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In a recent work [S. Manna, P. Wei, Y. Xie, K. T. Law, P. A. Lee, and J. S. Moodera, Proc. Natl. Acad.
Sci. 117, 8775 (2020)], signatures of a pair of Majorana bound states (MBSs) were found in an experimental
platform formed by EuS islands deposited on top of a gold surface which was made superconducting through
proximity coupling to a superconductor. In this paper, we provide a theoretical understanding for how MBSs
can be formed in EuS/Au/superconductor heterostructures. We focus on the strip geometry where a narrow
ferromagnetic strip is deposited on a planar structure. We first explicitly map out the topological phase diagram
of the EuS/Au/superconductor heterostructure using the lattice Green’s function method. Importantly, we find
that the chemical potential step between the region with and without EuS covering is a crucial ingredient for the
creation of MBS of this setup. Next, we focus on the Bogoliugov quasiparticles that are bound to the region under
the EuS by Andreev reflections from the surrounding superconductors. Moreover, we obtain the topological
regimes analytically using the scattering matrix method. Notably, we confirm that the normal reflections induced
by the chemical potential step are essential for creating finite topological regimes. Furthermore, the area of
the topological regimes shows periodic oscillation as a function of chemical potential as well as the sample
width. We conclude by showing that the feromagnetic strip geometry holds a number of advantages over other
quasi-one-dimensional schemes that have been proposed.
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I. INTRODUCTION

Recently, there has been intense interest in creating
Majorana bound states (MBSs) in condensed matter systems.
Of special interest are the MBSs which have been proposed to
be building blocks of fault-tolerant quantum computers [1,2].
The MBSs have been proposed to exist in the vortex cores
of two-dimensional (2D) p-wave superconductors [3] or the
ends of 1D p-wave superconductors [4], where the topological
superconductivity is formed. Recent efforts have focused on
engineering structures where conventional superconductors
can induce topological superconductivity via proximity effect
[5,6]. Examples of these candidate topological supercon-
ductors include superconductivity proximitized topological
insulators [5,7,8], semiconductor nanowires [9–21], magnetic
atom chains [22–29], Majorana planar junctions [30,31],
iron-based superconductor FeTe0.5Se0.5 [32–34], a carbon
nanotube [35], and higher order topological insulators (TIs)
[36]. However, finding an experimental platform which can
easily scale up for creating and entangling a large number of
MBSs for quantum computation remains a major challenge.
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Recently, ferromagnetic EuS islands were deposited on
gold surfaces whose surface state has been made supercon-
ducting by the proximity effect. With the application of an
in-plane magnetic field, zero-bias peaks were observed si-
multaneously at the two ends of the EuS islands [37]. The
observations were taken as evidence for the simultaneous
appearance of MBSs at opposite ends of a topological su-
perconductor [4,10–13], where pairs of MBSs are separated
spatially and topologically protected by the bulk supercon-
ducting gap. In this paper, we focus on the strip geometry
where a ferromagnetic strip is deposited on the (111) surface
of gold. A schematic experimental setup is shown in Fig. 1(a).
This setup is a further development of the original proposal
of Potter and Lee [38], which pointed out that the quasi-one-
dimensional gold wires with [111] surface states can be used
to realize topological superconductors. However, a fundamen-
tal difference is that in the present setup, the gold is planar and
only the ferromagnetic strip is quasi-one-dimensional. This
difference requires a totally different understanding of the
transverse confinement of the electrons and is one of the main
focuses of this paper. On the other hand, both schemes take
advantage of the fact that the gold [111] surface state exhibits
strong Rashba spin-orbit coupling (SOC) which causes a band
splitting of about 110 meV and the SOC is several orders
of magnitude larger than those in semiconductor nanowires
[15]. The large Rashba SOC can ensure that the proximity
superconducting pairing gap induced on the gold surface state
is large even under a strong magnetic field.

We note that magnetic islands or thin films coupled to
conventional superconductors have also been used to realize
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FIG. 1. (a) The schematic figure of EuS/Au/superconductor het-
erostructure used in Ref. [37]. An EuS island is deposited on Au
[111] surface which is in proximity to a parent superconductor. Upon
applying an in-plane magnetic field B, MBSs appear at the ends of a
EuS island. (b) The geometry employed in our calculation. The upper
(U) and lower (L) regions are bare gold surfaces. The middle (M)
region is the EuS covered gold surface forming a wire. We take the
periodic boundary condition in x direction so kx is a good quantum
number and then take the infinite length limit. (c) The schematic
picture of the band positions of gold surface states for the bare gold
region and the EuS covered region. The dashed line indicates the
position of the Fermi energy.

2D superconductivity with chiral Majorana fermions [39–44],
such as a monolayer of Pb covering magnetic Co–Si islands
grown on Si(111) [39] and nanoscale Fe islands on a Re
surface [40]. However, the physics and the issues involved are
quite different from the present setup, as will be discussed in
more detail in the concluding section.

The reason for switching to a ferromagnetic strip covered
gold surface instead of using bare gold strips as originally
proposed by Potter and Lee [38] is that the original proposal
has some limitations. First, the Fermi energy of the bare
gold surface state is relatively high, roughly 500 meV above
the band bottom of the surface Rashba band. As a result,
many subbands will be partially occupied in a quasi-one-
dimensional wire at the Fermi energy. For example, roughly
100 subbands will be partially occupied if the gold wire is
100 nm wide [37,38]. This results in a large number of trivial
end states coexisting with the MBS even in the topological
regime [38]. Second, the g factor of gold is about 2, which
means that it requires a large external magnetic field to over-
come a trivial pairing gap and reopen a topological gap. In
the experiment, the proximity superconducting gap on gold
using Vanadium is about 0.5 meV [45]. Therefore, it requires
a magnetic field of about 10 T to reach the topological regime,
which is experimentally difficult to achieve in an STM setting.
Such a large magnetic field can also severely suppress the
superconductivity in the parent superconductor.

Remarkably, it turns out that depositing EuS onto the
gold surface solves the two aforementioned limitations at
once. First, the surface Rashba band of the gold surface
is shifted up so the Fermi energy is only about 30 meV
[37,45] above the band bottom. At the same time, EuS, being
a ferromagnetic material, introduces a large exchange field

which effectively enhances the Zeeman field [37,46]. With the
EuS/Au/superconductor heterostructure geometry as shown
in Fig. 1(a), signatures of a pair of MBSs appearing at the
opposite ends of an elongated EuS island had been observed
using STM measurements when a Zeeman field is applied
along the island [37].

We emphasize an important difference between the EuS
strip setup and the bare gold strip setup [38] in terms of the
physics of the transverse confinement of the electrons. In the
latter case, the states are bound by the quantum well potential
formed by the edges of the gold strip, giving rise to a discrete
set of transverse subbands. In the case of a EuS strip, the
potential under the strip is higher, so the electrons are repelled
from the strip and the concept of transverse subbands does
not apply. Instead, these electrons are Andreev reflected by
the surrounding superconductors to form a bound state. As we
shall see, both the Andreev reflections and normal backscat-
terings created by the chemical potential step are essential for
giving rise to the topological regime.

In Ref. [37], numerical solutions were performed on an
effective tight-binding model to simulate the real-space fea-
tures of MBSs using realistic parameters. It leaves open the
question as to how to optimize the parameters of this setup to
obtain a robust topological superconductor. In this paper, we
probe deeper into the basic physics. We perform more detailed
numerical work and also provide analytical solutions to the
model to bring more insight into the advantages of this setup,
so the question of how to optimize the topological gap can
be answered. Our conclusion is that the ferromagnetic strip
geometry holds a number of advantages over other schemes
which have been proposed. A summary is is given in the
conclusion section.

This paper is organized as follows. In Sec. II, we calculate
the topological phase diagram of a EuS strip deposited on a
planar gold surface which is coupled to a superconductor. In
the calculation, we used relatively realistic parameters esti-
mated from experiments [37,47] and map out the topological
invariant of this inhomogeneity system using a lattice Green’s
function method. In particular, the self-energy renormaliza-
tion effects and the spatial inhomogeneity of the electrostatic
or chemical potential are incorporated in our calculations [see
Fig. 1(c), the gold surface states in the EuS covered region and
bare gold surface region possess different chemical potential].
We find that gold [111] surfaces with strips of EuS deposited
exhibit sizable topological regimes and can be used to create
Majorana fermions. Furthermore, we find that to create MBSs,
it is essential to have a chemical potential step between the
surface states covered by EuS and the bare gold surfaces. By
gradually removing the chemical potential step, the topologi-
cal regime diminishes and eventually vanishes.

After the initial submission of this work, a paper by Papaj
and Fu [48] appeared where they treated the problem of a
ferromagnetic insulator strip on top of a TI. They obtained
considerable insight to this problem by considering the An-
dreev and normal scattering of Bogoliubov quasiparticles by
the boundary. Since the Rashba bands are essentially two
copies of the surface states of a topological insulator with
opposite helicity, we adopt the same method to obtain an
analytic solution to our problem. This is discussed in Sec. III.
Similar to Papaj and Fu, to achieve a sizable topological
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superconducting gap, the width of the strip should be com-
parable with the coherence length of the superconducting
surface states. On the other hand, unlike their problem, we find
analytically that there is a periodic modulation of the topo-
logical regime induced by the chemical potential, in complete
agreement with the numerical results.

II. TOPOLOGICAL SUPERCONDUCTIVITY IN
EUS/AU/SUPERCONDUCTOR HETEROSTRUCTURES: A

NUMERICAL STUDY

A. Model

Here, we study the topological properties of a ferromag-
netic magnetic material EuS island deposited on a gold surface
which is coupled to a superconductor as depicted in Fig. 1(a).
We approach this problem by considering a sample shown
in Fig. 1(b) which has periodic boundary conditions in the
x direction so kx is a good quantum number and infinite in the
y direction. The gold surface is separated into three segments,
the upper bare gold surface region (U), the lower bare gold
surface region (L), and the EuS covered gold surface in the
middle region (M). We compute the topological invariant of
this setup taking into account the 2D gold surface.

We first present the normal Hamiltonian that describes gold
surface states. The continuum Hamiltonian that describes this
partially covered gold surface state is

H =
∫

dy
∑

kx

c†
kx,α

(y)
[
hαβ

kx
(y) + V (y)σ x

αβ

]
ckx,β (y), (1)

where

hkx (y) = k2
x

2m
− ∂2

y

2m
− μ(y) + αR(kxσ

y + i∂yσ
x ). (2)

Here, σ i is the spin operator, αR is the Rashba velocity charac-
terizing the strength of SOC, μ(y) and V (y) are the chemical
potential and the Zeeman energy, respectively. Notice that we
have neglected the higher-order terms dictated by the crystal
symmetry of Au(111) surface in Eq. (1). Although such terms
can enter at large μ, the Rashba-like simple parabolic disper-
sion is good enough to fit the bands of gold surface states
according to the experiment with μ ∼ 500 meV [47].

The y dependence of μ(y) and V (y) captures the observa-
tion [37,45] that a thin layer of EuS can shift the chemical
potential of the surface Rashba band so the band bottom is
moved from 500 meV to around 30 meV. At the same time, the
Zeeman energy is locally enhanced under the ferromagnetic
material EuS via the exchange coupling, which enables us
to drive the gold surface states under the EuS island into the
topological regime with a relatively small in-plane magnetic
field.

We denote μ1, V1 as the chemical potential and Zeeman
energy for a bare gold surface region where y ∈ {U, L} and
μ2 is the chemical potential for a EuS covered gold surface
where y ∈ M.

In the numerical calculations, we integrate out the bare
gold regions numerically using lattice Green’s function
method [49–52], discretize the continuum Hamiltonian H in

the y direction and obtain a lattice Hamiltonian H0, where

H0 =
∑
kx, j

c†
kx, j,α

[
(4t − μ j − 2t cos kx )δαβ

+αR sin kxσ
y
αβ + Vjσ

x
αβ

]
ckx, j,β

+
∑
kx, j

c†
kx, j,α

(
−tδαβ + i

2
αRσ x

αβ

)
ckx, j+1,β + H.c. (3)

Here, we set t = 1/2ma2 = 16 eV × Å2/a2, αR =
0.4 eV ×Å/a, which are chosen to recover the realistic
continuum band dispersion [47].

Next, we include the superconductivity originating
from the proximity effect into the model. In the
EuS/Au/superconductor geometry, superconductivity is
first induced on the gold bulk states through proximity
effect, and the mixing of the gold bulk and surface states
via impurity scattering or virtual scattering via phonon or
Coulomb interaction can further induce superconductivity
onto the surface states. As a result, the proximity effect on
the surface states can be described by a self-energy term
[37,53,54]

�(ω+) ≈ −	
(ω+ − V1σ

x )τ0 − �Bτx√
�2

B − ω2+
, (4)

where ω+ = ω + iη, η is an infinitesimal positive number,
the superconducting gap of gold bulk states �B ≈ 0.5 meV
[37], τ operates on the Nambu particle-hole basis 
(kx, y) =
[ckx,↑(y), ckx,↓(y), c†

−kx,↓(y),−c†
−kx,↑(y)]T , 	 is the gold bulk

and surface state mixing strength and is set to be 3�B to ex-
plain the experimentally observed superconducting gap on the
gold surfaces [37]. More specifically, 	 = πNB(0)W 2, where
NB(0) is the bulk density of states of gold near Fermi energy
and W is the disorder scattering strength which mixes the bulk
and the surface states [38]. Therefore, in our formalism, we
take into account the effect of the coupling between the bulk
states and the surface states of gold and do not use a simple
Rashba band to describe the surface state. As we will see
below, this indeed has an important effect on the localization
length of the Majorana wave function of the system [55].

After incorporating the self-energy term, the Green’s func-
tion of the gold surface state is

G0(ω, kx ) = Z

(ω+ − Vxσ x )τ0 − Zhkx τz − (1 − Z )�Bτx
. (5)

The quasiparticle weight Z (ω+) = 1

1+	/
√

�2
B−ω2+

. Here Vx is

an effective Zeeman energy. For the bare gold region, the
effective Zeeman energy Vx = V1 with V1 = uBB and B is the
strength of in-plane external field. For the EuS covered gold
surface region, the effective Zeeman energy Vx includes both
V1 and an additional Zeeman energy induced by the exchange
interaction of ferromagnetic material EuS, i.e., Vx = ZVex +
V1, which for simplicity is replaced by its zero frequency limit:
Vx ≈ VEuS.

B. Evaluating the Z2 topological invariant

Our system breaks the time-reversal symmetry but pre-
serves the particle-hole symmetry. As a result, the topological
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class of our model belongs to the D class, which is charac-
terized by a Z2 topological invariant [56]. A simple scheme
to obtain this Z2 topological invariant for a quasi-one-
dimensional system is to define a skew-symmetric matrix
as B(kx ) = H (kx )τyσy based on the particle-hole symme-
try operator � = τyσyK , and the Z2 invariant M can be
obtained as sgn[PfB(kx = 0)] × sgn[PfB(kx = π/a)] [9,57],
where Pf denotes the Pfaffian of a matrix. Here H (kx ) is
the full Bogoliubov–de Gennes (BdG) Hamiltonian to model
the topological superconductor and K denotes the complex
conjugate operator.

However, we cannot directly apply this scheme to evaluate
the topological invariant for two reasons. First, we have a
frequency dependence in the self-energy term; second, to treat
a bare gold surface which is truly 2D, we cannot use H (kx )
directly which describes a quasi-one-dimensional system. The
first obstacle can be removed by using the Green’s function
scheme to evaluate the topological invariant. According to
Refs. [58,59], this scheme can be simplified to obtain the
topological invariant from the effective Hamiltonian, which is
expressed in terms of the Green’s function at zero frequency:
−G−1(ω = 0, kx ). The second obstacle can be overcome by
integrating out the two bare gold segments to obtain the
self-energy terms �U (ω, kx ) and �L(ω, kx ) which can be
added to the Green’s function of the gold surface covered
by EuS. With Dyson’s equation, G(ω, kx ) = (G−1

0 (ω, kx ) −
�U (ω, kx ) − �L(ω, kx ))−1, the effective Hamiltonian is
obtained as

ht (kx ) = hkx (y ∈ M )τz + Z (0)−1VEuSσx

+ (Z (0)−1 − 1)�Bτx + �U (0, kx ) + �L(0, kx ). (6)

�U (L)(0, kx ) can be calculated from Eq. (5) numerically using
the lattice Green’s function method [49–52]. More details
can be found in Appendix A. The B(kx ) can be defined as
ht (kx )τyσy, and this skew-symmetric matrix is used to evaluate
the topological invariant M for our model. Note that we take
into account the fact that the relatively small Zeeman energy
(∼0.2�B) in bare gold surfaces cannot close the supercon-
ducting gap. This enables the bare gold region to be integrated
out without introducing extra singularities into the Green’s
function.

C. Phase diagram

In Ref. [37], signatures of a pair of MBSs were observed
when a EuS island was placed on a gold wire which was
in proximity to a superconductor. Here we show how the
EuS/Au/superconductor heterostructure can become a topo-
logical superconductor. To model the topological regime of a
large gold surface case, we consider a heterostructure formed
by covering a 60-nm-wide EuS strip in the middle of a 2D gold
surface. Following the scheme of evaluating Z2 topological
invariant shown in the previous section, the resulting phase
diagram is obtained as Fig. 2(a). It is interesting to note that
the phase diagram in Fig. 2(a) resembles the phase diagram
of superconducting quasi-one-dimensional gold wires subject
to a Zeeman field. However, the physical origins of the topo-
logical regimes are very different. For quasi-one-dimensional
gold wires, the system is topological when superconductivity
is induced on a wire with an odd number of subbands partially

FIG. 2. The topological phase diagram of the heterostructure
formed by a 60-nm-wide EuS strip and a large gold surface (2D limit
here). The width of EuS strip is set to be 60 nm. The parameters μ1 =
500 meV, V1 = 0.2�B for bare gold surface are adopted. (a) The
topological invariant M is shown as a function of effective Zee-
man energy VEuS and chemical potential μ2. The topological trivial
region with M = 1 is shown in yellow and topological nontrivial
region with M = −1 is shown in blue. (b)–(d) show the spectral
function A(kx, E ) = −Im(Tr(G(ω, kx))) as a function a kx and E
with the parameters at red triangles shown in (a). (b)–(d) show the
typical excitation feature at the trivial region, phase transition bound-
ary, and topological regime, respectively. The chemical potential μ2

of (b)–(d) are all chosen to be 25 meV. The VEuS equals 0.5�B for (b),
0.95�B for (c), and 1.5�B for (d). (e) The Majorana wave function of
a 800 nm × 60 nm EuS (denoted by the yellow box) deposited on a
2000 nm × 200 nm Au surface with the parameters of (d). The color
indicates the absolute value square of the MBS wave function. Here
a is set to be 1 nm to reduce the finite-size effect.

occupied at the Fermi energy. In our current situation, the gold
surface is strictly 2D and quasi-one-dimensional subbands are
not well defined. On the other hand, the Zeeman field induced
by the external magnetic field and the ferromagnetic material
EuS can create in-gap Andreev bound states under the EuS
island [22,25]. As we will discuss later, these in-gap bound
states are confined to be under the EuS island by the fully
gapped gold surface states.

This phase diagram is further demonstrated with
Figs. 2(b)–2(d). As the parameter, such as the effective
Zeeman energy in this case, is tuned across the phase
boundary, the energy gap closes and reopens, which signals
the topological phase transition. The in-gap quasiparticle
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FIG. 3. The effect of chemical potential step between the bare
gold surface and the EuS covered region. (a) Phase diagram of the
heterostructure formed by the EuS strip and the gold surface. The
parameters are the same as Fig. 2(a), except the chemical potential
of the bare gold region artificially set as μ1 = μ2. The yellow and
blue areas represent the topological trivial and nontrivial regimes,
respectively. (b) The phase diagram as a function of Zeeman energy
and the chemical potential of the ferromagnetic material covered
region. Here, the chemical potential of the bare gold is fixed at
μ1 = 500 meV for (b), and a is set to be 4 Å to properly capture
the dispersion of gold surface states near 500 meV.

bound states are clear in Figs. 2(b)–2(d). We emphasize these
in-gap quasiparticle bound states are trapped under the EuS
covered region through both the Andreev reflection introduced
by the gapped superconducting gold surface and the normal
reflection of chemical potential step. More importantly, as
shown in Fig. 2(d), there is a relatively uniform and sizable
topological gap (∼0.1�B) deep in the topological regime
(for example, far away from the topological phase transition
boundaries). The MBS using the parameters in Fig. 2(d) is
shown in Fig. 2(e). MBSs residing at the two ends of the EuS
island can be clearly observed. Notably, due to the presence of
the self-energy term � introduced in Eq. (5), the localization
length of the Majorana mode is shorter than the estimated
superconducting coherence length of gold surface states ξ0

which is ≈ t/�B ≈ 320 nm (cf. Res. [37,55] and Appendix A
for more details). This is consistent with the short localization
length (only tens of nm) of the Majorana modes observed in
the experiment [37].

D. The importance of the chemical potential step

In the EuS/Au/superconductor heterostructure with EuS
islands deposited on a 2D gold surface, there is a chemical
potential step between the area under EuS and the bare gold
surface. As shown experimentally, the chemical potential shift
indeed depends on the thickness of EuS. When bilayer EuS
is deposited on the gold surface, the chemical potential is
shifted from μ1 ∼ 500 meV to μ2 ∼ 30 meV relative to the
surface Rashba band bottom [37]. On the other hand, if a
monolayer EuS is used, the chemical potential is shifted to
about 200 meV instead [45]. In this section, we study the
importance of this chemical potential step. First, if we remove
this chemical potential step artificially by setting μ1 = μ2,
the phase diagram will change from Fig. 2(a) into Fig. 3(a).
Surprisingly, the topological regimes (in blue) become hardly
visible, even though the chemical potential is very low. This
implies not only the inhomogeneity of Zeeman energy but also
the inhomogeneity of chemical potential is important for the

observation of a sizable topological regime on a gold surface.
It can be seen from Fig. 2(a) that the separation between
the diamond topological regimes is roughly 6 meV, which is
expected for a wire of the width of the EuS (see Appendix A).
This suggests the chemical potential step effectively creates a
sample width given by EuS width due to the scattering from
the potential step. In the calculation, we used a step function to
describe the chemical potential shift induced by EuS, although
from a microscopic point of view, the chemical potential tran-
sition region may extend over several lattice constants. This
approximation should be valid as long as the length of the
transition region is much smaller than the size of islands and
gold surface.

On the other hand, if EuS with a different thickness or other
ferromagnetic materials are deposited on the gold surface, the
shift in chemical potential can be different. In Fig. 3(b), we
calculated the topological regime with a wide range of chemi-
cal potential underneath the ferromagnetic material, using the
parameters of Fig. 2(a) except the range of chemical potential
used. It is clear from Fig. 3(b) that a sizable chemical step
between the area covered by the ferromagnetic material and
the bare gold surface is needed to create large topological
regimes.

III. TOPOLOGICAL REGIMES OF A MAGNETIC
STRIP/RASHBA SUPERCONDUCTOR

HETEROSTRUCTURE: AN ANALYTICAL STUDY USING
THE SCATTERING MATRIX METHOD

In the previous section, we have explicitly mapped out
the topological phase diagram of the EuS/Au/superconductor
heterostructure using the lattice Green’s function method.
The features of in-gap bound states and the importance of
chemical potential steps are recognized in this topological
heterostructure. In this section, we treat this system as a mag-
netic strip/Rashba superconductor junction with a uniform
superconducting phase and determine the topological regimes
analytically by solving the energies of Andreev bound states
using the scattering matrix method [48,60,61].

A. Origin of the Andreev bound states in a magnetic
strip/Rashba superconductor junction

Let us first illustrate the origin of the Andreev bound states
in the magnetic strip/Rashba superconductor junction. We
start from the following BdG Hamiltonian:

H (k) = [ξk + αR(kxσy − kyσx )]τz + Vxσx + �τx, (7)

where the Hamiltonian is defined in Nambu basis
(ck,↑, ck,↓, c†

−k,↓,−c†
−k,↑)T , σi and τi, respectively, operate

on the spin and particle-hole space, the kinetic energy
term ξk = k2/2m − μ, Vx is the Zeeman energy, and � is
the pairing potential. In this section, the proximity effects
from the magnetic strip and the parent superconductor are
responsible for inducing the Zeeman term and pairing term in
Eq. (7). For simplicity, we neglect the Zeeman energy V1 in
the bare superconducting region. To clearly show the origin of
the Andreev bound states, we display the energy dispersion of
normal states in Fig. 4(a) and the BdG spectrum from H (k)
at Vx/� = 0 (blacked dashed line) and Vx/� = 1.5 (red and
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FIG. 4. (a) The Rashba band in the normal state along ky.
Dotted line marks the chemical potential. (b) The BdG spectrum
from Eq. (7) along k = (kx = 0, ky ). The black dashed lines are
the BdG spectrum for Vx = 0, while the colored lines are the BdG
spectrum for Vx/� = 1.5 λ = 1 in red, λ = −1 in blue denotes
state with spin parallel or antiparallel to the Zeeman field. Note
that the spectrum become gapless when Vx > �. (c) shows the
energy contours of the BdG spectrum at E = 0 with Vx/� = 2,
where electron-dominant and hole-dominant arcs (the corresponding
k states are labeled with the subscripts e and h) are highlighted as
solid and dashed lines, respectively. With ν labeling the sign of ky, the
eight momenta with the label kν

e(h),λ given by Eq. (10) are shown and
easily visualized. A normal reflection between inter-Rashba Fermi
circle and an Andreev reflection within intra-Rashba Fermi circle
are highlighted. For kx = 0, the red and blue momentum states do
not admix. (d) A schematic plot of the geometry of the magnetic
strip/Rashba superconductor junction considered in our derivation,
where a magnetic trip partially covers a planar Rashba superconduc-
tor. The chemical potential, Zeeman energy (μ, Vx , �) of different
regions are highlighted.

blue) in Fig. 4(b). In the absence of the Zeeman energy Vx, a
superconducting gap of � is opened near the Fermi energy,
while a finite Zeeman term would suppress the excitation
gap. When the Zeeman energy exceeds the pairing potential,
i.e., Vx > �, the excitation spectrum becomes gapless [see
Fig. 4(b)]. These gapless excitations caused by the large
Zeeman energy from magnetic strip would result in some
Fermi contours at E = 0, as shown in Fig. 4(c). Each contour
consists of an electron-dominated and a hole-dominated arc.
In contrast, as depicted in Fig. 4(d), the bare superconducting
regions still possess a large superconducting gap �, thereby
confining those in-gap excitations under the magnetic strip as
Andreev bound states.

B. Topological phase transition boundaries using scattering
matrix method

The boundaries of topological phase transitions are deter-
mined by ε(kx = 0) = 0 with ε(kx ) as the energy of Andreev

bound states. Here, we chose the strip to be along the x direc-
tion so kx is a quantum number to label the states. When kx =
0, the model Hamiltonian Eq. (7) becomes H (k) = (ξk −
αRkyσx )τz + Vxσx + �τx. In this case, the model Hamiltonian
H (k) exhibits a chiral symmetry [σx, H (k)] = 0. Thus, we can
choose the spin quantization axis along x direction, and block
diagonalize the Hamiltonian as

H (k) =
(

H+(k) 0
0 H−(k)

)
, (8)

where Hλ = (ξk − λαRky)τz + λVx + �τx. The BdG spectra
of λ = 1 and λ = −1 blocks are highlighted as red and blue
colors in Fig. 4(b). These are simply spin-polarized states
which are parallel or antiparallel to the Zeeman field. As these
two blocks do not mix, we can solve the bound states given by
two blocks separately.

Next, let us solve the Andreev bound states in this magnetic
strip/Rashba superconductor junction using the scattering
matrix method. The first step is to solve the eigenmodes of
different parts of the junction, where the chemical potential,
Zeeman term, and pairing potential are labeled explicitly in
Fig. 4(d). Note that if μ1 �= μ2, it indicates a chemical poten-
tial step. In the middle region where the magnetic strip covers
with Vx > �, the eigenstate is

ψν
β,λ(y) =

√
�

2Vx

(
e− 1

2 ρβ acosh Vx
�

λe
1
2 ρβ acosh Vx

�

)
eikν

β,λy, (9)

where the bound-state energy ελ(kx = 0) = 0 is consid-
ered, β = e, h labels the electron-/hole-dominated mode and
ρe/h = 1/ − 1. We introduce the wave vectors

kν
β,λ = kν

F,λ + λρβν
m

√
V 2

x − �2√
m2α2

R + 2mμ2

, (10)

kν
F,λ = λmαR + ν

√
m2α2

R + 2mμ2. (11)

Here ν = 1/ − 1 labels the positive/negative wave vector.
The eight possible kν

β,λ wave vectors are highlighted in
Fig. 4(c). Similarly, in the top and bottom bare supercon-
ducting region (Vx = 0), the eigenstates with ελ(kx = 0) = 0
become

ψ ′
β,ν (y) = 1√

2

(
1

iρβ

)
eik′ν

β,λy, (12)

where the wave vectors

k′ν
β,λ = k′ν

F,λ + νρβ i�√
m2α2

R + 2mμ1

, (13)

k′ν
F,λ = λmαR + ν

√
m2α2

R + 2mμ1. (14)

Next, we employ the continuity of the wave function
and the conversation of the probability current to ob-
tain the condition for the appearance of ε(kx = 0) = 0,
where a gap closing appears at kx = 0 and would indi-
cate a topological phase transition. Instead of matching
the boundary conditions for the four waves, it is advan-
tageous to use the scattering matrix method [60] which
investigates the relation between the incoming states ψ in =
(a−

e,λ(L), b+
h,λ

(L), a+
e,λ(U ), b−

h,λ
(U ))T and the outgoing state
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ψout = (a+
e,λ(L), b−

h,λ
(L), a−

e,λ(U ), b+
h,λ

(U ))T with the wave
function in the middle region decomposed as ψ (y) =∑

ν,λ aν
e,λψ

ν
e,λ(y) + bν

h,λψ
ν
h,λ(y) (see Appendix B for the

details).
On one hand, the incoming state will be scattered as the

outgoing states at the interfaces |y| = W/2, i.e., ψout = Sψ in.
Here, W is the width of the junction, the scattering ma-
trix S = [SL, 0; 0, SU ] with SU (L) as the scattering matrix at
upper (lower) interface at y = W/2 (y = −W/2). On the other
hand, the outgoing states will be transmitted as incoming
states during the propagation within the middle region, i.e.,
ψ in = T ψout with the transition matrix T = [0, TLU ; TUL, 0].
The combination of ψout = Sψ in and ψ in = T ψout requires

det [I − ST ] = 1 with I = diag(I, I), which gives

det[I − SU TULSLTLU ] = 0. (15)

After some explicit derivations (see Appendix B for the
details), we found that the scattering matrices can be
expressed as

SL = SU =
(

iλreiφλ −√
1 − r2eiφλ

−√
1 − r2eiφλ iλreiφλ

)
≡

(
re rA

rA rh

)
.

(16)

with

re = rh = (μ1 − μ2) sinh γ

−iλ
(
mα2

R + μ1 + μ2
)

sinh γ +
√(

mα2
R + 2μ1

)(
mα2

R + 2μ2
) , (17)

rA =
√(

mα2
R + 2μ1

)(
mα2

R + 2μ2
)
coshγ

−iλ
(
mα2

R + μ1 + μ2
)

sinh γ +
√(

mα2
R + 2μ1

)(
mα2

R + 2μ2
) . (18)

where γ = acoshVx
�

, rA is from Andreev reflections and re(h)

is from normal reflections being finite when μ1 �= μ2. As
highlighted in Fig. 4(c), due to the spin-orbit locking, rA

is induced by the scattering between an electron-dominant
and a hole-dominant arc from the intra-Rashba Fermi circle,
while re(h) is induced by the scattering between two electron
(hole)-dominant arcs from inter- Rashba Fermi circle. The
transmission matrices TLU and TUL are expressed as

TLU =
(

e−ik−
e,λW 0

0 e−ik+
h,λ

W

)
, TUL =

(
eik+

e,λW 0
0 eik−

h,λ
W

)
.

(19)

Inserting Eqs. (16) and (19) back to Eq. (15), we find the gap
closes at kx = 0 when

r2 cos
(
2
√

m2α2
R + 2mμ2W

) + cos(2λθW − 2φλ) = 1 − r2,

(20)

where θ = m
√

V 2
x − �2/

√
m2α2

R + 2mμ2. Equtaion (20) is
the central result of this section.

We first consider the case without chemical potential step,
i.e., μ1 = μ2, so the normal reflection vanishes r = 0 [see
Eq. (17)]. In this case, the gap closes along a single line
given by

W

ξ
=

λ(φλ + nπ )
√

1 + mα2
R

2μ2√(Vx
�

)2 − 1
. (21)

Here n is an integer number, φλ = Arg[ cosh γ

1−iλ sinh γ
], and the

width is naturally written as the dimensionless ratio W/ξ

where coherence length is defined as ξ = v f 2/� with v f 2 =√
2u2/m. Note that here we used μ2 in the Fermi velocity

instead of μ1, since the superconducting topological gap is
dominant by the coherence length characterized by μ2 within
the junction instead of μ1 in the bare superconductor region.

The topological regime actually vanishes in this case without
the chemical potential step, in agreement with numerical re-
sults, as shown in Fig. 5(a).

C. Finite and periodically oscillating topological regimes
induced by the chemical potential step

To verify our analytical result Eq. (20), we calculate the
energy gap at kx = 0 numerically by diagonalizing the tight-
binding model as given in Appendix B. The gap at kx = 0
as a function of W/ξ and Vx/� from Eq. (20) are depicted
in Fig. 5(a) without chemical potential steps (μ1 = μ2 =
20 meV) and Fig. 5(d) with a chemical potential step (μ1 =
100 meV, μ2 = 20 meV). The red solid lines correspond to
gap closing lines given by Eq. (20). It can be seen that our
analytical result matches with the numerical result very well.
A small deviation is seen at large Vx due to the violation
of the assumption of μ � Vx. The gap closing lines change
from some isolated lines in Fig. 5(a) to pairs of intertwined
lines with a periodic oscillation in Fig. 5(d) induced by the
chemical potential step. We found that the oscillation period

as a function W is given by cos(2
√

m2α2
R + 2mμ2W ) = −1,

which gives the quantization condition:

W =
(
n + 1

2

)
π√

m2α2
R + 2mμ2

. (22)

In this case, we can see that the r2 terms in Eq. (20)
vanish and results in Eq. (21). To show this clearly, we
enlarge part of Fig. 5(d) as Fig. 5(g) and show only the
analytic result as red lines. The position of these widths where

cos(2
√

m2α2
R + 2mμ2W ) = −1 are highlighted as black

dashed lines in Fig. 5(g). We note that
√

m2α2
R + 2mμ2 =

kav, where kav = 1
2 (k+

F,λ − k−
F,λ) is the average Fermi momen-

tum over the same spin λ orientation in the middle region
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FIG. 5. (a), (d) show the topography of excitation gap at kx = 0 as a function of junction width W/ξ and Zeeman energy Vx/� without
chemical potential steps (μ1 = μ2 = 20 meV) and with a chemical potential step (μ1 = 100, μ2 = 20 meV), respectively. The red lines are
the gap closing lines indicated by our analytical solution Eq. (20). (b), (c) and (e), (f) show excitation spectrum ε(kx = 0) vs Vx at W/ξ = 0.60,
W/ξ = 1.34 for the case without chemical potential steps (μ1 = μ2 = 20 meV) and with a chemical potential step (μ1 = 100, μ2 = 20 meV),
respectively. The red dots in (e) and (f) mark the gap closing points which set the boundaries of the topological regime in (d). The similar pair
of gap closing points sits on top of each other in (b) and (c) and is not shown. (g) An enlargement of (d), showing only the analytic result.
The black dashed lines indicate the periodicity of the oscillations of topological regimes given by cos(2

√
m2α2

R + 2mμ2W ) = −1. (h) shows
the gap closing from Eq. (20) as a function of μ2 and Vx , where μ1 = 500 meV, and the width W/ξ = 1.06. (i) is a zoomed-in version of (h).
The additional black dashed lines are from cos(2

√
m2α2

R + 2mμ2W ) = −1.

according to Eq. (11). Equation (22) can be regarded as a
Bohr Sommerfeld quantization condition where the average
Fermi momentum times the width is quantized as (n + 1

2 )π .
In agreement with the result in Sec. II D, we also found the

topological regime can only be accessible when the chemical
potential step is present. Specifically, the regimes within a
pair of intertwined gap closing lines shown in Fig. 5(d) are
the topological regimes. To show this, we plot the excita-
tion spectrum of ε(kx = 0) as a function of Vx in Figs. 5(e)
and 5(f) with a junction width W/ξ = 0.60 and W/ξ = 1.34,
respectively. It can be seen that the regimes within a pair
of intertwined lines shown in Fig. 5(d) are the regimes ap-
pearing after an odd number of gap closings, which manifest
as topological regimes. On the contrary, when the chemical
potential step is removed, the topological regimes shrink into

points, i.e., topological regimes vanish, as shown in Figs. 5(b)
and 5(c).

From our derivation, the key difference with and without
chemical potential steps is the strength of normal reflection
[see Eq. (17)]. A chemical potential step enables the normal
reflection to be finite such that the gap closing lines from
Eq. (20) can behave as the intertwined lines as shown in
Fig. 5(d). Physically, the Andreev reflection, which can only
happen within the intra-Rashba Fermi circle due to spin-
momentum locking, can trap the bound states and the trivial
excitation gap can be closed at finite Vx. However, without
chemical potential steps, the excitation gap of bound states
arising from the inner and outer Rashba Fermi circle close at
the same Vx as shown in Figs. 5(b) and 5(c). The presence
of finite normal reflections would mix the states of inner
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FIG. 6. (a), (b) show the excitation spectrum ε(kx ) vs kx for (W/ξ = 1.34,Vx/� = 1.6) and (W/ξ = 0.60,Vx/� = 2.7), respectively, where
there is a chemical potential step μ1 = 100, μ2 = 20 meV. (c) Typical excitation spectrum when � = 0 under the magnetic strip, i.e., being
normal states. Here, W/ξ = 0.6,Vx/� = 1.6.

and outer Rashba Fermi circles as seen from the scattering
matrix Eq. (16) or Fig. 4(c). As a result, the gap closing lines
are shifted into pairs of periodically oscillating lines so the
topological regimes become accessible.

Moreover, as we pointed out, the topological regimes
exhibit periodic oscillations as a function of W setting by

cos(2
√

m2α2
R + 2mμ2W ) = −1. The coefficient of W is 2kav,

where kav is the average Fermi wavelength of the middle
region as defined above. Hence, the chemical potential μ2 in
the middle region should be comparable to the Rashba energy
scale [several mα2

R, see Fig. 4(a)] and cannot be too large,
otherwise the topological regime will oscillate rapidly with W .
For example, using the parameter of gold surface states, the

oscillation period as a function of W , i.e., π/

√
m2α2

R + 2mμ2

is about 8.4 nm for μ2 = 20 meV and is reduced to 1.8 nm
for μ2 = 500 meV. On the other hand, μ2 cannot be too small
because the Fermi velocity becomes small, leading to a small
coherence length ξ . By the W/ξ scaling, this may require a
width W which is too small to be fabricated.

Finally, we show the features of chemical potential depen-
dence of topological regimes from Eq. (20) by plotting the gap
closing lines as a function μ2 and Vx. These results are shown
in Fig. 5(h), and Fig. 5(i) is a zoomed-in of Fig. 5(h) near
μ2 = 20 to μ2 = 40 meV. Notably, the features of chemical
potential dependence of topological regimes in Fig. 5(h) and
Fig. 5(i) are consistent with Figs. 3(b) and 2(a), respectively.
Importantly, in Fig. 5(i), we highlighted that the topologi-
cal regimes versus μ follow the 2kav oscillations given by

cos(2
√

m2α2
R + 2mμ2W ) = −1 (see black dashed lines).

D. Energy gap at finite kx

Beyond the energy gap at kx = 0, we next look at the gap
at finite kx, which is also crucial for protecting the topological
superconductivity. In Figs. 6(a) and 6(b), we plot the energy
E as a function of kx within the topological regime for
(W/ξ = 1.34, Vx/� = 1.6) and (W/ξ = 0.60,Vx/� = 2.7),
respectively. As expected, the increasing of junction width,
i.e., the width of magnetic strip, would decrease the excitation
gap of Andreev bound states. In practice, the width W should
be comparable or less than the coherence ξ to obtain a sizable
gap. According to our calculation, the topological gap can

be sizable 0.1 ∼ 0.2� when W is reduced to be around ξ ,
which is about 60 nm with μ2 = 20 meV. This estimation
is consistent with the size of the EuS island used in the
experiment [37].

Note that in both Figs. 6(a) and 6(b), the smallest gap at
finite kx is comparable to the one at kx = 0. This is in sharp
contrast to the excitation spectrum given in the previously
studied topological superconductivity of planar Josephson
junctions (see Fig. 7 of Ref. [61]), where the energy gap at
some finite kx would typically be much smaller than the one
at kx = 0. A crucial difference of the junction considered in
Ref. [61] from Fig. 4(d) is that there is no pairing potential
in the middle part. As pointed out in Ref. [48], the pairing
potential in the middle region under the magnetic strip ac-
tually can help to form a sizable gap at finite kx. To show
this, we artificially turn off the pairing potential under the
magnetic trip and the excitation spectrum typically behaves
as Fig. 6(c), where the gap suddenly drops to close to zero
near kx = ±2.5 and kx = ±5, in a way that is very similar to
Fig. 7 of Ref. [61]. Therefore, the pairing potential under the
magnetic strip in our setup enables the system to avoid the
problem of a small energy gap at finite kx. However, we note

FIG. 7. The proximity gap ωg as a function of the coupling
strength 	 (in units of �B), which is obtained from numerically
solving Eq. (A2) (the trivial solution ωg = �B is dropped).
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that the gap at finite kx would eventually be suppressed by a
large Vx, such as Vx/� ∼ 3.9 for W/ξ ∼ 0.60 as shown in Ap-
pendix B. This means that the maximum topological gap is, in
general, not given by the gap at kx = 0 but can be smaller. We
remark that this feature is in common with the model of Papaj
and Fu [48], provided the same step potential model is used.

IV. CONCLUSION AND DISCUSSIONS

In conclusion, in this paper we have provided a
clear understanding of the topological regimes of the
EuS/Au/superconductor heterostructure. To put our setup in
the context of other setups and implementations, we next
present a classification of various proposals of quasi-one-
dimensional systems that are potentially scalable. The basic
idea is to proximity couple a conventional superconductor to
the surface state of a TI or replace the topological insulator
with a 2D semiconductor [9,11] or metal [12] with strong
Rashba SOC. Some form of time-reversal symmetry breaking
is required, which may be supplied by a magnetic field or by
other means. We shall refer to these two classes as TI type
or Rashba type. Next, we classify the device geometries into
three types:

(1) The nanowire geometry consists of a narrow strip of
conductor (either TI or Rashba type) sitting on top of a
conventional superconductor. A lot of work has been done
using semiconductor nanocrystals made with InSb or InAs
[15,19]. While these are not scalable, there are recent ad-
vances where the nanowire is formed lithographically in an
InAs/Al heterostructure which is potentially scalable, even
though significant challenges remain. In this case, the Al
superconductor forms a narrow strip and the semiconductor
is depleted outside of the strip to form a quasi-1D structure
which can potentially support MBSs [62]. Another example
of the nanowire geometry is the proposal of Potter and Lee
[12], who suggested the deposition of a narrow gold film on
top of a conventional superconductor, and utilized the surface
state on the Au(111) as the active conducting channel.

(2) The Josephson geometry. A gap is formed between
conventional superconductors deposited on either TI or on
Rashba semiconductors [61]. The phase of the superconduc-
tor on each side is separately controlled, which provides the
needed time reversal symmetry breaking. The advantage is
that the external magnetic field can be avoided. This geometry
has been realized using a HgTe quantum well combined with
Al superconductor [31] and in InAs [30]. However, so far the
width of the junction gap is relatively wide (600 nm) [31] so
a large number of conducting channels are involved and there
are many in-gap states which may have obscured the possible
MBS discrete level.

(3) The ferromagnetic strip geometry. This lies at the heart
of the current paper. A narrow strip of ferromagnetic insulator
such as EuS is deposited on top of a Rashba metal [12] or a
TI [48], which is proximity coupled to a conventional super-
conductor. The latter is illustrated in Fig. 1(a). Time reversal
symmetry breaking is provided by the exchange field of the
ferromagnet, and strong external magnetic field, in principle,
is not required.

It is noteworthy that the magnetic islands have also been
used to engineer 2D topological superconductors [39–41].

However, the geometry is essentially different from ours. The
ferromagnetic magnetic order is perpendicular to the island
plane, i.e., the magnetization is out of plane, and the external
field that aligns the magnetization to the in-plane direction is
absent. This results in chiral Majorana edge modes localizing
at the boundary of magnetic islands when Vz >

√
�2 + μ2,

where Vz is the Zeeman energy from out-of-plane magne-
tization. In contrast, our setup is a magnetic strip/Rashba
superconductor heterostructure with in-plane magnetization,
which is used to create MBSs instead of chiral Majorana
fermions. Also, our work deals with D class gapped topo-
logical superconductivity, so it is distinct from the nodal
superconductivity from the magnetic island coupled Ising su-
perconducting background considered in Ref. [63].

Next, we discuss the relative merits and drawbacks of the
three geometries. For the nanowire, the bulk of the experimen-
tal work up to now utilizes semiconductors such as InSb or
InAs. Due to the small effective mass, the Fermi momentum
is small. The relevant wave functions have long wavelengths
and can be subject to manipulation by gates, and decades of
experience working with gated nanostructures can be brought
to bear on this system. In particular, the system can be brought
to the lowest transverse subband created by the lateral confine-
ment. The downside is that the slowly varying potential of the
gates easily leads to possible false signatures for MBSs. For
example, a slowly varying tunnel potential is known to create
quasi-Majorana, which couples strongly only to one lead and
looks indistinguishable from a true MBS as far as local probes
such as zero bias conductance peaks are concerned [64]. It is
also possible to create quantum dots with trapped Andreev
bound states near the junction which mimic MBSs [65]. On
the other hand, if the semiconductor is replaced by a metallic
surface state [12], the Fermi wavelength is small and many
transverse subbands are involved, which reduces the topolog-
ical gap, as already mentioned in the Introduction.

For the Josephson junction geometry, the advantages are
that an external magnetic field is not required. The difficulty is
that the quasiparticle gap is very small for states moving along
the junction because these states are not efficiently Andreev
scattered by the superconductors to receive an induced gap.
We should mention that proposals have been made to allevi-
ate it by introducing disorder scattering [66] or kinks in the
superconductor slit [67] but these ideas remain to be tested in
actual settings.

The ferromagnetic geometry proposed by us and by
Papaj and Fu [48] share a number of advantageous features.
The optimal width of the strip is set by the superconducting
coherence length under the strip, in contrast to the nanowire
case, and can be relatively large. The TI case has the added
advantage that the topological regime is independent on the
chemical potential, a common feature of using the surface
states of TIs as the active conductor. In the Rashba case,
the topological regime oscillates as a function of chemical
potential and wire width, as shown in Fig. 5. On the other
hand, compared with the Josephson geometry, the advantage
is that the gap at large momentum along the strip does not
have to be small. This is because the strip is sitting on top
of a superconductor and can directly inherit pairing from it.
Thus the ferromagnetic strip geometry enjoys the advantages
of the other two geometries and avoids some of the key
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disadvantages. This is why we think this is a promising di-
rection for future MBS research.

ACKNOWLEDGMENTS

We thank Michal Papaj annd Liang Fu for bringing their
work to our attention and for discussions. K.T.L. acknowl-
edges the support of the Ministry of Science and Technology
of China and the HKRGC through Grants No. MOST20SC04,
No. RFS2021-6S03, No. AoE/P-701/20-2, No. C6025-19G,
No. 16310219, No. 16309718, and No. 16310520. P.A.L.
acknowledges support by U.S. Department of Energy, Basic
energy Science, under Grant No DE-FG02-03ER46076, John
Templeton Foundation Grants No. 39944 and No. 60148.

APPENDIX A: DETAILS FOR DETERMINING
TOPOLOGICAL REGIMES FROM THE LATTICE

GREEN’S FUNCTION METHOD

1. Proximity gap

The proximity gap is given by the smallest poles of Green’s
function G0(ω, k) [see the main text Eq. (5)],

Det(ωg − (1 − Z (ωg))�Bτx ) = 0, (A1)

where ωg denotes the size of the proximity gap and �B

denotes the superconducting gap of the background supercon-
ductor. We obtain ωg/�B = 1 − Z (ωg). Further substituting
Z (ω) = 1

1+	/
√

�2
B−ω2

, it becomes

ωg

�B
= 	√

�2
B − ω2 + 	

. (A2)

In the weak and strong coupling limit, approximately, it can
be found the proximity gap

ωg ≈
{
	 when 	/�B � 1

(1 − 2�2
B

	2 )�B when 	/�B � 1.
(A3)

The numerical solutions of Eq. (A2) are plotted in Fig. 7. In
the experiment, the proximity gap onto the gold surface states
is about 0.8 ∼ 0.9�B. Hence, from Fig. 7, 	 ≈ 3�B is a good
estimation of the coupling strength.

2. The effective Hamiltonian and self-energy terms from
recursive Green’s function method

There are three segments: the upper bare gold surface
region y ∈ (W/2,+∞), the middle EuS covered region y ∈
(−W/2,W/2), and the lower bare gold surface region y ∈
(−W/2,−∞). The effective Hamiltonian is obtained by inte-
grating out the bare gold surface region as a self-energy term.
With Dyson equations,

G(ω, kx ) = (
G−1

0 (ω, kx ) − �U (ω, kx ) − �L(ω, kx )
)−1

,

(A4)

where G0(ω, kx ) is the Green’s function for the EuS covered
gold surface:

G0 = Z

(ω+ − VEuSσ x )τ0 − Zhkx (y ∈ M )τz − (1 − Z )�Bτx
.

(A5)

Here y ∈ M denotes the middle region y ∈ (−W/2,W/2) and

hkx (y ∈ M ) = 1N×N ⊗ h(ω, kx ) + diag(1N−1×1, 1) ⊗ V̂c

+ H.c., (A6)

with N as the number of sites characterizing the width of EuS
covered region and

h(ω, kx ) = (4t − μ2 − 2t cos kx ) + αR sin kxσ
y

+
⎛
⎝1 + 	√

�2
B − ω2

⎞
⎠VEuSτ0 + 	√

�2
B − ω2

�Bτx,

(A7)

and the nearest-neighbor hopping matrix:

V̂c = τz ⊗
(
−t + i

2
αRσ x

)
. (A8)

Substituting Eq. (A5) into Eq. (A4):

G−1(ω, kx ) = Z−1(ω+ − VEuSσ
x )τ0 − hkx (y ∈ M )τz

− (Z−1 − 1)�Bτx − �U (ω, kx ) − �L(ω, kx ).

(A9)

The topological regime can be solely determined by the zero-
frequency Hamiltonian ht (kx ) = −G−1(ω = 0, kx ), which is
given by

ht (kx ) = hkx (y ∈ M )τz + Z (0)−1VEuSσx

+ (Z (0)−1 − 1)�Bτx + �U (0, kx ) + �L(0, kx ).

(A10)

Next, we sketch the process of evaluating the self-energy
terms �U (0, kx ) and �L(0, kx ) using the recursive Green’s
function method. By introducing the boundary Green’s func-
tion gU (ω, kx ) for the upper bare gold region and gL(ω, kx ) for
the lower bare gold region, the self-energy terms are written as

�U (ω, kx ) = V̂ †
U gU (ω, kx )V̂U , (A11)

�L(ω, kx ) = V̂ †
L gL(ω, kx )V̂L, (A12)

where the coupling matrix V̂U = [1, 01,N−1] ⊗ V̂c, V̂L =
[01,N−1, 1] ⊗ V̂c with 01,N−1 as 1 × (N − 1) zero matrix. The
boundary Green’s function can be evaluated iteratively with

gn+1,n+1(ω, kx ) = (ω+ − h0(ω, kx ) − V̂ †
c gnn(ω, kx )V̂c),

(A13)

where n is the column index, the intracolumn Hamiltonian
h0(ω, kx ) can be found from the main text Eq. (5),

h0(ω, kx ) = (4t − μ1 − 2t cos kx ) + αR sin kxσ
y

+
⎛
⎝1 + 	√

�2
B − ω2

⎞
⎠V1τ0 + 	√

�2
B − ω2

�Bτx.

(A14)

The boundary Green’s function gU (ω, kx ) or gL(ω, kx ) is given
by the saturated gnn(ω, kx ) after multiple iterations. Then the
self-energy terms �U (ω, kx ) and �U (ω, kx ) can be obtained
from Eqs. (A11) and (A12). Note that in the numerical
calculation, due to introducing an infinitesimal imaginary
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part η, i.e., ω+ ≡ ω + iη, the self-energy terms �U (0, kx ) and
�L(0, kx ) always contain infinitesimal imaginary parts such
that B(kx ) calculated later is not skew symmetric. To fix this,
these infinitesimal imaginary parts from η need to be removed
after obtaining the self-energy terms. Notably, we found the
zero-frequency self-energy terms can be expanded as

�U (L)(ω = 0) ∼ μ̃τz + Ṽ σ x + �̃τx. (A15)

These three terms physically, respectively, originate from
the inhomogeneity of chemical potential, Zeeman energy,
and effective pairing potential between the EuS covered gold
surface region and bare gold surface region. It can also be
seen that the self-energy terms �U (L)(ω = 0) are real and
Hermitian. This is because the low-energy (ω = 0) particles
under the EuS covered gold surface region only virtually
enter bare gold surface region due to the presence of a sizable
superconducting gap.

By substituting the zero-frequency self-energy terms into
Eq. (A10), the effective Hamiltonian ht (kx ) is thus obtained.
The topological invariant is calculated as

M = sgn[PfB(kx = 0)] × sgn[PfB(kx = π/a)] (A16)

with
B(kx ) = ht (kx )τyσy. (A17)

3. Real-space tight-binding Hamiltonian for Majorana
wave function

Here, we show the tight-binding Hamiltonian that is used
to calculate the Majorana wave function Fig. 2(e). Since the
Majorana states are closed to zero energy, i.e., ω ∼ 0, we can
replace Z (ω) as Z0 = Z (ω = 0 = (1 + 	/�B)−1 in the gold
surface’s Green’s function G0(ω, kx ) [Eq. (5)]. Comparing
with the conventional form of Green’s function G = Z/(ω+ −
H ), Z the is spectral factor, the Hamiltonian that captures the
Majorana states is given by

H = Z0hkx τz + Vxσ
x + (1 − Z0)�B. (A18)

Note that here we did not further divide H by a Z0 factor
as we did in Eq. (A7). The reason is that here the effective
Hamiltonian is not defined to characterize the topological
regime, which relies on zero-frequency Green’s function
−G−1(ω = 0, kx ) only, but to study the properties of ex-
citation states. For excitation states, it is the poles in the
Green’s function that are essential and the poles depend on
H only instead of Z−1H . We took the zero-frequency ap-
proximation, i.e., replacing Z (ω) as Z0 = Z (ω = 0) and the
Hamiltonian Eq. (A18) is frequency independent. The exci-
tation energies and wave functions of excitation states near
zero frequency, including Majorana states, are obtained by
diagonalizing Hamiltonian Eq. (A18). To obtain the real-space
wave function for Majorana states, the Hamiltonian Eq. (A18)
is written as

H =
∑

R

ψ†(R)(Z0(4t − μ(R))τz + V (R)σ x

+ (1 − Z0)�Bτx )ψ (R) +
∑
R,d

ψ†(R)Z0(−t

+ i

2
αR(σαβ × d ) · ẑ)τzψ

†(R + d ). (A19)

FIG. 8. The exponential behavior of Majorana wave function
near one end of the EuS strip, where x0 = 500 nm labels the position
of the EuS strip end and only a line cut of Majorana wave function
in Fig. 2(e) is shown, i.e., y is fixed at the middle of the strip.

Here, ψ (R) = (c↑(R), c↓(R), c†
↓(R),−c†

↑(R))T is the annihi-
lation operator defined in Nambu basis, R labels the positions
of sites, V (R) = VEuS(V (R) = V1), μ(R) = μ2(μ(R) = μ1) if
R belongs to the EuS covered (bare gold surface) region. d is
the vector connecting the nearest neighbor sites.

We diagonalized the tight-binding Hamiltonian Eq. (A19)
and plotted the wave function of lowest excitation energy
(∼4.45 × 10−6 meV) in Fig. 2(e), i.e., the Majorana wave
function, where we chose a 2000 nm × 200 nm gold surface
with a 800 nm × 60 nm in the middle being covered by the
EuS island. Other parameters are μ1 = 500 meV, V1 = 0.2�B,
μ2 = 25 meV, VEuS = 1.5�B. The exponential behavior of
the Majorana wave function near one end of the EuS strip
is shown in Fig. 8. The Majorana wave function is expected
to show an exponential decay behavior, namely, ψe−x/ξ or
|ψ |2e−2x/ξ . By fitting the exponential behavior of Majorana
wave function in Fig. 8 with the dashed line, it can be found
ξ ≈ 54 nm. On the other hand, the estimated coherence of
the gold surface states is ξ ≈ t/�B ≈ 320 nm, which is very
long due to the large hopping of gold surface states. Based
on the heuristic considerations given in Ref. [55], the prox-
imity effect from the bulk superconductor would renormalize
ξ as ξ ′ = Zξ ≈ 80 nm, where Z = 0.25 when the coupling
strength 	 = 3�B. Thus, qualitatively, the exponential be-
havior of the Majorana wave function in Fig. 8 matches the
estimated ξ from the effective model, although it is a bit
shorter. The possible reasons that cause the decay length of
Majorana wave function to be shorter than the estimated one
may be from the partial covered geometry, the inhomogeneity,
and so on.

Therefore, the self-energy term Eq. (4) reduces the lo-
calization length of the observed Majorana modes to be
smaller than the coherence length of the bulk superconductor.
The self-energy renormalization effect should be common in
island partially covered geometries and can affect the local-
ization of topological boundary states significantly.
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FIG. 9. (a), (b) Phase diagram of the heterostructure forming by
the 60-nm-wide EuS strip and 200-nm-wide gold surface. (a) is for
the uniform chemical potential case where μ1 = μ2, (b) is for the
chemical potential step case where μ1 is 500 meV. (c) The estimated
subband separation Es as a function of the width of wire Ly.

4. Understanding the diamond-shaped nontrivial topological
regime from a potential well

The diamond-shaped topological regimes in the main text
Fig. 2(a) are similar to those shown in Ref. [38]. Intu-
itively, the strip EuS covered gold surface region behaves
like a potential well that confines the quasiparticles inside
of it.

In Figs. 9(a) and 9(b), we plotted the phase diagram with a
60-nm-wide EuS strip and 200-nm-wide gold surface with and
without chemical potential steps, respectively. It can be seen
that the separation of diamond-shaped topological regimes is
estimated as 6 meV in the presence of chemical potential step
and is reduced to about 2 meV when the chemical potential
step is removed.

Next, we understand the separation of these diamond-
shaped topological regimes from the point of view of a
potential well. In a potential well with a width of Ly, a simple
estimation of the subband separation Es is given by

Es ∼ EN+1 − EN = (N + 1/2)π2

mL2
y

, (A20)

where the band bottom energy of subbands EN =
π2N2/2mL2

y , N ∼
√

2mL2
y μ/π2 is the estimated number

of occupied subbands with chemical potential μ. Based
on this, we plot the estimated subband separation ES as a
function of Ly in Fig. 9(c). It can be seen from Fig. 9(c)
that a 6 meV diamond-shaped topological regime separation
indeed corresponds to a potential well of Ly ∼ 60 nm.
Apparently, the scattering of the electrons by the potential
step is sufficient to effectively create a potential well. On

FIG. 10. (a), (b), respectively, show the topological phase
diagram with a lattice constant a = 10 Å in and a = 4 Å in (blue
color labels the topological regime with M = −1 and yellow color
labels the topological trivial region with M = 1). (c), (d), respec-
tively, are the enlarged topological regime of the low chemical
potential region (0–100 meV) in (a) and (b).

the other hand, a 2 meV diamond-shaped topological regime
separation corresponds to a potential well of Ly ∼ 200 nm,
being same as the width of the whole gold surface. In other
words, when the chemical potential step is removed, the
separation of diamond-shaped topological regimes depends
on the width of the whole gold surface. This is consistent with
the fact that the topological regime in the main text Fig. 3(a)
almost vanishes because the separation of subbands is not
visible for the case of a planar gold surface.

5. The influence of the choice of the lattice constant a

We plotted the topological phase diagram over a wide
chemical region (up to 600 meV) shown in Fig. 10(a) with
a lattice constant of 4 Å and Fig. 10(b) with a lattice of
10 Å. It can be seen that the topological regime within the
high chemical region is shifted by reducing the lattice constant
a. This is because the electronic structures in the high filling
region is sensitive to the lattice constant a. In contrast, the
topological regime within the low chemical region is insensi-
tive to the lattice constant. This is clearly seen from Figs. 10(c)
and 10(d), where the topological regimes of Figs. 10(a) and
10(b) zoomed in at low chemical potential region are shown.
It can be seen that they are roughly consistent. Although the
topological regimes at high filling region are more sensitive
to the choice of lattice constant, we found that our conclusion
that the chemical potential step is essential for obtaining a siz-
able topological regime would not be affected. In Figs. 10(a)
and 10(b), the topological regime vanishes when the chemical
potential step is removed, i.e., μ2 = μ1 = 500 meV (see the
position of black dashed line).
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APPENDIX B: SOLVE TOPOLOGICAL REGIMES USING
THE SCATTERING MATRIX METHOD

1. Details of the derivation

In the Nambu basis (ck,↑, ck,↓, c†
−k,↓,−c†

−k,↑), the model
Hamiltonian reads

H (k) = [ξk + αR(kxσy − kyσx )]τz + Vxσx + �τx, (B1)

where σi, τi, respectively, operate on the spin and particle-
hole space, the kinetic energy term ξk = k2/2m − μ, Vx is the
Zeeman energy and � is the pairing potential.

The eigenenergies and eigenstates at � = 0 are written as

E1,± = ξk ±
√

αRk2
x + (Vx − αRky)2, (B2)

ψ1,± = 1√
2

(∓ieiα− , 1, 0, 0)T , (B3)

E2,± = −ξk ±
√

αRk2
x + (Vx + αRky)2, (B4)

ψ2,± = 1√
2

(0, 0,±ie−iα+ , 1)T . (B5)

Here, α± = Arg[αRkx + i(Vx ± αRky)]. Being different from
TI surface states [48], the four states (ψ1,±, ψ2,±) all are rele-
vant near Fermi energy. By projecting the model Hamiltonian
in the space formed by (ψ1,+, ψ2,−, ψ1,−, ψ2,+), we obtain an
effective Hamiltonian,:

He f f (k) =
(

H̃+(k), 0
0, H̃−(k)

)
, (B6)

with

H̃λ(k) =
(

ξk + λαRk − λVxky/k �

� −ξk − λαRk − λVxky/k

)
,

(B7)

where the higher order terms in pairing terms are neglected as
they are suppressed by Vx/μ, �/μ. It is worthy noting Heff(k)
is block diagonalized.

The exciting energy of this effective Hamiltonian as a
function of ky at kx = 0 is plotted in the main text, Fig. 4(b).
The excitation spectrum is fully gapped without the Zeeman
energy, but becomes gapless when Vx > �. Such gapless ex-
citations result in some segment contours at E = 0 as shown
in the main text, Fig. 4(c).

In the following, we try to solve the topological regime of
a magnetic strip/Rashba superconductor heterostructure. The
geometry of the junction we consider is displayed in the main
text, Fig. 4 d. Here we consider the region with magnetic strip
has a different chemical potential and larger Zeeman energy
Vx > � due to the proximity effects from magnetic strip. As
we showed in the main text, there are gapless excitations
within the magnetic strip covered region. Those in-gap exci-
tations with energy ε < � are expected to be trapped within
the magnetic strip covered region as Andreev bound states,
which can be labeled by a good quantum number kx. The
boundaries of topological phase transitions are determined
by ε(kx = 0) = 0. Next, let us solve the energies of Andreev
bound states at kx = 0.

To solve the Andreev bound states, we first need to obtain
the eigenmodes of different regions. When kx = 0, the model

Hamiltonian becomes

H (k) = (ξk − αRkyσx )τz + Vxσx + �τx. (B8)

In this case, the model Hamiltonian H (k) exhibits a chiral
symmetry [σx, H (k)] = 0. Thus, we can choose the spin quan-
tization axis along the x direction and block diagonalized the
Hamiltonian as

H (k) =
(

H+(k) 0
0 H−(k)

)
, (B9)

where Hλ = (ξk − λαRky)τz + λVx + �τx. Because these two
blocks do not mix, we can solve the bound states given by
these two blocks separately. The eigenmodes can be obtained
from the eigenequations,(

ξk − λαRky + λVx �

� −ξk + λαRky + λVx

)
ψλ = ελψλ,

(B10)

where ψλ = (c1,λ, c2,λ)T , ελ = ±√
(ξk − λαRky)2 + �2 +

λVx.
In the middle region where the magnetic strip covers, Vx >

�, we can rewrite ξk − λαRky = λρe(h)
√

(ελ − λVx )2 − �2,
where ρe = 1 for the electron-dominant mode and ρh = −1
for the hole-dominant mode. The eigenwave functions for the
zero-energy modes (ελ = 0) are

ψν
e(h),λ(y) =

√
�

2Vx

(
e− 1

2 ρe(h)acosh Vx
�

λe
1
2 ρe(h)acosh Vx

�

)
eikν

e(h),λ , (B11)

where

kν
e(h),λ = kν

F,λ + λρe(h)ν
m

√
V 2

x − �2√
m2α2

R + 2mμ2

, (B12)

kν
F,λ = λmαR + ν

√
m2α2

R + 2mμ2. (B13)

In the top and bottom bare superconducting region,
we set Vx = 0. In this case, we can rewrite ξk − λαRky =
ρe(h)

√
(ελ − λVx )2 − �2. This gives the eigenwave function:

ψ ′
e(h)(y) = 1√

2

(
1

eiρe(h)acos
ελ
�

)
eikyy. (B14)

At zero-energy modes (ελ = 0), the wave function is simpli-
fied as

ψ ′
e(h),ν (y) = 1√

2

(
1

iρe(h)

)
eik′ν

e(h),λy, (B15)

where

k′ν
e(h),λ = k′ν

F,λ + νρe(h) i�√
m2α2

R + 2mμ1

, (B16)

k′ν
F,λ = λmαR + ν

√
m2α2

R + 2mμ1. (B17)
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Let us denote the wave function of the whole junction as

ψ (y) =
⎧⎨
⎩

c−
e ϕeeik′−

e,λy + c+
h ϕheik′+

h,λ
y if y � −W/2

a+
e χeeik+

e,λy + a−
e χeeik−

e,λy + b+
h χheik+

h,λ
y + b−

h χheik−
h,λ

y if − W/2 � y � W/2
c+

e ϕeeik′+
e,λy + c−

h ϕheik′−
h,λ

y if y � W/2,

(B18)

where the vectors

ϕe =
(

1
i

)
, ϕh =

(
1
−i

)
, χe =

√
�

2Vx

(
e− γ

2 λe
γ

2

)
, χh =

√
�

2Vx

(
e

γ

2

λe− γ

2

)
. (B19)

Here γ = acoshVx
�

.
Next, we match the boundary conditions and obtain the equation that gives rise to the zero-energy states ε(kx = 0) = 0, which

corresponds to the topological regime. To make the physical process more clear, we use the scattering matrix method [48,60,61].
Let us define

ce(L) = c−
e e−ik′−

e,λ
W
2 , ch(L) = c+

h e−ik′+
h,λ

W
2 , (B20a)

ce(U ) = c+
e eik′+

e,λ
W
2 , ch(U ) = c+

e eik′−
h,λ

W
2 , (B20b)

aν
e (L) =

√
�

2Vx
aν

e e−ikν
e,λ

W
2 , bν

h(L) =
√

�

2Vx
bν

he−ikν
e,λ

W
2 , (B20c)

aν
e (U ) =

√
�

2Vx
aν

e eikν
e,λ

W
2 , bν

h(U ) =
√

�

2Vx
bν

heikν
e,λ

W
2 . (B20d)

The continuity of the wave function and probability current [related to ∂yψ (y)] are parameterized as the following equations:⎛
⎜⎝

1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

⎞
⎟⎠

⎛
⎜⎝

c−
e (L)

c+
h (L)

c+
e (U )

c−
h (U )

⎞
⎟⎠ =

⎛
⎜⎜⎝

e− γ

2 e
γ

2 0 0
λe

γ

2 λe− γ

2 0 0
0 0 e− γ

2 e
γ

2

0 0 λe
γ

2 λe− γ

2

⎞
⎟⎟⎠

⎛
⎜⎝

a−
e (L)

b+
h (L)

a+
e (U )

b−
h (U )

⎞
⎟⎠ +

⎛
⎜⎜⎝

e− γ

2 e
γ

2 0 0
λe

γ

2 λe− γ

2 0 0
0 0 e− γ

2 e
γ

2

0 0 λe
γ

2 λe− γ

2

⎞
⎟⎟⎠

⎛
⎜⎝

a+
e (L)

b−
h (L)

a−
e (U )

b+
h (U ),

⎞
⎟⎠

(B21)⎛
⎜⎜⎝

k′−
F,λ k′+

F,λ 0 0
ik′−

F,λ −ik′+
F,λ 0 0

0 0 k′+
F,λ k′−

F,λ

0 0 ik′+
F,λ −ik′−

F,λ

⎞
⎟⎟⎠

⎛
⎜⎝

c−
e (L)

c+
h (L)

c+
e (U )

c−
h (U )

⎞
⎟⎠ =

⎛
⎜⎜⎝

k−
λ e− γ

2 k+
λ e

γ

2 0 0
λk−

λ e
γ

2 λk+
λ e− γ

2 0 0
0 0 k+

λ e− γ

2 k−
λ e

γ

2

0 0 λk+
λ e

γ

2 λk−
λ e− γ

2

⎞
⎟⎟⎠

⎛
⎜⎝

a−
e (L)

b+
h (L)

a+
e (U )

b−
h (U )

⎞
⎟⎠

+

⎛
⎜⎜⎝

k+
λ e− γ

2 k−
λ e

γ

2 0 0
λk+

λ e
γ

2 λk−
λ e− γ

2 0 0
0 0 k−

λ e− γ

2 k+
λ e

γ

2

0 0 λk−
λ e

γ

2 λk+
λ e− γ

2

⎞
⎟⎟⎠

⎛
⎜⎝

a+
e (L)

b−
h (L)

a−
e (U )

b+
h (U )

⎞
⎟⎠. (B22)

Here we purposely decompose the right part into two parts, one is for the incoming state ψ in = (a−
e (L), b+

h (L), a+
e (U ), b−

h (U ))T

and the other is for the outgoing state ψout = (a+
e (L), b−

h (L), a−
e (U ), b+

h (U ))T . We assumed μ � Vx,� so we only use k′
F,λ and

kF,λ to characterize the momentum in Eq. (B22).
First, according to the definition of Eq. (B20), we have ψin = T ψout, where the transmission matrix is

T =
(

0 TLU

TUL 0

)
, (B23)

with

TLU =
(

e−ik−
e,λW 0

0 e−ik+
h,λ

W

)
, TUL =

(
eik+

e,λW 0
0 eik−

h,λ
W

)
. (B24)

Equations (B21) and (B22) further requires

M1ψ
0 = M2ψ

in + M3ψ
out (B25)

M4ψ
0 = M5ψ

in + M6ψ
out. (B26)
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FIG. 11. (a)–(l) show the BdG energy spectrum (E vs kx) of the magnetic strip/Rashba superconductor junction for various Zeeman energy
Vx at a width W/ξ = 0.6.

The form of matrices can be obtained by matching with Eqs. (B21) and (B22). These two equations can give a scattering matrix
S with ψout = Sψ in, where

S = (
M−1

4 M6 − M−1
1 M3

)−1(
M−1

1 M2 − M−1
4 M5

) =
(

SL 0
0 SU

)
. (B27)

After some explicit calculations, we found

SL = SU =
(

re rA

rA rh

)
=

(
iλreiφλ −√

1 − r2eiφλ

−√
1 − r2eiφλ iλreiφλ .

)
. (B28)

Note rA is induced by the Andreev reflection for intra-Rashba Fermi circle, while re(h) are induced by normal reflection between
inter-Rashba Fermi circle. Here SL and SR are the same due to the mirror symmetry, and we denote the normal reflection term
and Andreev reflection term:

reiφλ = (μ1 − μ2) sinh γ

−iλ
(
mα2

R + μ1 + μ2
)

sinh γ +
√(

mα2
R + 2μ1

)(
mα2

R + 2μ2
) , (B29)

√
1 − r2eiφλ =

√(
mα2

R + 2μ1
)(

mα2
R + 2μ2

)
coshγ

−iλ
(
mα2

R + μ1 + μ2
)

sinh γ +
√(

mα2
R + 2μ1

)(
mα2

R + 2μ2
) . (B30)

It can be seen that φλ = −φ−λ. As ψ in = T ψout and ψout =
Sψ in, we have det[I − ST ] = 0 with I = diag(I, I) and I as
the 2 × 2 identity matrix, which gives

det[I − SU TULSLTLU ] = 0. (B31)

Inserting Eq. (B28) into Eq. (B31), after some massage, it can
be found that

det[I − SU TULSLTLU ] = 2e2iλθ+2iφλ × [−1 + r2

+ r2 cos
(
2
√

m2α2
R + 2mμ2W

)
+ cos(2λθW − 2φλ)]. (B32)
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Therefore, we obtain the gap closing lines as

r2 cos(2
√

m2α2
R + 2mμ2W ) + cos(2λθW − 2φλ) = 1 − r2 ,

(B33)

where

θ = m
√

V 2
x − �2√

m2α2
R + 2mμ2

(B34)

and

r2 = (u1 − u2)2 sinh2 γ(
mα2

R + μ1 + μ2
)2

sinh2 γ + (
mα2

R + μ1
)(

mα2
R + μ2

) .

(B35)

2. Tight-binding model for the magnetic strip/Rashba
superconductor junction

To verify the analytical derivation, as presented in the main
text, Fig. 5, we numerically calculated the topological phase
transition boundaries with the following tight-binding model:

H =
∑

R

c†
R((4t − μ(R))τz + Vx(R)σx + �τx )cR + c†

R(−tτz

− iαR

2
τzσy)cR+x̂ + c†

R

(
−tτz + iαR

2
τzσx

)
cR+ŷ

+ H.c., (B36)

where the Zeeman energy Vx(R) = Vx in the middle region
covered by the magnetic strip and Vx(R) = 0 in the other re-

gions; the chemical potential μ(R) = μ2 in the middle region,
and μ(R) = μ1 in other regions [see the main text, Fig. 4(d)].
To determine the topological phase transition boundary, we
take periodic boundary conditions along the x direction and
evaluate the gap at kx = 0. The numerical results are summa-
rized in the main text, Fig. 5. The energy spectrum plots given
in the main text, Fig. 6, and below are also calculated with this
tight-binding model.

3. Vx dependence of the BdG spectrum

To show the Vx dependence of the BdG spectrum, we
display the energy spectrum with various Vx in Fig. 11. Here,
we fix the width to be W/ξ = 0.6 with ξ = v f 2/�. Other
parameters are the same as in Fig. 5(e) in the main text. It can
be clearly seen that the smallest gap at finite kx is comparable
to the gap at kx = 0 for a relatively small Zeeman energy, such
as when Vx is near 2.7�. This marks the maximum topological
gap, which is about 0.2� for this set of parameters. When
the Zeeman energy is further increased, the gap at finite kx

reduces and eventually is suppressed to be very small at about
Vx ∼ 3.9�, even though it does not really vanish. Note that the
gap at kx = 0 has not yet closed and, in fact, the topological
regime extends to Vx = 4.5�, according to Fig. 5(e). We note
that the situation is very similar in the case when the Rashba
metal is replaced by TI. In Ref. [48], the potential under the
magnetic strip was modeled by a narrow line which lives
on one lattice point. If instead we employ a model where
the potential is a step function which is uniformly under the
magnetic strip, similar to what is use throughout this paper, a
small gap also appears at finite kx prior to the closing of the
gap at kx = 0.
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