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Spin-wave growth via Shapiro resonances in a spinor Bose-Einstein condensate
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We theoretically study the resonant phenomenon in a spin-1 Bose-Einstein condensate periodically driven
by a quadratic Zeeman coupling. This phenomenon is closely related to the Shapiro steps in superconducting
Josephson junctions, and the previous experimental work [B. Evrard et al., Phys. Rev. A 100, 023604 (2019)]
for a spin-1 bosonic system observed the resonant dynamics and then called it Shapiro resonance. In this
work, using the spin-1 Gross-Pitaevskii equation, we study the Shapiro resonance beyond the single-mode
approximation used in the previous work, which assumes that all components of the spinor wave function
have the same spatial configuration. Considering resonant dynamics starting from a polar state, we analytically
calculate the Floquet-Lyapunov exponents featuring an onset of the resonance under a linear analysis and
find that spin waves with finite wave numbers can be excited. This kind of nonuniform excitation cannot be
described by the single-mode approximation. Furthermore, to study the long-time resonant dynamics beyond
the linear analysis, we numerically solve the one-dimensional spin-1 Gross-Pitaevskii equation, finding that the
nonresonant hydrodynamic variables also grow at wavelengths of even multiples of the resonant one due to the
nonlinear effect.

DOI: 10.1103/PhysRevResearch.3.043090

I. INTRODUCTION

The engineering of quantum systems by periodic driving
has drawn great attention for over a decade, and ultra-
cold atoms have become a promising platform for realizing
such driven quantum systems due to their high experimental
controllability [1–3]. Indeed, applying various periodic mod-
ulations to ultracold atoms, recent experiments have realized
several topological models such as the Haldane model and the
Hofstadter-Harper model [4–6], and have also observed exotic
phases of matter such as a time crystal [7,8].

Such engineering by external driving was recently utilized
to generate quantum entanglement in a spin-1 Bose-Einstein
condensate (BEC) [9], which is comprised of spin-1 bosons
characterized by the three magnetic sublevels m = 1, 0, and
−1 [10,11]. Modulating a quadratic Zeeman (QZ) coupling
by microwaves, Evrard et al. [12] induced resonance between
the different magnetic sublevels, and the same group observed
entangled spin states [9]. This resonant phenomenon, known
as a parametric resonance [13], is essentially the same as the
Shapiro steps originally investigated in Josephson junctions
between superconductors [14] and thus is called Shapiro res-
onance. In the series of these works [9,12,13], the researchers
investigated the Shapiro resonance mainly in a restricted situ-
ation where a single-mode approximation is valid. Under this

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

approximation, all three magnetic sublevels have the same
spatial configuration, and thus we cannot address spin-wave
excitation with a finite wavelength as well as nontrivial mag-
netic pattern formations [15,16].

In this work, we theoretically study the Shapiro resonance
in a spin-1 BEC beyond the single-mode approximation.
Using the Gross-Pitaevskii equation (GPE) [17,18], we in-
vestigate the resonant dynamics starting from a polar state
by periodically modulating the QZ coupling. First, we an-
alytically derive the resonant condition by linearizing the
spin hydrodynamic equations equivalent to the GPE [19] and
subsequently applying Floquet’s theorem to the linearized
equations. Here, the resonant condition is identified by a
nonzero Floquet-Lyapunov (FL) exponent, which captures
the onset of the resonance. Second, we numerically solve
the one-dimensional (1D) GPE, demonstrating the validity of
our linear analysis and investigating the nonlinear dynamics
over a long time. Spin-wave excitations due to the nonlinear
effects are explained from the equations of motion and the
constraints on the hydrodynamic variables. Finally, we discuss
the experimental possibilities by using the parameters used in
the previous experiments [20–24].

The rest of this article is organized as follows. In Sec. II,
we introduce the GPE and the spin hydrodynamic equations
for a spin-1 spinor BEC. In Sec. III, we derive the analytical
expressions for the resonant conditions by a linear analysis
of the spin hydrodynamic equations. In Sec. IV, we show the
numerical results of the 1D GPE, showing that our analytical
results work well, and we investigate the long-time resonant
dynamics. In Sec. V, we discuss the experimental possibilities
for observing nonuniform Shapiro resonances. The summary
for this work is given in Sec. VI.
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II. MODELS

In this work, we study the dynamics of a spin-1 spinor
BEC within the mean-field approximation. Here, we introduce
the mean-field equation, namely the GPE, and subsequently
explain the spin hydrodynamic form [19], which is quite con-
venient for analytically investigating the Shapiro resonance in
Secs. III and IV.

A. Spin-1 Gross-Pitaevskii equation

We consider a spin-1 BEC in a uniform system without a
trapping potential. Under the mean-field approximation, the
macroscopic wave functions ψm of atoms in the magnetic
sublevel m = 1, 0,−1 obey the following GPE:

ih̄
∂

∂t
ψm =

(
− h̄2

2M
∇2 + q(t )m2

)
ψm

+ c0ρψm + c1

∑
m′=0,±1

F · f̂mm′ψm′ , (1)

where M is the atomic mass, and c0 and c1 are the strengths of
the spin-independent and spin-dependent interactions, respec-
tively. The sign of c1 determines the magnetism of the system:
The condensate is antiferromagnetic (AFM) for c1 > 0 and
ferromagnetic (FM) for c1 < 0. The total particle number
density ρ and the spin density Fμ (μ = x, y, z) are defined by

ρ =
∑

m=0,±1

|ψm|2, (2)

Fμ =
∑

m,m′=0,±1

ψ∗
m(f̂μ)mm′ψm′ , (3)

where f̂μ (μ = x, y, z) is the μ component of the spin-1 matrix
given by

f̂x = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, f̂y = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

f̂z =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠.

We assume that the QZ coupling strength q(t ) consists of a
static term and an oscillating term with frequency � as given
by

q(t ) = q0 + qosc sin(�t ), (4)

where q0 and qosc are the strengths of the static and oscillating
QZ couplings. Here, we eliminate the linear Zeeman coupling
without loss of generality because it can be removed when we
move onto the rotating frame of reference in spin space with
the Larmor frequency [10].

B. Spin hydrodynamic equations

We can rewrite GPE (1) without any approximation to the
equations of motion for the particle number density ρ, the
particle density current vμ, the spin density vector fμ, and the
nematic density tensor nμν (μ, ν = x, y, z), which are defined

by Eq. (2) and

vμ = h̄

2Mi

∑
m=0,±1

[ζ ∗
m(∇μζm) − (∇μζ ∗

m)ζm], (5)

fμ =
∑

m,m′=0,±1

ζ ∗
m(f̂μ)mm′ζm′ , (6)

nμν =
∑

m,m′=0,±1

ζ ∗
m

(
f̂μf̂ν + f̂ν f̂μ

2

)
mm′

ζm′ , (7)

where ζm ≡ ψm/
√

ρ is the normalized spinor wave function.
By taking the time derivative of the above quantities and
using GPE (1), we obtain the following spin hydrodynamic
equations [19]:

∂ρ

∂t
+ ∇ · (ρv) = 0, (8)

∂ (ρ fμ)

∂t
+ ∇ · (ρv(s)

μ

) = −2

h̄
ρq

∑
ν=x,y,z

εzμνnzν, (9)

∂ (ρnμν )

∂t
+ ∇ · (ρv(n)

μν

)
= − 1

2h̄
ρq

∑
λ=x,y,z

(εzμλδzν fλ + εzνλδzμ fλ)

+ c1

h̄
ρ2

∑
λ,η=x,y,z

(εμλη fλnνη + ενλη fλnμη ), (10)

∂vμ

∂t
+

∑
ν=x,y,z

(vν∇ν )vμ − h̄2

2M2
∇μ

∇2√ρ√
ρ

+ h̄2

4M2ρ

×
∑

ν,λ=x,y,z

∇νρ

{
1

2
[(∇μ fλ)(∇ν fλ) − fλ(∇μ∇ν fλ)]

+
∑

η=x,y,z

[(∇μnλη )(∇νnλη ) − nλη(∇μ∇νnλη )]

}

= − 1

M

{
c0∇μρ + c1

∑
ν=x,y,z

fν (∇μρ fν )

}
. (11)

Here, we have defined the spin current v(s)
μ and the nematic

current v(n)
μν as

v(s)
μ = fμv − h̄

M

∑
ν,λ=x,y,z

εμνλ

[
1

4
fν (∇ fλ)

+
∑

η=x,y,z

nνη(∇nλη )

]
, (12)

v(n)
μν = nμνv − h̄

4M

∑
λ,η=x,y,z

{
εμλη[ fλ(∇nνη ) − (∇ fλ)nνη]

+ ενλη[ fλ(∇nμη ) − (∇ fλ)nμη]

}
. (13)

Note that the number of variables in the spin hydrodynamic
equations is larger than in the three-component GPE (1).
This is because some of the variables in the spin hydrody-
namic equations are dependent on each other via the following

043090-2



SPIN-WAVE GROWTH VIA SHAPIRO RESONANCES IN A … PHYSICAL REVIEW RESEARCH 3, 043090 (2021)

constraints [19]: ∑
μ=x,y,z

nμμ = 2, (14)

∑
ν=x,y,z

nμν fν = fμ, (15)

1

4

∑
μ=x,y,z

f 2
μ = det nμν, (16)

The details are given in Ref. [19].
The previous works on Shapiro resonance [9,12,13] ana-

lyze the Madelung form of GPE (1), which is the equations
of motion for the density and phase of each component (see
Appendix A), under the single-mode approximation. In this
paper, we use the spin hydrodynamic equations rather than the
Madelung form since the linear analysis beyond the single-
mode approximation becomes simpler for the former case, as
discussed in Sec. III.

C. Parameter setup

In this study, we prepare a polar BEC, where all atoms
are spatially uniform and condensed in the m = 0 state, and
investigate how the numbers of the atoms in the m = ±1 state
increase via parametric resonance. We therefore choose pa-
rameters such that the polar state is stable when the oscillating
frequency � is off resonance. This condition is satisfied when
q(t ) moves in the polar phase region:

q(t ) >

{
2|c1|ρ̄ (c1 < 0),
0 (c1 > 0), (17)

where ρ̄ is the mean particle number density of the conden-
sate. In the following calculations, we choose q0, qosc > 0 and
q0 − qosc > max(0,−2c1ρ̄ ). We also assume � > 0 without
loss of generality.

The bulk chemical potential in the polar state is given by
c0ρ̄. The corresponding length and time are given by

ξ = h̄√
2Mc0ρ̄

, (18)

τ = h̄

c0ρ̄
, (19)

which we use as the characteristic scales of the system.

III. LINEAR ANALYSIS

In this section, we apply linear analysis to the spin hy-
drodynamic equations around the polar state. We employ
Floquet’s theorem to obtain the resonant conditions and the
FL exponents analytically.

A. Linearized spin hydrodynamic equations

We discuss the linear stability of the polar state,
(ψ1, ψ0, ψ−1) = (0,

√
ρ̄, 0). In the absence of fluctua-

tions, the particle current, the spin density vector, and
the nematic density tensor for the polar state are given

by

v̄ = 0, (20)

f̄ = 0, (21)

n̄μν =
{

1, (μ, ν) = (x, x), (y, y),
0, otherwise. (22)

We introduce small fluctuations, δρ, δ fμ, δnμν , and δvμ, and
write the hydrodynamic variables as

ρ(r, t ) = ρ̄ + δρ(r, t ), (23)

fμ(r, t ) = δ fμ(r, t ), (24)

nμν (r, t ) = n̄μν + δnμν (r, t ), (25)

vμ(r, t ) = δvμ(r, t ). (26)

By substituting them into Eqs. (8)–(11) and expanding the
equations up to the first order in the fluctuations, we ob-
tain 13 linearized equations. Among them, the equations for
δ fx, δ fy, δnxz, and δnyz include the driving QZ term and are
divided into two sets of coupled equations:

h̄
∂

∂t

(
A(r, t )
B(r, t )

)
= ±P̂(t )

(
A(r, t )
B(r, t )

)
, (27)

P̂(t ) =
(

0 h̄2

M ∇2 − 2q(t )
− h̄2

4M ∇2 + 1
2 q(t ) + c1ρ̄ 0

)
, (28)

where (A, B) = (δ fx, δnyz ) and (δ fy, δnxz ). Here, the plus and
minus signs on the right-hand side of Eq. (27) are for (A, B) =
(δ fx, δnyz ) and (δ fy, δnxz ), respectively. These equations indi-
cate that the transverse spin components, δ fx and δ fy, and the
off-diagonal elements of the nematic density tensors, δnyz and
δnxz, can be amplified by the driving QZ term. Thus, we call
them the resonant variables. Note that Eq. (27) is valid only
for the initial stages of the resonant dynamics since we have
neglected the nonlinear terms.

B. Application of Floquet’s theorem to Eq. (27)

Equation (27) can be transformed into an eigenvalue prob-
lem of an infinite-dimensional matrix by utilizing Floquet’s
theorem, which enables us to derive the resonant conditions.
First, we introduce the Fourier transform(

Ã(k, t )
B̃(k, t )

)
=

∫
dd r

(
A(r, t )
B(r, t )

)
e−ik·r, (29)

and rewrite Eq. (27) as

h̄
∂

∂t

(
Ã
B̃

)
= ±

(
0 −2εk − 2q(t )

1
2εk + 1

2 q(t ) + c1ρ̄ 0

)(
Ã
B̃

)
,

(30)

where εk = h̄2k2/(2M ). Second, we perform the linear trans-
formation such that the time-independent part of the matrix in
Eq. (30) is diagonalized. The linear transformation is given by(

SA(k, t )
SB(k, t )

)
=

(
2(εk + q0) 2(εk + q0)

−iEk iEk

)−1(
Ã(k, t )
B̃(k, t )

)
,

(31)
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where ±iEk are the eigenvalues of the matrix in Eq. (30) with
qosc = 0:

Ek =
√

(εk + q0)(εk + q0 + 2c1ρ̄). (32)

Then, Eq. (30) reduces to

d

dt

(
SA(k, t )
SB(k, t )

)
= ±

(
F̂ + qosc

Ek
sin(�t )Ĝ

)(SA(k, t )
SB(k, t )

)
(33)

with

F̂ = i

h̄

(
Ek 0
0 −Ek

)
, (34)

Ĝ = i

h̄

(
εk + q0 + c1ρ̄ −c1ρ̄

c1ρ̄ −(εk + q0 + c1ρ̄ )

)
. (35)

Note that Ek is identical to the spin-wave excitation energy
obtained by the Bogoliubov analysis under the static QZ term.
Equation (33) indeed reproduces the equation of motion for
the spin wave when qosc = 0.

Because Eq. (33) has the periodicity of T = 2π/�, we
can apply Floquet’s theorem: Without loss of generality, the
functions SA and SB can be expanded as(

SA

SB

)
= eλFt

∞∑
j=−∞

(
Cj,A

Cj,B

)
ei 2π j

T t , (36)

where λF is the Floquet exponent. The summation over j ∈ Z
comes from the Fourier expansion of T -periodic functions,
and Cj,A and Cj,B are the Fourier components. By substituting
Eq. (36) into Eq. (33), we obtain

Q̂ |C〉 = iλF |C〉 , (37)

where Q̂ and |C〉 are the infinite-dimensional matrix and the
column vector, respectively, given by

Q̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . . 0

. . . F̂j−1 −bĜ
bĜ F̂j −bĜ

bĜ F̂j+1
. . .

0 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

|C〉 = (. . . ,Cj−1,B, Cj,A, Cj,B, Cj+1,A, . . .)T (39)

with

F̂j =
(

j� − Ek/h̄ 0
0 j� + Ek/h̄

)
, (40)

b = qosc

2Ek
. (41)

Here, we omit the sign ± from Eq. (37) because both equa-
tions provide the same result about the real part of the Floquet
exponents (see Appendix B). The FL exponent is defined as
the real part of λF:

λFL = Re[λF]. (42)

If there exists a positive λFL, SA and SB exhibit exponential
increase, that is, the Shapiro resonance. Therefore, we refer
to the positive ones as the FL exponents in the following
discussions unless otherwise noted.

In the following sections, we solve the infinite-dimensional
eigenvalue problem of Eq. (37) by assuming b 
 1. This
assumption is satisfied for large Ek . With the parameters dis-
cussed in Sec. II C, the off-diagonal elements of Q̂ are proved
to be smaller than Ek/2, i.e., b(Ĝ)l,m < Ek/2 with l, m = 1, 2,
which also supports the validity of the perturbative expansion
below. The proof is given in Appendix C.

C. Resonant conditions

We start from the simplest case of b = 0, at which the
matrix (38) becomes diagonal and has the eigenvalues

iλF = ω j,± ≡ j� ± Ek

h̄
( j ∈ Z). (43)

Note that all λF’s are purely imaginary in this case, which
means that the amplitudes of the spin density vectors and
nematic density tensors do not grow in time.

A small finite b couples the above eigenmodes, and its
effect becomes prominent when two eigenvalues are close to
each other. Note that Q̂ in Eq. (37) is a pseudo-Hermitian
matrix, i.e., there exists a Hermitian matrix η such that
Q̂† = η†Q̂η [25]; In the present case, η is given by η =
Diag [. . . , 1,−1, 1,−1, . . . ]. In such a case, two close eigen-
values can coalesce and become a pair of complex conjugate
values. Thus, λF’s have nonzero real parts around the in-
tersections of ω j,± ( j = 0,±1,±2, . . . ) as a function of �

[see Fig. 1(a)]. By solving ω j1,+ = ω j2,− with j1, j2 ∈ Z, we
obtain the intersection points at

� = 2Ek

Jh̄
, (44)

where J ≡ j2 − j1. Since � is assumed to be positive, we
restrict J to be a positive integer. Equation (44) is the ap-
proximated condition for the Shapiro resonance with spatial
degrees of freedom.

To confirm the above argument, we numerically calculate
λFL from Eq. (33) by following the method used in Ref. [26]:
For a fixed wave number, we numerically solve Eq. (33) from
t = 0 to T with the initial conditions (SA, SB)T = (1, 0)T and
(0, 1)T, obtaining S1(T ) and S2(T ), respectively; The 2 × 2
matrix Û = (S1(T ), S2(T )) is the one-period time-evolution
operator and its eigenvalue λU is related to the Floquet expo-
nent as λU = eλFT ; Thus, we obtain the FL exponent from the
numerically obtained λU as λFL = Re [(ln λU )/T ]. The color
plot in Fig. 1(b) shows the numerical result of λFL, where we
obtain two FL exponents with opposite signs and plot only
the positive one in Fig. 1(b). We also plot Eq. (44) with dotted
curves in the same figure, which show an excellent agreement
with the numerical result.

Note that although Eq. (37) has an infinite number of
eigenvalues, we obtain only a pair of FL exponents in the
numerical procedure, suggesting that the imaginary part of
the eigenvalues of Q̂ can only take two values corresponding
to the numerically obtained λFL. Indeed, we will see below
(and also in Appendix B) that the detailed analysis of the
infinite-dimensional matrix Q̂ results in a pair of FL exponents
with opposite signs.
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FIG. 1. (a) Floquet exponents λF as functions of driving fre-
quency � at b = 0, where all λF’s are purely imaginary as given by
Eq. (43). Shown are iλF = ω j,± with j = 0, ±1, ±2, whose intersec-
tion points are denoted by filled red circles. Note that these points are
just a subset of the infinite number of the intersection points of λF’s.
(b) k and � dependence of the FL exponent obtained by numerically
solving Eq. (33) with (q0, qosc, c1ρ̄) = (0.5, 0.39, −1/20)c0ρ̄. The
dotted curves depict the analytically obtained resonance condition
h̄� = 2Ek/J for J = 1, 2, 3, and 4. Although the resonance at J = 4
is not so visible in this color scale, λFL is nonzero in the vicinity
of h̄� = 2Ek/4. Note that plotting λFL at � 
 Ek/h̄ is difficult be-
cause the intervals between the resonant lines 2Ek[1/J − 1/(J + 1)]
become infinitesimally small.

D. Finite-dimensional matrix approximation

We have obtained the resonant condition of Eq. (44), but
our numerical results in Fig. 1(b) show that there is a width
of the resonant frequency. In this section, we analytically
calculate the FL exponent and the width of the resonance
by approximating the infinite-dimensional matrix in Eq. (37)
with a finite one [27,28].

Our procedure is as follows. Let |Cj,±〉 denote the normal-
ized eigenmode at b = 0 with eigenvalue ω j,±. We consider
the case when the oscillating frequency is close to the Jth
resonance, h̄� � 2Ek/J , at which |Cj,+〉 and |Cj+J,−〉 are
almost degenerate. In such a case, we can neglect the other
modes, and Q̂ is approximated by the 2 × 2 matrix 〈a| Q̂ |a′〉
with a, a′ = Cj,+ and Cj+J,−. This procedure is similar to
what we do in calculating the energy bands of the nearly
free electron model, where a band gap opens at the bound-
ary of the Brillouin zone. However, the 2 × 2 matrix is not
enough for J > 1 because the off-diagonal elements vanish
for J > 1; In the perturbative expansion of Q̂ in powers of b,
the coupling between |Cj,+〉 and |Cj+J,−〉 first appears in the
Jth order term. We therefore need to take into account the
intermediate states that appear in the coupling between |Cj,+〉
and |Cj+J,−〉, and approximate Q̂ with the one projected onto
the restricted Hilbert space. Below, we demonstrate the cases
of J = 1 and 2.

FIG. 2. Comparison between λ
(ana)
FL and λ

(num)
FL for (a) J = 1 and

(b) J = 2. Here, λ
(ana)
FL is the analytical result given by Eqs. (46) and

(D1) for (a) and (b), respectively, and λ
(num)
FL is the numerically ob-

tained one shown in Fig. 1(b). The parameters are the same as those
in Fig. 1(b). For better visibility, we color the curves according to the
value of kξ . We can see that the FDMA works well, in particular, at
the large wave numbers.

1. J = 1

We consider the coupling between |Cj,+〉 and |Cj+1,−〉
which is the first order in b. We approximate the matrix Q̂
with the 2 × 2 matrix( 〈Cj,+| Q̂ |Cj,+〉 〈Cj,+| Q̂ |Cj+1,−〉

〈Cj+1,−| Q̂ |Cj,+〉 〈Cj+1,−| Q̂ |Cj+1,−〉
)

=
(

(F̂j )2,2 −b(Ĝ)2,1

b(Ĝ)1,2 (F̂j+1)1,1

)

= 1

h̄

(
jh̄� + Ek −ibc1ρ̄

−ibc1ρ̄ ( j + 1)h̄� − Ek

)
, (45)

from which we obtain the FL exponent

λ
(ana)
FL = Re

⎡
⎣ 1

2h̄

√(qoscc1ρ̄

Ek

)2

− (h̄� − 2Ek )2

⎤
⎦. (46)

The FL exponent takes a nonzero value when the frequency �

is in the resonant region:

−qosc|c1|ρ̄
Ek

< h̄� − 2Ek <
qosc|c1|ρ̄

Ek
. (47)

Note that although j takes an arbitrary integer, the j depen-
dence of the eigenvalue appears only in the real part of iλF.
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That is, all the intersection points in Fig. 1(a) at h̄� = 2Ek

give different Im[λF]’s but the same FL exponent. This is
consistent with the fact that we have only two FL exponents
in the numerical calculation.

To see the validity of the analytical result (46), we compare
λ

(ana)
FL and λ

(num)
FL in Fig. 2(a), where λ

(num)
FL is the numerically

obtained FL exponent shown in Fig. 1(b). One can see that the
analytical result well reproduces the width and the amplitude
of the resonance obtained by the numerical calculation.

2. J = 2

In the case of J = 2, we consider the coupling between
|Cj−1,+〉 and |Cj+1,−〉. These states couple with each other via
the intermediate state |Cj,±〉 in the second order of b. Note
that, in the same order of b, the couplings with |Cj−2,±〉 and
|Cj+2,±〉 states shift the eigenvalues associated with |Cj−1,+〉
and |Cj+1,−〉, respectively. Thus, we need to solve the follow-
ing 8 × 8 matrix eigenvalue problem:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(F̂j−2)1,1 0 −b(Ĝ)1,2 0 0 0 0 0
0 (F̂j−2)2,2 −b(Ĝ)2,2 0 0 0 0 0

b(Ĝ)2,1 b(Ĝ)2,2 (F̂j−1)2,2 −b(Ĝ)2,1 −b(Ĝ)2,2 0 0 0
0 0 b(Ĝ)1,2 (F̂j )1,1 0 −b(Ĝ)1,1 0 0
0 0 b(Ĝ)2,2 0 (F̂j )2,2 −b(Ĝ)2,1 0 0
0 0 0 b(Ĝ)1,1 b(Ĝ)1,2 (F̂j+1)1,1 −b(Ĝ)1,1 −b(Ĝ)1,2

0 0 0 0 0 b(Ĝ)1,1 (F̂j+2)1,1 0
0 0 0 0 0 b(Ĝ)2,1 0 (F̂j+2)2,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− iλF Î

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (48)

The analytical expression of the eigenvalue is so complicated
that we show the details in Appendix D. We compare the
obtained analytical solution λ

(ana)
FL with the numerical one in

Fig. 2(b). As in the case of J = 1, one can see that λ
(ana)
FL

exhibits excellent agreement with the numerical result.

E. FL exponent on resonance

Although we can calculate λFL for higher J in a similar
manner as in the cases of J = 1 and 2, it requires tedious
calculations. We note that λFL at h̄� = 2Ek/J can be obtained
more easily by using the conventional perturbation theory
for degenerate states. We regard b as a small perturbation
parameter and rewrite Eq. (37) in the following form:

(Ê + bV̂ ) |C〉 = iλF |C〉 , (49)

where Ê and bV̂ are the matrices composed of the diagonal
and off-diagonal elements of Q̂, respectively. As we have dis-
cussed above, at h̄� = 2Ek/J , the states |Cj,+〉 and |Cj+J,−〉
are degenerate at b = 0. These states are coupled in the Jth
order perturbation, giving rise to a nonzero λFL. Following the
conventional perturbation theory for degenerate states, λFL’s
for J = 1, 2, and 3 are obtained as the imaginary parts of the
eigenvalues of the 2 × 2 matrices, respectively, given by

V (J=1)
ll ′ = b 〈Cl | V̂ |Cl ′ 〉 , (50)

V (J=2)
ll ′ = b2

∑
l1

〈Cl | V̂ |Cl1〉 〈Cl1 | V̂ |Cl ′ 〉
ωl − ωl1

, (51)

V (J=3)
ll ′ = b3

∑
l1,l2

〈Cl | V̂ |Cl1〉 〈Cl1 | V̂ |Cl2〉 〈Cl2 | V̂ |Cl ′ 〉
(ωl − ωl1 )(ωl − ωl2 )

, (52)

where l, l ′ = ( j,+) and ( j + J,−), and we take the sum-
mation over l1, l2 = ( j, s) for all possible combinations of
j ∈ Z and s = + and − other than ( j,+) and ( j + J,−). The

resulting FL exponents are given by

λ
(J=1)
FL = qosc|c1|ρ̄

2h̄Ek
, (53)

λ
(J=2)
FL = q2

osc|c1|ρ̄
6h̄E3

k

√
9E2

k + 5(c1ρ̄)2, (54)

λ
(J=3)
FL = 9q3

osc|c1|ρ̄
128h̄E5

k

(
8E2

k + 9(c1ρ̄ )2
)
. (55)

The results for J = 1 and 2 coincide with Eqs. (46) and (D1),
respectively. We can calculate the FL exponent for J � 4 in
the same manner. Here, we note that the diagonal terms of
V (J ′ )

ll ′ with even J ′ < J generally lift the degeneracy of ( j,+)
and ( j + J,−) states, which indeed contributes to Im[λF] for
J = 3.

Figure 3 compares numerical results of λFL (dotted lines)
with Eqs. (53)–(55) (solid lines). As one can see, the approxi-
mation works quite well for larger kξ because the perturbation
parameter b = qosc/2Ek becomes smaller for larger kξ .

IV. NONLINEAR RESONANT DYNAMICS

We numerically solve the spin-1 spinor GPE (1) in a one-
dimensional system and investigate dynamics of the Shapiro
resonance beyond the linear analysis. We first confirm the
validity of the linear analysis in Sec. III. We then study the
nonlinear dynamics using the hydrodynamic variables and
discuss how the long-time dynamics proceeds.

A. Numerical results using the GPE

We solve Eq. (1) for a 1D system of a system size Lx/ξ =
256 with a periodic boundary condition. The initial wavefunc-
tion is given by

ψm(x, t = 0) = √
ρ̄δm,0 +

√
ρ̄

100
Rm,1(x)ei2πRm,2(x), (56)
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FIG. 3. Floquet-Lyapunov exponents at h̄� = 2Ek/J with J = 1,
2, and 3 as functions of kξ , where the dotted curves show the
numerical results and the solid curves depict Eqs. (53)–(55). The
parameters are (q0, qosc, c1ρ̄) = (0.5, 0.3, +1/20)c0ρ̄. The analyti-
cal results well reproduce the numerical ones, in particular, at the
large wave numbers.

where Rm,l (x) (l = 1, 2) is a uniform random number
in [0,1]. We choose the parameters as (q0, qosc, h̄�) =
(0.5c0ρ̄, 0.39c0ρ̄, 2Ekres ) with kres = 10 × 2π/Lx. According
to Eq. (46), � is the resonance frequency of J = 1, and the
spin waves with the wavelength Lx/10 will grow. The inter-
action parameters are set to be c1/c0 = 1/20 and −1/20 for
AFM and FM BECs, respectively.

In Fig. 4, we plot the time evolution of the spin density
fx(x, t ) which is expected to grow as eλFLt within the linear
analysis. Figures 4(a) and 4(b) show the spatial and tempo-
ral distributions of fx(x, t ) for the AFM and FM systems,
respectively. As expected from the linear analysis, the spin
waves with wavelength Lx/10 grow in the early stage (see
the enlarged views in Fig. 4). In the late stage (t/τ � 1500),
fx(x, t ) in the AFM system exhibits finer structure than that in
the FM system. This can be seen more clearly in k space.

Figure 5 shows the dynamics in k space. Here, we
define the Fourier components in the 1D system as
Ã(k) ≡ 1

Lx

∫ Lx

0 A(x)e−ikxdx and plot | f̃x(k, t )|2 averaged over
1000 samples of random initial states given by Eq. (56).
Figures 5(a1) and 5(a2) show the time evolution of
| f̃x(kres, t )|2 for the AFM and FM systems, respectively, where
the dashed lines are the analytical result e2λFLt with λFL

given in Eq. (53). One can clearly see that, for both cases,
| f̃x(kres, t )|2 in the early stage agrees well with the linear
analysis.

The linear analysis breaks down in the long-time dynamics,
and | f̃x(kres, t )|2 in Figs. 5(a1) and 5(a2) deviates from the
exponential growth. The breakdown of the linear analysis is
also seen in the k dependence of | f̃x(k, t )|2 shown in Fig. 5(b),
where the results for AFM (FM) systems are shown with open
(filled) circles. As one can see, in addition to the main peak
at k = kres, small peaks appear around odd multiples of kres

at t/τ = 400. They are consequences of the nonlinear effect,
as mentioned in the next subsection. As time evolves, these
peaks become broader, and | f̃x(k, t )|2 eventually distributes

FIG. 4. Time evolution of spin density fx in (a) antiferromag-
netic (AFM) and (b) ferromagnetic (FM) systems, for which we
use the spin-dependent interactions c1/c0 = 1/20 and −1/20, re-
spectively. The parameters for the QZ terms are (q0, qosc, h̄�) =
(0.5c0ρ̄, 0.39c0ρ̄, 2Ekres ). The insets show the enlarged view of the
early and late stages. The spin density in the AFM system tends to
have finer structure than that in the FM one. The growing speed of fx

in the AFM system is slightly slower than that in the FM one because
λFL of the former is smaller than that of the latter.

in the wide range of k. Figure 5(b) directly shows that the
sign of c1 significantly alters the late dynamics especially at
t/τ � 680: The spectra of the AFM system have larger values
in the high wave number region than those of the FM system.
This is consistent with the real space configuration of fx(x, t )
in Fig. 4.

B. Excitations beyond linear analysis

We discuss nonlinear effects not captured under the linear
analysis by considering nonlinear terms of the hydrodynamic
variables. Here, we first focus on fz and nzz, which are never
resonant under the linear analysis.
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FIG. 5. (a1),(a2) Time evolution of | f̃x (kres, t )|2 in the AFM and
FM systems. The parameters used here are the same as those of
Fig. 4. According to our linear analysis, | f̃x (kres, t )|2 grows with
exp(2λFLt ), and one can see that the dashed lines proportional to
exp(2λFLt ) are parallel to the numerical data. (b) k-space spectra
of the spin density fx (x, t ) at t/τ = 400, 560, 680, and 1400. The
parameters are the same as those of (a1) and (a2). The vertical dashed
lines are at k = kres, 3kres, 5kres, and 7kres. All data are obtained by
averaging over 1000 samples with different initial noises.

We rewrite the constraints (15) and (16) in terms of the
fluctuations introduced in Eqs. (23)–(26) as

δ fxδnxy + δ fyδnyz + δ fz(δnzz − 1) = 0, (57)∣∣∣∣∣∣
1 + δnxx δnxy δnxz

δnxy 1 + δnyy δnyz

δnxz δnyz δnzz

∣∣∣∣∣∣ = 1

4

[
(δ fx )2 + (δ fy)2 + (δ fz )2

]
.

(58)

Note that the resonant variables δ fx, δ fy, δnxz, and δnyz grow
in time at resonance, and thus we expect that they are

dominant in Eqs. (57) and (58). Taking the resonant (nonres-
onant) variables up to the second (first) order, we obtain

δ fz � δ fxδnxz + δ fyδnyz, (59)

δnzz � 1
4 [(δ fx )2 + (δ fy)2] + (δnxz )2 + (δnyz )2. (60)

This means that fz and nzz can increase owing to the products
of the two resonant variables. Next, we apply the Fourier
transformation to Eqs. (59) and (60), and obtain

δ f̃z(k) �
∑

k′
[δ f̃x(k′)δñxz(k − k′) + δ f̃y(k′)δñyz(k − k′)],

(61)

δñzz(k) �
∑

k′

[
1

4
δ f̃x(k′)δ f̃x(k − k′)

+ 1

4
δ f̃y(k′)δ f̃y(k − k′) + δñxz(k′)δñxz(k − k′)

+ δñyz(k′)δñyz(k − k′)
]
, (62)

from which we find that δ f̃z and δñzz have peaks at k = 0 and
±2kres because the resonant variables grow around k = ±kres.
Note that f̃z is almost zero at k = 0 because of the conserva-
tion law of the total longitudinal magnetization

∫
fz(r, t )dd r

which is a small value coming from the initial noise.
The spectra of other nonresonant variables ñxx, ñyy, and ñxy

can be understood from directly approximating Eq. (10) in the
same manner as the above:

∂

∂t
δnxx � 2c1ρ̄

h̄
δ fyδnxz, (63)

∂

∂t
δnyy � 2c1ρ̄

h̄
δ fxδnyz, (64)

∂

∂t
δnxy � c1ρ̄

h̄
(δ fyδnxz − δ fxδnyz ), (65)

which implies that these variables grow around k = 0 and
±2kres.

The peaks in the nonresonant variables then induce the
higher-order peaks in the resonant variables, f̃x, f̃y, ñxz, and
ñyz, which is explained under the following two assump-
tions. First, ρ(x, t ) is supposed to be almost constant in the
real space such that its spatial derivative is negligible. This
assumption is valid when the spin-independent interaction
energy (c0ρ̄) is much larger than the energy scales of the
dynamics. Second, v(x, t ) is supposed to be negligibly small
compared to other hydrodynamic variables. We can numer-
ically confirm the validity of the assumptions as shown in
Fig. 6. Under these assumptions and from Eqs. (9) and (10),
one can see that the time derivatives of the resonant variables
have terms, in addition to Eq. (27), given by products of
one resonant variable and one nonresonant variable. This fact
means, in Fourier space, new peaks of the resonant variables
will grow at the sum or difference of the peak wave num-
bers of the resonant and nonresonant variables, which are
k = ±kres and ±3kres. Similarly, the higher-order terms to
Eqs. (61)–(65) are given by products of two resonant variables
or two nonresonant variables, being consistent with peaks at
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FIG. 6. k-space spectra of number density ρ(x, t ) (top) and ve-
locity v(x, t ) (bottom) in the AFM and FM systems at t/τ = 480.
The figure shows that the number density is almost spatially constant
because the amplitude of the k = 0 mode is much larger than that
of the k 
= 0 ones. The bottom figure shows that the velocity is
small compared to other hydrodynamic variables (see Fig. 7). The
parameters used here are the same as those of Figs. 4 and 5.

±4kres and ±6kres. As a result, the spectra of resonant (non-
resonant) variables have peaks at odd (even) multiples of kres.

We systematically investigate the peak structures of all
the spin and nematic variables. Our numerical calculations in
Fig. 7 demonstrate that the resonant variables ( f̃x, f̃y, ñxz, and

ñyz) have peaks around odd multiples of kres and the others
( f̃z, ñxx, ñyy, ñzz, and ñxy) have peaks around zero and even
multiples of kres in the early stage of the nonlinear dynamics.
This is consistent with the results predicted by Eqs. (59)–(65).
These spectra of the numerical results are similar to the typical
pumped spectra seen in classical fluid [29]. By taking the fluc-
tuation terms to higher orders, we expect that all the spectra
in the early stage in the figure are explained.

Using these results, we also understand the time evolution
of ρ±1, which is related to nzz and fz via

ρ±1 = ρ
nzz ± fz

2
. (66)

Thus, ρ̃±1 grows around zero and even multiples of kres. This
means that the increase in the particle number of the m =
±1 component, which characterizes the onset of the Shapiro
resonances in the previous experimental works [9,12,13], is
attributed to the nonlinear effect.

V. DISCUSSION

A. Experimental possibility

We discuss the experimental possibility of observing spin-
wave excitations due to the Shapiro resonance on the basis
of our linear analysis of Sec. III. As shown in Sec. III D, the
J = 1 mode has a larger FL exponent than those with higher J .
This means that the nonuniform Shapiro resonance with J = 1
is experimentally more accessible. We, therefore, address the
resonance with J = 1 by using realistic experimental parame-
ters in what follows.

FIG. 7. k-space spectra of all the spin density vectors and nematic density tensors at t/τ = 480. The parameters used here is the same
as those of Figs. 4–6. The open and filled circles are for the AFM and FM systems, respectively. As described in the main text, the resonant
variables ( f̃x, f̃y, ñxz, and ñyz ) have peaks around odd multiples of kres while others have peaks around even multiples of kres. The magnitude of
peaks in δ fz and δnzz are consistent with the order we estimate from Eqs. (61) and (62), respectively.
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TABLE I. Evaluation of the parameters according to the experiments in Refs. [20–24] for the J = 1 Shapiro resonance. In column c1ρ(0),
the values marked with TF are calculated using the TF approximation, and the others are the values specified in the literature. In the evaluation
of �, ��, and τFL, we use the effective spin-dependent interaction energy c′

1ρ̄
′ instead of c1ρ̄, where c′

1ρ̄
′ is related to c1ρ(0) via Eqs. (E2)

and (E4).

Atomic species Dim. Ref. c1ρ(0)/h (Hz) q0/|c1ρ(0)| qosc/q0 2π/kres (μm) �/(2π ) = 2Ekres/h (Hz) ��/(2π ) (Hz) τFL (s)

87Rb 1 [20] (−12.4)TF 2.8 0.48 5.3 2.2 × 102 2.5 0.25
23Na 2 [21] (34.0)TF 4.0 0.3 (33, 23) 3.7 × 102 12 0.053
23Na 1 [22] 1.20 × 102 1.13 0.1 68 4.0 × 102 11 0.059
23Na 1 [23] (8.3)TF 16 0.9 29 3 × 102 9 0.07
7Li 2 [24] −160 1.9 0.030 (15,12) 4.8 × 102 9.6 0.066

To consider the experimental possibility, we introduce two
important quantities: One is an inverse of the maximum FL
exponent τFL ≡ (λFL|max)−1, and the other is the width ��

for the resonant frequency. Here, τFL is the characteristic
timescale for the growth of spin waves, thus should be suf-
ficiently longer than the time resolution of the experiments
and shorter than a lifetime of a BEC. On the other hand, ��

should be narrow enough to specify the wave number of the
resonant spin waves, but not too narrow so that it is easy to
adjust in experiments. Here, we show two constraints for τFL

and �� derived from Eqs. (46) and (47):

τFL = 2Ekh̄

qosc|c1|ρ̄ � h̄

|c1|ρ̄ , (67)

τFL�� = 4. (68)

The inequality (67) indicates that the lower bound of τFL is
the characteristic timescale of spin dynamics, which is a few
to a few tens of milliseconds in typical experiments. The
constraint (68) is a tradeoff relation between �� and τFL.
We have used these constraints to choose the experimental
parameters in the following discussion.

Using the obtained analytical results of Eqs. (46) and (47),
we evaluate τFL at h̄� = 2Ekres and �� for the parameters in
the experiments [20–24]. We fix q0 to be the QZ energy at the
magnetic field of 700 mG and choose qosc such that the polar
state becomes stable for off-resonant �. The values of the
hyperfine splitting energy and the interaction strengths c0 and
c1 are given in Refs. [10,24,30,31]. As for the resonant wave
number kres, which determines h̄� = 2Ekres , we choose kres =
10π/Rx for a quasi-1D BEC and kres = (10π/Rx, 10π/Ry )
for a quasi-two-dimensional (quasi-2D) BEC, where Rx and
Ry are the largest and the second-largest Thomas-Fermi (TF)
radii, respectively. Note that, in low-dimensional BECs, the
spin interaction energy c1ρ̄ in Eqs. (46) and (47) and inequal-
ities (67) and (68) is replaced with the effective one, c′

1ρ̄
′,

as derived in Appendix E. Here, c′
1ρ̄

′ is related to the peak
density ρ(0) of the 3D distribution via Eqs. (E2) and (E4) for
quasi-1D and quasi-2D BECs, respectively.

We summarize the estimated values of τFL and �� in Ta-
ble I, together with the values of c1ρ(0), q0, qosc, kres, and �.
The obtained sets of values can be experimentally accessible.

B. Heating process and its dependence on the spin-dependent
interaction

Finally, we comment on the differences in heating pro-
cesses in the FM (c1 < 0) and AFM (c1 > 0) systems. We

numerically calculate the time evolution of the kinetic energy,
the QZ energy, the spin-independent interaction energy, the
spin-dependent interaction energy, and the total energy, which
are respectively defined by

Ekin =
∑

m=0,±1

∫
ψ∗

m

(
− h̄2

2M

∂2

∂x2

)
ψmdx, (69)

Eqz = q(t )
∫

(|ψ1|2 + |ψ−1|2)dx, (70)

Edens = c0

2

∫
ρ2dx, (71)

Espin = c1

2

∫
ρ2

∑
μ=x,y,z

f 2
μdx, (72)

Etotal = Ekin + Eqz + Edens + Espin, (73)

where Eqz(t ) = 1
T

∫ t+T
t Eqz(t ′)dt ′ is the time-averaged QZ en-

ergy with T = 2π/�. Figure 8 shows the time-evolution of
these energies, from which we find a clear difference in Ekin;
Ekin in the AFM system grows almost linearly with time,
whereas the slope of Ekin in the FM system is quite small at
the beginning and changes around t/τ ∼ 3000. This behavior
is consistent with the spatial distributions and spectra of fx in
Figs. 4 and 5, where the finer spin structures are generated in
the AFM system compared with the FM system. The origin
for this difference is not uncovered at this point and remains
as a future work.

VI. CONCLUSION

In this work, considering the polar state in the uniform
spin-1 BECs, we theoretically investigated the Shapiro res-
onance driven by a periodic forcing of the QZ term. Unlike
the previous works which discuss the Shapiro resonance in
a strongly confined BEC without spatial degrees of freedom
[9,12,13], we took into account the spatial dependence of the
condensate and investigated the growth of spin-wave excita-
tions.

First, we studied the Shapiro resonance within the lin-
ear analysis by employing the spin hydrodynamic equations
equivalent to the GPE. Applying Floquet’s theorem to the
equations, we analytically obtained the real parts of the Flo-
quet exponents, i.e., the FL exponents, featuring the growth
rate of the resonant spin and nematic variables by us-
ing the two kinds of approximations: the finite-dimensional
matrix approximation and the degenerate perturbation
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FIG. 8. Time evolution of the energies in (a) AFM and (b) FM systems. The parameters used here are the same as those of Figs. 4–7, and
each energy is defined in Eqs. (69)–(73). The QZ energy Eqz = q(t )(N1 + N−1) (shaded with light green) rapidly oscillates around its mean
value Eqz (drawn with dark-green solid line). The total energy is summed up with Eqz instead of Eqz [see Eq. (73)]. These data are obtained by
averaging over ten samples with different initial noises.

approximation. From these results, we identified the reso-
nant conditions and found the spin-wave excitation with finite
wave-numbers, which cannot be described by the single-mode
approximation.

Second, we numerically solved the spin-1 GPE and study
the validity of the linear analysis and the nonlinear dynamics
in the late stage. In the k-space time evolution of the hydro-
dynamic variables, we confirmed that the resonant variables
are excited in the early stage of the dynamics as expected in
the linear analysis. However, as time goes by, we found the
emergence of spin-wave excitations at wave numbers of inte-
ger multiples of the resonant one, which cannot be predicted
by our linear analysis. We explained this nonlinear effect by
using the constraints on the hydrodynamic variables and the
spin hydrodynamic equations. Continuing to drive the QZ
term, we investigated the long-time dynamics and observed
that, in the AFM spinor BEC, finer spin distributions emerged
compared with the FM spinor BEC.

In the final section, we discussed the experimental possi-
bilities for observing spin-wave excitations due to the Shapiro
resonance on the basis of our linear analysis. Using the param-
eters used in the previous experiments [20–24], we showed
that a driving QZ field at a frequency in the order of 100 Hz
under a bias field of 700 mG can induce the growth of spin
waves at the experimentally accessible length and timescales.
Also, we commented on the heating process and its depen-
dence on the sign of c1, which is still not uncovered. Our
results give an experimental procedure to excite spin waves
of a specific wave number selectively, which would be useful
for future studies of spin dynamics.
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APPENDIX A: MADELUNG FORM OF THE SPINOR GPE

In the main text, we use the spin hydrodynamic equations,
but the previous studies deal with the Madelung form of the
spinor GPE to investigate the Shapiro resonance under the
single-mode approximation. Here, we explain the latter form
and its consequence.

Substituting ψm = √
ρm(r, t )e−iθm (r,t ) into the GPE before

eliminating the linear Zeeman term p, we obtain the following
equations from the real and imaginary parts of the GPE:

∂

∂t
ρm−∇

[
ρm

h̄

M
∇θm

]
= (6m2 − 4)

c1

h̄
ρ0

√
ρ1ρ−1 sin(�θ ),

(A1)

h̄
∂

∂t
θm = h̄2

2M

[
−∇2√ρm√

ρm
+ (∇θm)2

]

− pm + qm2 + c0ρ + Gm, (A2)

where �θ = θ1 + θ−1 − 2θ0 and

Gm =

⎧⎪⎪⎨
⎪⎪⎩

c1
[
ρ1 + ρ0 − ρ−1 + ρ0

√
ρ−1

ρ1
cos(�θ )

]
(m = 1),

c1[ρ1 + ρ−1 + 2
√

ρ1ρ−1 cos(�θ )] (m = 0),

c1
[−ρ1+ρ0 + ρ−1+ρ0

√
ρ1

ρ−1
cos(�θ )

]
(m = −1).

These equations of motion elucidate that the phase dif-
ference �θ induces changes in the number fraction in each
magnetic sublevel. This mechanism is similar to the Joseph-
son effect. Since the right-hand side of Eq. (A1) includes the
number densities of all components, the particle flow between
spin components vanishes at the place where at least one of
the densities ρ0,±1 becomes zero. One can also see from the
Madelung form that a spatially uniform linear Zeeman term p
does not affect the dynamics of ρm.

The equations of motion (A1) and (A2) certify the follow-
ing identity:

dN1

dt
= dN−1

dt
= −2

dN0

dt
, (A3)

where Nm ≡ ∫
ρmdd r. This is due to the conservation of the

longitudinal magnetization,
∫

Fzdd r. Therefore, no resonance
occurs when we start from a fully polarized state along the +z
or −z direction.
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APPENDIX B: SYMMETRY PROPERTY OF THE FL
EXPONENTS OF EQ. (33)

We prove that Eq. (33) gives the same set of the FL
exponents independently of the sign on the right-hand side.
Below, we refer to Eq. (33) with plus and minus signs as
Eqs. (33+) and (33−), respectively, and denote their Floquet
exponent as λF+ and λF−. The proof is in two steps: (i) We
first derive the relation Re[λF−] = −Re[λF+]. (ii) We then
show that the Floquet exponents λF± and −λ∗

F± always appear
in a pair, which means positive and negative FL exponents
appear in a pair. Thus, Eqs. (33+) and (33−) have the same
set of FL exponents, and hence we solve only Eq. (37), which
corresponds to Eq. (33+), in the main text.

Step (i). Suppose that S+(t ) ≡ (SA+, SB+)T is a solution of
Eq. (33+). By replacing t with −t + π/� in Eq. (33+), we
obtain

d

dt
S+

(
−t + π

�

)
= −

(
F̂ + qosc

Ek
sin(�t )Ĝ

)
S+

(
−t + π

�

)
,

(B1)

which indicates that

S−(t ) = S+
(
−t + π

�

)
(B2)

is a solution of Eq. (33−). According to Floquet’s theorem, the
solutions S±(t ) can be rewritten as S±(t ) = eλF±t p±(t ) with
a periodic function p±(t ) = p±(t + T ). Using these forms,
Eq. (B2) is rewritten as

eλF−t p−(t ) = eλF+(−t+π/�) p+
(
−t + π

�

)
. (B3)

Comparing the t dependencies of both sides, we obtain
Re[λF+] = −Re[λF−] and Im[λF+] = −Im[λF−] mod �.

Step (ii). Suppose that Q̂ has an eigenvalue ε. Since Q̂ is
not a Hermitian matrix, it has right and left eigenstates:

Q̂|C〉 = ε|C〉, (B4a)

〈C̃|Q̂ = 〈C̃|ε. (B4b)

By taking the Hermitian conjugate of the second equation, we
obtain

Q̂†|C̃〉 = ε∗|C̃〉. (B5)

Here, we use the pseudo-Hermiticity of Q̂: As we have ex-
plained in Sec. III C, Q̂ is a psudo-Hermitian matrix and
satisfies

Q̂† = η†Q̂η, (B6)

with η = Diag[. . . , 1,−1, 1,−1, . . . ]. By substituting
Eq. (B6) into Eq. (B5) and multiplying by η from the
left, we obtain

Q̂η|C̃〉 = ε∗η|C̃〉. (B7)

That is, ε∗ is also an eigenvalue of Q̂, and the corresponding
eigenstate is given by η|C̃〉. Since (iλF) is an eigenvalue of
Q̂ [see Eq. (37)], (iλF)∗ = i(−λ∗

F) is also an eigenvalue of
Q̂. It follows that if there is a nonzero FL exponent λFL =
Re[λF], there is always another nonzero FL exponent −λFL =
Re[−λ∗

F].

APPENDIX C: VALIDITY OF THE FINITE-DIMENSIONAL
MATRIX APPROXIMATION AND THE PERTURBATION

APPROXIMATION

The off-diagonal elements of the matrix Q̂ in Eq. (38) are
proved to be less than the half of the diagonal ones under the
polar regime given by Eq. (17):∣∣∣∣b(Ĝ)l,m

Ek

∣∣∣∣ <
qosc(εk + q0 + c1ρ̄ )

2E2
k

= qosc(εk + q0 + c1ρ̄ )

2(εk + q0)(εk + q0 + 2c1ρ̄)

<

⎧⎪⎪⎨
⎪⎪⎩

qosc(εk + qosc + |c1|ρ̄ )

2(εk + qosc)(εk + qosc + 2|c1|ρ̄)
(c1 < 0)

qosc

2(εk + q0)
(c1 > 0)

<
1

2
.

Here, we use the condition (17) from the second to the third
line. This confirms the validity of the finite-dimensional ma-
trix approximation and the perturbation approximation in this
paper.

APPENDIX D: FINITE-DIMENSIONAL MATRIX
APPROXIMATION SOLUTION IN J = 2

In the finite-dimensional matrix approximation, the eigen-
value equation (48) of the 8 × 8 matrix for the J = 2
resonance obviously has a solution around Eq. (44). There-
fore, we expand the solution as � = Ek/h̄ + δ� and iλF =
jEk/h̄ + iδλF, which corresponds to ( j1, j2) = ( j − 1, j +
1), and take up to the second order with respect to δλF and
δ�. Then, the equation becomes quadratic and the solution is
given by

iδλF = − jδ� ±
√

Y

X
, (D1)

where

X = 36α8 + 288α7γ + 14αβ4γ 3 + 3β4γ 4

+ 36α6(β2 + 24γ 2) + 72α5(3β2γ + 16γ 3)

+ α4(9β4 + 448β2γ 2 + 576γ 4)

+ 4α3(9β4γ + 88β2γ 3) + α2(43β4γ 2 + 64β2γ 4),

Y = (δ�)2[36α8 + 288α4γ + 72α5γ (3β2 + 16γ 2)

36α6(β2 + 24γ 2) − 8β4γ 4 − 64αβ4γ 3 + 640α2β2γ 4

+ 4α2β4γ 2 + 576α4γ 4 + 592β2γ 2 + 9α4β4

− 928α3β2γ 3 + 18α3β4γ ]

+ (δ�)Ek[−16β4γ 4 − 72αβ4γ 3 + 96α2β2γ 4

− 36α2β4γ 2 + 24α4β2γ 2 + 96α3β2γ 3]

− 9α4β4γ 2 − 36α3β4γ 3 − 41α2β4γ 4 − 10αβ4γ 4.

Here, we define α = εk + q0, β = qosc, and γ = c1ρ̄. The
above results were obtained using Mathematica [32]. In
Fig. 2(b), the curves labeled with λ

(ana)
FL represents the positive

imaginary part of δλF in Eq. (D1), showing good agreement
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with the numerically obtained one. Note that although we
have calculated for ( j1, j2) = ( j − 1, j + 1), the imaginary
part of Eq. (D1) does not depend on j, suggesting that the
FL exponent, i.e., Im[λF], is the same for all combinations of
( j1, j2) satisfying j2 − j1 = 2. We can also confirm that the
FL exponent at the resonance point h̄� = Ek coincides with
Eq. (54) by substituting h̄� = Ek into Eq. (D1) and expanding
it with respect to b up to the second order.

APPENDIX E: EFFECTIVE SPIN-DEPENDENT
INTERACTION ENERGY IN A LOW-DIMENSIONAL BEC

Although our theoretical analysis in the main text deals
with a uniform system, many experiments prepare low-
dimensional BECs strongly confined in one or two directions.
For such systems, we obtain the same results as in the main
text by using the low-dimensional GPE, where the interaction
energies are replaced with the ones averaged along with the
directions of strong confinement. Below, we derive the effec-
tive spin-dependent interaction energy, c′

1ρ̄
′, for quasi-1D and

quasi-2D BECs, following Ref. [33].
We start from describing how to derive the 1D GPE. We

suppose that the confinement along the y and z directions is
strong enough such that the cloud size along these directions is
smaller than the length scale of spin waves we are considering.
In such a case, as in Ref. [33], we can factorize the macro-
scopic wave function as ψm(x, y, z, t ) = �1D

m (x, t )G1D(y, z).
Here, G1D(y, z) is given by the TF distribution,

G1D(y, z) =
√

2

πRyRz

(
1 − y2

R2
y

− z2

R2
z

)
, (E1)

where Ry and Rz are the TF radii, and we set the origin
of the spatial coordinate to be the center of the harmonic
potential. Then, integrating the 3D GPE with y and z, we can
derive the 1D GPE with the effective interaction coefficients
c′

j = 4c j/(3πRyRz ) ( j = 0, 1). After the same calculation as
in the text with the 1D GPE, we obtain Eqs. (46) and (47),
where c1ρ̄ is replaced with c′

1ρ̄
′. Here, ρ̄ ′ = |�1D

0 (0, 0)|2 is
the 1D number density of the spatially uniform initial state
in the polar state, which is related to the 3D initial number
density at x = 0 via ρ(0) = ρ̄ ′[G1D(0, 0)]2. Thus, we can use
Eqs. (46) and (47) by replacing c1ρ̄ with

c′
1ρ̄

′ = 2

3
c1ρ(0) (1D). (E2)

For the case of a quasi-2D system with a strong confine-
ment along the z axis, we assume the factorization ψm(r, t ) =
�2D

m (x, y, t )G2D(z), where G2D(z) is given in the TF approxi-
mation by

G2D(z) =
√

3

4Rz

(
1 − z2

R2
z

)
. (E3)

Then, by integrating the 3D GPE with z, we obtain the 2D
GPE with the effective interaction coefficients c′

j = 3/(5Rz )
( j = 0, 1). Thus, as in the case of 1D GPE, we obtain Eqs. (46)
and (47), where c1ρ̄ is replaced with

c′
1ρ̄

′ = 4

5
c1ρ(0) (2D). (E4)

In the 2D case, ρ̄ ′ = |�2D
0 (0, 0, 0)|2 is the 2D number density

of the spatially uniform initial state in the polar state, and we
have used the relation ρ(0) = ρ̄ ′[G2D(0)]2.
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