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Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware
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We show a pulse-efficient circuit transpilation framework for noisy quantum hardware. This is achieved by
scaling cross-resonance pulses and exposing each pulse as a gate to remove redundant single-qubit operations
with the transpiler. Crucially, no additional calibration is needed to yield better results than a CNOT-based
transpilation. This pulse-efficient circuit transpilation therefore enables a better usage of the finite coherence
time without requiring knowledge of pulse-level details from the user. As demonstration, we realize a continuous
family of cross-resonance-based gates for SU(4) by leveraging Cartan’s decomposition. We measure the benefits
of a pulse-efficient circuit transpilation with process tomography and observe up to a 50% error reduction in the
fidelity of RZZ (θ ) and arbitrary SU(4) gates on IBM Quantum devices. We apply this framework for quantum
applications by running circuits of the quantum approximate optimization algorithm applied to MAXCUT. For
an 11-qubit nonhardware native graph, our methodology reduces the overall schedule duration by up to 52% and
errors by up to 38%.
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I. INTRODUCTION

Quantum computers have the potential to impact a broad
range of disciplines such as quantum chemistry [1], finance
[2,3], optimization [4,5], and machine learning [6,7]. The
performance of noisy quantum computers has been improv-
ing as measured by metrics such as the quantum volume
[8,9] or the coherence of superconducting transmon-based
devices [10–12], which has exceeded 100 μs [13,14]. To
overcome limitations set by the noise, several error mitiga-
tion techniques such as readout error mitigation [15,16] and
Richardson extrapolation [17,18] have been developed. Gate
families with continuous parameters further improve results
[19–23] as they require less coherence time than circuits in
which the CNOT is the only two-qubit gate. Aggregating
instructions and optimizing the corresponding pulses, using,
e.g., gradient ascent algorithms such as GRAPE [24], re-
duces the duration of the pulse schedules [25]. However, such
pulses require calibration to overcome model errors [26,27],
which typically needs closed-loop optimization [28,29] and
sophisticated readout methods [30,31]. This may therefore
be difficult to scale because calibration is time consuming
and increasingly harder as the control pulses become more
complex. Some of these limitations may be overcome with
novel control methods [32] and error robust control [33,34].
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Since calibrating a two-qubit gate is time-consuming, IBM
Quantum [14] backends only expose a calibrated CNOT gate
built from echoed cross-resonance pulses [35,36] with rotary
tones [37]. Quantum circuit users must therefore transpile
their circuits to CNOT gates, which often makes a poor usage
of the limited coherence time. With the help of Qiskit pulse
[38,39] users may extend the set of two-qubit gates [40–42].
Such gates can in turn generate other multiqubit gates more
effectively than when the CNOT gate is the only two-qubit
gate available [41]. However, creating these gates comes at
the expense of additional calibration experiments, which is
often impractical on a queue-based quantum computer. Fur-
thermore, only a limited number of users can access these
benefits due to the need for an intimate familiarity with quan-
tum control. In Ref. [43] the authors show a pulse-scaling
methodology to create the control pulses for the continuous
gate set RZX (θ ), which they leverage to create RY X (θ ) gates
and manually assemble into pulse schedules. Crucially, the
scaled pulses improve gate fidelity without requiring any ad-
ditional calibration experiments to determine the new values
of the pulse parameters.

Here we extend the methodology of Ref. [43] to arbitrary
SU(4) gates and show how to make pulse-efficient circuit
transpilation available to general users without having to
manipulate pulse schedules. In Sec. II we review the pulse-
scaling methodology of Ref. [43] and carefully benchmark
the performance of RZZ gates. Next, in Sec. III we leverage
this pulse-efficient gate generation to create arbitrary SU(4)
gates, which we benchmark with quantum process tomogra-
phy [44,45]. In Sec. IV we show how pulse-efficient gates can
be included in automated circuit transpiler passes. Finally, in
Sec. V we demonstrate the advantage of our pulse-efficient
transpilation by applying it to the quantum approximate opti-
mization algorithm (QAOA) [4].
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FIG. 1. RZZ (θ ) characterization for qubits one and two on ibmq_paris. (a) Continuous gate implementation where U1,1 =
RZ (π/2)

√
XRZ (π/2) and its corresponding schedule in (c) for θ = 0.5. Here RZX (θ ) is a scaled cross-resonance pulse with a built-in echo.

The virtual Z gates, indicated by the � symbols, all have an angle π/2 in (c). (b) Double-CNOT benchmark and its corresponding schedule in
(d) for θ = 0.5. (e) Gate fidelity F [Umeas, RZZ (θ )] of the double-CNOT implementation (blue) and the scaled cross-resonance pulses (orange).
The vertical line indicates the angle at which w = 0. (f) The relative error between the two implementations (green dots), and the theoretical
expectations for a coherence limited gate (solid black line). (g) The deviation angle �θ = θ − θmax corresponding to the data in (e) that
achieves the maximum gate fidelity F [Umeas, RZZ (θmax)].

II. SCALING HARDWARE-NATIVE
CROSS-RESONANCE GATES

We consider an all-microwave fixed-frequency transmon
architecture that implements the echoed cross-resonance
gate [36]. A two-qubit system in which a control qubit is
driven at the frequency of a target qubit and evolves under
the time-dependent cross-resonance Hamiltonian Hcr(t ). The
time-independent approximation of Hcr(t ) is

H̄cr = 1
2 (Z ⊗ B + I ⊗ C), (1)

where B = ωZI I + ωZX X + ωZY Y + ωZZZ and C = ωIX X +
ωIY Y + ωIZZ . Here X , Y , and Z are Pauli matrices, I is
the identity, and ωi j are drive strengths. An echo sequence
[36] and rotary tones [37] isolate the ZX interaction, which
ideally results in the unitary RZX (θ ) = exp(−iθZX/2). The
rotation angle θ is tcrωZX (Ā) where tcr is the duration of the
cross-resonance drive. The drive strength ωZX has a nonlinear
dependency on the average drive amplitude Ā as shown by a
third-order approximation of the cross-resonance Hamiltonian
[39,46].

IBM Quantum systems expose to their users a calibrated
CNOT gate built from RZX (π/2) rotations implemented by
the echoed cross-resonance gate. The pulse sequence of
RZX (π/2) on the control qubit is CR(π/4)XCR(−π/4)X .
Here CR(±π/4) are flat-top pulses of amplitude A∗, width
w∗, and Gaussian flanks with standard deviations σ , truncated
after nσ times σ . Their area is α∗ = |A∗|[w∗ + √

2πσerf (nσ )]
where the star superscript refers to the parameter values of the
calibrated pulses in the CNOT gate. During each CR pulse
rotary tones are applied to the target qubit to help reduce the
magnitude of the undesired ωIY interaction. We can create
RZX (θ ) rotations by scaling the area of the CR and rotary
pulses following α(θ ) = 2θα∗/π as done in Ref. [43]. To
create a target area α(θ ) we first scale w to minimize the

effect of the nonlinearity between the drive strength ωZX (Ā)
and the pulse amplitude. When α(θ ) < |A∗|σ√

2πerf (nσ ) we
set w = 0 and scale the pulse amplitude such that |A(θ )| =
α(θ )/[σ

√
2πerf (nσ )].

We investigate the effect of the pulse scaling methodology
with quantum process tomography by carefully benchmark-
ing scaled RZZ (θ ) gates [see Fig. 1(a)] with respect to the
double-CNOT decomposition; see Fig. 1(b). The schedule
of the scaled gate is significantly shorter than the double-
CNOT benchmark for small angles; compare Fig. 1(c) with
Fig. 1(d). We measure the process fidelity F[Umeas, RZZ (θ )]
between the target gate RZZ (θ ) and the measured gate Umeas.
To determine Umeas we prepare each qubit in |0〉, |1〉, (|0〉 +
|1〉)/

√
2, and (|0〉 + i |1〉)/

√
2 and measure in the X , Y , and

Z bases. Two-qubit process tomography therefore requires
a total of 148 circuits for each angle of interest, which in-
cludes four circuits needed to mitigate readout errors [15,16].
The scaled pulses consistently have a better fidelity than the
double CNOT benchmark as demonstrated by the data gath-
ered on ibmq_paris with qubits one and two; see Fig. 1(e).
Appendix B shows key device parameters and additional data
taken on other devices, which illustrate the reliability of the
methodology. The relative error reduction of the measured
gate fidelity correlates well to the relative error reduction of
the coherence limited average gate fidelity [37,47,48]; see
Fig. 1(f) and details in Appendix C. We therefore attribute
the error reduction to the shorter schedules as they use less
coherence time.

In addition to the gate fidelity, we compare the deviation
�θ from the target angle of both implementations of the
RZZ (θ ) rotation. The deviation �θ is the difference between
the target rotation angle θ and the angle θmax, which satis-
fies F[Umeas, RZZ (θmax)] � F[Umeas, RZZ (θ ′)] ∀ θ ′. Since the
RZ (θ ) is virtual [49] the implementation with two CNOT gates
does not depend on the desired target angle; see Fig. 1(g).
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FIG. 2. Cartan’s KAK decomposition. (a) Circuit representation
of the KAK decomposition of a two-qubit gate U ∈ SU (4) with
k1 = (A1 ⊗ A0) and k2 = (B1 ⊗ B0). (b) Circuit in (a) without
k1,2 and decomposed into three CNOT gates and transpiled to the
basis gates (RZ (θ ),

√
X , CNOT). (c) Circuit in (a) decomposed

into the hardware-native RZX gates. Here each RZX gate has a
built-in echo as shown in (d). Transpiling circuit (c) to the basis
(RZ (θ ),

√
X , X, RZX (θ )) with the echoes exposed to the transpiler

results in the pulse-efficient circuit shown in (e) where the scaled
RZX gates do not have an echo. We replaced RZ (nπ/2)

√
XRZ (mπ/2)

with Un,m and U1,α = RZ (π/2)
√

XRZ (α) to shorten the
notation.

However, the scaled gate has two competing nonlinearities:
an expected nonlinearity from the amplitude scaling and an
unexpected one from scaling the width. As the width is
scaled down, the angle deviation increases from ∼10 mrad to
∼35 mrad. Once the amplitude scaling begins, a nonlinearity
arises which reduces the deviation angle of the scaled gates.
At α(θ ) ≈ |A∗|σ√

2πerf (nσ )/2 the angle deviation of the
scaled gates once again matches the deviation of the bench-
mark within the measured standard deviation.

III. CREATING ARBITRARY SU(4) GATES

We now generalize the results from Sec. II. Cartan’s de-
composition of an arbitrary two-qubit gate U ∈ SU(4) is
U = k1Ak2, which we refer to as Cartan’s KAK decompo-
sition [50]. Here k1 and k2 are local operations, i.e., k1,2 ∈
SU(2) ⊗ SU(2), and A = eikT ·�/2 ∈ SU(4) \ SU(2) ⊗ SU(2)
is a nonlocal operation with �T = (XX,YY, ZZ ) [51–53]; see
Fig. 2(a). The nonlocal term is defined by the three angles
kT = (α, β, γ ) ∈ R3 satisfying α + β + γ � 3π/2 and π �
α � β � γ � 0. Geometrically, the KAK decomposition is
represented in a tetrahedron known as the Weyl chamber in
the three-dimensional space; see Fig. 3. Every point (α, β, γ )
in the Weyl chamber (except in the base) defines a continuous
set of two-qubit gates equivalent up to single-qubit rotations
[51]. For instance, the point ( π

2 , 0, 0), labeled as C in Fig. 3,
corresponds to the local equivalence class of the CNOT gate,

FIG. 3. Weyl chamber of SU(4). The coordinates of the cham-
ber are O = (0, 0, 0), A1 = (π, 0, 0), A2 = ( π

2 , π

2 , 0), and A3 =
( π

2 , π

2 , π

2 ). C corresponds to the CNOT gate. The blue dots represent
the data from Fig. 4 taken on ibmq_mumbai.

and the point ( π
2 , π

2 , π
2 ), labeled as A3, represents the SWAP

gate.
Since the rotations generated by XX , YY , and ZZ are

locally equivalent to rotations generated by ZX we decom-
pose the nonlocal eikT ·�/2 term into a circuit with three RZX

rotations; see Fig. 2(c). We shorten the total duration of
the circuit by exposing the echo in the cross-resonance gate
[see Fig. 2(d)] to the transpiler. This ensures that at most
one single-qubit pulse is needed on each qubit between each
nonechoed cross-resonance RZX gate. By scaling the cross-
resonance pulses we create the RZX gates for arbitrary angles
and therefore generalize the methods of Sec. II to arbitrary
gates in SU(4).

We generate RZX -based circuits as shown in Fig. 2(e) for
(α, β, γ ) angles chosen at random from the Weyl chamber and
measure their fidelity using process tomography with read-
out error mitigation. Each RZX -based circuit is benchmarked
against its equivalent three CNOT decomposition presented
in Ref. [54] and shown in Fig. 2(b). The experiments are
run on ibmq_dublin and ibmq_mumbai with 2048 shots for
each circuit, which we measure three times to gain statistics.
The pulse-efficient RZX -based decomposition of the circuits
results in a significant fidelity increase for almost all angles;
see Fig. 4. A subset of the data is also shown in the Weyl
chamber in Fig. 3. We observe that not all data points taken
on ibmq_dublin consistently improve the fidelity, see also
Appendix B. We attribute this to either noise in ibmq_dublin
or a nonlinear response in the pulse transfer function. The
correlation between the relative error reduction and the rela-
tive schedule duration indicates that the gains in fidelity come
from a better usage of the finite coherence time as the scaled
cross-resonance pulses achieve the same unitary in less time.
Remarkably, these results were achieved without recalibrating
any pulses.

IV. PULSE-EFFICIENT TRANSPILER PASSES

The quantum circuits of an algorithm are typically
expressed using generic gates such as the CNOT or controlled-
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FIG. 4. Gate error reduction of the pulse-efficient SU(4) gates
relative to the three CNOT benchmark for random angles in the Weyl
chamber measured on ibmq_dublin, qubits one and two (light blue
circles), and ibmq_mumbai, qubits 19 and 16 (dark blue triangles).
The x-axis is the duration of the pulse-efficient SU(4) gates relative to
the three CNOT benchmark. The angles of three gates are indicated
in parentheses as example.

phase gate and then transpiled to the hardware on which
they are run [55]. Quantum algorithms can benefit from the
continuous family of gates presented in Secs. II and III if
the underlying quantum circuit is either directly built from, or
transpiled to, the hardware native RZX (θ ) gate. We now show
how to transpile quantum circuits to a RZX (θ )-based circuit
with template substitution [56].

A template is a quantum circuit made of |T | gates acting
on nT qubits that compose to the identity U1 · · ·U|T | = 1; see,
e.g., Figs. 5(b) and 5(c). In a template substitution transpi-
lation pass we identify a subset of the gates in the template
Ua · · ·Ub that match those in a given quantum circuit. Next,
if a cost of the matched gates is higher than the cost of
the unmatched gates in the template we replace Umatch =
Ua · · ·Ub with Umatch = U †

a−1 · · ·U †
1 U †

|T | · · ·U †
b+1. As cost we

use a heuristic that sums the cost of each gate defined as an
integer weight which is higher for two-qubit gates; details

are provided in Appendix A. The complexity of the template
matching algorithm on a circuit with |C| gates and nC qubits
is

O
(|C||T |+3|T ||T |+4nnT −1

C

)
, (2)

i.e., exponential in the template length [56]. We therefore
create short templates where the inverse of the intended
match, i.e., U †

match, is specified as a single gate with rules
to further decompose it into RZX and single-qubit gates in
a subsequent transpilation pass. In these decompositions we
expose the echoed cross-resonance implementation of RZX to
the transpiler by writing RZX (θ ) = XRZX (−θ/2)XRZX (θ/2).
This allows the transpiler to further simplify the single-qubit
gates that would otherwise be hidden in the schedules of the
two-qubit gates, as exemplified in the circuit in Fig. 5(e).
Finally, once the RZX (θ ) gates are introduced into the quan-
tum circuit we run a third transpilation pass to attach pulse
schedules to each RZX (θ ) gate built from the backend’s cal-
ibrated CNOT gates following the procedure in Sec. II. The
attached schedules consist of the scaled cross-resonance pulse
and rotary tone without any echo. Details on the Qiskit imple-
mentation are given in Appendix A.

V. IMPROVING QAOA WITH
CARTAN’S DECOMPOSITION

We use the QAOA [4,57,58], applied to MAXCUT, to
demonstrate gains of a pulse-efficient circuit transpilation on
noisy hardware. QAOA maps a quadratic binary optimiza-
tion problem with n decision variables to a cost function
Hamiltonian ĤC = ∑

i, j αi, jZiZ j where αi j ∈ R are problem
dependent and Zi are Pauli Z operators. The ground state
of ĤC encodes the solution to the problem. Next, a classical
solver minimizes the energy 〈ψ (β, γ )|ĤC |ψ (β, γ )〉 of a trial
state |ψ (β, γ )〉 created by applying p-layers of the operator
exp(−iβk

∑ j−n
i=0 Xj ) exp(−iγkĤC ) where k = 1, . . . , p to the

equal superposition of all states.
Implementing the operator exp(−iγkĤC ) requires applying

the exp(−iγkαi, jZZ ) gate on pairs of qubits. However, to
overcome the limited connectivity of superconducting qubit
chips [59], several RZZ gates are followed or preceded by a

FIG. 5. Pulse-efficient transpilation example. (a) Circuit of the cost operator for a QAOA circuit implemented on three qubits connected in
a line. (b), (c) Templates of the RZZ and phase-swap gates, respectively. Here RZZ (θ ) and SWAP(θ ) hold the rules with which to decompose
them into the hardware-native RZX gates. (d) Circuit resulting from the template matching of (b) and (c) performed on circuit (a). (e) Circuit
resulting from a transpilation of (d), which uses the decomposition rules of RZZ (θ ) and SWAP(θ ) into RZX . To shorten the circuit figure we
replaced RZ (nπ/2)

√
XRZ (mπ/2) with Un,m and c = 0.215.
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FIG. 6. Depth-one QAOA energy landscape. (a) Noiseless simu-
lation of the cut value, averaged over all 4096 bit-strings sampled
from |ψ (β, γ )〉, obtained using the QASM simulator for the
weighted graph shown in (b). The maximum cut, with value 28, is
indicated by the color of the nodes in (b). Panels (c) and (e) show
hardware results obtained by transpiling to CNOT gates and by using
the RZX pulse-efficient methodology, respectively. Panels (d) and (f)
share the same color scale and show the absolute deviation from the
ideal averaged cut values in panels (c) and (e), respectively.

SWAP resulting in the unitary operator

SWAP(θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 0 eiθ 0
0 eiθ 0 0
0 0 0 1

⎞
⎟⎟⎠ (3)

up to a global phase. When mapped to the KAK decom-
position SWAP(θ ) corresponds to kT = (ηπ/2, ηπ/2, θ +
ηπ/2)) where η = −1 if θ > 0 and 1 otherwise. This al-
lows us to reduce the total cross-resonance duration using the
methodology presented in Sec. III.

We perform a depth-one QAOA circuit for an 11-node
graph, shown in Fig. 6(b), built from CNOT gates. We map
the decision variables zero to 10 to qubits 7, 10, 12, 15, 18,
13, 8, 11, 14, 16, 19 on ibmq_mumbai, respectively. Since the
graph is non-hardware-native eight SWAP gates are needed
to implement the circuits. In QAOA the optimal values of
(β, γ ) are found with a classical optimizer [60]. Here we
scan β and γ from ±2 rad and ±1 rad, respectively, as we
submit jobs through the queue of the cloud-based quantum
computers. For each (β, γ ) pair we run the circuits with the
noiseless QASM simulator in Qiskit [see Fig. 6(a)] and twice
on the hardware. The first hardware run is done using a CNOT
decomposition with the Qiskit transpiler on optimization level
three; see Fig. 6(c) for results. The second run is done with
the pulse-efficient circuit transpilation; see Fig. 6(e) for re-
sults. Here we first perform the template substitution with the

FIG. 7. QAOA schedule durations. (a) Duration of the sched-
uled quantum circuits transpiled to CNOTs with optimization level
three (blue circles) and with the pulse-efficient methodology (orange
triangles). In both cases we removed the final measurements from
the quantum circuits. The angle γ = 0 corresponds to the trivial
operation and therefore results in the same schedule duration for both
methods. (b) Length of the pulse efficient schedules relative to the
CNOT-based schedules.

RZZ (θ ) and SWAP(θ ) templates, shown in Figs. 5(b) and 5(c);
see Appendix A for further details. A second transpilation
pass then exposes the RZX (θ ) gates to which we attach pulse
schedules in a third transpilation pass following Secs. II–IV.
In each case we measure 4096 shots. The pulse-efficient cir-
cuits produce less noisy average cut values [compare Fig. 6(c)
with Fig. 6(e)] and have a lower absolute deviation from
the noiseless simulation than the circuits transpiled to CNOT
gates; compare Fig. 6(d) with Fig. 6(f). The maximum error in
the cut value averaged over the sampled bit strings is reduced
by 38% from 3.65 to 2.26. We attribute the increased quality
of the results to the decrease in total cross-resonance time and
the fact that the pulse-efficient transpilation keeps the number
of single-qubit pulses to a minimum. In total, we observe
a reduction in total schedule duration ranging from 42% to
52% depending on γ when using the pulse efficient transpi-
lation methodology; see Fig. 7. Since the schedule duration
of RZZ (γαi, j ) and SWAP(γαi, j ) decreases and increases as
γ decreases, respectively, we observe a nonmonotonous re-
duction in the schedule duration of the QAOA circuit as a
function of γ .

VI. DISCUSSION AND CONCLUSION

The results in Secs. II and III showed that by scaling
cross-resonance gates we can automatically create a contin-
uous family of gates which implements SU(4). These scaled
gates typically have shorter pulse schedules and higher fideli-
ties than the digital CNOT implementation. This fidelity is
limited by coherence, imperfections in the initial calibration,
and nonlinear effects showing that it is easier to engineer
pulses for systems with a linear response. Crucially, the re-
sulting gate-tailored pulse schedules do not require additional
calibration experiments and can therefore be automatically
generated by the transpiler. In the future, if quantum systems
become stable enough and models accurate enough so that
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closed-loop optimal control is not necessary [26,31], it may
be possible to embed open-loop optimal control [24,25,61]
in transpiler passes such as template matching. Transpilation
passes, as discussed in Sec. IV, can be leveraged to identify
and attach the scaled pulse schedules to the gates in a quantum
circuit. Here the template-matching algorithm of Ref. [56]
can accommodate multiqubit gates, such as the iToffoli gate
[62], but can be computationally costly. Alternatively, tran-
spiler passes that decompose a series of two-qubit gates into
RXX (α), RYY (β ), and RZZ (γ ) may run faster but are limited to
hardware with two-qubit interactions. Furthermore, exposing
the echo in the cross-resonance gate to the transpiler allows
further simplifications of the single-qubit gates. We used this
pulse-efficient transpilation methodology to reduce errors in
an 11-qubit depth-one QAOA.

Scaled gates are particularly appealing for Trotter-based
applications, as shown in Ref. [43], and could therefore benefit
quantum simulations [63]. Future work may also include scal-
ing direct cross-resonance gates [9] and benchmarking their
impact on quantum volume [8]. Methods to interpolate pulse
parameters based on a set of reference RZX (θ ) gates, cali-
brated at a few reference angles θ , might also improve the gate
fidelity and help deal with nonlinearities between the rotation
angle θ and pulse parameters. For variational algorithms, such
as the variational quantum eigensolver, the scaled SU(4) gates
may allow for better results due to the shorter schedules while
still being robust to some unitary errors such as angle errors
[64,65].

We believe that the methods presented in our work will
help users of noisy quantum hardware to reap the benefits
of pulse-level control without having to know its intricacies.
This can improve the quality of a broad class of quantum
applications running on noisy quantum hardware.
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APPENDIX A: QISKIT IMPLEMENTATION

Quantum circuits often have repeating subcircuits with
different parameters. For instance, QAOA circuits include
many RZZ (γαi j ) and SWAP(γαi j ) gates where γ is one of
the variational parameters and the {αi j} depend on the prob-
lem instance. We therefore need parametric templates when
running the template substitution algorithm.

We extended the Qiskit implementation of Ref. [56] to
parametric templates. To avoid a symbolic description of the
unitary matrix of each gate we first match gates by qubits
and name. This is, however, not sufficient to create a valid
match since, for example, the parametric template in Fig. 8(a)
produces two tentative matches on the circuit in Fig. 8(b).
We therefore form a system of equations based on the ten-
tative match. If this system of equations accepts a solution the
match is valid. For example, the tentative match in Fig. 8(b),
indicated by the dashed blue box, results in the system of

FIG. 8. (a) Parametric template of a controlled-Z gate. (b) Circuit
on which the template matching is run. The dashed blue and dotted
purple boxes indicate potential matches based on circuit instruction
names and qubits.

equations
⎧⎨
⎩

−θ = −2
−θ = −2

θ = 2
, (A1)

which accepts the solution θ = 2 and is therefore valid. How-
ever, the second tentative match, highlighted by the dotted
purple box, results in the system of equations

⎧⎨
⎩

−θ = 3
−θ = 3

θ = 3
, (A2)

which has no solution and is therefore not valid.
We achieve a pulse-efficient circuit transpilation with

Qiskit by using three transpilation steps shown in Fig. 9.
First, the TemplateOptimization transpilation pass is ap-
plied with the SWAP and rzz templates as shown in Figs. 5(b)
and 5(c). The next step, a standard transpiler pass with
a low optimization level, i.e. one, exposes the rzx defi-
nition of the gates in the matched templates. Finally, the
RZXCalibrationBuilderNoEcho class scales the pulses of
the cross-resonance gates and attaches them to the RZX (θ )

FIG. 9. Example of a circuit transpilation that achieves a pulse-
efficient circuit transpilation.
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FIG. 10. 11 qubit QAOA circuit with γ = 1 and β = −2 after the template substitution. The final measurement instructions have been
omitted.

gates in the circuit. Figure 10 exemplifies the result of the first
transpilation pass applied to the QAOA circuit in Sec. V.

The template optimization pass requires a cost dictio-
nary to determine if it is favorable to replace the matched
gates Umatch = Ua · · ·Ub from a template with the Her-
mitian conjugate of the remaining part of the template
U †

a−1 · · ·U †
1 U †

|T | · · ·U †
b+1. The cost dictionary has gates as keys

and their cost as value. The cost of Ua · · ·Ub is the sum of the
costs of each individual gate Ua to Ub. We used the cost dictio-
nary {‘sx’: 1, ‘x’: 1, ‘rz’: 0, ‘cx’: 2, ‘rzz’:
0, ‘swap’: 6, ‘phase_swap’: 0} which assigns a zero
cost to the rzz and phase_swap gates, which correspond to
the pulse-efficient implementation of RZZ (θ ) and SWAP(θ ).
Single-qubit gates have unit cost except for rz, which is
implemented with virtual Z-rotations. The CNOT gate, i.e.,
cx, and the standard SWAP gate, i.e., swap have costs two
and six, respectively. This cost dictionary ensures that the
template substitution will include RZZ (θ ) and SWAP(θ ) in
the case of a match. Future work could improve this heuristic
cost dictionary either by using the fidelity of the gates (if this
metric is available) or the duration of the underlying pulse
schedules as cost.

APPENDIX B: PROPERTIES OF THE QUANTUM DEVICES
AND ADDITIONAL DATA

Since the qubit coherence times as well as the CNOT gate
duration and error mainly limit the fidelity of the scaled cross-
resonance gates, we list their values for the qubits and devices
we experimented with in Table I. To illustrate that scaling
imperfect cross-resonance gates improves the gate fidelity
we measured the process fidelity on several IBM Quantum
devices and qubit pairs. In almost all measurements the scaled
gates have a higher fidelity than the double CNOT benchmark,
and the relative error reduction increases as the schedule du-
ration decreases; see Fig. 11.

Figure 12 shows additional quantum process tomogra-
phy results for Cartan-decomposed circuits chosen at random
in the Weyl chamber. The experiments were performed on
ibmq_dublin [see Fig. 12(a)] and ibmq_paris using different
qubit pairs [see Figs. 12(b)–12(d)]. For almost all angles the
relative error reduction is positive which demonstrates the

advantage of a hardware-native, scaled cross-resonance gate-
based circuit implementation.

APPENDIX C: THEORETICAL COHERENCE LIMIT

In Sec. II we compared the relative decrease in gate error
to the coherence limit on the average gate error E . This limit
is implemented in Qiskit Ignis for two qubits a and b as E =
3
4 (1 − u1 − u2) where

u1 = 1
15 (e−t/T1,a + e−t/T1,b + e−t/T1,a−t/T1,b ), (C1)

u2 = 2
15 (e−t/T2,b + e−t/T2,b−t/T1,a + e−t/T2,a

+ e−t/T2,a−t/T1,b + 2e−t/T2,a−t/T2,b ). (C2)

The derivation of this limit is discussed in more detail in
Appendix G of Ref. [37]. Here t is the gate duration, while
T1,a and T2,a are the T1 and T2 times for qubit a. Since the

TABLE I. Summary of the properties of the CNOT gates and
coherence times for the qubits used to benchmark the performance
of the scaled cross-resonance gates.

CNOT

Error Duration T1 times T2 times
Device (%) (ns) (μs) (μs)

ibmq_mumbai
q1, q2 1.27 739 102, 157 34, 228
q16, q19 0.84 754 84, 141 105, 132

ibmq_paris
q1, q2 1.70 597 66, 92 82, 128
q13, q14 1.28 434 100, 23 27, 33
q18, q15 5.36 448 86, 74 103, 50
q18, q17 1.76 725 41, 71 94, 157

ibmq_dublin
q1, q2 0.76 540 110, 103 174, 89
q3, q2 0.83 370 78, 96 100, 83

ibmq_montreal
q14, q16 0.88 356 97, 87 97, 52

ibmq_guadalupe
q7, q10 0.61 299 99, 68 153, 90
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FIG. 11. Gate fidelity measured with quantum process tomography and relative error reduction for the ZZ-gate as a function of θ on
ibmq_mumbai (qubits 16 and 19), ibmq_montreal (qubits 14 and 16), ibmq_paris (qubits 1 and 2), and ibmq_guadalupe (qubits 7 and 10).
(a)–(d), (top) Process fidelities for the RZZ double CNOT (blue up-triangles) and scaled CR (orange down-triangles) circuit implementation.
(a)–(d), (bottom) Relative error reduction calculated from the fidelities.

FIG. 12. Quantum process tomography results for random angles in the Weyl chamber on (a) ibmq_dublin (qubits 3 and 2), (b) ibmq_paris
(qubits 18 and 15), (c) ibmq_paris (qubits 13 and 14), and (d) ibmq_paris (qubits 18 and 17).
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process fidelity and the average gate fidelity are linearly re-
lated [47,48], we compare the relative error reduction in the

measured process fidelity with the theoretical relative error
reduction in E .
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