag maps for (b) σ = 0
and (c) σ = 1 μA show the state trajectories staying in the same basin of attraction. (d)–(f) Pixel maps visualizing noise-induced switching
between basins. The pixel color indicates the basin of origin. The pixel coordinates indicate the end state after 50 cycles. ISI = T/4 (black),
T/3 (blue), T/2 (orange), T/1 (red). (d) σ = 0, (e) σ = 0.6 μA, and (f) σ = 1 μA. Parameters: τ = 1 ms, Istim = 20 μA, ḡ = 1.5 μS.

equal to the combinatorial number of such pathways: TN ∼
(N − 1)!/lnN 2 when allowing coincident APs and RN = (N −
1)! otherwise [17]. In contrast to simulations of noise-free
networks, all neurons are found to entrain the firing neuron
and not just the last neuron(s) in the sequence. This contribu-
tion from the whole network has the effect of stabilizing all
attractors against heterogeneity, giving six basins of similar
size.

B. Extrinsic noise

Local networks receive noisy stimuli through afferent
synapses. This noise tends to arise from the quantal release
of calcium from synaptic vesicles and neurotransmitter re-
lease. We simulated this extrinsic noise and its effect on the
network dynamics by adding Gaussian noise to current steps
Ii(t ) + ζ (t ), where the noise time series ζ follows a normal
distribution N (0, σ ) with standard deviation σ [Fig. 8(a)]. We
tuned σ between 0 and 1 μA.

For clarity, we begin by investigating the effects of noise
on a three-neuron network with all-to-all connectivity. This
network has six oscillatory modes [Fig. 8(b)]: Two sequential
modes 123 with ISI = T/3 (black lines), three partially syn-
chronized modes {12}3 with ISI = T/2 (blue lines), and one
coherent state {123} with ISI = T/1 (orange lines). Noisy
stimuli add random phase shifts to action potentials. This

perturbation of state trajectories is seen in Fig. 8(c). Quite
remarkably, all six attractors survive at a noise level of σ =
1 μA. This verifies the predicted robustness of sequential
oscillations [18] and generalizes the claim to limit cycles
allowing coincident action potentials.

Noise also induces switching between attraction basins. We
visualize this in a pixel array encoding the basin of origin
in the pixel color and the end state of the trajectory in the
coordinates of the pixel [Fig. 8(d)]. As the noise amplitude
increases from 0 to σ = 0.6 μA [Fig. 8(e)] and σ = 1 μA
[Fig. 8(f)], state trajectories diffuse into vicinal basins. The
net number of trajectories switching out a basin minus the
incoming trajectories remains approximately constant inde-
pendently of the size of the basin (i.e., ISI = T/1, T/2, or
T/3) and the noise level.

This observation is confirmed by further experiments on
the four-neuron network (Fig. 9) which yield the detailed
balance of transitions between basins as a function of noise.
Transition probabilities were calculated from a statistical sam-
ple of initial conditions uniformly distributed over the entire
phase space. The colored bands in Fig. 9 shows the probability
of a trajectory ending in one of the four oscillatory modes
with ISI = T/1, T/2, T/3, or T/4. The hatch pattern within
each colored band indicates the initial oscillatory mode. The
constant width of each colored band as noise amplitude in-
creases shows that each mode attracts the same fraction of
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FIG. 9. Noise-induced switching probability between basins.
Cumulative switching probability between the basins of a four-
neuron network as a function of noise amplitude σ .

trajectories independently of the noise level. In particular, the
phasic state (yellow band) captures the same fraction of trajec-
tories independently of the noise level, and this is in spite of
this state having the smallest basin size. Within each colored
band, noise increases the probability of switching out of the
original mode; however, this is almost exactly compensated
by the number of trajectories coming in from the other basins.
This experiment displays two opposite effects of noise on the
network dynamics. Noise accelerates the convergence of vici-
nal trajectories towards limit cycles by introducing negative
Lyapunov exponents [32]. However, noise also randomizes
the phase of neuron oscillations. This can propel transitions
between basins especially for trajectories passing near saddle
points [41,42]. The lack of noise dependence in the transition
probabilities into an oscillatory mode (Figs. 8 and 9) is likely
to arise from the compensation of the randomizing and stabi-
lizing effects of noise.

V. DISCUSSION

If the oscillatory states predicted by combinatorics are
robust against temporal and spatial fluctuations, why is it
that only a tiny fraction of the maximum possible number is
observed in the brain?

One possibility is that all-to-all inhibition is realized in
small networks within the radius of the axon, on a scale
too small to be accessible to observation. Relevant inhibitory
networks include the basket cells in the hippocampus, thala-
mus, olfactory bulb, and neocortex [43] and pairs of recurrent
inhibitory neurons which underpin the rhythmic oscillation of
central pattern generators [12,44]. Modern functional imaging
techniques, such as multichannel electroencephalography, can
only resolve electrical activity at the level of brain lobes to
≈ 20 mm [45]. In vivo imaging of the electrical activity of
individual neurons would require a resolution better than 3
mm. Equally, it remains challenging to isolate and preserve
functional networks in brain slices for performing electro-
physiological measurements. It is therefore possible that the
states we report may exist but are not yet accessible to current
experimental techniques.

Secondly, asynchronous stimuli are required to activate the
full spectrum of oscillations supported by inhibitory networks.
Earlier simulations of � and θ brain waves have not sys-
tematically varied the timing of initial conditions [2,7,34,46],
instead focusing on initiating network oscillations with syn-
chronous current pulses of random amplitude [9,36]. Kopell
and Ermentrout [36] report that inhibitory networks erase
the memory of initial conditions. This is indeed the case in
our experiments when state trajectories propagate from initial
conditions to the final limit cycle in Figs. 4–6. In order to
evoke the combinatorially predicted oscillations, however, the
timing of current stimuli must be varied over the entire phase
space. If, instead, the network is stimulated with synchronous
current steps of random amplitude, the initial state will always
be the coherent state, which may then decay into one of
the four possible oscillator modes as demonstrated in Fig. 3.
Hence synchronous stimuli could evoke no more than a few
of the combinatorially predicted states we report here.

We found that the maximum number of oscillations may
be stabilized in two ways, either through delayed inhibition
or at specific values of the ratio of the oscillation period to
the synaptic recovery time (T/τ ≈ 14). The commensurabil-
ity mechanism is well known [21,34,46,47] in fast-spiking
neurons [4], and it is exploited in the design of antiepileptic
drugs that alter synaptic kinetics by targeting GABA receptors
[2]. The role of transmission line delay in delaying inhibition
has been recognized more recently [14,28,48,49]. Delayed
inhibition may be exploited by somatostatin neurons [5] to
promote visual binding. These neurons project to the den-
drites of postsynaptic neurons, which allows transmission line
delays of d = 60-800 μs from the onset of the presynaptic ac-
tion potential to the onset of depolarization of the postsynaptic
neuron [50]. Our work has expanded on these synchronization
criteria from pairs of inhibitory neurons [22,51] to three- and
four-neuron networks and from stimuli of variable amplitude
to variable timings. We have shown that coherent oscillations
can only exist in local networks with a finite inhibition delay:
d > 150 μs [Figs. 3(a)–3(c)]. This is unlike the inhibitory
neuron pair, where phasic oscillation are observed down to
d = 0 [Fig. 3(d)]. In networks of any size, coherent oscil-
lations are most stable when T/τ ≈ 14. It is, however, the
length of inhibition delay which determines the maximum
number of oscillations. Increasing d from 0 to over 250 μs
increases the maximum number of oscillations from R4 = 6
to T4 = 26 in the four-neuron network (Fig. 3) and from
R3 = 2 to T3 = 6 in the three-neuron network [Fig. 8(b)]. The
combinatorially predicted states are RN = (N − 1)! and TN =
(N − 1)!/lnN 2, respectively, in networks of N neurons [17].

Our results demonstrate the robustness of the combinatori-
ally predicted oscillations to noise, both intrinsic (Figs. 3–6)
and extrinsic (Figs. 8 and 9). The intrinsic noise in our device
has the same 1/ f electronic spectrum and thermal spectrum as
in the brain with a signal-to-noise ratio of 20–30. Both intrin-
sic and extrinsic noise is expected to stochastically enhance
transmission subthreshold signals. Weak noise levels stabilize
periodic oscillations in the vicinity of limit cycles by in-
troducing negative Lyapunov exponents [18–20,32,42,48,49].
At higher levels, noise randomly shifts the phase of APs,
which may propel transitions between basins [41,52] and
bifurcations [53]. There is a critical noise level above which
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the smallest Lyapunov exponent of the system changes sign,
going from negative to positive, making state trajectories di-
verge [20,52]. This critical noise level varies with position
in phase space, depending on the closeness of a trajectory
to a limit cycle or a saddle. Analytical and computational
studies nearly always treat stochastic processes in the vicinity
of special points [54] or through approximations, for exam-
ple, by differentiating slow and fast state variables [53]. Our
experiment instead computes the detailed balance of all transi-
tions between attractors over the entire phase space. No prior
assumption or approximation is made. We conclude that the
fraction of trajectories ending in a given oscillatory mode is
independent of the noise level. The transitions out of a basin
are almost exactly compensated by the incoming transitions,
the net effect being that no limit cycle is washed out by noise.
Limit cycles with different degrees of coherence are robust to
noise. This confirms and generalizes the predictions made for
winnerless networks to networks supporting coincident APs
[18].

Our results also demonstrate the robustness of the combi-
natorially predicted oscillations to mild network heterogene-
ity. Here, heterogeneity is both device specific and tuned by
synaptic strengths (Fig. 7). Heterogeneity destroys synchro-
nization by reducing the number of pathways for the electrical
activity to bounce across. We have verified this in Fig. 7(c),
where the action of suppressing physical pathways switches
off limit cycles. We find, however, that the network is resilient
to this trend and succeeds in preserving all limit cycles in
the presence of mild heterogeneity. Figure 7(b) shows that
all basins remain equal in size even after many synaptic
conductances are halved. To achieve this, the network uses
the additional synchronizing effect of the periodic oscillations
of subthreshold neurons. At any given time these neurons
generate IPSCs which modulate the IPSC of the last firing
neuron. The larger the network, the larger these synchronizing
contributions. Intrinsic noise in our network will enhance
the transmission of these subthreshold oscillations through
synapses [55–57]. Simulations by Wojcik et al. [14] consider
the case of noiseless networks with all-or-nothing (±1 mV)
synaptic transmission in which the last firing neuron in the
sequence generates an IPSC. In such a network, the electri-
cal activity passes from one neuron to the next, without the
background modulation and stabilizing effect of the entire net-
work. We therefore suggest that the limit cycles of inhibitory
networks might be more resilient to mild heterogeneity than
hitherto anticipated from computer simulations due to the
stochastic entrainment of the entire network.

Computation by neuromorphic hardware simulates the
brain’s noisy environment and heterogeneity while granting
excellent control of network parameters. The ability of our
analog network to integrate complex stimuli instantaneously
has greatly facilitated our systematic study. The sensitivity
of rhythmic patterns to initial conditions underlines the im-
portance of control neurons and sensory inputs [58], which
together with neuromodulation [13,59,60] determine the type
of oscillations of the network. Neuromorphic devices are ex-
tremely power efficient [61,62] and are beginning to be used
in bioelectronic medicine [24,63] and brain interfaces [64].
The possibility of activating multiple rhythmic patterns within
the same local network is certainly very attractive for brain-
machine interfaces [25].

VI. CONCLUSIONS

Our experiments on neuromorphic hardware have shown
that local inhibitory networks support a very large number
of oscillatory states, ∼(N − 1)!/lnN 2. These states are ac-
tivated by the specific timings of external stimuli and are
very robust to network heterogeneity, intrinsic and extrinsic
noise. It is therefore expected that these states may eventually
be observed in functional biological networks as imaging
techniques increase in resolution. Our findings modify the
established picture of oscillatory modes in dynamic networks
in two ways. Oscillatory patterns will generally include both
sequential and coincident action potentials. The mechanisms
enabling coincident action potentials are the inhibition de-
lay and the commensurability of the synaptic recovery time
to the period of network oscillations. Secondly, while we
demonstrate the one-to-one correspondence between activa-
tion pathways in the network and oscillatory modes, we
emphasize that at any given time all neurons contribute to
a given oscillatory pattern through their subthreshold os-
cillations. This contribution from the wider network has
not been recognized; however, we find it plays an impor-
tant role in stabilizing oscillatory states against network
heterogeneity.
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