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Many quantum algorithms that claim speedup over their classical counterparts only generates quantum states
as solutions instead of their final classical description. The additional step to decode quantum states into classical
vectors normally will destroy the quantum advantage in most scenarios because all existing tomographic methods
require runtime that is polynomial with respect to the state dimension. In this work, we present an efficient
readout protocol that yields the classical vector form of the generated state, so it will achieve the end-to-end
advantage for those quantum algorithms. Our protocol suits the case in which the output state lies in the row
space of the input matrix, of rank r, that is stored in the quantum random access memory. The quantum resources
for decoding the state in �2 norm with ε error require poly(r, 1/ε) copies of the output state and poly(r, κ r, 1/ε)
queries to the input oracles, where κ is the condition number of the input matrix. With our readout protocol, we
completely characterize the end-to-end resources for quantum linear equation solvers and quantum singular value
decomposition. One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt
orthonormal procedure, which we believe will be of independent interest.

DOI: 10.1103/PhysRevResearch.3.043095

I. INTRODUCTION

Quantum algorithms have been popular for decades be-
cause of their potential advantage in varying fields including
physical simulations [1–3], combinatorial optimization [4,5],
and linear algebra [6]. Notably, the latter has induced an
independent subfield known as quantum machine learning
(QML) [7,8], which involves quantum linear algebra [9–11],
quantum learning protocols [12–15], and quantum neural net-
works [16,17]. These quantum algorithms have been shown to
achieve speedups over their classical counterparts.

Despite the claimed quantum speedup, most QML algo-
rithms suffer from both the input and the readout problems.
Specifically, the input problem tackles the issue of efficient
state preparation, namely, encoding the classical data, po-
tentially of tantamount size, into quantum states. A few
techniques [9,16,18,19] have been proposed to address this
problem, and among them, the quantum random access mem-
ory (QRAM) oracle model [18] has become arguably the
most popular method in the domain of machine learning ap-
plications. It has induced interesting outcomes in quantum
algorithms for tasks such as the linear system solver [9,20,21],
the singular value decomposition (SVD) [10], support-vector
machines [12,22,23], supervised and unsupervised learning
[13,15], neural networks [24,25], and other machine learn-
ing tasks [26–28]. Generally, for a data matrix A ∈ Rm×d ,
the corresponding QRAM oracle could be prepared by using
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O(polylog(md )) quantum operations with O(md ) physical
resources [18] stored in a binary tree data structure [29].
Although the QRAM oracle is criticized for its requirement
of large physical resources, recent works [30,31] have proven
possible the practical implementation of the QRAM oracle.

On the other hand, the readout problem addresses recov-
ery of a classical description from the output quantum state
that contains the classical solutions. In order to preserve the
quantum advantage of the underlining quantum algorithm,
the output state needs to be decoded efficiently. For some
quantum algorithms, such as the quantum recommendation
system [27], the readout issue is relatively mild because the
classical solution can be obtained by only a few measurements
on the output state. In general, most machine learning prob-
lems demand classical solutions in vector form, for example,
finding solutions to linear systems. Hence, the readout prob-
lem of these quantum algorithms could be critical. However,
protocols for efficiently decoding the output quantum states
into classical vectors remain largely unexplored [32].

The task of recovering the unknown quantum state from
measurements, which is also known as quantum state tomog-
raphy (QST), is one of the fundamental problems in quantum
information science. QST has attracted significant interest
from both theoretical [33–38] and experimental [39–45]
perspectives in recent years. The best general tomography
method [36] could reconstruct a d × d density matrix ρ for
the unknown state with rank r by using n = O(rdε−2) copies
to the state, which implies O(dε−2) copy complexity for the
pure state case ρ = |v〉〈v|. We remark that most of QML algo-
rithms that output a d-dimensional state as the solution claim
the time complexity polylogarithmical to d . Thus, directly
using state tomography methods for state readout in QML is
computationally expensive and would offset the gained quan-
tum speedup. Since the required number n is proven optimal
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for both cases [36], any further improvement on n could be
achieved only by assuming special prior knowledge on state
ρ. For example, QST via local measurements provides effi-
cient estimation for states which can be determined by local
reduced density matrices [38] or states with a low-rank tensor
decomposition [37]. However, the output states generated by
QML algorithms normally do not have these structures.

In contrast with the assumptions in the QST scenarios,
the output states generated by most QML algorithms do have
inherent relationship between the solution vector and the in-
put data, commonly represented as a matrix. Specifically, the
solution vector normally lies in the row space of the input
data matrix. Notable examples that satisfy the aforementioned
condition include (1) the quantum SVD algorithm where the
singular value σi and corresponding singular vectors |ui〉 and
|vi〉 for matrix A = ∑

i σiuiv
T
i and (2) the quantum linear

system solver for linear system Ax = b whose solution state
|x〉 ∝ A−1b lies in the row space of A. Most machine learning
problems can be reduced to these two categories [32]. Hence,
finding efficient readout protocols for them that go beyond
the standard QST limit will be extremely desirable in the field
of QML.

In this work, we design an efficient state readout protocol
that works for QML algorithms which involve a r-rank input
matrix A ∈ Rm×d stored in the quantum random access mem-
ory (QRAM), and the output state |v〉 lies in the row space
of A. Instead of obtaining coefficients {vi} by measuring the
state |v〉 = ∑n

i=1 vi|i〉 in the standard orthonormal basis {|i〉},
our key technical contribution is an efficient method to obtain
the classical description xi in the complete basis spanned by
the rows {Ag(i)}r

i=1 of A, so that |v〉 = ∑r
i=1 xi|Ag(i)〉, where the

mapping g(i) : [r] → [m] denotes the indices of rows selected
as the basis. Our state readout protocol requires Õ(poly(r))
copies of the output states and Õ(poly(r, κr )) queries to in-
put oracles, where r is the rank of the input matrix and
κ = σmax(A)/σmin(A) is the condition number of the input
matrix. We remark that the low-rank matrix assumption is
common in machine learning models [46–48]. Compared to
previous QST methods which require at least O(dε−2) copies
of pure states, our protocol is much more efficient given
r � n with small condition numbers, and more importantly,
the complexity does not depend on the system dimension.
Finally, combining our readout protocol with quantum SVD
or quantum linear system solver yields an end-to-end com-
plexity that takes Õ(poly(r, κr, log(md ))) queries to input
oracles.

During the whole readout protocol, we develop a quan-
tum generalization of the Gram-Schmidt orthonormalization
process. Our quantum Gram-Schmidt process (QGSP) algo-
rithm can construct a complete basis, by sampling a set of
rows {Ag(i)}r

i=1 of the input A, with Õ(poly(r, κr )) queries
to QRAM oracles. Since the vector orthonormalization is a
crucial procedure in linear algebra as well as machine learning
[49–51], an efficient quantum algorithm will be of indepen-
dent interest. Notice that there are some related works for
the construction of orthogonal states [52–55]. However, these
results deviate from standard Gram-Schmidt process and their
applications are also limited. Reference [52] is only applicable
to the single-qubit system, while Refs. [53,54] only generate a
state that is orthogonal to the input state and their complexity

depends on the system dimension. Reference [55] constructs
orthogonal states from original states by lifting the dimension
of the original Hilbert space and cannot select a complete
basis as standard Gram-Schmidt process does. Consequently,
our proposed QGSP algorithm avoids all these restrictions and
can be proven to be efficient.

Specifically, we have the following result for QGSP.
Theorem 1 (informal). By using O(r27κ14r ) queries to

QRAM oracles of the matrix A, we could find a group of
linearly independent rows {Ag(i)}r

i=1, where r and κ is the rank
and the condition number of A, respectively.

Main Result. The main result for our state readout protocol
is as follows.

Theorem 2. For the d-dimensional state |v〉 lies in the row
space of a matrix A ∈ Rm×d with rank r and the condition
number κ , the classical form of |v〉 could be obtained by using
O(r4ε−2) queries to the state |v〉 and O(r27κ14r + r18κ8rε−2)
queries to QRAM oracles of A, such that the �2 norm error is
bounded in ε.

Further discussion about the applications of our main result
will be given in Sec. III. Here, we will move on to formally
define the framework of the state readout protocol.

II. STATE READOUT FRAMEWORK

In this section, we explain our protocol in detail. Since
A ∈ Rm×d is of rank r, we can identify a set of r linearly
independent vectors {|Ag(i)〉}r

i=1 selected from all rows of A so
that the output state can be rewritten as |v〉 = ∑r

i=1 xi|Ag(i)〉.
Our goal is accomplished if we can determine {xi}r

i=1 effi-
ciently. Following this, our algorithm consists of two major
parts, a subroutine to sample a set of r linearly independent
rows {|Ag(i)〉}r

i=1 from all rows of A and a subroutine to calcu-
late {xi}, which will be introduced in following subsections,
respectively.

A. Complete basis sampling

We begin with the first subroutine. The quantum Gram-
Schmidt process (QGSP) in Algorithm I is developed to
generate a complete row basis, by performing a quantum ver-
sion of the adaptive sampling. The advantage of our adaptive
sampling is that those rows, which have larger orthogonal part
to the row space of previous sampled row submatrix, will
be sampled with a larger probability. This ensures that the
complete basis is nonsingular, and will improve the accuracy
of the estimation of the coefficients in the second subroutine.

Algorithm 1. Quantum Gram-Schmidt process (QGSP).

Input: QRAM oracles VA and UA in Eqs. (1) and (2).
Output: A group of orthonormal states {|t i〉}r

i=1. An index set of the
complete basis: SI = {g(i)}r

i=1.
1: Initialize the index set SI = ∅.
2: for � = 1 to r do
3: Run the quantum circuit in Fig 1. Measure the third register

and postselect on result 0. Measure the first register to obtain an
index g(�). Update the index set SI = SI ∪ {g(�)}.

4: end for
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FIG. 1. Quantum circuit for the �th iteration in the QGSP. Ora-
cles VA (2) and UA (1) are employed for encoding rows of the matrix
A. Gates C(Ri ) (4) are used for extracting the orthogonal part of rows
from existing basis rows. After unitary operations, we measure the
third register and postselect on the result 0, to generate the state |φ(�)

2 〉
(7) from the state |φ (�)

1 〉 (5). Finally, the new index is sampled by
measuring the first register of the state |φ (�)

2 〉.

Now we analyze the QGSP in detail. We utilize QRAM
oracles VA and UA to encode the matrix A in the amplitude of
quantum states:

|0〉 VA−→
m∑

i=1

‖Ai‖/‖A‖F |i〉, (1)

‖i〉|0〉 UA−→ |i〉|Ai〉 ≡
d∑

j=1

Ai j/‖Ai‖|i〉| j〉, ∀i ∈ [m], (2)

where Ai j , Ai, and ‖A‖F denote the (i, j)-th element, the
ith row, and the Frobenius norm of A, respectively. In the
first iteration of the QGSP, an index g(1) is sampled from
the set [m] := {1, 2, . . . , m} with the probability Pr(1)(i) =
‖Ai‖2/‖A‖2

F , where i ∈ [m]. Let |t1〉 := |Ag(1)〉 be the first
basis vector. The remaining basis vectors are generated induc-
tively. Assume a set of orthogonal states {|t i〉}�−1

i=1 has been
generated in the previous � − 1 iterations. To proceed to the
�th iteration, we perform the quantum circuit illustrated in
Fig. 1, which first creates the state

m∑
j=1

‖Aj‖
‖A‖F

| j〉|Aj〉|0〉, (3)

with the help of input oracles UA and VA. Then a Hadamard
gate is applied to the third register, followed by a sequence of
controlled Ri gates

C(Ri ) = Ri ⊗ |0〉〈0| + I ⊗ |1〉〈1|, (4)

where the unitary Ri = I − 2|t i〉〈t i|. Next, another Hadamard
gate is applied to the third register, and the quantum state
evolves into

∣∣φ(�)
1

〉 = 1

‖A‖F

m∑
j=1

‖Aj‖| j〉

⊗
[(

|Aj〉 −
�−1∑
i=1

|t i〉〈t i|Aj〉
)

|0〉 −
�−1∑
i=1

|t i〉〈t i|Aj〉|1〉
]
.

(5)

After all unitary operations, we measure the third register
and postselect on result 0 with the success probability:

P� = 1

‖A‖2
F

m∑
j=1

‖Aj‖2

∥∥∥∥|Aj〉 −
�−1∑
i=1

|t i〉〈t i|Aj〉
∥∥∥∥

2

, (6)

and the postselected state (without the third register) is

∣∣φ(�)
2

〉 = 1√
P�‖A‖F

m∑
j=1

‖Aj‖| j〉
[
|Aj〉 −

�−1∑
i=1

|t i〉〈tm|Aj〉
]
.

(7)
We need roughly 1/P� copies of |φ(�)

1 〉 to generate the state
|φ(�)

2 〉. Finally, we measure the first register for a new basis
index g(�) and a new orthogonal state |t�〉:

|t�〉 = 1

Z�

[
|Ag(�)〉 −

�−1∑
i=1

|t i〉〈t i|Ag(�)〉
]
, (8)

where Z� is the normalizing constant. Specifically, denote the
probability of the outcome g(�) being j ∈ [m] by Pr(�)( j), and
let SI = {g(i)}�−1

i=1 . We have

Pr(�)( j) = ‖Aj‖2
∥∥(∏�−1

k=1 Rk + I
)|Aj〉

∥∥2

∑m
i=1 ‖Aj‖2

∥∥(∏�−1
k=1 Rk + I

)|Aj〉
∥∥2 , (9)

≡ ‖Aj − πSI (Aj )‖2∑m
i=1 ‖Ai − πSI (Ai )‖2

, (10)

where πSI (Aj ) denotes the projection of the row Aj on the row
space of the submatrix A(SI , ·) ∈ R(�−1)×n. In other words,
the new index is sampled with the probability proportional to
the norm of orthogonal part of the row Ag(�) to the current
basis set SI . After r iterations, we could obtain the index
set SI = {g(i)}r

i=1 such that {Ag(i)}r
i=1 forms a linearly inde-

pendent basis. We remark that orthonormal states {|t i〉}r
i=1

are generated from {|Ag(i)〉}r
i=1 by performing Gram-Schmidt

orthogonalization. Thus, an orthonormal basis could be also
generated after the implementation of Algorithm I.

The technical difficulty of constructing the circuit in Fig. 1
comes from efficient implementation of the controlled version
of reflection R� = I − 2|t�〉〈t�|, since we do not have addi-
tional quantum memory to store {|t�〉} generated during the
algorithm. To overcome this problem, we note that the state
|t�〉 lies in span{|Ag(i)〉}�i=1, so that |t�〉 = ∑�

i=1 zi�|Ag(i)〉 for
some coefficients {zi�}�i=1. Instead, we could generate |t i〉 by
the linear combination of unitary (LCU) method [56] with
postselections. Let C� be the Gram matrix of {|Ag(i)〉}�i=1, and
let C�−1 be the submatrix of C� by deleting the last row
and column. The following lemma shows that the coefficient
vector z� = (z1�, . . . , z��)T has a compact expression that only
depends on the Gram matrices. The proof is provided in
Appendix A.

Lemma 1. The coefficients in |t�〉 = ∑�
i=1 zi�|Ag( j)〉 could

be written in the vector form z� =
√

|C�|
|C�−1|C

−1
� e�, where e� =

(0, 0, . . . , 0, 1)T ∈ R� and |X | denotes the determinant of a
matrix X .

We remark that each element in the matrix C�, i.e., the
inner product between quantum states {|Ag(i)〉}�i=1, is unknown
and needs to be estimated in practice. The error on ele-
ments in C� would influence the accuracy of coefficients
z�, and consequently impacts the whole complexity of the
state readout protocol. Let t̃� = ∑�

i=1 z̃i�Ag(i)/‖Ag(i)‖ be the
perturbed vector of t�, where {z̃i�}�i=1 are the coefficients cal-
culated following Lemma 1 with noisy Gram matrices C̃�.
Denote σmin(C�) as the least singular value of C�. We have the
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following Lemma 2 to bound ‖t̃� − t�‖, whose proof is given
in Appendix B.

Lemma 2. If each element in C̃� deviates from that in C� by

at most εC � σ 2
min (C� )
80�5/2 εR, then for any εR ∈ (0, 1), the �2 norm

of the error between t� and t̃� is bounded as

‖t̃� − t�‖ � εR

10
, (11)

where t̃� = ∑�
i=1 z̃i�Ag(i)/‖Ag(i)‖.

Lemma 1 and 2 complete preconditions to generate the
state |t�〉 through the LCU method. Then, given copies of
|t�〉〈t�|, we can implement the controlled version of the gate
R� = I − 2|t�〉〈t�| = e−iπ |t�〉〈t�| with the help of the Hamilto-
nian simulation developed in quantum PCA [57], as explained
in Lemma 3.

Lemma 3. Given Eq. (11) in Lemma 2, the state |t�〉 could
be prepared using O(�σ−1/2

min (C�)) queries to the oracle UA with
the �2 norm error bounded by εR/5. The operation C(R�) could
be prepared using O(�σ−1/2

min (C�)ε−1
R ) queries to the oracle UA

with the spectral norm error of R� bounded by εR.
The proof is provided in Appendix C. As a natural corol-

lary, the Gram-Schmidt orthonormal basis {|t�〉}r
�=1 could be

provided using O(r2σ
−1/2
min (Cr )) queries to the oracle UA.

Notice that the complexity of implementing C(R�) depends
on the least singular value of the Gram matrix C�, which is
largely affected by the choice of the sampled basis {|Ag(i)〉}�i=1.
A too small σmin(C�) will significantly increase the number
of queries to the oracles. Notice that a group of basis with a
small least singular value tends to have less probability being
sampled, e.g., the probability of sampling a linearly dependent
basis is 0 by Eq. (10). Through further analysis, we prove that
the expectation of σmin(C�) with the distribution formed by
Eq. (9) is lower bounded as

E
Pr(1)

. . . E
Pr(�)

[σmin(C�)] � r − � + 1

�r
κ2−2�. (12)

This statement also holds approximately if we take into ac-
count the error of implementing each Ri for i ∈ [� − 1], as
provided in Lemma 4.

Lemma 4. Given that each gate Ri in Algorithm I is imple-
mented with error bounded by εR = 1

3r5κ2r , where r and κ is
the rank and the condition number of A, respectively, we have

EP̃[σmin(C�)] � 2

3
E

Pr(1)
. . . E

Pr(�)
[σmin(C�)],

where the distribution

P̃(s1, . . . , s�) = P̃r
(1)

(s1) . . . P̃r
(�)

(s�) (13)

follows from Eq. (9) using noisy gates R̃i.
The proof is very technical with lengthy steps. Hence, we

delay their introduction to Appendix D.
As a result, we could perform Algorithm I a few times

to generate a basis with bounded least singular value. The
conclusion is summarized in Theorem 3 whose proof is given
in Appendix E.

Theorem 3. By using O(r27κ14r ) queries to input oracles
VA (1) and UA (2), we could find a group of linearly indepen-
dent states {|Ag(i)〉}r

i=1, such that the least singular value of the
Gram matrix Cr formed by {|Ag(i)〉}r

i=1 is greater than 1
2r2·κ2r−2 ,

Algorithm 2. State readout.

Input: QRAM oracle UA. Copies of state |v〉. Orthonormal basis
{|t i〉}r

i=1. The precision parameter ε.
Output: Coordinates {xi}r

i=1 in |v〉 = ∑r
i=1 xi|si〉 that guarantee a

ε accuracy under �2 norm.
1: Estimate the value a2

i = |〈v|t i〉|2, for i ∈ [r] by swap test.
Mark k := argmaxi∈[r]a

2
i .

2: Run the circuit in Fig. 2 to estimate a′
i=〈tk |v〉〈v|t i〉 for i ∈ [r].

Normalize the vector a = a′/‖a′‖.
3: Output the solution as x = Za, where Z is given in Eq. (14).

where r and κ are the rank and the condition number of A,
respectively.

B. Coefficient calculation

Next we focus on the second subroutine. Once the row
basis has been selected, which now we denote as {si}r

i=1 for
simplicity, the readout problem reduces to obtaining coordi-
nates {xi}r

i=1 in the description |v〉 = ∑r
i=1 xi|si〉. The steps are

outlined in Algorithm II.
The idea of Algorithm II is fairly natural. Since the QGSP

algorithm generates orthonormal states {|t i〉}r
i=1, we could first

calculate the coordinate of state |v〉 under the basis {|t i〉}r
i=1:

|v〉 = ∑r
i=1 ai|t i〉, and then transfer the orthonormal basis to

the row basis {si}r
i=1:

(t1, . . . , t r ) =
(

s1

‖s1‖ , . . . ,
sr

‖sr‖
)

Z, (14)

where Z = [zi j]r×r is the transformation matrix. The coordi-
nates {xi}r

i=1 are given as x = Za.
The crucial part of Algorithm II is to calculate the coef-

ficient ai = 〈v|t i〉,∀i ∈ [r]. However, the overlap estimation
techniques based on the Hadamard test [58] could not be
directly employed for estimating the state overlap, since the
unitaries for generating the states are required. This drawback
limits most quantum algorithms, e.g., the quantum linear sys-
tem solver, that require postselection to yield the solution state
easily. Another choice is the swap test [59] that only requires
copies of states. However, directly using the quantum swap
test could only obtain the estimation to the value |〈v|t i〉|2,
while sign(ai ) remains unknown. To overcome this difficulty,
we could assume that the state |v〉 has the positive overlap
with one of the basis, say |tk〉, and take the value

ai = sign(〈tk|v〉〈v|t i〉)|〈v|t i〉| = 〈tk|v〉〈v|t i〉
|〈tk|v〉| (15)

as the state overlap. This assumption is equivalent to adding
a global phase 0 or eiπ = −1 on |v〉, and will not affect the
extraction of the classical description.

We construct a variant of the swap test, illustrated in Fig. 2
for estimating a′

i = 〈tk|v〉〈v|t i〉. It is easy to see that the prob-
ability of the measurement outcomes “00” and “11” yields the
value a′

i:

Psame = P00 + P11 = 1 + 〈tk|v〉〈v|t i〉
2

= 1 + a′
i

2
. (16)
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FIG. 2. Quantum circuit for estimating 〈tk |v〉〈v|t i〉, where |ψi〉 =
1√
2
(|tk〉|0〉 + |t i〉|1〉).

Similar to the swap test, the proposed quantum circuit pro-
vides a ε-error estimation to the value 〈tk|v〉〈v|t i〉 with Õ(ε−2)
measurements. Notice that a larger |〈tk|v〉| is preferred to
obtain more accurate estimations of ai in Eq. (15) through
the estimations of a′

i in Eq. (16). Thus, we mark k :=
argmaxi∈[r]|〈t i|v〉|2 by using the swap test, before the estima-
tions of {a′

i}r
i=1 by running the circuit in Fig. 2.

The difficulty of implementing the quantum circuit in
Fig. 2 is to efficiently prepare the state (|tk〉|0〉 + |t i〉|1〉)/

√
2.

We apply the linear combination of unitaries (LCU) method
again such that (|tk〉|0〉 + |t i〉|1〉)/

√
2 could be prepared with

query complexity O(rσ−1/2
min (Cr )). See Appendix F for detail.

By using this circuit along with the swap test, we could ap-
proximately calculate the coordinates {xi}r

i=1. The error and
time complexity of Algorithm II is provided in Theorem 4,
with proof given in Appendix F.

Theorem 4. Algorithm II provides a classical description
v = ∑r

i=1 xiAg(i)/‖Ag(i)‖ with �2 norm error bounded in ε,
by using O(r4ε−2) copies of state |v〉 and O(r10σ−4

min(Cr )ε−2)
queries to input oracles.

Thus, our state readout protocol only requires
Õ(poly(r)ε−2) copies of the unknown quantum state. The
required state copy complexity is independent from the
dimension of the state, which makes our algorithm more
efficient than previous QST methods [36] in the low-rank
case, since the latter needs at least O(dε−2) copies. We
remark that the combination of Theorems 3 and 4 yields the
main result in Theorem 2.

III. APPLICATIONS

As introduced in previous text, our readout protocol suits
the case that the output state of the quantum algorithm lies
in the row space of the input matrix. We remark that this
assumption is naturally satisfied by many proposed quan-
tum algorithms in the field of machine learning and linear
algebra. In this section, we discuss the end-to-end versions
of two existing quantum algorithms: the quantum singular
value decomposition (SVD) algorithm and the quantum linear
system solver, when employing our state readout protocol for
generating classical solutions.

A. Quantum singular value decomposition

We begin with the quantum singular value decomposition
protocol. For a given r-rank input matrix A = ∑r

i=1 σiuiv
T
i ∈

Rm×d , there is

vi = 1

σi

(
uT

i A
)T = 1

σi

m∑
j=1

u( j)
i A j, ∀ j ∈ [m], (17)

so any singular vector vi lies in the row space span{Ai}m
i=1.

Given QRAM oracles of the matrix A, quantum SVD allows
us to perform the operation

∑
j β j |v j〉 → ∑

j β j |v j〉|σ̂ j〉 with
complexity O(polylog(md )‖A‖F ε−1) such that σ̂ j ∈ σ j ± ε

with high probability. Consider the state

|0〉|0〉 VAUA−→
∑m

i=1

∑d
j=1 Ai j |i〉| j〉

‖A‖F
=
∑r

i=1 σi|ui〉|vi〉
‖A‖F

as the input to the quantum SVD algorithm to gener-
ate the state 1

‖A‖F

∑r
i=1 σi|ui〉|vi〉|σ̂i〉. Then the measurement

on the eigenvalue register could collapse the state to

different eigenstates |ui〉|vi〉 with probability σ 2
i

‖A‖2
F

. Thus,
any target state |vi〉 could be prepared with complexity
O(polylog(md )‖A‖3

F �−1
σ σ−2

i ), where �σ is the eigengap of
the matrix A. Using this result along with Theorem 2, we could
derive the end-to-end complexity for SVD as follows.

Corollary 1. The classical form of any eigenstate |vi〉 of
A could be obtained by using O(κ14rpoly(r, log(md )) ‖A‖F

�σ ε2 )
queries to the input oracle of A, such that the �2 norm error
is bounded in ε.

B. Quantum linear system solver

There has been an increasing interest in quantum machine
learning [12,13,60] and linear algebra [23,28] algorithms fol-
lowing the quantum linear system solver proposed by Harrow
et al. [9]. The first quantum linear system solver was proposed
especially for the sparse case by Hamiltonian simulation, and
several other different linear system solvers [20,61] have been
proposed subsequently for the general case. Here we consider
the quantum solver [20] which encodes the input matrix A ∈
Rd×d into the QRAM model.

For matrix A = ∑r
i=1 σiuiv

T
i , the solution could be written

as

x = A+b, (18)

where A+ = ∑r
i=1

1
σi

viuT
i is the pseudoinverse matrix of A.

Equation (18) gives x = ∑r
i=1

1
σi

uT
i bvi ∈ span{vi}r

i=1, which
means x also lies in the row space span{Ai}n

i=1 by using the
previous conclusion about eigenvectors.

For the linear system Ax = b, the solution state |x〉 =
|A+b〉 could be prepared in time O(κ2polylog(d )‖A‖F ε−1)
with �2 norm error bounded in ε, where κ is the condition
number of A. Then we could derive the end-to-end complexity
for the quantum linear system solver as follows.

Corollary 2. The classical form of the solution state |A+b〉
for the linear system Ax = b could be obtained by using
O(κ14rpoly(r, log d ) ‖A‖F

ε3 ) queries to input oracles of A, such
that the �2 norm error is bounded in ε.

IV. CONCLUSION AND DISCUSSION

In this work, we developed an efficient state readout frame-
work for quantum algorithms which involve a low-rank input
matrix and the output state |v〉 lies in the row space of the input
matrix. The proposed framework takes Õ(poly(r)ε−2) copies
of the output state and Õ(poly(r, κr )ε−2) queries to input
oracles for providing ε error bounded classical description.
Thus, our protocol preserves the quantum speedup at the state
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readout step of these quantum algorithms for the case that the
rank r and the condition number κ are small, relative to the
system dimension d . We analyzed the feasibility of our frame-
work for quantum algorithms including the quantum SVD and
the QRAM-based linear system solver in the low-rank case.

Recently, several quantum-inspired classical algorithms
[62–65] have been developed as challenges to quantum ad-
vantage on machine learning tasks. Since QRAM oracles
are employed in this work, we would like to emphasize the
difference between these classical algorithms and the pro-
posed readout protocol. Note that the state readout is a “pure
quantum” task which aims to generate the classical form of
the unknown quantum state. However, the quantum-inspired
algorithms are developed for solving certain linear algebra
problems if certain data structure and query access are al-
lowed.

Finally, we believe that the proposed results about decod-
ing the pure state could be extended into the mixed-state case.
A quick outline of the procedure is as follows. We could
first employ the quantum PCA [57] to perform the eigen-
decompositions, and then to decode the eigenstates using our
protocol. Another future direction is to improve our readout
framework such that the complexity is polynomial in both the
rank and the condition number.

APPENDIX A: PROOF OF LEMMA 1

Proof. Denote si := Ag(i) for the simplicity of notation.
Consider the state

|t�〉 =
�∑

i=1

zi�|si〉 = 1

Z�

(
|s�〉 −

�−1∑
i=1

|t i〉〈t i|s�〉
)

, (A1)

where Z� has another formulation obtained by multiplying 〈t�|
on both sides

1 = 〈t�|t�〉 = 1

Z�

〈t�|s�〉 = 1

Z�

�∑
i=1

zi�〈si|s�〉. (A2)

The restriction that |t�〉 is normalized and is orthogonal to
states |s1〉, |s2〉, . . . |s�−1〉 could yield

〈s j |t�〉 =
�∑

i=1

zi�〈s j |si〉 = 0, ∀ j ∈ [� − 1], (A3)

〈t�|t�〉 =
�∑

j=1

�∑
i=1

z j�zi�〈s j |si〉 = 1. (A4)

Rewrite Eqs. (A2) and (A3) in the vector form:

C�z� = Z�e�. (A5)

Equation (A4) could be written as

1 =
�∑

i, j=1

zi�z j�〈s j |si〉 = zT
� C�z� = Z2

� eT
� C−1

� e� = Z2
�

|C�−1|
|C�| ,

where the third equation derives from z� = Z�C
−1
� e� by

Eq. (A5) and the last equation is derived by noticing that the

(�, �)-th element of C−1
� is |C�−1|

|C�| . Thus, we obtain

Z� =
√

|C�|
|C�−1| . (A6)

Finally, solving (A5) is trivial:

z� = Z�C
−1
� e� =

√
|C�|

|C�−1|C
−1
� e�. (A7)

�

APPENDIX B: PROOF OF LEMMA 2

Proof. We denote ‖ · ‖ as the �2 norm and the spectral
norm for vectors and matrices.

First notice that

‖t� − t̃�‖2 = tT
� t� − 2tT

� t̃� + t̃T
� t̃� (B1)

= zT
� C�z� − 2zT

� C�z̃� + z̃T
� C�z̃� (B2)

= �zT
� C��z� (B3)

� ‖C�‖‖�z�‖2, (B4)

where C� in Eq. (B2) is the Gram matrix of {|Ag(i)〉}�i=1, and
�z� = z̃� − z� in Eq. (B3). Since ‖C�‖ � Tr[C�] = �, we can
obtain the desired result, namely,

‖t� − t̃�‖2 � ε2
R

100
, (B5)

if the following claim is true:

‖�z�‖ � εR

10�1/2
. (B6)

To prove Eq. (B6), let us introduce some more notation.
Denote by C̃� and C̃�−1 the perturbed Gram matrices of C� and

C�−1, respectively. Let Z̃� =
√

|C̃�|
|C̃�−1| and

z̃� = Z̃�C̃
−1
� e�. (B7)

Let �C� = C̃� − C�, and �Z� = Z̃� − Z�. Then,

‖�z�‖ = ‖C̃−1
� Z̃�e� − C−1

� Z�e�‖ (B8)

= ‖(C� + �C�)−1(Z�e� + �Z�e�) − C−1
� Z�e�‖ (B9)

= ‖(C� + �C�)−1[(Z�e� + �Z�e�)

− (C� + �C�)C−1
� Z�e�]‖ (B10)

= ∥∥(C� + �C�)−1
(
�Z�e� − �C�C

−1
� Z�e�

)∥∥ (B11)

� ‖(C� + �C�)−1‖ · (|�Z�| + ‖�C�‖
∥∥C−1

�

∥∥Z�

)
, (B12)

where Eq. (B12) follows from the triangular inequality.
Since each element in C̃� diviates from that in C� by at most

εC � σ 2
min (C� )
80�5/2 εR, we could obtain

‖�C�‖ � ‖�C�‖F �
√

�2ε2
C = �εC (B13)
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and

‖(C� + �C�)−1‖ = 1

σmin(C� + �C�)
(B14)

� 1

σmin(C�) − ‖�C�‖ (B15)

� 1

σmin(C�) − �εC
(B16)

� 80

79
σ−1

min(C�). (B17)

Equation (B15) follows from the Weyl’s inequality

|σmin(C� + �C�) − σmin(C�)| � ‖�C�‖.
Equation (B16) employs Eq. (B13). Equation (B17) follows
because

�εC � σ 2
min(C�)

80�3/2
εR � 1

80
σmin(C�).

Together with Eqs. (B13), (B17), and ‖C−1
� ‖ = σ−1

min(C�),
Eq. (B12) is upper bounded by

‖�z�‖ � 80

79
σ−1

min(C�)
[|�Z�| + �εCσ−1

min(C�)Z�

]
. (B18)

To finish the proof of Eq. (B6), we only need to bound

|�Z�| � 4�2σ−1
min(C�)εCZ�. (B19)

If Eq. (B19) were true, we could further bound ‖�z�‖ from
Eq. (B18) as follows:

‖�z�‖ � 80

79
σ−2

min(C�)5�2εCZ� (B20)

� εR

10�1/2
, (B21)

where � > 1, εC � σ 2
min (C� )
80�5/2 εR, and

Z� =
∥∥∥∥∥|s�〉 −

�−1∑
i=1

|t i〉〈t i|s�〉
∥∥∥∥∥ � 1. (B22)

The last part of this section is to prove Eq. (B19). To further
analyze this term, we utilize the bound on the determinant of
the perturbed matrix [66], page 113]:∣∣∣∣ |C� + �C�| − |C�|

|C�|
∣∣∣∣ � �

∥∥C−1
�

∥∥‖�C�‖
1 − �

∥∥C−1
�

∥∥‖�C�‖
. (B23)

We can obtain∣∣∣∣ |C�−1 + �C�−1| − |C�−1|
|C�−1|

∣∣∣∣ �
(� − 1)

∥∥C−1
�−1

∥∥‖�C�−1‖
1 − (� − 1)

∥∥C−1
�−1

∥∥‖�C�−1‖

� �
∥∥C−1

�

∥∥‖�C�‖
1 − �

∥∥C−1
�

∥∥‖�C�‖
, (B24)

where the second inequality follows by noticing that the func-
tion f (x) = x

1−x is monotonically increasing and the property
that the range of singular values of the submatrix is contained
in that of the original matrix:

(� − 1)
∥∥C−1

�−1

∥∥‖�C�−1‖ � �
∥∥C−1

�−1

∥∥‖�C�−1‖
= �σ−1

min(C�−1)σmax(�C�−1)

� �σ−1
min(C�)σmax(�C�)

= �
∥∥C−1

�

∥∥‖�C�‖.
Consequently, we have the bound on the term |�Z�|:

|�Z�| =
∣∣∣∣ Z̃�

Z�

− 1

∣∣∣∣Z� (B25)

=
∣∣∣∣∣∣
√

|C̃�|
|C�|

√
|C�−1|
|C̃�−1|

− 1

∣∣∣∣∣∣Z� (B26)

=
∣∣∣∣∣
√

|C� + �C�|
|C�|

√
|C�−1|

|C�−1 + �C�−1| − 1

∣∣∣∣∣Z� (B27)

� max

(√
1

1 − �
∥∥C−1

�

∥∥‖�C�‖
1 − �

∥∥C−1
�

∥∥‖�C�‖
1 − 2�

∥∥C−1
�

∥∥‖�C�‖
− 1,

1 −
√

1 − 2�
∥∥C−1

�

∥∥‖�C�‖
1 − �

∥∥C−1
�

∥∥‖�C�‖
(
1 − �

∥∥C−1
�

∥∥‖�C�‖
))

Z�

(B28)

where Eq. (B28) is derived by employing the following equiv-
alent form of Eqs. (B23) and (B24):

|C� + �C�|
|C�| � 1 − 2�

∥∥C−1
�

∥∥‖�C�‖
1 − �

∥∥C−1
�

∥∥‖�C�‖
,

|C� + �C�|
|C�| � 1

1 − �
∥∥C−1

�

∥∥‖�C�‖
,

|C�−1 + �C�−1|
|C�−1| � 1 − 2�

∥∥C−1
�

∥∥‖�C�‖
1 − �

∥∥C−1
�

∥∥‖�C�‖
,

|C�−1 + �C�−1|
|C�−1| � 1

1 − �
∥∥C−1

�

∥∥‖�C�‖
.

Since max(A, B) � A + B for A, B � 0, Eq. (B28) yields

�
(√

1

1 − 2�
∥∥C−1

�

∥∥‖�C�‖
−
√

1 − 2�
∥∥C−1

�

∥∥‖�C�‖
)

Z�

(B29)

= 2�
∥∥C−1

�

∥∥‖�C�‖√
1 − 2�

∥∥C−1
�

∥∥‖�C�‖
Z� (B30)

� 2�2σ−1
min(C�)εC√

1 − 2�2σ−1
min(C�)εC

Z� (B31)

� 4�2σ−1
min(C�)εCZ�. (B32)

Equation (B31) is derived by using Eqs. (B13), (B22), and
‖C−1

� ‖ = σ−1
min(C�). The last equation holds because

√
1 − 2�2σ−1

min(C�)εC �

√
1 − 2�2σ−1

min(C�)
σ 2

min(C�)

80�5/2
εR

�
√

1 − 1

4
� 1

2
,

which is obtained by using the bound of εC and σmin (C� )
40�1/2 εR �

1
4 . �
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APPENDIX C: PROOF OF LEMMA 3

Proof. The main idea is to firstly derive the error analysis
of |t�〉 and R�, followed by the development of the LCU
protocol. Denote si := Ag(i) for the simplicity of notation. We
begin from the assumption that

‖t̃� − t�‖ � εR

10
, (C1)

where t̃� = ∑�
i=1 z̃i�si/‖si‖. Then the �2 norm of the error of

the state |t�〉 is bounded as follows:

‖|t̃�〉 − |t�〉‖ � ‖t̃� − |t̃�〉‖ + ‖t̃� − |t�〉‖ (C2)

= |‖t̃�‖ − 1|‖|t̃�〉‖ + ‖t̃� − t�‖ (C3)

= |‖t̃�‖ − ‖t�‖| + ‖t̃� − t�‖ (C4)

� ‖t̃� − t�‖ + ‖t̃� − t�‖ (C5)

� εR

5
. (C6)

Equations (C2)–(C6) are derived by using ‖t�‖ = 1, the trian-
gular inequality, and Eq. (C1). We could further provide the
spectral norm of the error of the gate R�:

‖R̃� − R�‖ = ‖(I − 2|t̃�〉〈t̃�|) − (I − 2|t�〉〈t�|)‖ (C7)

= 2‖|t̃�〉〈t̃�| − |t�〉〈t�|‖ (C8)

� 2‖|t̃�〉〈t̃�| − |t̃�〉〈t�|‖F + 2‖|t̃�〉〈t�| − |t�〉〈t�|‖ (C9)

= 2‖|t̃�〉 − |t�〉‖ + 2‖|t̃�〉 − |t�〉‖ (C10)

� 4

5
εR. (C11)

Equation (C7) is derived due to the definition of R�.
Equation (C9) is derived by using the triangular inequality.
Equation (C11) is derived by using Eq. (C6).

Now we provide a framework to implement operations
C(R̃�) using coefficients {z̃ j�}�j=1. We could first prepare
the pure state ρ̃� = |t̃�〉〈t̃�| by the linear combination of
unitaries method as follows. Firstly, initialize the state
|0〉⊗ log m|0〉⊗ log n|0〉. Then, we apply Hadamard operations on
the last log � qubits in the first register to create the state

1√
�

�∑
i=1

|i〉|0〉|0〉.

Next, we employ the operation

Uindex =
�∏

i=1

(I − |i〉〈i| − |g(i)〉〈g(i)| + |i〉〈g(i)| + |g(i)〉〈i|)
(C12)

to swap states |i〉 and |g(i)〉,∀i ∈ [�], to yield the state

1√
�

�∑
i=1

|g(i)〉|0〉|0〉.

The unitary Uindex could be implemented by O(�) operations.
Then we employ the oracle UA on the first and the second

register, followed by the unitary U †
index, to yield

1√
�

�∑
i=1

|i〉|Ag(i)〉|0〉 ≡ 1√
�

�∑
i=1

|i〉|si〉|0〉.

Denote z̃� ≡ maxi |z̃i�|. Then we perform the controlled rota-
tion

�∑
i=1

|i〉〈i| ⊗ e−iσy arccos(z̃i�/z̃� ) +
m∑

i=�+1

|i〉〈i| ⊗ I

on the third register, conditioned on the first register |i〉, to
obtain

1√
�

�∑
i=1

|i〉|si〉
(

z̃i�

z̃�

|0〉 +
√

1 − z̃2
i�

z̃2
�

|1〉
)

.

Finally, we employ Hadamard operations on last log � qubits
in the first register, to obtain the state

1

�

�∑
i=1

|0〉 z̃i�

z̃�

|si〉|0〉 + orthogonal garbage state

= ‖t̃�‖
� · z̃�

|0〉|t̃�〉|0〉 + orthogonal garbage state.

The measurement on the first and the third registers of the final
state could yield state |t̃�〉 with success probability ‖t̃�‖2/�2z̃2

� ,
so we could prepare the state |t�〉 with O(�z̃�/‖t̃�‖) queries to
UA by using the amplitude amplification method [67].

Note that operations R̃� = I − 2|t̃�〉〈t̃�| can be viewed as
the unitary with Hamiltonian ρ̃� = |t̃�〉〈t̃�|:

e−iπρ̃� = 1 + (−iπρ̃�) + 1

2!
(−iπρ̃�)2 + · · ·

= 1 − ρ̃� + ρ̃�

[
1 + (−iπ ) + 1

2!
(−iπ )2 + · · ·

]

= 1 − ρ̃� + ρ̃�e−iπ

= I − 2|t̃�〉〈t̃�|.
Therefore, by using the Hamiltonian simulation method de-
veloped in quantum PCA [57], the controlled version of R̃�

could be performed with error εR/5 consuming O(5π2/εR) =
O(1/εR) copies of ρ̃�. Taking the complexity of generat-
ing state |t̃�〉 into account, we could implement operation
C(R̃�) with the error of R̃(�) bounded as εR/5, by using
O(� maxi |z̃i�|/(‖t̃�‖εR)) queries to UA. We remark that the �2

norm of vector z̃� is bounded as

1 = 〈t̃�|t̃�〉 = z̃T
� C�z̃�

‖t̃�‖2
� ‖z̃�‖2

‖t̃�‖2
σmin(C�),

which yields

maxi |z̃i�|
‖t̃�‖ � ‖z̃�‖

‖t̃�‖ � σ
−1/2
min (C�). (C13)

So the query complexity for implementing C(R̃�) could be
bounded as O(�σ−1/2

min (C�)ε−1
R ). By considering the distance

between R� and R̃� in Eq. (C11), we could then implement the
controlled version of the gate R� with error bounded by εR.
Now we have proved Lemma 3. �
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APPENDIX D: PROOF OF LEMMA 4

In this section, we prove Lemma 4. Before we detail main
technical procedures, we first provide some useful theoretical
bounds in Lemmas 5 and 6.

Lemma 5. The probability P� defined in Eq. (6) is bounded
by ∑r

i=� σ 2
i

‖A‖2
F

� P� �
∑r−�+1

i=1 σ 2
i

‖A‖2
F

,

where σ1 � σ2 � · · · � σr are singular values of A.
Proof. Denote the singular value decomposition

A =
r∑

i=1

σiuiv
T
i .

Since the state |t i〉 is the linear sum of rows {Aj}m
j=1, while

each row is the linear sum of singular vectors

Aj =
r∑

i=1

σiu
( j)
i vi, (D1)

we can further write

|t i〉 =
r∑

j=1

wi j |v j〉. (D2)

Rewrite Eq. (6) as

P� = 1

‖A‖2
F

m∑
j=1

[
‖Aj‖2 −

�−1∑
i=1

‖Aj‖2|〈t i|Aj〉|2
]

(D3)

= 1 − 1

‖A‖2
F

m∑
j=1

�−1∑
i=1

[
r∑

k=1

wikσku( j)
k

]2

, (D4)

where Eq. (D4) comes from Eqs. (D1) and (D2). Expanding
the square term in Eq. (D4) yields

P� = 1 − 1

‖A‖2
F

m∑
j=1

�−1∑
i=1

[
r∑

k=1

w2
ikσ

2
k

(
u( j)

k

)2

+
r∑

k �=k′
wikwik′σkσk′u( j)

k u( j)
k′

]
(D5)

= 1 − 1

‖A‖2
F

�−1∑
i=1

r∑
k=1

w2
ikσ

2
k (D6)

= 1 − 1

‖A‖2
F

r∑
k=1

ckσ
2
k , (D7)

where Eq. (D6) follows because
∑m

j=1 u( j)
k u( j)

k′ = uT
k uk′ =

δkk′ , and we denote ck = ∑�−1
i=1 w2

ik in Eq. (D7).
Define the r-dimensional vector wi = ∑r

k=1 wikek . Since
〈t i|t j〉 = δi j = ∑r

k=1 wikw jk = wT
i w j , vectors in set {wi}�−1

i=1
are orthogonal with each other. We can add w�, . . . ,wr

such that {wi}r
i=1 forms an orthonormal basis in the r-

dimensional space. Denote the matrix W = (w1,w2, . . . ,wr ).

Since W T W = I , we have

0 � ck =
�−1∑
i=1

w2
ik �

r∑
i=1

w2
ik = [WW T ]kk = 1, ∀k ∈ [r].

(D8)
Note that

r∑
k=1

ck =
�−1∑
i=1

r∑
k=1

w2
ik =

�−1∑
i=1

[WW T ]ii = � − 1. (D9)

Hence, by using Eqs. (D7)–(D9) and ‖A‖2
F = ∑r

i=1 σ 2
i , we

could obtain the lower and upper bounds for P� as follows:

P� � 1 − 1

‖A‖2
F

�−1∑
i=1

σ 2
i =

∑r
i=� σ 2

i

‖A‖2
F

, (D10)

P� � 1 − 1

‖A‖2
F

r∑
i=r−�+2

σ 2
i =

∑r−�+1
i=1 σ 2

i

‖A‖2
F

. (D11)

�
Lemma 6. Denote P to be the distribution of the adaptive

sampling following from the Eq. (10):

P(s1, . . . , s�) = Pr(1)(s1)Pr(2)(s2) . . . Pr(�)(s�), (D12)

where s� ∈ [m] denotes the index of the row s� in the matrix
A ∈ Rm×d . Then

EP[σmin(C�)] � r − � + 1

�r
κ2−2�.

Proof. By the Cauchy-Schwarz inequality, we have

EP[σmin(C�)] · EP
[
σ−1

min(C�)
]

� 1. (D13)

If the following inequality were true,

EP
[
σ−1

min(C�)
]

� �r

r − � + 1
κ2�−2, (D14)

then we could reach the conclusion of this lemma:

EP[σmin(C�)] � 1

EP
[
σ−1

min(C�)
] (D15)

� r − � + 1

�r
κ2−2�. (D16)

To prove Eq. (D14), we first rewrite it as follows:

EP
[
σ−1

min(C�)
]

=
m∑

s1=1

· · ·
m∑

s�=1

P(s1, . . . , s�)σ−1
min(C�) (D17)

=
m∑

s1=1

· · ·
m∑

s�=1

‖s1‖2 . . . ‖s�‖2


(1) . . . 
(�)
|C�|σ−1

min(C�). (D18)

In Eq. (D18), we rewrite P(s1, . . . , s�) with Eq. (D12) and

Pr(�)(s�) = ‖s�‖2‖|s�〉 −∑�−1
i=1 |t i〉〈t i|s�〉‖2


(�)
(D19)

= ‖s�‖2Z2
�


(�)
(D20)

= ‖s�‖2


(�)

|C�|
|C�−1| , (D21)
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where, in Eq. (D19), we denote


(�) =
m∑

s�=1

‖s� −
�−1∑
i=1

t itT
i s�‖2, (D22)

Eq. (D20) is derived from Z2
� = ‖|s�〉 −∑�−1

i=1 |t i〉〈t i|s�〉‖2,
and Eq. (D21) is due to Eq. (A6).

Continuing from Eq. (D18), it holds

EP
[
σ−1

min(C�)
]

�
m∑

s1=1

· · ·
m∑

s�=1

‖s1‖2 . . . ‖s�‖2


(1) . . . 
(�)

�∑
i=1

∣∣C(i)
�

∣∣ (D23)

=
�∑

i=1

m∑
si=1

‖si‖2
m∑

s j=1, j �=i

∏�
j=1, j �=i ‖s j‖2


(1) · · · 
(�)

∣∣C(i)
�

∣∣, (D24)

where Eq. (D23) uses

σ−1
min(C�) = σmax

(
C−1

�

)
� Tr

(
C−1

�

) =
∑�

i=1 |C(i)
� |

|C�| ,

with C(i)
� ∈ R(�−1)×(�−1) being the principal submatrix of C�

by removing the ith row and column, and Eq. (D24) follows
by rearranging the sum order.

Next, we will provide a lower bound on the denomi-
nator term 
(1) · · ·
(�) in Eq. (D24). Note that for any
1 � j � �, 
( j) only depends on the matrix A and indices
(s1, s2, . . . , s j−1), so it can be viewed as the function of
(s1, s2, . . . , s j−1) when treating A as the constant matrix,
namely,


( j) := 
( j)(s1, s2, . . . , s j−1) (D25)

= ‖A‖2
F Pj, (D26)

where Eq. (D26) comes from the definition of Pj in Eq. (6).
By employing the lower and upper bounds of Pj in Eqs. (D10)
and (D11), we could bound the function 
( j) as

r∑
i= j

σ 2
i (A) � 
( j) �

r− j+1∑
i=1

σ 2
i (A), (D27)

where σ1(A) � σ2(A) � · · · � σr (A) denotes singular values
of A, and Eq. (D27) holds for any choice of linearly indepen-
dent row vectors for 
( j). Then Eq. (D27) yields


( j)(s1, . . . , s j−1) �
r∑

i= j

σ 2
i (A) (D28)

�
r∑

i= j

σ 2
i (A)


( j)(s1, . . . , si−1, si+1, . . . , s j )∑r− j+1
i=1 σ 2

i (A)
(D29)

� σ 2
min(A)

σ 2
max(A)


( j)(s1, . . . , si−1, si+1, . . . , s j ) (D30)

where Eq. (D29) holds true because of the second inequality
in Eq. (D27):


( j)(s1, . . . , si−1, si+1, . . . , s j )∑r− j+1
i=1 σ 2

i (A)
� 1. (D31)

Continuing from Eq. (D24) and with the inequality 
(�) �∑r
k=� σ 2

k (A) in Eq. (D27), we obtain the first inequality below:

EP
[
σ−1

min(C�)
]

�
�∑

i=1

m∑
si=1

‖si‖2
m∑

s j=1, j �=i

∏�
j=1, j �=i ‖s j‖2


(1) · · · 
(�−1)
∑r

k=� σ 2
k (A)

∣∣C(i)
�

∣∣
(D32)

�
(

σ 2
max(A)

σ 2
min(A)

)�−2 �∑
i=1

m∑
si=1

‖si‖2∑r
k=� σ 2

k (A)

·
m∑

s j=1, j �=i

∏�
j=1, j �=i ‖s j‖2


′(1) · · · 
′(�−1)
|C(i)

� |, (D33)

where in Eq. (D33) we denote


′( j) =
{


( j)(s1, s2, . . . , s j−1), ∀ j < i + 1,


( j)(s1, s2, . . . , si−1, si+1, . . . , s j ), ∀ j � i + 1.

(D34)
and employ Eq. (D30). Notice that in Eq. (D33),

m∑
s j=1, j �=i

∏�
j=1, j �=i ‖s j‖2


′(1) · · · 
′(�−1)

∣∣C(i)
�

∣∣ = 1, (D35)

which can be interpreted as the probability for sampling
(s1, s2, . . . , si−1, si+1, . . . , s�) over all choice of indices. Fi-
nally, Eq. (D33) further leads to

EP
[
σ−1

min(C�)
]

�
(

σ 2
max(A)

σ 2
min(A)

)�−2 �∑
i=1

m∑
si=1

‖si‖2∑r
k=� σ 2

k (A)
(D36)

� �‖A‖2
F

(r − � + 1)σ 2
min(A)

(
σ 2

max(A)

σ 2
min(A)

)�−2

(D37)

� �r

r − � + 1

(
σ 2

max(A)

σ 2
min(A)

)�−1

(D38)

= �r

r − � + 1
κ2�−2, (D39)

where
∑m

si=1 ‖si‖2 = ‖A‖2
F and

∑r
k=� σ 2

k (A) � (r − � +
1)σ 2

min(A) are used to derive Eq. (D37), and ‖A‖2
F =∑r

i=1 σ 2
i (A) � rσ 2

max(A) is used to derive Eq. (D38). �
Instead of the distribution P defined in Eq. (D12), the per-

turbed distribution P̃ is employed due to noisy gates R̃i,∀i ∈
[r] in Algorithm I. For simplicity, we denote �� = ∏�

i=1 Ri

and �̃� = ∏�
i=1 R̃i,∀� ∈ [r], and then the sampling distribu-

tions could be rewritten as

Pr(�)(s�) := P(s�|s1, . . . , s�−1)

= 1


(�)
‖s�‖2

∥∥∥∥��−1 + I

2
|s�〉
∥∥∥∥

2

, (D40)

P̃r
(�)

(s�) := P̃(s�|s1, . . . , s�−1)

= 1


̃(�)
‖s�‖2

∥∥∥∥�̃�−1 + I

2
|s�〉
∥∥∥∥

2

, (D41)

043095-10



QUANTUM GRAM-SCHMIDT PROCESSES AND THEIR … PHYSICAL REVIEW RESEARCH 3, 043095 (2021)

where


(�) =
m∑

s�=1

‖s�‖2

∥∥∥∥��−1 + I

2
|s�〉
∥∥∥∥

2

(D42)


̃(�) =
m∑

s�=1

‖s�‖2

∥∥∥∥�̃�−1 + I

2
|s�〉
∥∥∥∥

2

(D43)

are corresponding normalization factors. Now we prove
Lemma 4.

Proof. The main idea is that, if the following statement
holds true for any 0 � j � � − 1:

E
P̃r

( j+1)
E

Pr( j+2)
. . . E

Pr(�)
[σmin(C�)]

�
(

1 − 1

6�

)
E

Pr( j+1)
. . . E

Pr(�)
[σmin(C�)] − 1

6�
EP[σmin(C�)],

(D44)

then we could provide a lower bound on the expectation of
σmin(C�) with the distribution P̃ inductively. Specifically, we
could obtain

EP̃[σmin(C�)] = E
P̃r

(1)
E

P̃r
(2)

. . . E
P̃r

(�)
[σmin(C�)]

� E
P̃r

(1)
. . . E

P̃r
(�−1)

(
1 − 1

6�

)
E

Pr(�)
[σmin(C�)]

− 1

6�
EP[σmin(C�)] (D45)

� E
P̃r

(1)
. . . E

P̃r
(�−2)

(
1 − 1

6�

)2

E
Pr(�−1)

E
Pr(�)

[σmin(C�)]

− 1

6�
EP[σmin(C�)] − 1

6�
EP[σmin(C�)] (D46)

...

�
(

1 − 1

6�

)�

E
Pr(1)

. . . E
Pr(�)

[σmin(C�)] − �

6�
EP[σmin(C�)]

� 2

3
EP[σmin(C�)], (D47)

where P̃r
( j)

is defined in Eq. (D41), Eqs. (D45)–(D47) follow
from Eq. (D44), and we employ(

1 − 1

6�

)�

� 1 − 1

6

to obtain the last inequality.
To prove Eq. (D44), we need a lower bound on the distri-

bution P̃r
( j+1)

, which could be derived as follows:

P̃( j+1)(s j+1) = ‖s j+1‖2〈s j+1| 2I+�̃ j+�̃
†
j

4 |s j+1〉∑m
sj+1=1 ‖s j+1‖2〈s j+1| 2I+�̃ j+�̃

†
j

4 |s j+1〉
(D48)

� ‖s j+1‖2
(〈s j+1|� j+I

2 |s j+1〉 − ‖ �̃ j−� j

2 ‖)∑m
sj+1=1 ‖s j+1‖2

(〈s j+1|� j+I
2 |s j+1〉 + ‖ �̃ j−� j

2 ‖) (D49)

= 
( j+1)Pr( j+1)(s j+1) − ‖s j+1‖2‖ �̃ j−� j

2 ‖

( j+1) + ‖A‖2

F ‖ �̃ j−� j

2 ‖
(D50)

� 
( j+1)Pr( j+1)(s j+1) − ‖s j+1‖2 jεR

2


( j+1) + ‖A‖2
F

jεR

2

, (D51)

where Eq. (D48) is derived by using Eqs. (D41) and (D43).
Equation (D49) is obtained by noticing

−
∥∥∥∥�̃ j − � j

2

∥∥∥∥ � 〈s j+1|�̃ j − � j

2
|s j+1〉 �

∥∥∥∥�̃ j − � j

2

∥∥∥∥.
Equation (D50) is derived by using Eqs. (D40) and (D42).
Equation (D51) is derived by noticing

‖�̃ j − � j‖ �
j∑

i=1

‖R̃i − Ri‖ � jεR,

where we denote by εR = 1
3r5κ2r the error bound on each Ri, as

provided in the assumption of this lemma. Notice that

0 � σmin(C�) � Tr[C�]

�
� 1 (D52)

holds for any choice of row vectors. For simplicity, in
Eq. (D44), we denote

X := E
Pr( j+2)

. . . E
Pr(�)

[σmin(C�)] ∈ [0, 1],

and proceed as follows

E
P̃r

( j+1)
E

Pr( j+2)
. . . E

Pr(�)
[σmin(C�)] = E

P̃r
( j+1)

[X ]

=
m∑

s j+1=1

P̃( j+1)(s j+1) · X (D53)

�
m∑

s j+1=1

(

( j+1)Pr( j+1)(s j+1) − ‖s j+1‖2 jεR

2


( j+1) + ‖A‖2
F

jεR

2

)
X, (D54)

where the inequality employs Eq. (D51). Using the identity∑m
sj+1=1 ‖s j+1‖2 = ‖A‖2

F and X � 1, Eq. (D54) further yields

�

( j+1) E

Pr( j+1)
[X ]


( j+1) + ‖A‖2
F

jεR

2

− ‖A‖2
F

jεR

2


( j+1) + ‖A‖2
F

jεR

2

(D55)

= Pj+1

Pj+1 + jεR

2

E
Pr( j+1)

[X ] −
jεR

2

Pj+1 + jεR

2

(D56)

� Pj+1

Pj+1 + jεR

2

E
Pr( j+1)

[X ] − 1

6�
EP[σmin(C�)] (D57)

�
(

1 − 1

6�

)
E

Pr( j+1)
[X ] − 1

6�
EP[σmin(C�)]. (D58)

Equation (D56) is obtained by using 
( j+1) = ‖A‖2
F Pj+1 in

Eq. (D26). Equation (D57) is derived by noticing that

jεR

2

Pj+1 + jεR

2

�
jκ−2r

6r5

r− j
r κ−2

(D59)
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= j

r(r − j)

κ2−2r

6r · r2
(D60)

� 1

6�
EP[σmin(C�)]. (D61)

The first inequality follows from εR = 1
3r5κ2r and

Pj+1 �
∑r

i= j+1 σ 2
i (A)

‖A‖2
F

� (r − j)σ 2
min(A)

rσ 2
max(A)

= r − j

r
κ−2,

(D62)
where the first inequality uses Lemma 5. Equation (D61)
holds due to the lower bound in Lemma 6.

Finally, Eq. (D58) is derived by using

Pj+1

Pj+1 + jεR

2

� 1 − 1

6�
EP[σmin(C�)] � 1 − 1

6�
, (D63)

which holds due to Eqs. (D61) and (D52). �

APPENDIX E: PROOF OF THEOREM 3

Proof. We sketch the main idea of the proof first. We could
implement Algorithm I for N times to guarantee sampling out
one basis which satisfies the conditions

cond(�) :

{
σmin(C�) � 1

2r2κ2r−2

}
, ∀� ∈ [r]. (E1)

Let TQGSP be the query complexity of oracles UA and VA to im-
plement Algorithm I once. Thus, the overall query complexity
is

Tbasis = NTQGSP. (E2)

To begin with, consider the first iteration of Algorithm I.
The Gram matrix of the sampled basis has the dimension
1 × 1 with one element 1. Thus, the condition cond(1) always
holds. We proceed to the general cases inductively. Suppose
that a basis with (� − 1) rows, which satisfies the condition
cond(�−1) in Eq. (E1), has been obtained. Next, we move on to
the �th iteration of Algorithm I. We accept the newly sampled
row as part of the basis, if the condition cond(�) holds, and
proceed to the (� + 1)-th iteration. If the condition is violated,
we stop the procedure and repeat Algorithm I from the first
iteration. Thus, the conditions in Eq. (E1) would hold during
the procedure, with the cost that Algorithm I needs to be run
N number of times in order to guarantee one basis obtained
with high probability.

Now we analyze the complexity of the procedure in detail.
Notice that TQGSP consists of three parts: the cost of oracles
UA and VA for encoding all rows of the input matrix A, the
cost of Hadamard test for calculating coefficients {z�}r−1

�=1, and
the cost of implementing gates {C(R�)}r−1

�=1. Based on Lemmas
2 and 3, the latter two complexities depend on the error in
the implementation of R�. In the following proof, we provide
explicit upper bounds of N and TQGSP, by setting

εC = 1

960r
23
2 κ6r

(E3)

to be the error bound of each element in Cr .
Firstly we demonstrate that the sampling in each iteration

of Algorithm I obeys the distribution in Eq. (13), i.e., the error

of each gate C(Rj ) is bounded as

‖R̃ j − Rj‖ � εR = 1

3r5κ2r
, ∀ j ∈ [r − 1]. (E4)

Based on Lemma 2, the error of t j induced by noisy coeffi-
cients is bounded by

‖t̃ j − t j‖ � 8 j
5
2

σ 2
min(Cj )

εC (E5)

� 32r
13
2 κ4rεC (E6)

= 1

30r5κ2r
(E7)

= εR

10
, (E8)

for j ∈ [r − 1]. Equation (E5) follows from Eq. (11). Since
the condition cond( j) (E1) holds, we obtain Eq. (E6). Equation
(E7) is derived by using Eq. (E3). Equation (E8) is derived by
using Eq. (E4).

Then, based on Lemma 3, we could implement the gate
C(Rj ) with an error εR by using

TRj = O
(

jσ
− 1

2
min (Cj )ε

−1
R

)
(E9)

� O
(
r2κrε−1

R

)
(E10)

� O(r7κ3r ) (E11)

queries to the oracle UA. Since the condition cond( j) (E1)
holds, we obtain Eq. (E10). Equation (E11) follows from the
definition of εR in Eq. (E4).

Next we calculate N . The number of times to perform
Algorithm 1 is bounded as

N = O

(
1

Pr{cond(r)}
)

, (E12)

where the probability follows from the distribution P̃ defined
in Eq. (13). Now we proceed to bound Pr{cond(r)}. In fact, we
have

(1 − Pr{cond(r)})
1

2r2κ2r−2
+ Pr{cond(r)} · 1 (E13)

� (1 − Pr{cond(r)})
1

2r2κ2r−2

+ Pr{cond(r)}EP̃[σmin(Cr )|cond(r)] (E14)

� (1 − Pr{cond(r)})EP̃[σmin(Cr )|not cond(r)]

+ Pr{cond(r)}EP̃[σmin(Cr )|cond(r)] (E15)

= EP̃[σmin(Cr )], (E16)

where Eq. (E14) is obtained by noticing

σmin(Cr ) � Tr(Cr )

r
= 1

holds for all choices of basis. Equation (E15) is derived since
1

2r2κ2r−2 � σmin(Cr ) when the condition cond(r) does not hold.
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Combining Eq. (E4) with Lemma 4, we have the following
statement:

EP̃[σmin(Cr )] � 2

3
E

Pr(1)
. . . E

Pr(r)
[σmin(Cr )] (E17)

� 2

3r2κ2r−2
. (E18)

Thus, Eq. (E18) together with Eq. (E13) yields

1 − Pr{cond(r)}
2r2κ2r−2

+ Pr{cond(r)} � 2

3r2κ2r−2
. (E19)

We could solve

Pr{cond(r)} �
1

6r2κ2r−2

1 − 1
2r2κ2r−2

� 1

6r2
κ2−2r, (E20)

which induces the bound N � O(r2κ2r−2) by using Eq. (E12).
Finally we move on to analyze the query complexity TQGSP.

Based on Lemma 1, coefficients {z�}r−1
�=1 are calculated using

the estimation of Cr . Denote by TC the required query com-
plexity of the oracle UA to estimate each element in Cr via the
Hadamard test. We have

TC = O
(
r2ε−2

C

)
(E21)

= O(r25κ12r ), (E22)

where Eq. (E21) is derived by using Eq. (E3). Recall that
in each iteration of � = 1, . . . , r in Algorithm I, we perform
operations UA,VA, R1, R2, . . . , R�−1 for 1/P� times. Taking the
complexity of estimating Cr into account, we have

TQGSP = TC +
r∑

�=1

1

P�

(
2 +

�−1∑
m=1

TRm

)
(E23)

= O(r25κ12r ) +
r∑

�=1

1

P�

(
2 +

�−1∑
m=1

O(r7κ3r )

)
(E24)

� O(r25κ12r ) + O(r8κ3r )
r∑

�=1

1

P�

(E25)

� O(r25κ12r ) + O(r8κ3r )
r∑

�=1

rκ2 (E26)

� O(r25κ12r ). (E27)

Equation (E24) is obtained by using Eqs. (E22) and (E11).
Equation (E26) is derived by using Eq. (D62).

By considering N � O(r2κ2r−2) being the required num-
ber of times to run Algorithm I, we prove the Theorem 3.

APPENDIX F: PROOF OF THEOREM 4

We will first demonstrate that the proposed quantum circuit
in Fig. 2 is similar to the swap test and provides a ε-error es-
timation to the value a′

i = 〈tk|v〉〈v|t i〉,∀i ∈ [r], with O(1/ε2)
measurements.

First, after all unitary operations, the state in Fig. 2 before
the measurements is

1
4 |0〉[|v〉|tk〉 + |v〉|t i〉 + |tk〉|v〉 + |t i〉|v〉]|0〉

+ 1
4 |0〉[|v〉|tk〉 − |v〉|t i〉 + |tk〉|v〉 − |t i〉|v〉]|1〉

+ 1
4 |1〉[|v〉|tk〉 + |v〉|t i〉 − |tk〉|v〉 − |t i〉|v〉]|0〉

+ 1
4 |1〉[|v〉|tk〉 − |v〉|t i〉 − |tk〉|v〉 + |t i〉|v〉]|1〉.

Measuring the first and the last register could result in out-
comes 00 and 11 with probability

P00 = 2 + |〈v|tk〉|2 + |〈v|t i〉|2 + 2〈t i|v〉〈v|tk〉
8

,

P11 = 2 − |〈v|tk〉|2 − |〈v|t i〉|2 + 2〈t i|v〉〈v|tk〉
8

.

We remark that the statistics of outcomes 00 and 11 implies
the value aiak:

Psame = P00 + P11 = 1 + 〈t i|v〉〈v|tk〉
2

= 1 + aiak

2
.

The efficiency of the quantum circuit in Fig. 2 depends on the
efficiency of preparing the input state (|tk〉|0〉 + |t i〉|1〉)/

√
2.

Lemma 7 below proves that it can be prepared with query
complexity O(rσ−1/2

min (Cr )).
Lemma 7. Given perturbed coefficients provided

in Lemma 2 for both indices k and �, the state
1√
2
(|0〉|tk〉 + |1〉|t�〉) could be prepared with query complexity

O(rσ−1/2
min (Cr )) with �2 norm error bounded by ε.

Proof. We sketch the main idea of the proof. First, we
generate the superposition state of |t̃�〉 and |t̃k〉 using perturbed
coefficients, where perturbed vectors are expressed as

t̃� =
�∑

i=1

z̃i�si/‖si‖, t̃k =
k∑

i=1

z̃iksi/‖si‖. (F1)

Then, we provide the error analysis. Specifically, given the
coefficients z̃k and z̃�, we prepare the state

1√
‖t̃�‖2 + ‖t̃k‖2

(‖t̃k‖|0〉|t̃k〉 + ‖t̃�‖|1〉|t̃�〉) (F2)

by the LCU method as follows. Since the notations k and �

are symmetrical here, we could assume that � � k for conve-
nience. First, we initialize the state |0〉+|1〉√

2
|0〉⊗ log m|0〉⊗ log n|0〉.

Then, we apply Hadamard operations on the last log � qubits
in the second register to create the state:

|0〉 + |1〉√
2�

�∑
j=1

| j〉|0〉|0〉.

Next, we employ the operation Uindex defined in (C12) to
create the state

|0〉 + |1〉√
2�

�∑
j=1

|g( j)〉|0〉|0〉.

Then we employ the oracle UA on the first and the second
registers, followed by the unitary U †

index to yield

|0〉 + |1〉√
2l

�∑
j=1

| j〉|Ag( j)〉|0〉 ≡ |0〉 + |1〉√
2l

�∑
j=1

| j〉|s j〉|0〉.
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Denote z̃ ≡ max(max j |z̃ j�|, max j |z̃ jk|). Next, we perform the
controlled rotation

|0〉〈0| ⊗
k∑

j=1

| j〉〈 j| ⊗ I ⊗ e−iσy arccos(z̃ jk/z̃)

+ |0〉〈0| ⊗
�∑

j=k+1

| j〉〈 j| ⊗ I ⊗ σx

+ |0〉〈0| ⊗
m∑

j=�+1

| j〉〈 j| ⊗ I ⊗ I

+ |1〉〈1| ⊗
�∑

j=1

| j〉〈 j| ⊗ I ⊗ e−iσy arccos(z̃ j�/z̃)

+ |1〉〈1| ⊗
m∑

j=�+1

| j〉〈 j| ⊗ I ⊗ I, (F3)

to obtain the state

1√
2�

|0〉
k∑

j=1

| j〉|s j〉
⎛
⎝ z̃ jk

z̃
|0〉 +

√
1 − z̃2

jk

z̃2
|1〉
⎞
⎠

+ 1√
2�

|0〉
�∑

j=k+1

| j〉|s j〉|1〉

+ 1√
2�

|1〉
�∑

j=1

| j〉|s j〉
⎛
⎝ z̃ j�

z̃
|0〉 +

√
1 − z̃2

j�

z̃2
|1〉
⎞
⎠.

The unitary (F3) could be performed by using O(�) quan-
tum operations due to the O(�) sparsity. Finally, we employ
Hadamard operations on the last log � qubits in the second
register, to obtain the state

1√
2�z̃

|0〉
k∑

j=1

|0〉z̃ jk|s j〉|0〉 + 1√
2�z̃

|1〉
�∑

j=1

z̃ j�|0〉|s j〉|0〉

+ orthogonal garbage state

= 1√
2�z̃

(‖t̃k‖|0〉|0〉|t̃k〉|0〉 + ‖t̃�‖|1〉|0〉|t̃�〉|0〉)

+ orthogonal garbage state,

The measurement on the second and fourth registers of the
final state could yield state in (F2) with probability

‖t̃�‖2 + ‖t̃k‖2

2�2z̃2
,

so we could prepare this state with

O

(
�z̃√

‖t̃�‖2 + ‖t̃k‖2

)

queries to UA by using the amplitude amplification method
[67]. By using Eq. (C13), the complexity is further upper
bounded as O(rσ−1/2

min (Cr )).

Now we analyze the distance between the state
1√
2
(|0〉|tk〉 + |1〉|t�〉) and the state in (F2) as follows:∥∥∥∥‖t̃k‖|0〉|t̃k〉 + ‖t̃�‖|1〉|t̃�〉√

‖t̃�‖2 + ‖t̃k‖2
− |0〉|tk〉 + |1〉|t�〉√

2

∥∥∥∥
�
∥∥∥∥ t̃k√

‖t̃�‖2 + ‖t̃k‖2
− tk√

2

∥∥∥∥+
∥∥∥∥ t̃�√

‖t̃�‖2 + ‖t̃k‖2
− t�√

2

∥∥∥∥
(F4)

�
∥∥∥∥ t̃k√

‖t̃�‖2 + ‖t̃k‖2
− t̃k√

2

∥∥∥∥+
∥∥∥∥ t̃k − tk√

2

∥∥∥∥
+
∥∥∥∥ t̃�√

‖t̃�‖2 + ‖t̃k‖2
− t̃�√

2

∥∥∥∥+
∥∥∥∥ t̃� − t�√

2

∥∥∥∥ (F5)

�

⎡
⎣(1 + ε

4

)∣∣∣∣∣∣
1√

2
(
1 − ε

4

)2
− 1√

2

∣∣∣∣∣∣+
ε

4
√

2

⎤
⎦× 2 (F6)

� ε,

where Eq. (F6) is derived by using

1 − ε

4
� ‖t i‖ − ‖t i − t̃ i‖ � ‖t̃ i‖ � ‖t i‖ + ‖t i − t̃ i‖

� 1 + ε

4
,

for i = k/�. �
Now we begin the proof of Theorem 4 that provides the

error analysis of Algorithm II for reading out the state |v〉.
Proof. We first study the error in the readout procedure

and then provide the time analysis. Specifically, notice that the
state 1√

2
(|0〉|tk〉 + |1〉|t i〉) generated by Lemma 7 is perturbed

due to the noisy coefficients zk and zi. Thus, the readout error
consists of two parts: the error on generating 1√

2
(|0〉|tk〉 +

|1〉|t i〉) and the error induced by the statistical noise during
the measurement in the Fig 2.

First, we analyze the measurement distribution of Fig. 2
which uses the perturbed input state 1√

2
(|0〉|tk〉 + |1〉|t i〉). De-

note z̃ j and t̃ j as the perturbed form of z j and t j , respectively,
∀ j ∈ [r]. In this proof, we assume the �2 norm on the error of
each t j is bounded by ε3 = 1

14r3/2 ε. The final state in Fig. 2 is

1
4 |0〉[ fk|v〉|t̃k〉 + fi|v〉|t̃ i〉 + fk|t̃k〉|v〉 + fi|t̃ i〉|v〉]|0〉

+ 1
4 |0〉[ fk|v〉|t̃k〉 − fi|v〉|t̃ i〉 + fk|t̃k〉|v〉 − fi|t̃ i〉|v〉]|1〉

+ 1
4 |1〉[ fk|v〉|t̃k〉 + fi|v〉|t̃ i〉 − fk|t̃k〉|v〉 − fi|t̃ i〉|v〉]|0〉

+ 1
4 |1〉[ fk|v〉|t̃k〉 − fi|v〉|t̃ i〉 − fk|t̃k〉|v〉 + fi|t̃ i〉|v〉]|1〉,

where we denote

fk =
√

2‖t̃k‖2

‖t̃k‖2 + ‖t̃ i‖2
, fi =

√
2‖t̃ i‖2

‖t̃k‖2 + ‖t̃ i‖2
.

Measuring the first and the last registers could result in out-
comes 00 and 11 with probability:

P̃00 = 1 + fi fk〈t̃ i|v〉〈v|t̃k〉
4

+ f 2
k |〈v|t̃k〉|2 + f 2

i |〈v|t̃ i〉|2 + 2 fi fk〈t̃k|t̃ i〉
8

,
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P̃11 = 1 + fi fk〈t̃ i|v〉〈v|t̃k〉
4

− f 2
k |〈v|t̃k〉|2 + f 2

i |〈v|t̃ i〉|2 + 2 fi fk〈t̃k|t̃ i〉
8

.

Thus, the perturbed statistics of outcomes 00 and 11 is

P̃same = P̃00 + P̃11 = 1 + fi fk〈t̃ i|v〉〈v|t̃k〉
2

= 1 + ãiãk

2
, (F7)

where we denote ãi = fi〈t̃ i|v〉.
Next, we analyze the error induced by the statistical noise.

Notice that each ãiãk in Eq. (F7) is estimated via the swap
test. We assume the statistical error of each value in {ãiãk}r

i=1

is bounded by ε2 = 1
14r3/2 ε, and denote ˜(ãiãk ) as the approxi-

mated value of ãiãk . Then, in parallel to the exact form

v =
r∑

i=1

ait i, (F8)

we use the expression

ṽ =
r∑

i=1

˜̃ait̃ i (F9)

as the perturbed description of the vector v, where

˜̃ai =
˜(ãiãk )√∑r
i=1

˜(ãiãk )
2
, ∀i ∈ [r]. (F10)

Thus, the �2 norm of the error on the vector description of
the readout state could be bounded as follows:

‖ṽ − v‖ =
∥∥∥∥

r∑
i=1

( ˜̃ait̃ i − ait i )

∥∥∥∥ (F11)

�
∥∥∥∥

r∑
i=1

˜̃ai(t̃ i − t i )

∥∥∥∥+
∥∥∥∥

r∑
i=1

( ˜̃ai − ãi )t i

∥∥∥∥
+
∥∥∥∥

r∑
i=1

(ãi − ai )t i

∥∥∥∥ (F12)

�
r∑

i=1

| ˜̃ai|ε3 +
√√√√ r∑

i=1

( ˜̃ai − ãi )2 +
√√√√ r∑

i=1

(ãi − ai )2 (F13)

�
√

rε3 +
√√√√ r∑

i=1

( ˜̃ai − ãi )2 +
√√√√ r∑

i=1

(ãi − ai )2 (F14)

� ε

14
+ 4ε

7
+ 2ε

7
� ε, (F15)

where Eq. (F11) is obtained by using Eqs. (F8) and (F9).
Equation (F12) follows from the triangular inequality. Equa-
tion (F13) holds due to ‖t̃ i − t i‖ � ε3 and tT

i t j = δi j . Equation
(F14) is derived by using the definition in Eq. (F10) and

∑r
i=1 | ˜̃ai|

r
�

√∑r
i=1 | ˜̃ai|2

r
= 1√

r
.

Since the term ε3 = 1
14r3/2 ε is provided, we notice that

Eq. (F15) holds if the following statements is true for any
i ∈ [r]:

|ãi − ai| � 2ε

7r1/2
, (F16)

| ˜̃ai − ãi| � 4ε

7r1/2
. (F17)

So we just need to bound terms |ãi − ai| and | ˜̃ai − ãi| for
deriving the upper bound on ‖ṽ − v‖, which can be obtained
in Eqs. (F18)–(F23) and Eqs. (F24)–(F30), respectively, as
follows:

|ãi − ai| = | fi〈t̃ i|v〉 − 〈t i|v〉| (F18)

�
∥∥∥∥∥
√

2

‖t̃k‖2 + ‖t̃ i‖2
t̃ i − t i

∥∥∥∥∥ · ‖v‖ (F19)

�
∥∥∥∥∥
√

2

‖t̃k‖2 + ‖t̃ i‖2
(t̃ i − t i )

∥∥∥∥∥
+
∥∥∥∥∥
√

2

‖t̃k‖2 + ‖t̃ i‖2
t i − t i

∥∥∥∥∥ (F20)

�
√

2

‖t̃k‖2 + ‖t̃ i‖2
ε3 +

∣∣∣∣∣
√

2

‖t̃k‖2 + ‖t̃ i‖2
− 1

∣∣∣∣∣ (F21)

�
√

2

2(1 − ε3)2
ε3 +

∣∣∣∣∣
√

2

2(1 − ε3)2
− 1

∣∣∣∣∣ (F22)

= 2ε3

1 − ε3
� 2ε

13r3/2
� 2ε

7r1/2
. (F23)

Equation (F18) follows from the definitions

ãi = fi〈t̃ i|v〉, ai = 〈t i|v〉.
Equation (F19) is obtained by using the definition fi =√

2‖t̃ i‖2

‖t̃k‖2+‖t̃ i‖2 . Equation (F20) follows from the triangular in-
equality and ‖v‖ = 1. Equations (F21) and (F22) are derived
by using ‖t i‖ = 1 and ‖t̃k/i − tk/i‖ � ε3. Equation (F23) is
obtained by the assumption ε3 = ε

14r3/2 .
On the other hand, the term ˜̃ai is bounded around ãi as

follows:

| ˜̃ai − ãi| =
∣∣∣∣∣∣

˜(ãiãk )√∑r
i=1

˜(ãiãk )
2

− ãi

∣∣∣∣∣∣ (F24)

�
∣∣∣∣ |ãiãk| + ε2

|ãk|‖ã‖ − √
rε2

− |ãi|
∣∣∣∣ (F25)

= |ãi||ãk|(1 − ‖ã‖) + (
√

r + |ãi|)ε2

|ãk|‖ã‖ − √
rε2

(F26)

�
√

r 2ε3
1−ε3

+ (√
r + 1+ε3

1−ε3

)
ε2(

1√
r
− 2ε3

1−ε3

)(
1 − √

r 2ε3
1−ε3

)− √
rε2

(F27)

� (2rε3 + 2rε2)(1 − ε3)

(1 − ε3 − 2
√

rε3)2 − rε2(1 − ε3)2
(F28)
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� 2rε3 + 2rε2

1 − 6rε3 − rε2
(F29)

= 4ε

7r1/2
. (F30)

Equation (F24) follows from the definition in Eq. (F10).

Equation (F25) is derived by using |˜(ãiãk ) − ãiãk| � ε2.
Equation (F27) is derived by using |ãiãk| � 1 [Eq. (F7)]
and

|ãi| � |ai| + 2ε3

1 − ε3
� 1 + ε3

1 − ε3
,

|ãk| � |ak| − 2ε3

1 − ε3
� 1√

r
− 2ε3

1 − ε3
,

‖ã‖ � ‖a‖ − ‖ã − a‖ � 1 − √
r

2ε3

1 − ε3
.

Equation (F28) is derived by multiplying
√

r(1 − ε3)2 on both
the numerator and the denominator, and noticing that

rε2(1 − ε3)2 + √
rε2
(
1 − ε2

3

)
� 2rε2(1 − ε3).

Equation (F29) is obtained since

(1 − ε3) � 1, (1 − ε3 − 2
√

rε3)2 � 1 − 6rε3.

We further derive Eq. (F30) by inserting

ε2 = ε3 = 1

14r3/2
ε.

Finally, we analyze the time complexity of the protocol.
Notice that the error ‖t̃ i − t i‖ � ε3 could be achieved for all
i ∈ [r] by using

r2 · O
(
r5σ−4

min(C)ε−2
3

) = O
(
r10σ−4

min(C)ε−2
)

queries to input oracles due to Lemma 2. Besides, the error
ε2 induced as the statistical noise during the measurement in
Fig. 2 could be achieved by using ε−2

2 = O(r3ε−2) copies of
states |v〉 and 1√

2
(|0〉|tk〉 + |1〉|t i〉) for i ∈ [r], where the latter

state could be prepared by using O(rσ−1/2
min (Cr )) queries to

input oracles. By summing for each i ∈ [r], we need O(r4ε−2)
copies of the state |v〉 and O(r5σ

−1/2
min (C)ε−2) queries to input

oracles in the measurement stage. By counting the required
resources in two stages, we have proved Theorem 4. �
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