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Synchronization in disordered oscillator lattices: Nonequilibrium phase transition for
driven-dissipative bosons
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We show that lattices of phase oscillators with random natural frequencies undergo a transition from a
desynchronized to a synchronized state for dimensions d < 4. The oscillators are described by a generalization
of the nearest-neighbor Kuramoto model with an additional cosine coupling term. This model may be derived
from the complex Ginzburg-Landau equations for a lattice of driven-dissipative Bose-Einstein condensates of
exciton polaritons. We derive phase diagrams that classify the desynchronized and synchronized states, focusing
on the behavior in one and two dimensions. This is achieved by outlining the connection of the oscillator model
to the quantum description of localization of a particle in a random potential through a mapping to a modified
Kardar-Parisi-Zhang equation. Our results indicate that synchronization in coupled polariton condensates and
other examples of low-dimensional lattices of coupled oscillators is not destroyed by randomness in their natural
frequencies.
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I. INTRODUCTION

Synchronization of coupled oscillators is a phenomenon
that appears regularly throughout nature. Many seemingly
unrelated systems which exhibit repetitive behaviors, such as
clocks, pacemaker cells in the heart, or a swarm of pulsing
fireflies, are seen to undergo transitions from initial random-
ness to an ordered state [1,2]. A celebrated model of such
synchronization phenomena was introduced by Kuramoto
[3,4]. With all-to-all couplings, the Kuramoto model under-
goes a phase transition, from a desynchronized state at weak
coupling to a synchronized state, with a single frequency, at
strong coupling. However, this global frequency ordering does
not occur for oscillators coupled only to their neighbors on a
finite-dimensional lattice [5–7].

Synchronization plays an important role in the physics of
Bose-Einstein condensation in driven-dissipative Bose gases.
Such condensation has been realized for exciton polari-
tons [8], which are bosonic quasiparticles formed from the
strong coupling of excitons and photons in semiconductor
microcavities. The condensates are described by a single
macroscopic wave function [9], giving rise to phenomena such
as superfluidity, Josephson oscillations [10], and quantized
vortices and enabling applications such as analog simula-
tion [11,12]. In these systems, the decay of the polaritons
is offset by gain from the pump, and condensation occurs
in a nonequilibrium steady state. Above threshold, the non-
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linear gain fixes the density of the condensate, forming an
autonomous phase oscillator whose frequency corresponds
to the energy of the condensate. Spatially separated con-
densates can form in the random potentials arising from
disorder in the samples [13] and in engineered potentials
such as lattices [11,14]. If the condensates are well sepa-
rated, they oscillate independently, but their mutual coupling
can lead them to synchronize to a common frequency and
phase [15]. Such effects have been observed for polaritons
trapped in double-well potentials [10,15], in the intrinsic ran-
dom potential of the samples [13,16], and in the wells of
a weakly disordered two-dimensional (2D) lattice [14]. We
note that localized condensates are not necessarily trapped in
potential wells: nonuniform pumping can also produce con-
densates at the peaks of the potential, which can synchronize
with one another [11,17]. Such condensates are propagating
states and so can have a significant dissipative part to their
coupling [18,19].

In this paper, we study the ordered states of driven-
dissipative bosons that are trapped in the wells of a disordered
lattice potential. We focus on the 2D case, as realized in
a recent experiment [14]. We seek to understand the phase
diagram and phase transitions beyond the equilibrium case
in which there is a superfluid-insulator transition [20]. The
nonequilibrium problem is described by a lattice of coupled
oscillators, with disordered frequencies, suggesting that there
may be a frequency-ordering transition or a frequency- and
phase-ordering one. Ordered states are, however, not expected
for Kuramoto oscillators with random frequencies in 2D
[5–7]. This is consistent with previous predictions [21] that
there is no superfluid-insulator transition in driven-dissipative
condensates.

We investigate synchronization in a lattice of driven-
dissipative condensates with random natural frequencies.
Such a lattice is described by a generalization of the
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nearest-neighbor Kuramoto model that includes an additional
coupling term that is even in the relative phases. Such models
have previously been considered [22,23] in the case where the
natural frequencies are identical and frequency synchroniza-
tion is expected, but the phases may become disordered due
to the space- and time-dependent noise associated with gain
and loss [24–27]. We consider the opposite limit of random
natural frequencies but negligible time-dependent noise. We
find that the non-Kuramoto coupling has a significant effect: it
allows synchronization to occur in large lattices, formed from
macroscopic numbers of oscillators, for dimensions d < 4.
The resulting state has a single frequency and phase corre-
lations which extend over the entire lattice.

Our argument involves relating the oscillator model
to a Kardar-Parisi-Zhang (KPZ) equation [28] with time-
independent noise [29–33] and then to an imaginary-time
Schrödinger equation with a random potential. This allows
us to derive the phase boundary for synchronization and
characterize the frequency and phase profiles. These ana-
lytical predictions agree with numerical simulations in one
(1D) and 2D. Our results show that, contrary to the case of
Kuramoto oscillators, there is global frequency synchroniza-
tion in large lattices of driven-dissipative condensates and
that there is a region of parameters where this long-range
coherence is robust against (static) disorder. Our conclusions
apply more generally to coupled oscillator systems, implying
there are other settings [1] in which this synchronization could
occur.

II. DYNAMICS OF NONEQUILIBRIUM CONDENSATES

Under the requisite conditions [34], a polariton condensate
may be described by a driven-dissipative Gross-Pitaevskii
equation [35]:

i
∂�

∂t
=

[
− 1

2m
∇2 + V0(r)

]
� + U0|�|2�

+ i[g0(r) − �0|�|2]�, (1)

where U0 is the polariton-polariton interaction strength, while
g0(r) and �0 account for the linear gain—resulting from the
difference of pumping and decay—and the gain saturation.
Here, V0(r) is a confining potential, which can arise from the
repulsive interaction with the exciton reservoir, etching, depo-
sition, and the intrinsic disorder in the sample [14,36]. Here
and in the remainder of this paper, we set h̄ = 1. Equation
(1) is also known as the complex Ginzburg-Landau equation
and is ubiquitous in descriptions of oscillatory media and
nonlinear dynamical systems [37].

We consider a lattice of N = Ld condensates, each of
which forms in the ground state of one well of a lattice poten-
tial. We consider, for definiteness, a simple 1D chain and a 2D
square lattice, as realized in a recent experiment [14]. In that
experiment, a spatially patterned pump beam populates the
exciton reservoir, forming the confining lattice potential. This
potential is superimposed on the random potential due to dis-
order in the sample, leading to small variations in the energy
from site to site.

We model this by expanding the macroscopic wave func-
tion over the basis set of wave functions localized in individual

wells [38]. Assuming that the overlap between neighboring
wave functions is small, so that direct overlap terms can be
neglected, results in N coupled equations for the amplitudes
of each site ψk:

i
∂ψk

∂t
= [εk + U |ψk|2 + i(g − �|ψk|2)]ψk −

∑
<l>

Jklψl . (2)

Here, εk is the energy of the condensate on a given lattice site,
U , g, and � are the interaction strength and gain coefficients,
and the sum is over nearest neighbors. Also, Jkl is the matrix
element describing tunneling between neighboring sites. It
can, in general, have imaginary parts, describing dissipative
couplings between condensates [18]. However, this is not
the case here, as we are considering condensation in bound
states, whose real-valued wave functions are assumed to have
negligible direct overlap. Further details of the derivation of
Eq. (2) can be found in Appendix A.

Since the pumping, which produces the largest contribution
to the potential and controls the gain on each site, has the
periodicity of the lattice, the quantities Jkl ≈ J , U, g, and
� vary little from site to site, and we treat them as constant.
The site energies εk , however, vary randomly from site to
site due to the random contribution to the potential from the
sample. We use the standard deviation σ of the energies εk to
characterize the strength of the disorder.

III. COUPLED OSCILLATOR MODEL

To examine synchronization in this system, we reparam-
eterize our equations in terms of density and phase with
the substitution ψk = √

nk exp (−iθk ). Well above threshold,
the density variation between condensates is small, δnkl =
nk − nl � nk . Furthermore, the fast relaxation of the densities
allows for their adiabatic elimination. This gives

∂θk

∂t
= εk + g

α
+ J

∑
<l>

[
1

α
sin(θl − θk ) − cos(θl − θk )

]
.

(3)

Further details of this derivation can be found in Appendix B.
We have introduced the dimensionless parameter α ≡ �/U .
The overall blueshift g/α can be removed by a redefinition
of the zero of frequency. We can choose 1/σ as our unit of
time, so that the solutions to Eq. (3) are controlled by two
dimensionless parameters α and J/σ .

Equation (3) is an equation for the phase dynamics in a
system of coupled self-sustained oscillators. If we neglect the
cosine term in the sum, it is the nearest-neighbor Kuramoto
model [5]. In general, we expect that the existence of a glob-
ally synchronized solution—whereby the oscillators rotate at
a common frequency, θ̇1 = θ̇2 = · · · = θ̇N = �—will be de-
pendent on the magnitudes of the tunneling and the spread
of onsite energies. If there is no tunneling (J = 0), each os-
cillator will rotate at its blueshifted natural frequency. When
J is large relative to the spread of the natural frequencies,
however, the frequency of each oscillator is strongly affected
by the phase difference between it and its neighbors, and this
mechanism can bring about synchronization. Despite this, it
has been shown that extended lattices of Kuramoto oscillators,
with random onsite energies and nearest-neighbor couplings,
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FIG. 1. Probability of synchronization of chains of condensates
of varying lengths, determined by solving Eq. (3) with α = 1. Each
probability is estimated from 100 disorder realizations, each simu-
lated up to a time tσ = 1.8 × 104. The curves are fits to the Gumbel
distribution.

do not exhibit synchronization [5–7]. In 1D, the probability of
synchronization can be calculated as a function of N , and a
coupling strength of order

√
N is required for a synchronized

solution [6].
The presence of the cosine term in the coupling function

of our model has a significant effect, however. Unlike the
Kuramoto model, our coupling is nonodd in its arguments,
and it has been suggested that this may bring about syn-
chronization more readily [5,39,40]. Numerical simulations of
Eq. (3) illustrate that this is indeed the case. Figure 1 shows
the probability of synchronization for chains of condensates
of various lengths with normally distributed onsite energies.
This probability is determined by calculating the average fre-
quency of each oscillator from its phases at two times, one
a short time after the initial transient behavior has decayed
and the other a long time later. If each bond between neigh-
boring sites has a frequency difference less than the smallest
numerically resolvable frequency, the configuration is consid-
ered synchronized. Here, Psync(J ) is then estimated from the
fraction of synchronized results arising over many disorder
realizations. We see that the probability of synchronization
varies from almost zero to almost one over a range of J . The
width of this range is nonzero because different realizations
synchronize at slightly different tunneling strengths. More
importantly, the position of the center of this range, which we
use to define a typical critical tunneling strength Jc such that
Psync(Jc) = 0.5, is almost independent of the system size. This
strongly suggests that there is a synchronization transition in
the limit of thermodynamically large systems. This would be
a nonequilibrium phase transition, at which the steady state
of a system in the thermodynamic limit changes character,
giving rise to singularities in its properties. Such behavior is
markedly different from that of Kuramoto oscillators, where
Jc scales with

√
N , so that synchronization occurs only in

small systems.

IV. CONTINUUM THEORY

To understand the synchronization transition and the nature
of the synchronized states, we consider the continuum form

of Eq. (3) in the limit where the phase differences between
neighboring sites are small. This will be the case in a synchro-
nized state for weak disorder. Expanding the trigonometric
functions to second order and taking the continuum limit,
we have

∂θ (x, t )

∂t
= ε(x) + Ja2

α
∇2θ + Ja2(∇θ )2, (4)

where a is the lattice constant, which will be set to one in the
following. A uniform energy shift g/α − 2Jd has been ab-
sorbed in the definition of θ (x, t ), d being the dimensionality
of the system. Equation (4) is like the KPZ equation but has a
time-independent noise term [28,32]. The connection between
the complex Ginzburg-Landau equation and the conventional
KPZ equation, with spatiotemporal noise, has been made in
previous studies of polariton condensation [24–27], and in-
deed lattice models similar to Eq. (3) have also been studied
[22,23,41]. Those works consider noise associated with gain
and loss rather than that due to a random potential. The form
of the noise in Eq. (4) results from our consideration of purely
spatial disorder and leads to different universal behavior. The
phase θ (x, t ) behaves like the height of an interface, with a
growth rate ε(x) which is random in space but not in time.

A Cole-Hopf transformation:

Z (x, t ) = exp (αθ ), (5)

enables us to write the KPZ equation as

∂Z (x, t )

∂t
= J

α
∇2Z + αε(x)Z = −ĤZ. (6)

This is the imaginary-time Schrödinger equation for a particle
of mass α/2J in a random potential V (x) = −αε(x). In this
form, it also describes the evolution of a population with dif-
fusion and random autocatalytic amplification [29,30] and the
partition function for a directed polymer in a random potential
[31,33]. The general solution of Eq. (6) can be expressed in
terms of the eigenstates of Ĥ , ϕn(x), with energies En:

Z (x, t ) =
∑

n

cnϕn(x)e−Ent , (7)

which approaches the ground state wave function of the po-
tential V (x) for t → ∞. For long but finite times, Z (x, t )
will have contributions from a small number of low-energy
states. In dimensions d < 4, these low-lying states will be
localized ϕn ∼ exp(−|x − xn|/ζ ) at some dilute positions xn,
with the localization length ζ given by balancing the kinetic
and potential terms in Eq. (6): D/ζ 2 ∼ uL/ζ d/2 [30]. Here,
D = J/α, and uL = ασ , so we have

ζ ∼
( D

uL

)2/(4−d )

=
( J

α2σ

)2/(4−d )

. (8)

In Figs. 2 and 3, we show some phase and frequency
profiles obtained by solving the coupled oscillator model,
Eq. (3). These solutions agree qualitatively with those of
the continuum model, given by Eqs. (5) and (7). At short
times, multiple peaks are evident in the phase profile, each
of which corresponds to a localized, low-energy state of the
Hamiltonian Ĥ . The corresponding energies appear as
plateaus in the frequency profile. The low-lying states have
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FIG. 2. Phase (left column) and frequency (right column) pro-
files in a chain of 800 coupled oscillators, with J/σ = 3.33 and
α = 1. The oscillators initially have a uniform phase. The profiles
are shown after times tσ = 100 (top row), 600 (middle row), and
24 000 (bottom row).

negative energies, and so they grow in magnitude, correspond-
ing to a steadily increasing phase in the region controlled by
each localization center. The ground state, with the lowest
energy, grows fastest, and eventually dominates the solution,
giving a solution with a single peak in the phase profile and
a single frequency (corresponding to the ground state energy
of Ĥ ).

V. PHASE DIAGRAM

The solutions to the continuum model always synchronize,
given sufficient time, but this is not the case for the original
model. To investigate the conditions for synchronization, we

FIG. 3. Phase (left column) and frequency (right column) pro-
files in a two-dimensional lattice of 512 × 512 coupled oscillators,
with J/σ = 3.33 and α = 1. The oscillators initially have a uniform
phase. The profiles are shown after times tσ = 50 (top row), 300
(middle row), and 1700 (bottom row).

FIG. 4. Phase boundary for synchronization for (a) a one-
dimensional (1D) chain of 800 oscillators, and (b) a two-dimensional
(2D) square lattice of 128 × 128 oscillators. Jc is defined as the
value of J corresponding to a probability of synchronization of
0.5. The points are numerical values, computed as discussed in the
text. The solid lines show fits to the predicted slopes of (a) 0.5 or
(b) 1. The dashed line in (a) is the phase boundary for synchroniza-
tion for a chain of 800 Kuramoto oscillators.

consider the phase gradients. Since the solutions to Eq. (6) are
formed from exponentially localized states with localization
length ζ , we have, from Eqs. (5) and (8),

|∇θ | ∼ 1

αζ
∼

[
αd

(σ

J

)2]1/(4−d )

. (9)

The continuum model does not impose a limit on these gra-
dients. However, it only captures the behavior of the original
model when |∇θ | � 1. Otherwise, the periodicity and limited
range of the trigonometric functions are important, and we
cannot expand them in a power series. This argument gives

Jc ∼ σαd/2, (10)

as the phase boundary for synchronization. This condition is
relevant for d < 4, as localized solutions to Eq. (6) are not
guaranteed otherwise.

The dependence of Jc on α given by Eq. (10) is confirmed
by simulations for lattices in 1D and 2D, as shown in Fig. 4.
We simulate Eq. (3) to obtain Psync(J ), fit the resulting func-
tions to a Gumbel extreme-value distribution, and use the
fitted parameters to find Jc. We note that this distribution
is expected from the analysis above because the probability
that a given sample is synchronized is the probability that
Ĥ has a ground-state localization length greater than a certain
value or, equivalently, that the magnitude of its ground-state
energy is less than a certain value. Since the ground-state
energy is an extreme value—the lowest energy among the
states—this quantity is the cumulative distribution function
for an extreme-value distribution, and since the density of
states in a band tail vanishes exponentially, it should be the
Gumbel one. As can be seen in Fig. 1, this does indeed give a
good description of our results.

The points in Fig. 4 show the values of Jc determined
from simulations. The solid curves show the predicted square-
root (1D) and linear (2D) dependencies, which are in good
agreement with the data. On the 1D phase diagram, we also
show the prediction of the conventional Kuramoto model for a
chain of N = 800 sites, for which Jc ∼ σα

√
N [6]. While the
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critical coupling in that case, without the cosine term, diverges
for large N , for a small system, it can nonetheless lie below
Eq. (10) at small α. This explains the crossover seen at small
α in Fig. 4(a). This is the standard finite-sized behavior if the
cosine term is relevant in the renormalization group sense:
such terms, even if they are small at the lattice scale, grow with
distance and control the physics in sufficiently large systems.
In small systems, however, the growth can be cut off by the
system size.

Although our numerical results agree with Eq. (10) for
α � 1, they disagree in the opposite regime, where we find
large sample-to-sample fluctuations and many states which
are desynchronized even at large J . This may be related to
dynamical instabilities in that regime [22,23]. In any case,
Eq. (8) holds only in the weak disorder regime where the lo-
calization length ζ is larger than the lattice spacing a = 1, and
the localization length at the transition is, from Eqs. (8) and
(10), ζc ∼ 1/α. More generally, ζc > 1 is needed so that space
can be treated as continuous, as in Eq. (4), at the phase bound-
ary. Importantly, the existence of a synchronization transition
in the continuum regime implies the phenomenon is universal
and independent of the details of the lattice or disorder. We
note that a synchronization transition for 1D chains of oscil-
lators with nonodd nearest-neighbor coupling was previously
identified by Östborn [40]. That analysis, however, predicts a
critical Jc which differs from Eq. (10) and does not agree well
with our numerical results.

VI. DISCUSSION

Our expression for the ground-state localization length,
Eq. (8), comes from a standard argument [30] equating the
kinetic energy and the depth of a typical potential well
uL/ζ d/2. In principle, one should use not the depth of a typical
well but that of the deepest of all the ∼(L/ζ )d wells of size
∼ζ . For a normal distribution of well depths, these differ by
a factor

√
d ln L/ζ , which seems to lead to the surprising

conclusion that the localization length vanishes in the ther-
modynamic limit. This would mean, in our analysis, that Jc

diverges in this limit, and there is ultimately no synchroniza-
tion. However, one should bear in mind that physical systems
are never infinite, although they may be very large. As was
pointed out in the careful analysis of Ref. [30], this factor
grows extremely slowly with N = Ld , and it is not large,
even in a macroscopic system. For example, for (L/ζ )d =
NA ∼ 1023, we have

√
d ln L/ζ ∼ 7. Thus, it does not prevent

synchronization in the limit of a large physical system. One
should bear in mind also that this formal divergence arises
from the assumption of an unbounded distribution of well
depths, which does not occur in practice.

It is interesting to compare our analysis and results
with those for the nearest-neighbor Kuramoto model, for
which complete synchronization can be ruled out on the
grounds of self-consistency when d � 2 [5]. The argument
involves expanding the trigonometric functions in an assumed
synchronized solution, as we did to obtain Eq. (4). However,
as Kuramoto oscillators have an odd (sine) coupling function,
the nonlinear term in Eq. (4) would be absent. This means
that the continuum theory for Kuramoto oscillators is a linear
interface-growth model related to the Edwards-Wilkinson

equation [7] rather than a nonlinear one related to the KPZ
equation. The phase-phase correlation functions in the linear
case diverge with the lattice size, for any fixed separation,
when d � 2. This divergence is not consistent with the
expansion of the trigonometric functions, so the assumed
synchronized state does not occur.

Physical insight into the difference between the models
can be obtained by considering the behavior of the phase
gradients. For Kuramoto oscillators, the phase gradients in
a synchronized solution can be obtained using an Imry-Ma
[42] argument, like that previously outlined for the disordered
polariton condensate in Ref. [21]. We consider Eq. (4),
without the final term, and integrate over a region of space of
linear dimension L. The first term on the right-hand side is a
random walk, which scales with the size of the region as Ld/2.
It is related, in the polariton case, to the net random current
generated in the region. This must balance the second term,
which is related by the divergence theorem to the current
flowing through the boundary. We see this second term is, at
most, of order |∇θ |Ld−1. Comparing the two terms, we have
that the phase gradients at the boundary of the region scale
at least as fast as |∇θ | ∼ L(2−d )/2. This implies they diverge
for d = 1 and is consistent with a logarithmic divergence in
d = 2 [5]. It contrasts with the result for the phase gradients
in the model with the cosine coupling, Eq. (9), which are
independent of the size of the region considered. Thus, in that
case, there can be solutions with |∇θ | � 1 everywhere, and
the synchronized state is self-consistent.

We note that these self-consistency arguments do not
rule out complete synchronization for lattices of Kuramoto
oscillators in three or more dimensions. However, Strogatz
and Mirollo have shown that this does not occur in any finite
dimension [6]. They also do not rule out the possibility of
partially synchronized states, where a macroscopic number
of oscillators entrain to a single frequency. Numerical studies
suggest that this does occur for Kuramoto oscillators but only
in three or more dimensions [7].

VII. CONCLUSIONS

We have shown that a model for coupled phase oscillators,
which describes a disordered lattice of polariton condensates,
has a synchronized state that survives in the limit of a macro-
scopic number of oscillators. At the critical coupling strength,
given by Eq. (10), tunneling between condensates overcomes
the localizing effects of the random potential, leading to a
state with a single frequency and a stable phase profile. The
existence of a synchronized state in a large lattice may be
important for applications of polariton condensation in areas
such as analog simulation.

The synchronized state we find is not expected for
Kuramoto oscillators on a finite-dimensional lattice [5–7]. It
arises from the nonodd coupling between the phases, which
gives a relevant nonlinear term in the continuum limit. That
same form will appear for any system of coupled oscillators
θ̇k = ωk + K

∑
<l> f (θl − θk ), in which the coupling function

f (x) is neither purely even nor odd. That will generally be
the case, so that our work implies that other coupled oscilla-
tor systems can support synchronized states, notwithstanding
disorder in their frequencies.
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APPENDIX A: DERIVATION OF LATTICE MODEL

We obtain the lattice model, Eq. (2), from the driven-
dissipative Gross-Pitaevskii equation, Eq. (1), by expressing
the wave function as a superposition of wave functions corre-
sponding to the ground state of each well:

�(r, t ) =
N∑
k

ψk (t )φk (r), (A1)

where the φk (r) are normalized. We substitute Eq. (A1) into
the Gross-Pitaevskii equation, multiply on the left by φ∗

l (r),
and integrate over the sample. The wave functions φk are
localized on each site. Thus, terms involving the direct over-
lap of wave functions on different sites are exponentially
small when the separation of wells is large compared with
the size of the φk . We make the standard simplification of
neglecting them [43]. This leads to Eq. (2). The energies in
the lattice model εk are those for the single well. The full
tunneling term, corresponding to the linear parts of Eq. (1),
is Jkl = − ∫

φ∗
k (r)[−(1/2m)∇2 + V0(r) + ig0(r)]φl (r)dr. In

our model, we neglect the last imaginary part, consistent with
dropping other small terms which involve the direct overlap
of wave functions on different sites, so that Jkl is real. We
also retain the tunneling Jkl only for nearest-neighbor sites
since it decays rapidly with distance. The linear gain on each
site is gk = ∫ |φk (r)|2g0(r)dr, and the interaction is Uk =∫ |φk (r)|4U0dr, with a corresponding expression for �k .

As discussed in the main text, the potential we consider
consists of a large periodic component, which is the same for
each site, with the addition of a smaller random component,
which varies from site to site. Since the former is much larger
than the latter, the wave functions φk (r) will vary little from
site to site, and we treat them as identical. Given also that
the pump profile is the same for each site—g0(r) has the
periodicity of the lattice—then the parameters of the lattice
model gk,Uk, �k , and Jkl are the same for every site.

APPENDIX B: DERIVATION OF PHASE-ONLY MODEL

We obtain a phase-only model by expressing the wave
function on each site in terms of its density and phase.

Substituting this into the lattice version of the driven
Gross-Pitaesvkii equation, Eq. (2), and separating the real and
imaginary parts gives

ṅk

2nk
= g − �nk + J

∑
<l>

√
nl
nk

sin(θl − θk ), (B1)

θ̇k = εk + Unk − J
∑

<l>

√
nl
nk

cos(θl − θk ). (B2)

The first two terms of Eq. (B1) imply that, in the absence of
tunneling, the occupation of each site relaxes to the steady-
state value g/� with rate 2g. We consider the dynamics far
enough above threshold for this to be the fastest timescale,
allowing us to adiabatically eliminate the occupations by set-
ting ṅk = 0. We also suppose the condensates are pumped
sufficiently far above threshold for the variation in occupation
between sites to be relatively small δnkl = nl − nk � nk , so
that the square root factors can be replaced with one. Us-
ing these conditions to solve Eq. (B1) and substituting into
Eq. (B2) gives Eq. (3). A sufficient condition for the site-
to-site changes in occupations to be small can be obtained
by considering the first two terms on the right-hand side of
Eq. (B2), which balance when δn ∼ (σ/U ). This is an over-
estimate of the true δn because the final term, which is the
kinetic energy, spreads out the wave function. Thus, δn/n � 1
certainly holds when (σ/U )/(g/�) = σα/g � 1.

APPENDIX C: ESTIMATES OF EXPERIMENTAL
PARAMETERS

For the experiment reported in Ref. [14], the site-to-site
variation of the energy, at the scale of a single well, is given
as σ = 0.03 meV. We have estimated the tunneling J by
considering a pair of harmonic oscillator potentials, with min-
ima separated by a, each with oscillator length l = √

h̄/mω.
Taking l ≈ 3 μm and a ≈ 8 μm, where the synchronization
transition was observed, we find J ≈ 7 μeV, implying J/σ ≈
0.2. However, as the value of J depends exponentially on the
form of the potential, there is considerable uncertainty in this
estimate.

We could not reliably estimate α = �/U = �0/U0 from
the data reported in Ref. [14], but it can be estimated from
other experiments on condensation. Reference [35], using the
data from Ref. [8], gives an estimate of 0.3. We obtain a
similar value by relating the model in Ref. [44] and its pa-
rameters γ , ns = 25 000 and κ = 4 × 10−5γ to the present
Gross-Pitaevskii equation. Comparing the rate equations in
the two approaches gives � ≈ γ /(2ns), while the present
U ≈ 2κ , so that we obtain α ∼ 0.5.
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