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We develop and utilize the SU(3) truncated Wigner approximation (TWA) in order to analyze far-from-
equilibrium quantum dynamics of strongly interacting Bose gases in an optical lattice. Specifically, we explicitly
represent the corresponding Bose-Hubbard model at an arbitrary filling factor with restricted local Hilbert spaces
in terms of SU(3) matrices. Moreover, we introduce a discrete Wigner sampling technique for the SU(3) TWA
and examine its performance as well as that of the SU(3) TWA with the Gaussian approximation for the
continuous Wigner function. We directly compare outputs of these two approaches with exact computations
regarding dynamics of the Bose-Hubbard model at unit filling with a small size and that of a fully connected
spin-1 model with a large size. We show that both approaches can quantitatively capture quantum dynamics on
a timescale of 71/(Jz), where J and z denote the hopping energy and the coordination number. We apply the two
kinds of SU(3) TWA to dynamical spreading of a two-point correlation function of the Bose-Hubbard model on
a square lattice with a large system size, which has been measured in recent experiments. Noticeable deviations
between the theories and experiments indicate that proper inclusion of effects of the spatial inhomogeneity,

which is not straightforward in our formulation of the SU(3) TWA, may be necessary.

DOI: 10.1103/PhysRevResearch.3.043091

I. INTRODUCTION

Quantum simulators built with synthetic quantum plat-
forms that are highly controllable have been applied for study-
ing quantum many-body physics in and out of equilibrium.
Examples of such quantum simulators include ultracold gases
in optical lattices [1-5], Rydberg atoms in optical tweezer
arrays [6], trapped ions [7], and superconducting circuits
[8,9]. Of particular interest is far-from-equilibrium quantum
dynamics of isolated many-body systems described by the
tight-binding Hubbard-type models, which can be simulated
with ultracold gases in optical lattices. The quantitative ac-
curacy of such analog quantum simulators for nonequilibrium
lattice systems has been examined through direct comparisons
with outputs from exact computational methods for some
special cases, such as the exact diagonalization for small
systems [10] and the matrix-product-state (MPS) approaches
for one-dimensional (1D) systems [3,4]. With the high accu-
racy confirmed, results obtained from optical-lattice quantum
simulators have been exploited in order to test approximate
computational methods for quantum many-body dynamics
in higher dimensions. For instance, it has been shown in
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Ref. [5] that the nonequilibrium dynamical mean-field theory
can quantitatively capture dynamics of the three-dimensional
(3D) Hubbard model subjected to a periodic driving. More-
over, in Ref. [11], the Gross-Pitaevskii truncated-Wigner
approximation (GPTWA), which is a semiclassical phase-
space method on the basis of the GP mean-field theory
[12,13], has been directly compared with experimental data
regarding dynamics of the 3D Bose-Hubbard model in a
weakly interacting regime after a quantum quench. It has been
shown that the outputs of GPTWA with no free parameter
are in good agreement with experimental data for early-time
regions.

In recent years, some experimental works have explored
quantum quench dynamics of strongly interacting ultracold
gases in two-dimensional (2D) and 3D optical lattices [14,15].
In Ref. [15], an experimental group at Kyoto University has
studied sudden-quench dynamics of equal-time single-particle
correlation functions for a strongly interacting '"#Yb gas
loaded into a deep 2D lattice. In contrast to 1D systems,
it is generally hard to numerically simulate time evolution
of correlation functions in 2D and 3D even on a short
timescale. It has been found in Ref. [15] that the ordinary
GPTWA cannot fully capture characteristic properties of the
correlation propagation after sudden quenches, e.g., peak
and dip properties observed in the correlation signals and
saturated values of the correlation at relatively long times.
This can be attributed to the fact that in the strongly in-
teracting regime the adequate classical limit of the system
is not condensates of coherent bosons described by the GP
theory.
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In Ref. [16], Davidson and Polkovnikov have introduced
a promising phase-space approach for analyzing strongly in-
teracting Bose-Hubbard systems. This method is called the
SU@B3) TWA [hereafter SU(3)TWA]. For sufficiently large
local interactions, the Bose-Hubbard model reduces to an
effective pseudospin-1 model acting on a projected Hilbert
space [17,18]. In the SU(2)TWA method, which is typically
discussed and used in the context of experiments of large-
spin systems and arrays of trapped Rydberg atoms [19,20],
this effective model is treated as a Hamiltonian consisting
of the SU(2) spin operators for § =1 [13]. However, for
the SU(3)TWA, the model is translated into a Hamiltonian
consisting of SU(3) matrices, which gives an alternative
phase-space representation of the system with extra five di-
mensions in addition to the three dimensions of the SU(2)
phase space. Since the local interaction terms of the effective
model can be linearized in the SU(3) matrices, the local par-
ticle and hole fluctuations, which produce key effects on the
dynamical properties of the strongly interacting regime, are
accurately captured at the level of the semiclassical approxi-
mation [16]. The TWA method based on the GP trajectories
is not suitable to formulate those fluctuations in the strongly
interacting limit, just as the Bogoliubov approximation for
weakly interacting dilute Bose gases fails to describe the
quantum phase transitions to the Mott-insulator phases at low
temperatures [21]. We therefore expect that the SU(3)TWA
may simulate the dynamics in the strongly interacting regime
of the experiment [15], beyond the capability of the GPTWA,
and also the SU(2)TWA.

In their original work, the performance of the SU(3)TWA
was tested by applying it to a fully connected spin-1 model,
which has an all-to-all spin-exchange (or hopping) term and
can be numerically diagonalized even at a large size. However,
its quantitative accuracy in realistic cases, where the hopping
reaches only nearest neighbors and the system size is large,
has not been examined so far. Furthermore, an effective model
that they used to describe Bose-Hubbard systems is valid
only for high-filling cases. Therefore, their formulation is
not directly applicable to unit-filling Bose-Hubbard systems,
which are typically considered in the context of the quantum-
simulation studies. We note that a numerical calculation of
the SU(3)TWA for a unit-filling experimental setup has been
presented in Ref. [22]; however, its explicit formalism has not
been provided so far.

The goal of this paper is to examine the performance of
the SU(3)TWA in simulating quench dynamics of strongly
interacting Bose gases in a 2D optical lattice [15]. We extend
the previous formalism, which was applied to an effec-
tive pseudospin-1 model for the Bose-Hubbard model with
large filling factors and strong interactions [23,24], to the
unit-filling case [17,18] corresponding to the experimental
setup. As a technique to evaluate the phase-space integration
emerging in the SU(3)TWA, we will employ two different
approaches, i.e., the Gaussian approximation for the (contin-
uous) Wigner function [16] and the discrete TWA (DTWA)
approach [19,20,25]. In particular, the DTWA approach is
thought to be better than the Gaussian approach. Indeed, the
numerical sampling of the DTWA can be readily carried out
without approximation of the probability distribution func-
tions (see also Refs. [19,25]). In this paper, we also study

the performance of a DTWA sampling for the SU(3)TWA via
large-scale numerical simulations for a fully connected spin-1
model. A numerical simulation on the basis of the DTWA
scheme will be compared with the experimental data as well
as that of the Gaussian approximation.

The remainder of this paper is organized as follows: In
Sec. II, we introduce an effective pseudospin-1 model for the
Bose-Hubbard Hamiltonian in a strongly interacting regime
and a fully connected spin-1 model, respectively. In Sec. III,
we formulate the SU(3)TWA for the effective model. In
Sec. IV, we study the Gaussian approximation and the DTWA
approach for SU(3) phase-space variables. In Sec. V, using
the SU(3)TWA, we calculate quench dynamics of equal-time
single-particle correlation functions for a strongly interacting
Bose gas in a 2D optical lattice. There, we compare some
semiclassical results with actual experimental data obtained
in Ref. [15]. In Sec. VI, we conclude this paper and present
outlooks for future studies.

II. MODELS

In this paper, we study time evolution of a strongly in-
teracting Bose gas loaded into an optical lattice. To describe
this system, we consider the Bose-Hubbard Hamiltonian on a
certain lattice structure [26,27]

A At A U At ata A
Hgy = —J Z(a}ak +H.c.)+ 5 Za}ajajaj’ (H
(k) J

where ?1; and a; are the creation and annihilation operators
of bosons at site j. The angular brackets (j, k) indicate a
nearest-neighbor link on the lattice. The real parameters J
and U denote the hopping amplitude and interaction strength,
respectively. A ratio of the parameters U/J can be widely
controlled by tuning the optical-lattice depth [15] or utilizing
a Feshbach-resonance technique [14].

In a strongly interacting regime of Eq. (1), fluctuations of
occupation per site are sufficiently suppressed from the mean
filling 1. Therefore, only a subset of local Fock states near
the mean filling is relevant to strongly interacting dynamics
governed by Eq. (1). If the interaction is sufficiently strong,
ie., U/(iiJ) > 1, one can safely assume that only three Fock
states, i.e., |7 — 1), |1}, [ + 1) are relevant to time evolu-
tion of the interacting bosons. In a projected Hilbert space
spanned by such a local basis, the Bose-Hubbard Hamilto-
nian (1) is approximated as an effective pseudospin-1 model
[17,18], which is given by

A= - (1+06v_89)878, (1+6v_8) +Hec.

(k)
U ~.2 UQ@Rn—1 A~
+ EZ(S;) +¥ZS?, )
J J
where 8v_ = /T+1/ii— 1 and S]i = S‘;‘ + 13'; The pseu-

dospin operator S”]‘ (uw =x,y,z) satisfies the SU(2) Lie

algebra
[8%, 8] = i€y 8 8jx,  for S =1. 3)

The three-leg tensor €,,, is the fully antisymmetric
structure constant satisfying €,,, = —€y,; = €y =--- = 1.
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Hereinafter, the repeated greek indices indicate the contrac-
tion of tensors. It should be noticed that if one takes the
high-filling limit, i.e., 7 >> 1, the effective model is simplified

[23,24] as
U An 2 A
72 &) -8,
j j

where B can be interpreted as a magnetic field applied along
the z axis. In the previous work [16], the SU3)TWA was
applied to this high-filling model defined on a cubic lattice.
However, in order to analyze experimental systems with a
setup of 7 = 1 as realized in Ref. [15], it is required to use
Eq. (2) rather than the high-filling model. In Sec. III, we will
explain how one generalizes the SU(3)TWA to Eq. (2).

In Sec. IV, we present detailed investigations on Monte
Carlo integration methods employed for SU(3)TWA simu-
lations. To examine quantitative validity of our numerical
approaches, especially a DTWA approach for SU(3) phase-
space variables, we will revisit a fully connected spin-1
model, which is a model studied in Ref. [16]. The Hamiltonian
of the fully connected model is given by

H, = —% > O[858 + 88+ % S @
JF#k J

The spin-exchange coupling term describes all-to-all connec-
tions between distant spin operators. Hence, each lattice point
has a coordination number z = M — 1. As M increases, the
valid timescale of the SU(3)TWA for this model becomes
longer for a certain U/(zJ) [16]. Furthermore, due to a char-
acteristic property described in Appendix A, exact quantum
dynamics of this model can be easily simulated by using clas-
sical computers even for a considerably large M. Accordingly,
the fully connected model is suitable for examining the per-
formance of the sampling methods. See also Appendix A for
details about how to implement exact numerical simulations
of this model.

. Jii e as
H = -5 Z(Sjsg +He)+
(j.k)

III. SU(3) TRUNCATED-WIGNER APPROXIMATION

The first step for building the SU(3)TWA for spin-1 models
is to rewrite their Hamiltonian by means of eight numbers of
SU(3) matrices [16]. Let us consider a set of SU(3) generators

J

Hy = (Hefr)w

nJ
= _Z(sz Z X(I)X(J) +X(1)X(])]

(i, 7) (i J)

nJ
E : )y () () (/)
+ st+8v Z X X +X X

where Sv. = /1 +1/n+ 1. The SUB)TWA states that
within a semiclassical approximation the time evolution of
the expectation value of an operator Q, ie., (1)), can be
represented in terms of saddle-point trajectories of SU(3) vari-
ables, which are governed by Hy and weighted with a Wigner

nl o, Dy () | vy ()
n —ov2 Y [xOx + x0x7] +

Xyu=1,...,
[X;u Xv] = if;,wy}?ys M,

Here f,,, is a fully antisymmetric structure constant accom-
panied by the SU(3) group. If we take the Jordan-Schwinger
mapping into account, each generator can be written in the
bilinear form of the SU(3) Schwinger bosons [17,18,23]

2
Z BT by (6)

To reproduce the original Hilbert space, the particle number
must be preserved per site by a constraint ), l?jf)n = 1. The
value of fj,,, depends on the detail of 7,/"". Our choice for
T,, will be shown later in Eq. (11), and the corresponding
fuvy will be given by Eq. (13). The SU(3) matrices 7,, form
a complete set of 3 x 3 matrices, so that an arbitrary local
operator acting on the three-state Hilbert space is expressed
as a linear combination of these matrices. Using this property,
one can linearize local interaction terms in spin-1 models,
such as % » j(ﬁj)z, in terms of SU(3) matrices. Specifically
for the effective model (2), if the interaction U is sufficiently
large compared to iJ characterizing the hopping term, then
the Hamiltonian is regarded as being almost linear in SU(3)
matrices. Therefore, the SU(3)TWA for this model is expected
to be valid during a long timescale. Furthermore, if the hop-
ping term is negligible, the SU(3)TWA becomes exact at all
times because there exists no truncation error stemming from
higher-order derivatives of the time-evolving equation for the
Wigner function [13].

Let us generalize the SU(3)TWA formalism to the arbitrary
filling model (2). First, we express the effective Hamiltonian
by means of the local SU(3) generators denoted by )?Aij A
key point is that the local interaction term of the SU(2) spin
operators is translated into a linear combination of such SU(3)
generators as

8) obeying the SU(3) Lie algebra
v,y =12,...,8. 5)

U . Ui~ o (i
S &7~ E[ZIU) — V38 )
Then, we make a Wigner-Weyl transform of the Hamiltonian
and obtain a classical Hamiltonian for the SU(3) phase-space

variables

iJ S .
()3 () ()3 (/)

S dvedv- (2 ') [X"X"7 + X% (8)
2y

J—Z x4 U(Z” )ZXS(j)’

J

(

quasiprobability distribution function

Q) ~ / d* X oW (X 0)Qw[X a(1)], ©)
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where d®X =

is a Weyl symbol of Q. The classical trajectory X (z) obeys
Hamilton’s equation associated with the SU(3) Lie algebra

=11 i 4%y (’ ) is the integration measure and Qy

dHy xO
X0 X" (10)

hX) = f,wy
This equation of motion is integrated under an initial con-
dition X\ (t = 0) = X, (J;i The ¢ number X (]J is distributed
accordlng to W(Xy). The width of the Wigner function gives
quantum-fluctuation corrections to saddle-point or mean-field
results, which formally correspond to the time-dependent
Gutzwiller approximation with a single-site cluster consisting
of three levels.

If we take the high-filling limit for the classical Hamil-
tonian (8), all the terms involving X"’ and X\” disappear.
Therefore, these additional variables are responsible for
different consequences between the high- and low-filling de-
scriptions. It should be noted that a constant term has been
eliminated from Eq. (8) because it does not affect Eq. (10).
The above formalism will be used in Sec. V to analyze the
experimental setup in Ref. [15].

In this paper, we will utilize the following representation
for the SU(3) matrices, according to the notations by David-
son and Polkovnikov [16]:

r 1 i
vl P Y
T = 7 (1) Rk T = 72 0 2 |’
_0 7 0 0 WG 0
1 0 o0 0 0 1
=10 0 O |, Tz=(0 0 Of,
_0 0 -1 1 0 O
_ 1
0 0 —i 0 -5 0
=0 0 0|, h=|-5 0 5|
i 1
i 0 0 0 7 0
r i 1
Oi 7 Oi -5 (2) 0
T = -7 0 -5 | Tk = 0 7 0
i 1
i 0 7 0 0 0 -5
(1)
These matrices are normalized as
Tr[T,T,] = 25,,.. (12)

It is confirmed that, in this specific representation, nonzero
values of f},,, are given by

J123 = fiar = fies = faae = fos1 = fre1 = 1,
firs = frse = V3, (13)
Sfras = 2.
Of course, this is not the unique choice. Instead of this repre-

sentation, one can also use the Gell-Mann matrices, which are
more familiar in high-energy physics [28].

IV. MONTE CARLO INTEGRATIONS

In this section, we study Monte Carlo integration methods
for evaluating the phase-space integration of the initial Wigner
function. In Ref. [16], an approximate Gaussian-Wigner func-
tion has been used to perform numerical simulations. This
Gaussian approximation is a simple and efficient prescription
for resolving a kind of minus-sign problem in TWA simula-
tions, which means that the exact Wigner function defined
by means of the Schwinger-boson coherent states typically
takes negative values. In Sec. IV, to simulate the experimental
setup, we will indeed employ the Gaussian approach.

As an alternative sampling scheme that allows us to avoid
the appearance of negative-valued Wigner function, we also
use a DTWA approach [19]. This approach is formulated
on the basis of the discrete-Wigner representation of a finite
Hilbert space quantum system. The concept of the discrete-
Wigner representation has been invented by Wootters in
Ref. [29]. In this section, by extending the previous DTWA
method for SU(2) spin systems [19], we develop a DTWA
approach suited for the SU(3)TWA. To this end, we will
introduce phase-point operators for the SU(3) generators, each
of which is represented as a 3 x 3 matrix.

A. Gaussian approximation

In the Gaussian approximation for exact Wigner functions,
an appropriate Gauss distribution is used to approximately ex-
press initial density matrices within a class of positive-definite
functions [16]. To be specific, let us consider a fully polarized
state along the x axis, i.e., p; = |Sy = 1)(Sx = 1|. Its matrix
form is given by

L 1

1
1 2\(5 1

o = #3 2 2‘—@ ) (14)
i 75 1

To obtain the corresponding Gaussian-Wigner function, we

make the following ansatz with free parameters R = (R, ),
m = (m,),and o = (0,):
P((X,) ﬁ TR )
= e O
g umi V210,

This distribution defines the first- and second-order moments
of the SU(3) phase-space variables

X, = / dX P({X, })X,., (16)
XX, = f d*X P({X, )X, X, . 17

The free parameters are determined such that the Gaussian-
Wigner function exactly reproduces the first and second
moments of the density matrix (14), i.e.,

(X,.), (18)
XX:%(XX +X.X,.). (19)

The angular brackets in the right-hand side mean the quantum-
mechanical average with p;. To determine R in practice, we
diagonalize an 8 x 8 matrix corresponding to a connected and

043091-4



SU(3) TRUNCATED WIGNER APPROXIMATION FOR ...

PHYSICAL REVIEW RESEARCH 3, 043091 (2021)

symmetrized correlation function with respect to the density
matrix

Coov = (XX + XX, — (X)(X). (20)

The eight-dimensional matrix R is constructed from the eigen-
vectors, which are obtained when Chuv is diagonalized Each
eigenvalue gives the squared covarlance o . The mean value

m,, is the rotation of the vector (X W), 1.e., RHV(XV) =my.
The direct calculation leads to the followmg result:

0 0 0 -1 0o o0 o £
0 0 o 0 o0 o0 1 0
1 1
0 (1) % 0 (1) 5 0 0
o0 = 0 0 F 0 0 0f
o 0o o0 ¥ o0 0 0 1}
1 1
0 01 50 (1) 5 0 0
0 —% 0 0 5 0 0 0
10 O 0 0 0 0 0
(21
1 T
0 o0 o0 o0 & 00 1], @
o=[1 1 1 1 0 0o o o]. (23)

With these parameters, the Gauss distribution (15) randomly
generates the phase-space variables reproducing the exact
low-order moments of the state in Eq. (14).

In the projected Hilbert space for the effective pseudospin-
1 models, the deep Mott-insulator state, which is approx-
imately realized in a sufficiently deep optical lattice, is

expressed as a direct product state of p, = |S, = 0)(S, = 0].
The matrix form of p; is given by

0 0 O

0 0 O

The corresponding parameters of the Gauss distribution func-
tion are calculated as

0 0 0 0 0 0 1 0]
00000 T1 U0 0
01 00 00 0 0
1 000000 O
R=1o0 000000 1| @&
0000100 0
000 1 000 0
0 01 00 0 0 0]
m=[0 0 0 0 Z 0 0 0, (6
o=[1 1 1 1 0 0o 0 o]. 27

B. SU(3) discrete-Wigner representation

Let us consider a discrete-Wigner representation for a
finite-level system, whose Hilbert space is spanned by three
basis vectors {|0), |1), |2)}. The key building blocks for this
representation are the so-called phase-point operators A,
which are 3 x 3 matrices acting on the Hilbert space. The
integer index o = (a, @) (a;, ax = 0, 1, 2) expresses a point
in the discrete phase space I', which now contains nine points.

The phase-point operators are also called the Stratonovich-
Weyl kernels [30].

The phase-point operators are important because they
define a Wigner-Weyl transform of quantum-mechanical oper-
ators. In the discrete-Wigner representation, the Weyl symbol
of an operator  is defined as its projection onto a point
ael:

Q, = Tr[A, ). (28)

Specifically, such a projection of a given density matrix p
leads to the discrete-Wigner function

wo = 3Tr[PAq]. (29)

The prefactor % is needed to ensure the unity normalization
of the Wigner function ), we = 1 (see also below). By
analogy with continuous cases, where the coordinate and
momentum operators (X, p) define a continuous phase-point
operator, the discrete phase-point operator should have the
following properties [29]:

(1) Hermiticity: A} = A, for any a € I'. Then, the phase-
space functions are real as long as the corresponding operators
are Hermitian.

(2) Normalization: Tr[A,] = 1 for any « € I'. This means
that the Weyl symbol of the unit operator 1 is set to unity:
Dy =1

(3) Orthogonality with respect to the trace inner product:
Tr[A,Ay] = 384,484y, for a,a’ € T'. Here 8,4 is Kro-
necker’s delta.

(4) Projection operators on parallel lines: For the three-
state case, there are four different patterns of drawing three
parallel lines on I'" (Fig. 1). For each line / involving three
points, one can make a projection operator & = 37'Y" A el
Then, P;l P;2 =0ifl; || L and [} # L. The sum of the prOJec-
tors is equal to unity: >, B =Y, A, = 1.

Such discrete phase-point operators can also be made for
general cases where the Hilbert space is in N/ dimensions
(N > 2 is a primal number) [29]. Furthermore, it is possible
to construct a discrete number-phase representation for Bose
systems, whose Hilbert space is spanned by generators of
the Heisenberg-Weyl group, and it provides a DTWA-like
semiclassical approximation for their quantum dynamics if
the allowed occupancy of particles is sufficiently large [31].

As an inverse transformation of Egs. (28) and (29), the
operators €2 and p are linearly expanded in A, such that

- %ZQQAQ, p=) weda. (30)
ael ael’

Then, the expectation value of & for p reads as

> we Q. 31

ael

(Q) = Tr[pS2] =

The summation in the last expression is taken over the whole
I'. In the second equality, we have used the trace orthogonality
of A,.

The concrete forms of 2, and w, are specified after one
determines A, for all @ = (a;, ay) such that they satisfy the
required conditions as presented above. If we adopt Wootters’s
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FIG. 1. Possible parallel lines in I'. The boundaries of each 3 x 3 square are periodic. The vertical and horizontal axes are a, and a,

respectively. See also Ref. [29].

representation of the phase-point operators [29], we have

_re i
84,0 8y 0¢7 '3 8ay1€7' 73
) _ 2may _.21ay
Aa - Sal,Zel 3 811],1 8a1,06 '3 . (32)
im i27ruz
8u1,le 3 5a1,0€ 3 8a],2

It is convenient to expand A, in the generators of the SU(3)
Lie algebra, i.e.,

Ay = 1(1 4 3x.(@)X,). (33)

Its projection coefficient x, (o) = Tr[AaXM] is the discrete
Weyl symbol of X,,. After direct calculations, we obtain the
following discrete phase-space variables for Afyo):

2 an awap

2
+\/§80],zcos 3

xi(a) = \/580] 0COS

27‘[612

2
M9 | 28, 5sin .

xo() = v/28,, osin

X3(O{) = 501,0 - 5111,2»

dray
x4(0) = 26,4108 3

4
X5(Ol) = 28a1,1$in 7';612 s

2may

2
na2+«/§8a,,ocos 3

xe(a) = —«/E(Sal,gcos

2 2
X7(Ol) = —«/E(Sal,gsin T + ﬁaalyosil‘l 7';612 .
1 2
xg(a) = _ﬁ(8a1,0+6a1,2)+$8a1,1- (34)

Notice that different values of o = (a;, ay) correspond to
different configurations of the SU(3) phase-space variables.
For example, if we write x(«) = [x;(®), ..., xg(«)] as a com-
bined eight-dimensional vector on each phase point, o =
(0, 1), (1, 2), and (2, 0) correspond to the following configu-
rations, respectively:

son=[ T 100 3 T 4
x(1,2) =[0 0 0 -1 V3 0 0 Z]
x2,00=[v2 0 -1 0 0 V2 0 =]

Two classical spins x(«) and x(«’) at different points o # o’
are not orthogonal to each other. Indeed, these have a finite
inner product even for o # «’:

x(o) x(@) =28, — 2(1 — 84.0)

= 6800 — 3. 35)

In the DTWA simulation, such discretized spins are randomly
distributed according to w, and give a set of initial conditions
for the classical trajectories. The discussions of the DTWA for
the SU(3) systems will be presented in Sec. IV C.

To clarify the sampling weight of DTWA simulations,
which will be used in the following sections, let us calcu-
late the discrete Wigner function for the Mott-insulator state
[Eq. (24)] by using AQ). It results in a positive-definite distri-
bution function

w® = $Tr[0AD] = §84,.1- (36)
This result means that in the Mott-insulator state three con-
figurations at o« = (1, 0), (1, 1), (1, 2) are realized with equal
probability % while other ones have the zero probability.
Therefore, we can directly evaluate the average with the
Wigner function in numerics without further approximation of
the distribution function. However, the positivity of Eq. (36)
is not a general property. For example, the x-polarized state in
Eq. (14) yields oscillatory terms in the distribution

w'® = %Tr [)OIA((XO)]

8a|,1|: 47‘[612]
= 1+ cos 3

6

Sa Sa 2
+ % |:1 + 24/2cos 7'53612 j| 37)

While the first term with §,, ; is always positive, the second
term with &, 0 and §,, » takes negative values due to the
oscillating contributions.

As mentioned in previous works [29,32], the definition of
the phase-point operators is not unique. In general, there ex-
ists a nonsingular (or regular) transformation A, — $714,8,
which retains the required properties of the phase-point
operators [29]. This type of ambiguity will be utilized in
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Appendix C to construct a reasonable set of phase-point oper-
ators for given density matrices.

C. SU3) DTWA

Here we formulate the DTWA for the SU(3) phase-space
variables. Throughout this paper, we refer to this approach as
the SU(3)DTWA.

Let us consider real-time dynamics of a many-body spin-
1 system described by a Hamiltonian H. The initial density
matrix po = p(t = 0) can be expressed as an expansion in a
tensor product of local phase-point operators

po=Y Wehs, @ @A, (38)

acl'M

where wy = Wy, 4, 1S @ many-body discrete- Wigner func-
tion defined in the M-body phase space ' =T, ® - -- @ 'y.
Note that M typically represents a total number of sites for
lattice systems. Each local operatorA acts on the site j. Such
an expansion is expected to exist for any states because a set
of A, «; forms a local operator basis. An operator €2 that we are
interested in has also an expansion given by

:MZQ o

acl'M

- ® Aqg,,. (39)

Thep, the expectation value of Q at time 7 > 0, i.e., (Q(t)) =
Tr[QU ()poU ™ (1)] reads as

22 Y QB (@0)

aelM Ber'M

Q) =

The propagation function Uy (B, ;) connecting two Weyl
symbols Qg and w, is defined by

U (B, a; 1) = Tr[./pU (1)U (1)1, (41)

where o/, = ®}j‘/[=1 Aa/, and U(t) = e 71" is the unitary
time-evolution operator. This propagator contains complete
information of quantum many-body dynamics governed by H.
However, the unitary transformation given by U (t)xz/;f] (@)
changes the tensor product into complicated operator strings
in the Hilbert space, so that the exact evaluation of Uy (B, a; 1)
is generally impossible.

The TWA for quantum dynamics is nothing else but an
appropriate semiclassical approximation for the phase-space
propagator Uy (B, ee;t) [33]. In the treatment discussed in
Ref. [19], one makes the following direct-product ansatz for
the many-body phase-point operators at time ¢ > 0:

U pUT (1) ~ Ai[xV(0)] @ - - @ A [x™(1)],
where
AilxV )] = 5[19 + 320X ). (42)

The time dependence of x(’ )(t) is determined by a set of
classical equations of motion with initial conditions x,(])(t =
0) = Tr[szﬁ,)?é”] = x((){/l(ozj), which has the form

ax (1) My ()
g =t . 43)

The classical Hamiltonian Hw can be derived by replacing
)A(;ﬁj ) of H with corresponding phase-space variables. At least
formally, Hw coincides with the continuous Weyl symbol
of A (see also Sec. III), so that Eq. (43) is equivalent to
Eq. (10) in the continuous SU(3)TWA. Thus, the propagator
is approximated as a direct product of trace inner products

M
Uy (B, ;1) ~ [ [ Tridp A, 1xV @ )1}, (44)
j=1
where x(t = 0) = Tr[.#%X”]. Each local part simply re-
sults in an inner product of two vectors, i.e.,
Tr{Ap A [xV(1;001) = L+ 1x§(B) - ¥V (15 0.

Inserting Eq. (4A4), we finally arrive at the SU(3)DTWA
representation of (€2(¢)):

@)~ 55 3w

ael’'™ Bel'M

M

x ]‘[E —xg”(ﬁ) xD(; a)i| (45)

If we put & = X or & = X’X® (j # k) and perform the
summation over 8 € ', we have the formulas

RO@) ~ Y wax(t; ),
ael'M
EPORP0) ~ Y wax$ ;05 (15 ).
acl'M

In typical cases, initial density matrices are factorized with
respect to the single-body index j. Then, the discrete-Wigner
function reads as

M
Wy = 1_[ wa/_ . (46)
Therefore, we obtain

<X(])(t)

]_[ D waxP (s ),

=1 o€l

M
~ D (t- k) (-
~ D0 war? @ e0xP; a).

=1 o€l

XPOXP )

As learned from these expressions, the only difference of
the SU(3)DTWA from the standard SU(3)TWA comes from
their probability distributions for the phase-space variables. In
other words, the classical dynamics in the SU(3)DTWA still
happen in the continuous phase space. Compared to the Gaus-
sian approximation, the DTWA method features a numerical
advantage that it allows to sample spin configurations with
positive probabilities for typical product states, which give
rise to negative probabilities in the exact continuous repre-
sentation [19,20]. In the literature such as Ref. [19], examples
are presented, demonstrating that the DTWA improves revival
properties of the quantum dynamics, which the Gaussian ap-
proximation fails to capture. The direct comparison between
the two methods will be presented in Sec. V B.
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We mention that our description, which explicitly uses
the phase-point operators and, therefore, explicitly defines
a discrete-Wigner function for a density matrix, is distinct
from a similar discrete-sampling approach for general SU(N)
systems developed in Ref. [25]. The latter approach has not in-
troduced any phase-point operators explicitly, but instead has
utilized a quantum-tomography-like methodology to define
probability distributions for each phase-space variable. This
state-of-the-art sampling technique, which is also called the
generalized DTWA (GDTWA) [25], has been already applied
to actual experimental setups of large-spin systems such as
32Cr gases [34] and '*’Er gases [35], and the performance has
been evaluated against the experimental data. In Sec. V, we
compare this sampling scheme to our schemes, specifically
for the 2D Bose-Hubbard model with a small size.

To implement the tomography technique for the
SUB3)TWA, we decompose each SU(3) matrix 7, in its
diagonalized basis, ie., T, =Y. AD1pD) (9. The
vectors |¢l(j)) denote the eigenvectors of 7, associated with
the eigenvalues A{. Note that, generally speaking, the
matrices 7, cannot be simultaneously diagonalized. We
compute an expectation value of 7, with a density matrix p
to obtain

3
Tr[pT, ] = Y Ap), (47)

s=1
p = Te[olo )i, (48)

Following Ref. [25], the coefficients pgf) are regarded as the

probabilities for the discrete spins d,, € {A{), AJ, 2(}. In
addition, we define the values of )ij) as

1 — 2 — 3 —
W =1, 22 =0, A® =1 (for u#8), (49
1 2

WL e 2

8 8 \/§ 8 \/§

where )~ 1) = 0 for all y. Due to Trp = 1, each probabil-

ity is normahzed as ), pY = 1. To combine this sampling
scheme with the TWA, we assume that the equations of mo-
tion in Eq. (43) are solved with initial conditions x,,(f = 0) =
d,.

We determine the probabilities p} for the deep Mott-
insulator state (24). We see via direct computations that d3,
ds, ds, and dg do not fluctuate because the density matrlx
of Eq. (24) leads to p(32) pf) = p(z) = pg) =1, and p
PP =p =p¢ =0 for s = 1,3. However, the remaining
ones, di, d», dg, and dy, can fluctuate: the nonzero probabilities
for these are given by

1 1 1
PO = pi0 = ph = p» =

3 3
p( p(z) p()ng)z 51)

Therefore, in the TWA simulations, d;, d>, dg, and d; ran-
domly choose either 1 or —1 with an equal probability, while
dy = d, = ds =0 and dg = 2/+/3 for all samples. Note that
the fluctuations of each variable are statistically independent
of those of the other ones. More detailed discussions of the
tomography technique are found in Ref. [25]. In Appendix D,

(50)

= =

we add a supplemental discussion on the relationship between
this tomography method and our DTWA scheme, associated
with the reproducibility of a second-order moment for a pure
state.

D. Fully connected spin-1 model

To compare the SUB)DTWA with the Gaussian
SUB)TWA, we study the fully connected spin-1 model
(4). To be specific, we calculate sudden-quench dynamics of
several physical quantities by using the SU(3)TWA with the
Gaussian-Wigner function and the SU(3)DTWA, respectively,
and compare these semiclassical results with the exact ones.

In Fig. 2, we numerically simulate the time evolution of the
fully connected spin-1 model of Eq. (4) after sudden quenches
from the x-polarized direct-product state

M
W) = X) IS} = 1). (52)

This state is a ground state of the model of Eq. (4) in the
limit of U/J — 0. The number of lattice points is set M = 50.
For the simulation of the Gaussian SU(3)TWA, we numer-
ically integrated the classical equation of motion for initial
conditions, which are distributed by the Gauss probability
distribution P({X"}) = [T'L, P;(x{”, ..., X{"). The local
distribution P; corresponds to the parameters in Egs. (21)-
(23). In the upper panels in Fig. 2, we display the time
evolution of M~ Z Sx(t)) The semiclassical results of the
Gaussian SU(3)TWA (black dashed line) agree quantitatively
with the exact quantum dynamics (blue solid line) over a
long timescale both for U = 250J (U ~ 5.1zJ) [Fig. 2(a)]
and U = 125J (U = 2.6zJ) [Fig. 2(b)]. In the 1ower panels in
Fig. 2, we also show the time evolution of M~ Z (SZ)Z(I))
starting from the same initial state. It should be notlced that
the slight recurrence of the oscillation observed in Fig. 2(d)
at late times after + ~ 60/i/U are not captured within the
semiclassical approximation as expected in typical TWA sim-
ulations [13,16].

In Fig. 2, we also simulate the same dynamics by using the
SU(3)DTWA approach. For all the panels, the SU(3)DTWA
results (red dotted lines) reasonably reproduce the same dy-
namics as those of the Gaussian SU(3)TWA. As explained in
Appendix C, for the DTWA results in Fig. 2, we have prepared
a statistical mixture of random initial conditions characterized
by multiple sets of phase-point operators. A similar technique
has been used in Ref. [32]. We emphasize that if we only
use the Wootters representation for samplings, it will fail to
correctly produce the dynamics [see also Fig. 7(a)].

In Fig. 3, we compute the expectation
My j((S‘; )2)(¢) for another initial state

value

M
| \I}Mott) =

(33)

In the projected Hilbert space for the Bose-Hubbard model,
this expresses the deep Mott-insulator state. For a rela-
tively large value of the onsite interaction, say U = 250/
[Fig. 3(a)], both Gaussian (black dashed) and discrete (red
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FIG. 2. Numerical simulation of the quench dynamics of (a), (b) M~' " ; (S’j)(t) and (c), (d) M~1>" j((Sj)z)(t) for the fully connected
spin-1 model of Eq. (4) with M = 50 sites. To initialize the system, we prepared the x-polarized state W) = &) ;187 = 1) atz = 0. The black
dashed and red dotted lines represent the results of the Gaussian SU(3)TWA and the SU(3)DTWA, respectively. The blue solid line means
the exact quantum dynamics with the same initial condition. The left and right panels correspond to U = 250J ~ 5.1zJ and 125J =~ 2.6zJ,
respectively. We note that the black dashed line in (c) reproduces well a panel of Fig. 2 in the previous work [16].

dotted) SU(3)TWA results reproduce the first and second
peaks of the exact expectation value (blue solid) within
t <30h/U. As U/J decreases, the timescale, during which
the exact quantum dynamics are reasonably captured by the
semiclassical expressions, is shortened. This tendency can be
attributed to the nonlinearity of the system that gives rise to a
significant error in the exact time evolution of the many-body
Wigner function. In Fig. 3(b) corresponding to U = 125J,
both semiclassical approaches only recover the first peak
within ¢ < 10//U, however, they fail to describe the second
peak, especially, its amplitude.

After leaving from the early-time stage, the SU(3)TWA
clearly deviates from the exact dynamics. In particular, it is
clearly seen in Fig. 3 that the Gaussian SU(3)TWA tends to
saturate into a steady value but not to make a recurrence of
the oscillation, both for U = 250/ and 125J. Interestingly,
especially in Fig. 3(b), while the SU(3)DTWA also fails to
describe the exact dynamics for ¢ > 10//U, but it exhibits
an oscillatory behavior rather than saturation. However, it
should be emphasized that the discrete Monte Carlo sampling
does not affect the quantitative timescale itself, during which
the quantum dynamics is almost accurately captured within
the semiclassical expressions. This seems to be reasonable
because the classical equations of motion for the continuous
and discrete cases are the same.

To close this section, we have demonstrated that the
SU3)DTWA is nearly as accurate as the Gaussian approx-
imation with respect to simulating the quench dynamics. In
the next section, we apply these techniques to analyses of the
experimental results for 2D Bose-Hubbard systems [15].

V. APPLICATION TO THE 2D BOSE-HUBBARD SYSTEM

In this section, we apply the SU(3)TWA approaches for
studying far-from-equilibrium dynamics of the Bose-Hubbard
model on a square lattice at unit filling. We specifically
analyze dynamics of equal-time single-particle correlation
functions after a quench from a Mott-insulating state to
a parameter region near the quantum critical point [15].
Theoretical studies on dynamics of equal-time correlation
functions have been reported in Refs. [11,36-45].

A. Experimental setup

First we briefly summarize the details of the experimental
setup in Ref. [15]. Takasu and his coworkers have measured
sudden-quench dynamics of the single-particle correlation
functions inside the 2D Mott-insulator phase in the following
steps:

(1) They prepared a unit-filling Mott insulator of an ultra-
cold '7*Yb gas in an optical square lattice with s = V/Eg =
15. The energy scales Vj and Er denote the optical lattice
depth and the recoil energy of this system, respectively. The
prepared system is well described by the direct product Fock
state for bosons

M
[Wini) ~ ) In; = 1), (54)
j=1

where ﬁj|l’lj) = nj|nj).
(2) The lattice depth was abruptly decreased from s = 15
to s = 9. The time to ramp down the lattice depth is approx-
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FIG. 3. Numerical simulation of the quench dynamics of
M Zj((S‘j)z)(t) for the fully connected spin-1 model of Eq. (4) at
M = 50, starting from the Mott-insulator state |Wyor) = ®;W=] IS5 =
0). The upper (a) and lower (b) panels are obtained at U = 250J
and 125J, respectively. The black dashed, red dotted, and blue solid
lines correspond to the Gaussian SU(3)TWA, SU(3)DTWA, and ex-
act quantum dynamics, respectively. For details of the SU(3)DTWA
simulation of these panels, see also Appendix C.

imately 0.1 ms. The lattice depth after the quench implies
U/J =19.6.

(3) After the quench, the resulting dynamics was ob-
served by measuring the time-of-flight interference pattern
that can be converted to the equal-time single-particle corre-
lation functions,

/

1 +
Kat)= - Z(fl}(t)&jf(t)), (35)

rj.ry

where r; = (x;, y;) indicates each site on the square lattice
with units of the lattice constant dj,; = 266 nm. The real-
space summation is performed under the conditions |x; —
Xyl = Ay and |y; —yj| = Ay, and we write A = (A, Ay).
Recall that M is the total number of lattice points.

In this work, as a simplified setup, we neglect harmonic
trap potentials in numerical simulations. We simply assume
that all the atoms participate in a uniform Mott-insulator state
before the quench. Effects due to spatial inhomogeneity of the
gases will be discussed in Sec. VD.

To close this section, here we note that the qualitative
behaviors of the dynamics of the spatial correlation functions
measured after quantum quenches can change depending on
the initial states that we take. For instance, for the coherent
state as the initial states, which describes a coherent conden-
sation of bosons at the noninteracting limit, sudden changes
of the interaction, from zero to weak interactions, result

[\S)

1 1
tJ/h tJ/h
FIG. 4. Time evolution of the correlation function K, (¢) of the
Bose-Hubbard model on a square lattice for M = 3% = 9 with pe-
riodic boundary conditions. We set the maximum occupation of
particles per site ny. to be 2. The interaction after the quench is
U/J = 19.6, corresponding to the experiment. The solid lines with
points are the semiclassical results: Gaussian SU(3)TWA (red cir-
cle); SU3)DTWA (blue triangle); GPTWA (green square); and the
tomography sampling method indicated in Sec. IV C (orange cross).
The gray dotted line represents the exact quantum dynamics. The left
and right panels correspond to A = (1, 0) and (1, 1), respectively.

in observing fine oscillations in time of the density-density
equal-time correlation function, reflecting the coherent mo-
tion of the Bogoliubov quasiparticles [11]. By contrast, if we
choose the Mott-insulator states as the initial conditions, and
propagate the states with the Hamiltonian with the same inter-
actions (i.e., quenches from infinite to weak interactions), we
observe propagation of a peak signal without fine oscillations
in the same correlation function [11]. Its propagation velocity
is well explained by the single-particle excitation spectrum
of the Hartree-Fock approximation. Reliable TWA results on
this kind of initial-state dependence of the quench dynamics
can be found in our previous study for the 2D Bose-Hubbard
model with a large filling factor [11].

B. Small-size case

Before proceeding to our main results corresponding to the
experimental setup, let us consider the quench dynamics for a
small-size 2D Bose-Hubbard system, say nine sites, in order
to compare outputs of the SU(3)TWA approaches with those
of the exact numerical calculation. For simplicity, we focus
on the sudden-quench limit, in which the ramp-down time is
neglected.

Figure 4 shows the numerical results for the sudden-quench
dynamics of K, (z) for a small-size Bose-Hubbard system.
The simulation setup has M = 3> =9 sites and we adopt
periodic boundary conditions [46]. In Fig. 4, the full-quantum
dynamics of the Bose-Hubbard system is evaluated by in-
tegrating the time-dependent Schrodinger equation of the
Hamiltonian (1) (gray dotted line). The maximum occupation
of the local site is ny,.x = 2, hence, the three lowest states,
i.e., |0), |1), |2), are allowed in this simulation. We observe
that the correlation functions at A = (1, 0) and (1, 1) form a
first-peak region in the time range of 0 < tJ/h < 0.5. At later
times, tJ/h > 0.5, the time evolution of correlations exhibits
an almost undamped oscillation reflecting its small size.

In Fig. 4, we also simulate the same dynamics by us-
ing the SU(3)TWA for the effective-model Hamiltonian (2)
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FIG. 5. Time evolution of K4 (¢) for the 2D Bose-Hubbard model with 7, = 2 and periodic boundary conditions (M = 20 = 400). The
initial state is the Mott-insulator state. The finite ramp-down time has been taken into account in this simulation. During the time evolution for
t > 0, the system has the interaction strength U/J = 19.6. The black points with error bars express the experimental results in Ref. [15]. The
green dotted lines (GPTWA) are a reproduction from the same reference. The red dashed and blue solid lines are the Gaussian SU(3)TWA and
the SU(3)DTWA, respectively. For the SU(3)TWA (GPTWA), we have taken 4000 (6000) trajectories.

according to the Gaussian and discrete-Wigner approaches
of Monte Carlo samplings. The unit-filling Mott-insulator
state is given by Eq. (53), i.e., |Win) = |WYMmor). We ob-
serve that both the Gaussian SU(3)TWA (red circle) and
SU(3)DTWA (blue triangle) quantitatively capture the first-
peak region in the range of 0 < tJ/h < 0.5, especially its
initial growth, its time point of the center of the region,
and its correlation intensity. However, the later-time dy-
namics for ¢tJ/h > 0.5 can not be well captured within the
SU(3) semiclassical representation. Indeed, the semiclassi-
cal results exhibit almost saturated behaviors rather than the
temporal oscillation with a large amplitude. It should be
emphasized that the difference between two semiclassical
results in the later-time dynamics comes from our choice of
the initial distribution for the phase-space variables. Interest-
ingly, it is clearly seen that, around ¢ = 0.5%/J in Fig. 4, the
SU3)DTWA gives a slightly better result, i.e., shows deeper
dips of correlations. For this comparison, the SU(3)DTWA
can be seen as a better description than the Gaussian
SU(3)TWA.

Figure 4 also displays the simulation result on the basis
of the tomography technique as presented in Sec. IVC. We
numerically find that it is closer to the Gaussian result, rather
than the DTWA one. This coincidence to the Gaussian simu-
lation indicates that the tomography technique also provides
a reasonable sampling scheme for the initial condition. Since
there is no considerable deviation from the Gaussian result,
in the following discussions, we do not use the tomography
technique.

It is interesting and helpful to calculate the quench dy-
namics by using the GPTWA for the strongly interacting
Bose-Hubbard system as a reference. In order to carry out an
efficient simulation, we have used an approximate Gaussian
distribution representing the Fock states [11]. The details of
the GPTWA will be briefly reviewed in Appendix B. In Fig. 4,
the GPTWA simulation (green square) fails to describe the
correlation intensity in the first-peak region while it repro-
duces well a very early growth of the correlation function at
A = (1, 0) within tJ/h < 0.2. Therefore, for the purpose of
simulating the strongly interacting dynamics, the SU(3)TWA
certainly provides a better description than the GPTWA.

C. Comparison to the experimental results

We calculate the quench dynamics for a larger-size system
corresponding to the experimental setup. Figure 5 shows the
correlation function K4 (z) for M = 20% = 400 with periodic
boundary conditions. First, we prepare the system in the unit-
filling Mott-insulator state (r < 0), and then abruptly decrease
the lattice depth until # = 0. For # > 0, the system evolves
in time at U = 19.6J. While the dynamics of the effective
pseudospin-1 model (2) is computed in the SU(3)TWA simu-
lations, that of the Bose-Hubbard model (1) with no truncation
of the local Hilbert space is computed in the GPTWA. We
note that the GPTWA result in Fig. 5 is a reproduction from
Ref. [15].

In Fig. 5(a), we observe that all the semiclassical results
explain well the growth of the nearest-neighbor correlation
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at A = (1,0) in the early-time stage within # < 0.174/J. In
addition, these reasonably describe the correlation offset at
t = 0. The experimental data show a peak in the time domain
of 0 <tJ/h < 0.2. At longer times, the measured correla-
tion gradually saturates to a steady value. In the comparison
performed in Fig. 5(a), the experimental result is seemingly
closer to the GPTWA rather than the SU(3)TWA. In particular,
the peak position and the correlation intensity in the time
window indicated by Fig. 5(a) are relatively close to the ones
simulated by the GPTWA. This is in contrast to the small-size
case in Sec. V B, where the SU(3)TWA is closer to the exact
dynamics and can provide a reasonable first-peak region at
short times. Notice that the correlation intensity of the exper-
iment is typically lesser than both SU(3)TWA and GPTWA
results.

Next, we focus on longer distances, say A = (1,1)
[Fig. 5(b)] and A = (2, 0) [Fig. 5(c)]. The experimental data
are seen to achieve a peak during 0.1 < tJ/h < 0.3 for both
cases. The time points of the center of the first-peak regions
are reasonably captured by both SU(3)TWA and GPTWA, at
least within the accuracy of experimental errors. In Figs. 5(b)
and 5(c), the GPTWA typically produces smaller values of
correlations compared with the experimental result. Likewise
in the case of A = (1, 0), the SU(3)TWA tends to yield larger
values than those of the experiment. Again, the experiment is
seemingly closer to the GPTWA rather than the SU(3)TWA.

For further longer distances, say A = (3,0) [Fig. 5(d)]
and A = (2,2) [Fig. 5(e)], it is hard to locate the center
of the first-peak region in the experimental data because of
significant noises. Within the error bars, we expect that there
exists a peak region somewhere in the range of r < 0.54/J.
For these long distances, correlation intensities in the GPTWA
are seen to be suppressed because it cannot capture strong
quantum fluctuations in the parameter regime. In particular, no
clear peak region is observed in the simulation even at short
times. Therefore, its agreement to the experiment is worse.
By contrast, the SU(3)TWA, which is expected to describe
local quantum fluctuations in the regime more accurately, can
produce a reasonably strong correlation, which is comparable
to the experiment, and clear peak regions in the range of
t < 0.5h/J. Hence, in this case, these SU(3) simulations are
closer to the experiment.

Finally, let us mention that, in the experiment, not only the
nearest-neighbor correlation but also the longer-distance ones
exhibit a finite and non-negligible offset at + = 0. However,
according to the SU(3)TWA and the GPTWA, such an offset
for longer distances should be almost zero. We will discuss
this point in details in the next section.

D. Discussions

In the direct comparisons for the large system, we ob-
served that the experimental results of the spatial correlation
function are closer to the GPTWA especially at short dis-
tances while the SU(3)TWA looks better at long distances.
As learned from the numerical simulations for the small size,
the SU(3)TWA should work better more than the GPTWA in
the strongly interacting parameter regime. Moreover, we also
recognized that the nonzero offsets of the correlations at dis-
tances except for nearest neighbors are not consistent to all the

semiclassical results. We argue that the above unexpected
observations could be attributed to some contributions present
in the actual experiment, which are not precisely taken into
account in our SU(3)TWA simulations.

First, we discuss occupations of bosons allowed in the
SU(3)TWA for the Bose-Hubbard systems. The formalism
of SU(3)TWA for bosons is constructed under assumptions
that the local Hilbert space is truncated up to three states. If
the dimension of the reduced state space is extended from
three to more, it will improve the simulated result, more
or less, quantitatively. To perform this extension, one needs
to increase the local phase space furthermore. For instance,
if five states are relevant locally, SU(5) matrices should be
chosen as a phase-space variable. However, we may expect
that higher occupations give no significant effect, at least in
our current case, in which the strength of the interaction is
large enough to suppress them. In order to justify this expec-
tation, in Appendix E, we will clarify the degree to which
occupations greater than 2 affect the quench dynamics of the
correlation function in the parameter regime of the experiment
by utilizing an exact numerical calculation for a small size.

Second, we make a comment on effects of an inhomoge-
neous trap potential. In the experimental setup in Ref. [15], the
prepared initial state actually contains a strongly correlated
superfluid component with incommensurate fillings due to a
harmonic trap while the region of the Mott insulator with unit
filling is much larger. Such a contribution is not dominant over
the whole gas, but not completely negligible. In the Supple-
mental Material of Ref. [15], an MPS calculation has been
performed for a 1D trapped Bose gas in the presence of narrow
superfluid regions in the system. A numerical result shows that
a finite offset appears at the end point of quenches at several
distances in addition to the nearest neighbor. This strongly
indicates that the presence of superfluid contributions, more
or less, affects the time evolution of the correlation function.
To our current techniques for the SU(3)TWA, it is difficult to
initialize a system into such inhomogeneous states as prepared
in the MPS simulation. In future works we will develop an
efficient technique to treat this kind of initialization problem.

VI. CONCLUSIONS AND OUTLOOKS

In conclusion, we have analyzed far-from-equilibrium dy-
namics of strongly interacting Bose gases in an optical lattice
by using the SU(3)TWA on the basis of different Monte Carlo
sampling schemes. In the middle of this paper (Sec. IV), the
SU3)DTWA approach has been developed as a sampling
scheme, and applied to the fully connected spin-1 model
with a large size in order to examine this approach. We
demonstrated that the SU(3)DTWA is nearly as accurate as
the Gaussian SU(3)TWA in simulating time evolution after
sudden quantum quenches.

In the main part of this paper (Sec. V), we have applied
the SU(3)TWA to sudden quench dynamics of a strongly
interacting Bose gas in the 2D optical lattice. The semiclas-
sical methods on the basis of the GPTWA, the SU(3)DTWA,
and the Gaussian SU(3)TWA have been compared with ex-
act numerical calculations for the 2D Bose-Hubbard model
with a small size. We recognized that the SU(3)DTWA and
the Gaussian SU(3)TWA can provide better descriptions than
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the GPTWA in a strongly interacting regime. The numeri-
cal results on the basis of those semiclassical methods have
also been compared with the recent experiment at Kyoto
University. We found that at short distances, the experiment
is closer to the GPTWA while, at relatively long distances,
it is reasonably close to the SU(3)DTWA and the Gaussian
SU(3)TWA. We argued that this observation can be attributed
to parts of the actual experimental realization including an
inhomogeneous trap potential, which are not precisely taken
into account in our numerical simulations.

Beyond the scope of this work, it would be interesting to
develop a cluster TWA approach [47] for the strongly interact-
ing Bose-Hubbard systems. For applications of this strategy in
higher dimensions than 1D, a reasonable reduction scheme of
dimensions of cluster phase-space variables may be required
to make simulations realistic and efficient.
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APPENDIX A: EXACT NUMERICAL DYNAMICS OF THE
FULLY CONNECTED SPIN-1 MODEL

The large-size numerical simulation of the exact dynamics
of the fully connected spin-1 model is carried out as follows.
Let us begin with introducing collective SU(3) operators de-
fined by

M
My =) %P, fora=12,....8. (A1)
j=1

From the properties of the local SU(3) generators X9, M,
should satisfy the commutation relation of the SU(3) group

(o, Tg] = ifupy 11, (A2)
Then, the fully connected model can be expressed as
A =—{(A2+1A12)+L(J—U)ﬁ8 (A3)
Y 2 1 2 2\/5 .

The eigenstate of I3 characterizes the global spin polarization
over the whole system. For example, the maximally polarized
state of ﬁ3 is equal to the state, in which all of )?3(/ ) at each
site are entirely polarized along the z axis, i.e., [1111...).

As the next step, we rewrite the collective operators
in the form of the bilinear bosonic operator through the
Jordan-Schwinger mapping [48]. Then, by using the SU(3)

Schwinger boson (l;l, l;o, BI ), the operator f[a takes the form

My =Y b 7"b,, Y byby =M1 (A4)

Notice that the bosons are constrained by M, but not unity.
This expression may be regarded as an SU(3) analog of the
Schwinger-boson representation of the SU(2) generators char-
acterized by a spin strength S [48].

Subject to a fixed M, an arbitrary state of this system is
spanned by a Fock vector labeled by two nonzero integers
vy =2 0and v, > 0:

B M (b
VIV /M = v — )l

where 0 < v + v, < M. This basis state is a simultaneous
eigenstate for I3 and ITg, therefore,

lvi, v2) = [vac), (A5)

IT3|v1, va) = (vi — v2)|vy, v2),

N 2M
Ig|vy, vo) = [— — V3 + v2)1||V|, V2). (A6)

V3

The rest of the operators, e.g., f[l, behave as a ladder operator
connecting different Fock states:

. 1 . 1 .
ITi|vi, v2) = ﬁbibom, v2) + ﬁbgbﬂvl, v2)
1 nin 1 nin
f .
+ ﬁbibohm ) + ﬁboblhjl, v2)
1
= ﬁﬂM — vy —v)(vr + Djvy + 1, v)
1
+ —= V(M — vy — vy + Dy — 1, 1))
V2

1
+ —2\/<M— v — )0y + Dlvy, vy + 1)

\/_
+ —/v — Vv — 1 + v, v — 1).
f 2 1 2 1, V2

One can evaluate the matrix element of the Hamiltonian
between |vi, v2) and vy, vj), i.e., (v}, vé|1—7fc|v1, V). Its di-
mension algebraically increases with M, so that one can
implement the exact numerical analysis on computers even at
large M.

In Fig. 6, we compute the time evolution of the expec-
tation value Y~ ((§%)%)(t) = 2M/3 — (Mg(t))/~/3 for M = 8
using two different approaches: the dashed line is a numerical
integration of the time-dependent Schrodinger equation for
the Hamiltonian matrix expressed in terms of the collective
spin I1,, whereas the solid line is for the spin Hamilto-
nian in terms of S'j‘ The initial state for this simulation
is the zero-magnetization direct-product state |W(t = 0)) =
X ; |S; = 0). The perfect agreement of two results manifests
that the collective-spin expression gives a more efficient way
to have the same result than the straightforward approach.
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FIG. 6. Exact quantum dynamics of Z.i((gﬁ)z)(t) for the fully
connected spin-1 model for M = 8. The dashed line is the result for
the collective-spin representation of the Hamiltonian. On the other
hand, the solid line is obtained in the original spin expression of the
Hamiltonian, whose Hilbert space dimension exponentially increases
with M. The top and bottom panels correspond to U = 40/ and 20/,
respectively.

APPENDIX B: GROSS-PITAEVSKII
TRUNCATED-WIGNER APPROXIMATION FOR THE
BOSE-HUBBARD HAMILTONIAN

For the TWA in the coherent-state phase space, the clas-
sical time evolution of the Bose-Hubbard Hamiltonian is
governed by the discrete GP equation associated with the
Heisenberg-Weyl group:

da;  OH, dort dH,
in - O T O (B1)
o~ dal o1 da,

The classical function Hy (e, &) = (Hgy)w is the Weyl sym-
bol of Hgy given by

Hy = —J Z(oe;‘otj + a;‘a,-)
(i, )

U 1
+5 2,: [|ozj|4 — 20 ? + E] (B2)

If we write a(¢) as a solution of the GP equation with con-
ditions . (f = 0) = o, the expectation value of an operator
Q,ie., (Q@)) = Tr[Qp(r)] = Tr[Q(r)p(r = 0)] is reduced to
the following phase-space integration form (for details, see
[11-13]):

(Q) ~ /daoda’éﬂw[acl(t), ag (DIW (g, a5).  (B3)

Here dadoa* =™ ]_[1,‘-4:1 d Relo]d Im[a;] is the measure
of the phase-space integration. The weight function over the

phase space is the Wigner function defined by means of the
coherent-state basis

W, a*) = (pt = 0))y

2M 2

« g1 a—na)

Pt = 0)(0: + g)
(B4)

We note that the GPTWA typically provides quantita-
tive descriptions of real-time dynamics of the Bose-Hubbard
systems when they have a sufficiently small interaction or
sufficiently large filling factor. In recent years, this type of
semiclassical method has been applied to multiple dynamical
problems of lattice bosons, e.g., see Refs. [11,15,49-51] for
details.

APPENDIX C: DETAILS OF THE SU(3)
DTWA SIMULATION

First let us present the numerical sampling when the
x-polarized state is chosen as our initial state. Generally
speaking, the discrete-Wigner function representing such a
superposed state exhibits negativity. To carry out an efficient
numerical simulation, we take the following steps.

As the first step, we prepare a polarized down-spin state
along the z axis att = —m = #y:

M

%) = Q5] = —1)

j=1

(ChH

If we use the Wootters representation for the phase-point op-
erator, the corresponding discrete-Wigner function is positive.
Therefore, it is easy to sample randomized spins from the
distribution.

Then, we shine a global pulse such that it evolves |\W) into
the desired target state, i.e., the polarized state in the x axis
(W) = ®j IS} = 1). Such a spin-flip process is dffsigned via
a unitary time evolution described by U, (1) = e~ #(~) with
a Hamiltonian

. L
A=—7)Y X7-X%7). (€2)
If the unitary operation of the pulse is applied from ¢ = #; to
t = 0, each spin state is locally flipped such that |S; = —1) —
—[87 = 1). The minus sign at the final state gives no effect on
the expectation value. Notice that the time evolution governed
by Up is exactly simulated by the SU(3)TWA because ﬁp is
linear in the phase-space variables. At t = 0, the prepared
random values of the spin configurations are expected to obey
the Wigner distribution of [Wy) = §); IS} = 1).

Figure 7(a) displays the time evolution of the expectation
value M~y j((S’j )?) for the Hamiltonian of the fully con-
nected spin-1 model. The dashed line in Fig. 7(a) is calculated
by using the Wootters representation A((XO) and following the
above procedure. In what follows, we write S, as a statistical
ensemble of the discretized phase-space variables sampled
from the discrete-Wigner function for A, It is clear that
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FIG. 7. SU(3)DTWA simulation for the fully connected spin-1 model for several statistical ensembles, namely, (a) Sy, (b) Sy, and (¢) §; U
S,. The system size is M = 50 and the interaction is U /J = 250. The dashed lines are the results of the SU(3)DTWA. The solid line represents
the exact quantum dynamics. The left ensemble S, corresponds to the Wootters representation.

the SUB)DTWA with S, fails to reproduce the exact dy-
namics even though the Gaussian approach can do so. This
consequence seems to be related to the fact that realizable
configurations in Sy are quite restricted compared with those
belonging to the Gaussian distribution.

To resolve this problem, we utilize a prescription in which
we define a few other sets of the phase-point operator and
make a statistical mixture of them as done in Ref. [32]. As
a nontrivial example, we can construct the following two sets
of phase-point operators instead of A

71.271.'42 71.47[(12
8a;,0 8q,1€7" 73 P LA
1) _ . 2map _21ay
Ay’ = | 8a 1€ St Baoe 5| (C3)
i4m’2 l.Zsz
8a1,2e 3 8a1,06 3 8a|,2

J

2 2 2 2 1
(\/Ecos Zaz,ﬁsin 7;(12,—1,0,0, —/2cos nSaz,—\/zsin jmz,——) € So,

4
(0, 0,—1,2cos 24

2 2 2
(ﬁcos 7T3a2,\/§sin T;az,—l,O,O,«/Ecos n;lz,«/zsin

As discussed in Ref. [32], one can also make a statistical mix-
ture such as So U S} and S; U S,. For example, S; U S, means
that a certain configuration in S is realized with probability é
rather than %

Figure 7(b) shows the SU(3)DTWA simulation corre-
sponding to S;. We observe that the saturated behavior for
t > 40h/U is reproduced by this modification. Moreover, if
we sample the randomized phase-space variables from the
mixed ensemble S; U S,, we obtain the result of Fig. 7(c),
which reasonably reproduces the exact quantum dynamics up
to tU/h = 100. For all the results for the x-polarized state
[Wo) = Q) ; |Sj? = 1) in the main text, we have used this mix-
ture S; U S, to generate randomized trajectories.

We come across the similar problem for the zero-
magnetization state X); IS = 0). Experiencing several non-
trivial trials, we find that §; provides a better result than
So, S», S1US,, and other combinations. The main results
in Sec. IV have been calculated for this single ensemble.
We may heuristically argue that simply adding a certain en-
semble to S; does not necessarily improve the simulation
results.

2 .
,2si

. 2ray day

7l_7 —i
R T R
;2o . 2may
A(()() = 801’061 3 8111,1 Bal,Ze '3 . (C4)
L) P
8a1,le 3 5a1,2€ 3 8(11,2

It is straightforward to confirm that A" and A® satisfy
the conditions in Sec. IV B. This is obtained by simply ex-
changing “0,” “1,” and “2” of the Kronecker deltas of the
off-diagonal elements in A{”). Notice that replacing A”) with
AW or AD preserves the Wigner distribution for Eq. (C1).
For the down-spin state (C1), a, is randomly distributed with
probability % and a; does not fluctuate, i.e., a; = 2. Therefore,
we can make two independent statistical ensembles denoted
by S; and S,, respectively, in addition to Sp:

(C5)

3 V3

47'[612 1 )
—,0,0,——) €85y, (C6)
v3) !
271'a2 1

, ——— S5. C7
3 ﬁ>€ 2 (o0))

It should be stressed that no procedure has been established
so far to make an optimal sampling scheme for arbitrary
states. Thus, for the intermediate use of our SU(3) discrete
sampling approach, a proper choice of the sets of the phase-
point operators and their statistical mixing, which is fixed
through comparisons with exact computations for some ex-
actly tractable cases, is always required.

APPENDIX D: NOTE ON THE TOMOGRAPHY SAMPLING
METHOD AND THE STATISTICAL MIXTURE METHOD

We revisit here the discrete TWA sampling problem for the
polarized down-spin state |S, = —1) as treated in Appendix C,
and give a remark associated with the tomography sampling
method. In this Appendix, we ignore the spatial dependence,
for simplicity.

The down-spin state has the nonzero variance of S, ie.,
(S’f) = (Xlz) = % because the state is not the eigenstate of S,.
If we use the tomography scheme for the phase-space sam-
pling, it is found to successfully reproduce the exact moment
in the phase-space representation. Indeed, the corresponding
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FIG. 8. Exact time evolution of the single-particle correlation
function (&;& ) for a small size (M = 2% = 4 sites). The interac-
tion is set to U/J = 20. The upper (lower) panel corresponds to
A = (0,1)[A = (1, 1)]. The blue dashed, green solid, and red dotted
lines correspond to . = 2, 3, and 4, respectively. We have imposed
periodic boundary conditions on the system.

probability distributions for the fluctuations of X; are obtained
as

Py =1/4
P =172
=1/ o AP =-1,

o a1,

o AP,

and result in (X2) =30 pV’ (A7) = 1(1/4) +0(1/2) +
1(1/4) =1/2.

The discrete sampling scheme based on the ensemble S|
(S2), however, fails to reproduce the moment in the phase-
space representation. In fact, the phase-space average (Xf} —

x% produces 0 (1) as checked via direct computations. Hence,

there is an underestimation (overestimation) of the quantum
correlation in the classical ensemble generated by the naive
phase-point-operator method. Note that, if in the beginning
the squared operator Xlz is linearized in the SU(3) matrices,
and after that it is transformed to the phase-space quantities,
the point-operator method accurately reproduces the moment.
The statistical mixture S; U S, that we have made in the pre-
vious Appendix adequately averages the fluctuations of the
classical variable belonging to each ensemble, and, as the
consequence, produces the exact value of the moment as the
phase-space average [namely, in this case, (0 4+ 1)/2 = 1/2].
This observation catches an underlying reason of the success
of the DTWA simulation for the state |S, = 1), which is
prepared after the unitary evolution of |S; = —1) (see also
Appendix C). We expect that the tomography scheme will
also give the adequate sampling for the simulation, but it is
not explicitly implemented in this paper. Thorough analyses
about the connection between our DTWA scheme and the
tomography method will be addressed elsewhere, which are
beyond the central purpose of this work.

APPENDIX E: SUPPLEMENTAL DATA FOR SEC. VD

To visualize how the three-state truncation works in the pa-
rameter regime of the experiment, we numerically integrated
the time-dependent Schrodinger equation for the 2D Bose-
Hubbard Hamiltonian with M = 22 = 4 and some values of
Nmax- Recall that np,x means the maximum occupation of
each site. The initial state of the following simulation is the
unit-filling and homogeneous Mott-insulator state.

In Fig. 8, we show exact numerical results for the quench
dynamics of the single-particle correlation function (&;& i)
The interaction during the time evolution is set to U/J = 20,
which is close to the actual value of the experiment, i.e.,
U/J = 19.6. The results for ny.x = 3 (green solid line) and
nmax = 4 (red dotted line) agree with each other, indicat-
ing that four-particle occupations are completely suppressed
at least until t = 50h/U = 2.5h/J. Although the result for
Nmax = 2 (blue dashed line), which corresponds to the as-
sumptions of the SU(3)TWA, fails to perfectly reproduce the
result for ny,x = 3, it captures very well the short-time evo-
lution of the peak region of the correlations within ¢ < /i/J.
Indeed, the peak region at early times agrees well with the
one for ny,, = 3 and the intensity of the correlation is close
to the exact one. As the system evolves in time, the deviation
between the results for ny,,x = 2 and 3 gradually gets signifi-
cant.
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