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The brain works as a dynamic system to process information. Various challenges remain in understanding the
connection between information and dynamics attributes in the brain. The present research pursues exploring
how the characteristics of neural information functions are linked to neural dynamics. We attempt to bridge
dynamics (e.g., Kolmogorov-Sinai entropy) and information (e.g., mutual information and Fisher information)
metrics on the stimulus-triggered stochastic dynamics in neural populations. On the one hand, our unified
analysis identifies various essential features of the information-processing-related neural dynamics. We discover
spatiotemporal differences in the dynamic randomness and chaotic degrees of neural dynamics during neural
information processing. On the other hand, our framework reveals the fundamental role of neural dynamics in
shaping neural information processing. The neural dynamics creates an oppositely directed variation of encoding
and decoding properties under specific conditions, and it determines the neural representation of stimulus dis-
tribution. Overall, our findings demonstrate a potential direction to explain the emergence of neural information
processing from neural dynamics and help understand the intrinsic connections between the informational and

the physical brain.
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I. INTRODUCTION

Understanding how the brain works lies at the frontier
of the intersection of biology and physics [1]. Substantial
progress has demonstrated that the brain can be treated as
a dynamic system that processes information [2]. The brain
is frequently driven out of equilibrium by external stim-
uli [3-5] or internal events [6,7] and creates multifarious
dynamics [8—12]. In the meantime, when the dynamics is
stimulus-triggered, the stimulus information is coded [13] and
memorized [14] by the brain to support cognitive functions
[15-17], making the brain an information system as well
[18]. Research into such dual attributes of the brain features
a long history. Extensive connections between the dynamics
and information attributes have been discovered in the brain
[4,19-21], indicating that the cognitive functions that process
external information (referred to as information functions) are
essentially rooted in neural dynamics [22-24].

Although the analyses of neural dynamics [8—12] and
neural information attributes [13-18,25,26] have seen sub-
stantial progress, it remains an open question how dynamics
and information feature such fundamental connections in the
brain. The pursuit of an appropriate answer to this question
faces various challenges, among which, a critical one is the
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shortage of a practical analysis framework that unifies the
dynamics [27] and information [28] quantities in neural ac-
tivities. Regarding neural activity characterization, a dilemma
exists that the stochastic models [29-32] surpass deterministic
models [33-37] in supporting information-theoretical met-
rics, but these stochastic approaches are weak in defining
the dynamics related to interneuron interactions and neural
tuning properties (i.e., the response selectivity to stimuli).
Meanwhile, another challenge arises from the lack of an appli-
cable metric of the neural dynamics involved in information
processing. In comparison with the information-theoretical
metrics rooted in probabilistic frameworks (e.g., mutual in-
formation [13]), mainstream dynamics-theoretical metrics in
experimental [38—40] and theoretical [12,41-50] studies are
mainly built on nonprobabilistic dynamics theories (e.g., Lya-
punov spectra [49,50]), impeding an analytical unification
with information quantities.

The present research pursues looking at the intrinsic rela-
tions between information and dynamics in the brain. To build
an operable framework, we concentrate on the elementary
neural information functions from encoding and decoding
perspectives and the stimulus-triggered neural dynamics in
neural populations (see Fig. 1). We attempt to implement a
unified analysis of these elements and explore the emergence
of the characteristics of neural information functions from the
dynamics of neural ensembles. Technically, our research may
contribute to developing a possible description of stimulus-
triggered neural activities in neural populations, supporting
the analytic measurement of dynamics and information quan-
tities during neural information processing. Theoretically, the
significance of our pursuit lies in the possibility for the
analysis to explore the fundamental connections between the
physical (dynamics aspect) and informational (information
aspect) brain [1]. These connections may reveal a potential
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FIG. 1. The connections between neural information functions and neural dynamics.

direction to study why the complex and remarkable charac-
teristics of neural information processing and cognition can
naturally emerge in the brain, a system of the neurons that
have only elementary functions.

The paper is organized as follows. In Sec. II we introduce
a mathematical characterization of the stimulus-triggered neu-
ral activities during information processing, whose foundation
has been established in our previous research [51]. Based on
this characterization, the dynamic randomness and chaotic
degree of stimulus-triggered neural activities are quantified in
terms of Kolmogorov-Sinai entropy (Sec. III). After reviewing
the quantification of neural information function attributes
(e.g., encoding and decoding efficiency), we explore the
substantive characteristics of information-processing-related
neural dynamics and analyze the emergence of neural in-
formation function attributes from neural dynamics. Various
potential connections between the information and dynam-
ics attributes of neural activities are observed (Sec. IV). In
Sec. V we provide an integrated and multiscale perspective
for our theoretical framework and computational findings. We
attempt to verify our discoveries’ validity and generalization
ability by relating them to existing experiment-validated stud-
ies or proposing mechanistic insights into why they arise.
Finally, we discuss several potential directions and remaining
challenges for future explorations. While we concentrate on
physical pictures and neuroscience backgrounds throughout
the paper, one can find the systematic description of all math-
ematical implementations in the Appendixes.

II. STIMULUS-TRIGGERED NEURAL ACTIVITIES

A. Neural population description

We begin with a neural population A (V, ), where V is the
neuron set and & is the synapse set. The synaptic connection
strength is defined by an adjacent matrix C (C;; € [—1, 1]). We
randomize V, £, and C for generality (see Appendix A 1). In
real neural populations, the stimuli will not be simultaneously
received by all neurons. Stimulus information experiences
a complex diffusion process among neurons, creating time
differences for neurons to receive stimuli. Therefore, it is
biologically reasonable to classify these neurons into input
neurons (receive inputs directly) and intermediary neurons
(triggered by their presynaptic neurons and process inputs
indirectly) [see Fig. 2(a) for an example].

B. Neural activities of input neurons

Input neurons process stimuli directly; their activity pro-
files are mainly determined by their neural tuning properties.
A standard characterization for the tuning property is the
tuning curve [2,53], where the stimulus at the peak evokes the
highest response rate [53]. In our research, each input neuron
N; has a bell-shaped tuning curve G;(s) with a maximum
response coefficient R;, a preferred stimulus s;, and a curve
width o; [see (A1) in Appendix A 2 and Fig. 2(a)]. Assuming
a randomized stimulus sequence S’ occurs in a time interval
[0,1"], we implement the neural activity characterization as
the probability P;(r | §’,0,t) for the cumulative neural re-
sponse count of input neuron N; to reach a specific quantity r
at any moment ¢ in [0, ¢”]. This probability can be efficiently
approximated by the Poisson process [2]. Specifically, we use
the tuning curve G;(s) as the intensity function of the Pois-
son process to describe the response selectivity of N; on §'.
Such definition makes the Poisson process nonhomogeneous,
realizing a time-varying neural activity intensity controlled by
neural tuning properties

[A;(0, D]

Pir]S8,0,1)= exp [—A;(0,1)], (1)

AKO,1) = / GILS (m)ldm ?)
0

[see Fig. 2(b) and (A2)-(A4) in Appendix A 2].

Given the probability distribution of the Poisson process,
we can generate possible neural activities by predicting the
arrival time of each neural response of ;. We implement the
prediction with the maximum probability method (MP). This
method estimates the arrival time of the rth neural response as
the moment 7, when the response frequency is most likely to
reach r:

17, = argmax [Pi(r | §',0,1)] 3)
t

[see (A5) in Appendix A 2]. Figure 2(b) illustrates an example
of the predicted arrival time sequence and the time differ-
ence between each two neural responses. With the predicted
sequence 7; = ﬁ;},eN+, we can mark every neural response
of N; in the time line by R;(¢), where R;(#) = 1 stands for
response and R;(¢) = 0 stands for no response [see (A6) in
Appendix A 2].
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FIG. 2. Stimulus-triggered neural activity characterization. (a) A population with 500 neurons (the ratio of input neurons to intermediary
neurons is 3:2), a random stimulus sequence S’ = {s; | sy € [—5, 5]} in the time interval [0, 500], and 20 examples of input neuron tuning
curves with 7 € [0.5, 11,5 € [-5,5], and o € [%, %]. (b) The stochastic process of the neural activities of a randomly picked input neuron,
the predicted neural response arrival sequence, and the time difference between every two predicted responses. (c) The presynaptic inputs,
the estimated stochastic process of neural activities (h = 100), the observed neural response sequence, and the estimated tuning curve (for
visualization, it is smoothed from the raw data utilizing the Savitzky-Golay filter [52]) of the intermediary neuron. (d) The estimated neural

response train.

C. Neural activities of intermediary neurons

Intermediary neurons are driven by their presynaptic neu-
rons rather than direct stimulus inputs. It is unreasonable to
limit their activity profiles by presetting their tuning curves.
Obviously, their activities are significantly affected by the
network dynamics, leading to obstacles for a priori stochastic
characterization.

We develop a two-step statistical approach to overcome
these obstacles. For an intermediary neuron N; that features
areceptive field RF(N;) (the set of presynaptic neurons), the
first step is to predict the neural activity arrival sequence of
each neuron N; in RF(N;) and define the synaptic inputs
given from Ny to N; as Ry (t)Cy; [see Fig. 2(c)]. By summing
these inputs over all neurons in RF(N;), we can obtain the
total synaptic input ¥; of neuron N;. Then we characterize
the neural response of N; following

Ry = u[ /0 (W, (6) + 2, (0))dx — ij] @)

where v(-) denotes the unit step function. This integrate-
and-fire response mechanism has a dissipation term 2 (e.g.,
the leaky term in the leaky integrate-and-fire neuron [32])
and a neural response threshold Y (e.g., spiking thresh-
old [32]), implementing that N; emits a response only
if cumulative synaptic inputs — dissipation > threshold [see
Egs. (A7)—(A10) in Appendix A 3]. The concrete examples of
this mechanism can be seen in existing deterministic models
[33-37]. The second step is to treat the generated neural activ-
ities of N; as observed samples and repeat the generation with
S’ for h times. This repeated sampling supports a maximum

likelihood estimation for the intensity function of the neural
activities of N;, constructing an observed distribution of the
Poisson process
- [A;(0, 1))
Pl(r | Sl,O’t) = L')
: r

exp(—A;(0,1)), (5

~ 1 —~
Aj(O,t)=/ ; > Rjamydm. (6)
0

a€ZN[1,h]

Equation (5) can be further applied to estimate the neural re-
sponse arrival sequence and the neural tuning curve of N; [see
Fig. 2(c) and (A11)-(A14) in Appendix A 3]. Such a two-step
approach takes the advantages of deterministic models in de-
scribing interneuron interactions [see Eq. (4)]. By estimating
Poisson processes based on the generated activities in Eq. (4),
the difficulties underlying a direct probabilistic description of
network dynamics are avoided.

For a summary, we define P,? (r]8,0,1) to describe the
neural activities of neuron N,, where © denotes the neuron
type (O =1 for the input neuron and © = 0 for the inter-
mediary neuron). The algorithm in Appendix A 4 depicts our
framework. Figure 2(d) illustrates the estimated neural re-
sponse train by this framework.

III. DYNAMICS IN STIMULUS-TRIGGERED
NEURAL ACTIVITIES

A. Neural tuning Kolmogorov-Sinai entropy

A remaining challenge is to develop a dynamics-theoretical
metric for stimulus-triggered neural activities. Although a
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FIG. 3. Neural dynamics measurement. We randomize a stimulus sequence S’ = {s; | sy € [—5, 5]} in [0, 500] and a neural population
with 200 neurons (the ratio of input neurons to intermediary neurons is 3:2). (a) The probability distribution P (' — r | &', t,¢ + T) of an
arbitrary neuron N, with different . (b) The entropy Hs of neuron N,. (c) The temporal and spatial distribution of Hgg (r = 1), and the

spatial distribution of Hgg (f = 100, T = 1) in the neural population.

natural choice is Kolmogorov-Sinai entropy, which can char-
acterize the randomness of a dynamic system forward in
time [54], the implementation of this entropy in neural dy-
namics remains nontrivial. To simplify the calculation of the
Kolmogorov-Sinai entropy, we reformulate the proposed Pois-
son processes as continuous Markov chains

)
—P2(r |8, t,t
5 W (| +1)

=D WSttt =Y WSt 1), ()

/ '
r'sr r'>r

where parameter 7 > 0 measures the interval length of
variation. We define that W;;(S',¢,t + 1) = W;;(S',t,t +
1)73,? (i]8,0,¢), in which W denotes the transition proba-
bility matrix [see Egs. (B1)—-(B4) in Appendix B 1 for details].
Then a new Kolmogorov-Sinai entropy Hgs(N,, S',t,t + 1)
(referred to as neural tuning Kolmogorov-Sinai entropy)

1
Ny, St =—= ;(r 8,0,
His(Ny, St 1+ 1) = =3 03 P01 8,0,0)

ror'>r

Wer (St t + 1) In W, (S, 1,1 + 7) ®

is proposed as a metric of the dynamic randomness of the
activities of neuron N, in a time interval [¢,¢ + t] [see
Egs. (BS)—(B7) in Appendix B 2]. Note that the interval length
T should not be too small since any biological variation takes
time in the neural system. Our research considers the cases
where 7 > 1.

Figure 3(a) shows that the maximum possible variation
amplitude of neural activities [the maximum change r' — r
with nonzero PY(r' — r | 8, t,t + 1)] is positively correlated
with 7. In Fig. 3(b) we find that Hgs(N,, S',t,t + 1) is larger
when t is relatively small. Together we can know that while

short-term neural activities have relatively small amplitudes
of variations, the dynamic randomness of those variations is
more complex. In comparison, long-term variations feature
larger amplitudes, but the variation tendency is relatively
stable. Moreover, Fig. 3(c) shows the temporal and spatial
distribution of Hgg with T = 1 (measures the short-term dy-
namic randomness) on the population scale, and a spatial
distribution of Hgg with T = 1 and ¢+ = 100.

B. Chaos in neural activities

An important property of the Kolmogorov-Sinai entropy
is that it is bound by the summation of all the positive
Lyapunov exponents of the dynamic system (see Pesin
identity [55] and further see Ruelle inequality [56] for a
generalization). This mathematical relation bridges our metric
and the Lyapunov spectra analysis [49,50]. Each Lyapunov
exponent characterizes the separation or convergence rate of
different infinitesimally close trajectories in the phase space
of a dynamic system, and a positive Lyapunov exponent re-
flects the existence of chaos. The existence of such a property
suggests that the neural activities are chaotic when the cor-
responding Hgs is positive, and the chaos will be intensified
when Hgg increases (see Appendix B 3).

IV. BRIDGE THE INFORMATION AND DYNAMICS
ATTRIBUTES

A. Information-theoretical metrics reformulation

Our research concentrates on the relations between the
stimulus-triggered neural dynamics and the elementary neural
information functions (studied from the aspects of encoding
and decoding). Our proposed neural activity characterization
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above supports the analytical calculation of encoding-
efficiency-related and decoding-efficiency-related metrics.

For neural encoding, we concentrate on the widely used
metrics such as total response entropy H (TE), noise en-
tropy H® (NE), and mutual information H*% (MI). They
respectively measure the total variability of neural responses
to stimuli, the inexplicable part of the variability by stimuli,
and the explicable part of the variability by stimuli. Their
classic definitions are summarized in [2]. In the present re-
search, they are reformulated to be time-dependent to fit
dynamic situations [see Eqs. (C3)—(C5) in Appendix C 1]. At
each moment 7, we can directly measure H(N,,, 1), H?(N,, 1),
and H22(N,,t) for every neuron N,. Meanwhile, we can
measure the entropy of stimulus sequence (ES) as Hs(S', t)
[see Eq. (C6) in Appendix C 1]. Moreover, we can use HTM
(MI/TE) to measure the interpretability of neural activities
based on stimuli, and use 7;_[—? (MI/ES) to measure the en-
coding efficiency for stimuli based on neural activities.

The neural decoding efficiency is measured with Fisher
information (FI) [2,57]. In the present research, the measure-
ment of the time-dependent FI F(N,, t) of each neuron N, is
proposed by (C16) in Appendix C 2. The Cramér-Rao bound
suggests that FI limits the accuracy with which any decoding
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technique can estimate the target stimulus parameter based
on neural activities [2]. Thus, the time-dependent FI F(N,, t)
acts as the lower bound of the variance of any decoding
technique applied on neuron N,. Any decoding scheme that
reaches this variance bound is optimal [2].

Figure 4 depicts the discussed relations between these
information-theoretical metrics. Within such a frame, our uni-
fied analysis obtains four main findings.

B. Finding 1: The difference of dynamic randomness between
the short-term and long-term variations in neural activities

As suggested above, compared with the long-term (large t)
variations of neural activities, the short-term (small t) varia-
tions have small amplitudes but much more complex dynamic
randomness [Figs. 3(a) and 3(b)]. In Fig. 5(a) this finding
is further verified under more general conditions. Based on
the illustrated instances and statistical results, we find that
the dynamic randomness measured by Hgs of each neuron
and the diversity of dynamic randomness between neurons
are negatively correlated with v € [1,50] (the diversity of
dynamic randomness is quantified by the variance Var(Hgs)
among neurons). Such a finding indicates that the short-term
neural activities have smaller variation amplitudes but more
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FIG. 5. Two findings of the stimulus-triggered neural dynamics. The experiment is based on a stimulus sequence S’ = {s; | s, € [—5, 5]}
in [0, 500] and a neural population with 500 neurons (the ratio of input neurons to intermediary neurons is 1:1). (a) We illustrate four instances
of the spatial distribution of Hgg with # = 100 and different t (left and middle). Meanwhile, a quantification of the spatial diversity of Hgg is
implemented utilizing the variance Var(s) among all neurons (right). (b) The mean distance between each neuron N, and all input neurons
is calculated (this distance is set as 0 when N, is an input neuron). One can see that the spiking probability (spiking frequency) of each neuron
reduces with the increase of distance (upper line, left). Meanwhile the mean Hgg values (averaged through the time interval) of all neurons
increase along with their spiking probability quantities (upper line, middle). Therefore, the mean Hgg values decrease as the distance increases
(upper line, right). Conversely, one can see that the normalized Hgg values decline when the spiking probability increases (bottom line, left).
Compared with the mean Hgg, the normalized Hgg features an opposite trend, decreasing along with the mean distance (bottom line, right).
Here the colors of all data points scale depending on the corresponding 7.
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complex dynamic randomness, implying larger interneuron
diversity in dynamic randomness. Opposite characteristics are
featured by long-term neural activities, namely, larger varia-
tion amplitudes but more stable trends, and the activities of all
neurons tend to be more homogeneous.

C. Finding 2: The uneven spatial distribution of chaos
in neural populations

As shown in Fig. 3(c), the spatial distribution of
Kolmogorov-Sinai entropy Hgs in the neural population is
uneven. The dynamic randomness varies between neurons (no
matter at any specific moment or through the time interval). To
offer a more solid verification, we set another random neural
population with 500 neurons (the ratio of input neurons to
intermediary neurons is 1:1). We treat all input neurons as the
input ports of this population and calculate the mean minimum
distance (the shortest path length on the graph) between each
neuron N, and these input ports (the distance is set as 0 when
N, happens to be an input neuron). An intermediary neuron
with a larger distance is treated as in a deeper layer, defining
a direction from shallow to deep layers.

In the upper panel of Fig. 5(b), we analyze the dynamic
randomness quantified by the mean Hgg of each neuron (av-
eraged through the time interval [0, 500]). We find that the
neural spiking probability (approximated by the spiking fre-
quency in the interval [0, 500]) declines along with the mean
distance to input neurons. Because of the positive correlation
between the mean Hgy and the spiking probability, the mean
Hgs decreases from shallow layers to deep layers. In the
bottom panel of Fig. 5(b), we concentrate on the dynamic ran-
domness of the neural responses to stimuli. For each neuron,
we define the mean Hgg only using the raw data of Hggs while
it spikes. Then the newly calculated mean H g of each neuron
is normalized by dividing the corresponding spiking proba-
bility. This normalized Hg reflects the dynamic randomness
when a neuron responds to stimuli (i.e., generates spikes).
The normalization prevents this metric from increasing with
the spiking probability sharply. Thus, we can see that the
normalized Hgg relatively increases from shallow layers to
deep layers.

Given the connection between Hgg and chaos, a positive
Hgs suggests chaos in neural activities, and the chaos will
be intensified with a larger Hgg. Together we conclude that
the spatial distribution of chaos in neural activities is uneven.
In the perspective of the mean Hgg, the neural activities
(including both spiking and resting) in shallow layers have
more intense chaos, while those in deep layers have less
intense chaos and are more stable. As verified by the normal-
ized Hgs, the stimulus-triggered responses of shallow-layer
neurons are more regular and stable, while those of deep-layer
neurons are more chaotic.

D. Finding 3: The restrictive relationship between the encoding
and decoding properties implied by dynamics

Now we bring information functions into analyses. Fig-
ure 6(a) illustrates the temporal and spatial distributions of
total entropy H (TE), noise entropy H* (NE), mutual in-
formation H%% (MI), and Fisher information F (FI). In

Fig. 6(b) we explore the relations between AHgs (r = 1),
AH, AH?, AH”%, and AF, revealing that H and H* fre-
quently share the same variation trends with Hgs (e.g., AH >
0and AH® > 0 frequently hold when AHgs > 0). This find-
ing meets our expectation because Hgs and H both are the
metrics of disorder and random degrees. Given the entropy of
stimulus sequence Hs, the minimum noise entropy is bound
by H® > H — min(H, Hs). Therefore, H* usually increases
along with H when H.s is given. However, the variation trends
of AH2% and AF cannot be predicted by AHgs completely.

To reveal the underlying patterns, we organize the experi-
ment results as following: First, we average these parameters
of each neuron through the time interval. Second, we arrange
those averaged parameters of each neuron according to the
mean Hgs [F1§ 6(c)]. Third, we do binning for Hgs and
average F, = (MI/TE) and H (MI/ES) with respect to
those bins [Fig. 6(d)].

In Fig. 6(c) we can see that H, H”, and H** increase
along with the mean Hgg (both for input and intermediary
neurons), while F has more complex variation trends. The
two-cluster distribution of F can be explained by the two-
class neuron type (input and intermediary). This phenomenon
is in line with our expectations. The mathematical definition
of F [see Eq. (C16) in Appendix C2] makes it depend on
the intensity fluctuations of neural responses towards different
stimuli. Consistent with previous studies [2,53], we discover
that stimulus s can cause large fluctuations when it is located
at the steep gradients around the peaks of neural tuning curves,
leading to a large F towards it [see Fig. 6(d)]. Because the
neural tuning curves of intermediary neurons usually feature
more peaks, these neurons frequently have higher F than
input neurons.

The results in Figs. 6(c) and 6(d) inspire us to further
analyze the relationship between encoding and decodlng

properties. In Fig. 6(e) it can be seen that (1) F, H— and

7;[_[— relatively increase when Hgg is in the range of (0 0.2]
(the left side of the black dashed vertical line); (2) F and
T decrease while % H— continues increasing when Hgg is
in [0.2, 0.5] (the right side of the black dashed vertical line).
Note that these phenomena do not depend on the binning ap-
proach critically. Overall, we conclude that when the dynamic
randomness is relatively small (Hgs € (0, 0.2]), the encoding
(MI/ES) and decoding (FI) efficiency quantities share the
same variation trend. When the dynamic randomness is rela-
tively large (Hgs € [0.2, 0.5]), an either-or situation emerges
between encoding and decoding efficiency since these quan-
tities have opposite trends along with Hgs (MI/ES increases
but FI decreases). In other words, encoding efficiency has a
restrictive relationship with the decoding efficiency under this
condition since they cannot be optimized synchronously.

E. Finding 4: The relation between neural dynamics and
the representation for stimulus distribution

We further analyze how neural dynamics determines the
neural representation of the stimulus distribution.

We have previously defined HH to measure the inter-
pretability of neural activities based on stimuli or, more
specifically, based on the global stimulus distribution. Here
the interpretability is defined in terms of the mutual infor-

043085-6



BRIDGING THE INFORMATION AND DYNAMICS ... PHYSICAL REVIEW RESEARCH 3, 043085 (2021)

Total Entropy

S [—— 1
= 0.2 - = 0.8
500 500 500 500
00 00

Noise Entropy

Mutual Information Fisher Information 02 i 200 .
= U SRR b 2N = 1 :
03 400 = £ o @ 100¢ il
5y, (2o 0 +
8% — 200 < 0 | —iciaiiin ~' < 100 !
0 " o oMU
503 50'?l -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
euron euron ANeural Tuning KS Entropy
(a) (b)
Comparison between Parameters [minput
TE (Input) ke kX g 0.001 Intermediary|
* TE (Intermediary) * 101 "
® NE (Input) % 0 E K9]
- |*NE (Intermediary) h 10 ® FI (Input) g %D 0
o |® Mi(Input) o 3t Lot * FI (Intermediary) ® b 10 i
* Ml (Intermedigag){™ 5 S o ‘y |
1’*":&* 10 SR i § i
ﬁ%’” 107 . 'm [¢ intermedia jidet
0 . . ® Intermediary| 0 3 i
0 0.25 0.5 0 0.25 0.5 0 -5 0 5 0 5 10
Mean Neural Tuning KS Entropy Stimulus Stimulus Peak Num
(c) (d)
Detailed Analysis fo(ry'{he Encoding and Decoding Properties EnCOding Scope Measurement Local Interpretability
: : %0 | : Ry TH 0.5 < Outlier R
v, ' s
! 003l | : g W L,
: 1 o 0.5 <-Outlier i . "|I—J -8
w 0.4 [ n 1 40 3 — >~ 0
IS : ool - w 0 0.25 055 0 0.25 0.5
S , S _g | ©Mean Prob = ©:Mean maProb
1 (8]
021 | [30bins | 20 N @& _ Sos 0 Prob0.2
0.01 - = U
1 . 1 c -~
\ [+20 bins i w T~ ___,—o
0| ' |10 bins ol 0 T 0.5 0Prob0.2 &=
0 0.25 0.5 0 0.25 0.5 0 0.25 0.5 [0,0.25] [0.25,0.5] [0,0.25] [0.25,0.5]

Mean Neural Tuning KS Entropy Mean Neural Tuning KS Entropy
(e) (f)

FIG. 6. Two findings about the dynamics effects on neural encoding and decoding. (a) The temporal and spatial distributions of
H, H”, HA2, and F. (b) The relations between AHgs, AH, AH?, AH22, and AF. (¢) The mean H, H®, H*%, and F (averaged through
the time interval) are arranged based on the mean Hgs. (d) Different from input neurons, the tuning curves of intermediary neurons (smoothed
utilizing the Savitzky-Golay filter [52] for visualization) usually feature more peaks (see left for an instance and see right for statistics). The
stimuli located at the steep gradients around the peaks usually feature higher 7 (middle). Therefore, F relatively increases along with the
number of peaks (nght) (e) x € {10, 20, 30} bins (the length of each bin is 0.05, 0.025, or 0.0167) are set for the mean Hs interval. Then
the encoding (”ﬁ nd H ) and decoding (F) properties are averaged in bins. (f) The variation trends of the encoding scope and the local

interpretability with the i 1ncreasmg mean Hgs. Here we leave out an outlier data point that is away from the sample distribution.

mation H**, measuring the synergy degree between neural
activities and stimuli. As illustrated in F1§ 4, neural activities
become completely explainable when Z “5— approaches 1.

To analyze the interpretability based on the local stimulus
distribution, we introduce the conceptions of encoding scope
1 and the local interpretability (Local MI/TE) [see Eqgs. (C8)—
(C11) in Appendix C 1]. Based on the definition of H2, we
can directly obtain the noise entropy H?% that refers to each
stimulus s. For s, the processing of it by neuron N, produces
less noise if H2 < H2; namely, it has better interpretability
for the neural activities of N,. Then we define the encoding
scope p at moment ¢ as the proportion of the stimuli with
better interpretability in all stimuli S’(0, ¢):

18.(0,1)]
M‘(Nl’l’ t) - |S/(O, t)l ’ (9)

8,(0,1) = {s | HE(N,, 1) < HA Ny, D). (10)

When w approaches 1, it refers more to the global stimulus
distribution; otherwise, it refers more to specific local parts
of stimulus distribution. By recalculating the total response
entropy H,,, noise entropy #;;, and mutual information #*
based only on the stimuli in S,L, we can further calculate the

interpretabilit

to as the local 1nterpretab1hty).

In Fig. 6(f) we show the variation trend of . with respect
to Hgs, suggesting that p is negatively correlated with Hgs.
Meanwhile, the local interpretability (Local MI/TE) relatively
increases along with Hgg. Taken together, we can conclude
that when Hgs is in (0, 0.25] (the dynamics is more stable),
neural activities can be better explained by the global stim-
ulus distribution (larger encoding scope). Once the dynamic
randomness becomes relatively large (Hgs is in (0.25, 0.5]),
neural activities can be better explained by the specific local
parts of the stimulus distribution (smaller encoding scope).
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During this process, although the neurons with small dynamic
randomness are mainly driven by the global stimulus distri-
bution, they usually feature weaker neuron-stimulus synergy
(lower Local MI/TE). This phenomenon is related to the low
spiking probability of these neurons [see Fig. 5(b)], because
their activation requires the inputs to contain enough global
stimulus information (which cannot be frequently satisfied).
Opposite situations can be observed in the neurons with higher
dynamic randomness, which feature stronger neuron-stimulus
synergy (higher Local MI/TE).

V. DISCUSSION

A. Significance of our work

In the current research, we present an original theoretical
framework and demonstrate the intrinsic connections between
dynamics and information in neural activities.

In the theoretical part, we propose the stimulus-triggered
neural activity characterization as a bridge between the
dynamics-theoretical and the information-theoretical metrics.
We build our characterization only on several basic and com-
mon neural characteristics, such as tuning properties [2,53]
and neural spike mechanisms [32]. These settings enable us
to model real neural populations at a biologically authentic
level. The proposed framework takes the advantages of both
stochastic [29-32] and deterministic [33-37] models to of-
fer a practical description of the collective neural activities
involved in information processing. Specifically, we drive
neural activities by the combined effects of stimulus-neuron
synergy and network dynamics. While neural tuning proper-
ties directly govern the stimulus-neuron synergy, the network
dynamics is captured by estimating the stochastic process of
neurons from the neural activity samples generated by the
neural response mechanism used in the deterministic models.
Such an approach principally avoids the difficulty underlying
a direct probabilistic description of the collective activities
of coupled neurons. Based on this framework, the neural
tuning Kolmogorov-Sinai entropy is introduced as a metric
of the information-processing-related neural dynamics. Al-
though Lyapunov exponents cannot have classical definitions
for the stochastic process since most trajectories in the phase
space only spend a finite time in the system [58], a general
connection between the entropy production and Lyapunov
exponent can be established based on Ruelle inequality [56]
(or Pesin identity [55]), which enables the proposed neural
tuning Kolmogorov-Sinai entropy to measure the dynamic
randomness and identify chaos in the characterized neu-
ral activities analytically [54]. Taken together, the proposed
framework supports calculating the dynamics-theoretical and
the information-theoretical metrics analytically, achieving our
objective for a unified analysis of dynamics and informa-
tion. The analytical calculation of these metrics prevents
our findings from depending on computational approximation
critically.

In the experimental part, we implement a unified analysis
for the relations between neural information functions (quan-
tified from the aspects of encoding and decoding) and neural
dynamics. We discover that short-term neural activities have
smaller variation amplitudes but greater dynamic randomness,
while long-term variations feature exactly opposite properties

(Finding 1). Another relevant finding is that the spatial distri-
bution of chaos of neural activities in a neural population is
uneven (Finding 2). Then we reveal the existence of specific
restrictive relationships between the encoding and decoding
efficiency when the dynamical randomness is relatively large
(Finding 3). Finally, we identify that the neural activities with
chaos dynamics are more related to the processing of local
stimulus distribution while the stable neural dynamics is more
relevant with the processing of global stimulus distribution
(Finding 4). Figure 7 offers a summary of these findings and
their relations.

Finding 1 might be related to previous neural signal record-
ing studies. It has been found that a signal-recording scheme
with a low temporal sampling rate (e.g., fMRI) cannot directly
reflect the underlying stimulus-triggered neural activities [59].
Before being recorded by those low temporal resolution
techniques, the short-term neural activity variations need to
accumulate until the variations are intense and robust enough
[59], accompanied by significant loss in neural activity infor-
mation [59-62]. A classical solution towards this limitation
is to develop high temporal resolution recording techniques
(e.g., multiphoton microscopy [63-65]). While Finding 1
partly supports this idea, it also suggests the contradiction
between robust signal trends and the preservation capacity of
the neural activity information. A recording scheme with a
high sampling rate preserves the information of highly fre-
quent neural activity variations and ensures the separability of
neurons but obtains less robust signal trends than the scheme
with a low sampling rate. Thus, improving temporal resolution
is a necessary but not sufficient solution.

If we do not control the effects of spiking probability, the
variation trend of the mean Hgg in Finding 2 is consistent
with several findings in computational neuroscience. In an
early study [66], Diesmann finds an attractor of the propa-
gation of synchronized action potentials, which governs the
neural activity dynamics. A more recent study [67] confirms
this attractor as a line attractor in the phase space of neural
activities. These previous studies suggest that the dynamic
randomness will be gradually reduced during a long enough
propagation (e.g., from shallow layers to deep layers), ac-
companied by the reduction of spike rates. Compared with
these previous results, our finding is not limited to the strictly
hierarchical network topology and linear propagation process
(our neural population is random), which ensures universal-
ity. When we turn to the normalized Hgs that quantifies the
dynamic randomness of stimulus-triggered neural responses,
one can see the consistency between its variation and a well-
known phenomenon that stimulus drives suppress dynamic
randomness [68]. Combine our results with these previous ex-
plorations [68], we suggest that the synergy between neurons
and input drives does control the chaos in stimulus-triggered
neural responses (spikes). This neuron-stimulus synergy de-
clines along with the distance to input neurons (the input ports
of neural populations) and is gradually covered by network
dynamics. The chaotic degree of neural responses to stimuli
becomes larger when network dynamics takes in charge, be-
cause the stimulus effects are suppressed by inherent chaos.
However, this phenomenon does not mean that the neural
responses to stimuli are completely chaotic and unrepeatable
(in other words, unreliable). As demonstrated by Fig. 6(d), the
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FIG. 7. Summary of our findings. A stimulus sequence triggers series of neural dynamics in a neural population. The dynamic variation of
neural activities usually features small amplitudes and high dynamic randomness in the short term, while the opposite properties can be seen in
the long-term dynamic variation (see Finding 1). One can see an uneven spatial distribution of dynamic randomness in the neural population.
Specifically, the mean Hgs declines from shallow-layer neurons to deep-layer neurons since neural spikes gradually reduce. Meanwhile, the
normalized Hgs increases along with the mean distance to input neurons, suggesting that the chaotic degrees of stimulus-triggered neural
responses increase from shallow-layer neurons to deep-layer neurons (see Finding 2). When one turns to analyze the information quantities,
it can be found that the encoding efficiency Z—A‘: (MI/ES) shares the same variation trend with the decoding efficiency F (FI) only when the
dynamic randomness (mean Hs) is relatively small (in deep-layer neurons). When the dynamic randomness is relatively large (in shallow-layer
neurons), the encoding efficiency increases along with the dynamic randomness while the decoding efficiency does not, leading to an either-or
situation since the increase of the encoding/decoding efficiency implies the reduction of the other one (see Finding 3). Furthermore, the
encoding scope gradually declines as the dynamic randomness increases. Thus, the shallow-layer neurons (with high dynamic randomness)
mainly account for the specific encoding of local stimulus distribution, while the deep-layer neurons (with small dynamic randomness) support
nonspecific encoding for the global stimulus distribution (see Finding 4). The observation of Findings 2—4 requires the dynamic randomness
to be analyzed in the short term, otherwise the dynamic randomness will be small and homogeneous among all neurons (see Finding 1).

observed neural tuning curves of intermediary neurons are preservation capacity of the neural activity information in the
not fully stochastic, featuring specific patterns instead. Certain ~ recording stage and (2) the restrictive relations between the

neural selectivity towards stimuli can still emerge. Therefore, encoding and decoding properties in the analysis of recorded
the network dynamics and the inherent chaos can coexist with signals. Although the recording with high temporal resolu-
the regular neural activities governed by neural tuning proper- tion features the capacity to reflect the underlying frequent

ties. Although the regularity of neural activities is frequently neural activity variations, the high dynamic randomness of
broken by chaos, the chaotic degree of neural activities does short-term neural activities usually limits the possibility to
not grow or maintain steadily [e.g., see Fig. 3(b)]. These obtain a robust and repeatable result and implies the restric-
phenomena are consistent with the previous studies on chaos tive relations between encoding and decoding properties. The

and reliability of stimulus-triggered neural activities [69,70]. recording scheme with low temporal resolution cannot record

Finding 3 may have potential insights for diverse topics, the high-frequency neural activities, but it can obtain the
especially for the studies that aim at locating the neuronal signals with relatively (not completely) controlled dynamic
or cortical foundations of cognitive functions [15,71,72]. randomness to ensure stable macroscopic signal trends and

These studies analyze the information-processing properties avoid the restrictive relations between encoding and decoding.
of specific neurons or brain regions. The analysis usually Therefore, a multi-temporal-resolution recording may take
relies on specific signal recording schemes (e.g., multipho- the advantages of both high and low temporal resolutions
ton microscopy [73,74] and microelectrode recording [75,76]) and overcome their shortcomings. This provides theoretical
and measures the information-processing properties from the  interpretations for the intrinsic advantages of the multi-
aspects of encoding (e.g., with H, H2, H22 [13,77]) or de- temporal-resolution recording of neural signals [8§2—84].

coding (e.g., with FI F [78-80]). Based on Finding 3, the Finding 4 might be inspiring for cognitive neuroscience.
potential risks lie in that the direct and indirect measure- Both Finding 2 and Finding 4 reveal that the neural activities
ment methods may obtain two separate, and even competing, in shallow layers are more related to local stimulus distribu-

results. For example, on the one hand, the real efficient tion, while those in deep layers are more related to the global
neurons/cortices in the encoding process might be neglected stimulus distribution. To some extent, the interpretability by
since its recorded signals are measured with low decoding the global stimulus distribution can be treated as a kind of
efficiency; on the other hand, the neurons/cortices that are increase of the generalization ability of neural responses to
efficient in decoding might have many activities that cannot stimuli. This emerging phenomenon suggests the possibility
be explained by stimuli and, thus, imply noisy conditions in that the neurons in shallow layers concentrate on specific
the analysis. These risks may further lead to false-negative  local information of stimuli, while the neurons in deep layers
problems and repeatability problems in functional studies process the general information of stimuli. To our knowledge,
[81]. there is no experimental evidence for such a finding, and it

Moreover, Finding 1 and Finding 3 might propose chal- may inspire further study on the spontaneous formation of
lenges for neural signal recordings by revealing (1) the  the division of labor among neurons during the data-driven
contradictory relation between the robust signal trends and the (bottom-up) processing.
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B. Validity and limitations

In the above discussion, we have sketched how our find-
ings may relate to neuroscience studies. Here we attempt to
confirm the scope that our work can be applied onrobustly
and validly. Although we have pursued a unified and biolog-
ically valid analysis of information and dynamics, there are
specific limitations in the current research. The validity of
the mathematical descriptions of neural characteristics (e.g.,
tuning properties [2,53] and neural spike mechanisms [32]) is
ensured conditionally.

The necessary condition for the proposed Poisson pro-
cesses to approximate neural activities validly is that the time
step At in discretization corresponds to a sufficiently short
physical time (~5 ms). With a sufficiently small physical
time step, the activities of every neuron follow a nonhomo-
geneous Poisson process because a neuron cannot emit more
than one spike simultaneously (satisfies the Poisson condition
that the probability of two or more changes in a sufficiently
small interval is 0). Although the dependence on short phys-
ical time steps does not threaten our theory and findings
mathematically, it is essentially a limitation in computational
implementations. The current version of stimulus-triggered
neural activity characterization is extremely computationally
costly, making it impossible to deploy large-scale and long-
run experiments (e.g., run on an ultralarge neural population
with 10° neurons that approximates a human cortical area
or generate the spike trains corresponding to a physical time
interval of 24 h). The costs will significantly increase if we
further take the maximum likelihood estimation for defining
the Poisson processes of intermediary neurons [see Eq. (A11)]
into account. However, the formation of neural characteristics
(e.g., the tuning properties of intermediary neurons) in real
neural systems usually requires long-term processes and the
involvements of large-scale neurons. The difficulty we meet
here is a potential threat to the generalization ability of our
findings, questioning if the discovered phenomena rely on our
experiment settings critically.

Proposing mechanistic insights into why our findings arise
is a possible approach to verify their generalization ability.
Finding 1 arises when we attempt to compare between the
short-term (small t) and long-term (large t) variations of
neural activities. As suggested by Fig. 3(a) and Fig. 5(a),
the differences between short- and long-term neural activity
variations (amplitude and dynamic randomness) hold across
different neurons and throughout the time interval. The am-
plitude differences are easy to understand since the variation
amplitude accumulates during the variation interval [z, t + T].
A larger t naturally implies larger accumulations of ampli-
tudes. The difference relates to dynamic randomness mainly
arises from the mathematical definition of neural tuning
Kolmogorov-Sinai entropy Hgs [see (B7)]. One can reorga-
nize (B7) as

HisNo, S t,1+1) =Y P(r]8,0,0)

I
ICIT SRS y1Yy puum—— OO
X(ZW (5 tt+r)n\/Wﬂ«(8’,t,t+‘E)> (v

r'>r

where the second part relates to r and is subject to
> s Wer(S' 8t + 1) = 1. Based on information theory,

the term Y, W,(S',t,t + 7)In m
imized if the probability distribution {WV,, },» approaches the
uniform distribution on [r,7] (here 7 denotes the maximum
response rate that can be reached by the neuron). This is
because the uniform distribution is the maximum entropy
distribution defined on finite interval and has no constraint
on moments [85]. As shown by Fig. 3(a), the distribu-
tion {W,,}, tends to approach the uniform distribution as
T increases (distribution peaks become broader). Therefore,
one can verify that Y, W,.(S',t,t 4+ 7)In m in-
creases along with 7. However, the actual second part in

(ADis Y, W (S t,t +1)In Y m, featuring an

opposite variation trend. The increase will be reversed by the
tth root o/ and decrease, implying that entropy Hyg reduces
along with t. In summary, Finding 1 mainly emerges from the
mathematical nature of the proposed Hgs.

Finding 2 arises when we attempt to compare the dynamic
randomness between neurons. In Fig. 5(b) the mean Hgyg de-
clines along with the mean distance to input neurons because
neural spike rates reduce. Similar to Finding 1, this phe-
nomenon results from the mathematical definition of entropy
Hgs as well. One can verify that Hgg increases along with
73,? (r18,0,1) [see Eq. (11)], while the latter governs the
spiking probability of neurons. Thus, the dynamic random-
ness will increase if the neuron tends to emit spikes. In our
experiment, we also calculate the normalized Hgys (averaged
from the raw data of Hgg corresponding to neural spikes
and normalized by spiking probability). By controlling the
effects of spiking probability, the observed variation trend of
the normalized Hgs is consistent with previous studies that
a stimulus drives suppress dynamic randomness (or chaotic
degrees) [68]. These phenomena can be related to the mathe-
matical properties of Hg in general.

Finding 3 arises when we analyze the encoding and de-
coding properties as the functions of dynamic randomness.
For encoding properties, one can see an increasing encod-
ing efficiency (MI/TE) along with the dynamic randomness
(measured by the mean Hgg). Although this phenomenon is
consistent with the common belief that representing variable
stimulus information requires high variability of neural activ-
ities, it cannot be derived from the mathematical definition
of mutual information directly. For decoding properties, we
have demonstrated that input neurons (with higher dynamic
randomness) can feature less FI than intermediary neurons
(with lower dynamic randomness), which mainly results from
the differences between the tuning properties of these two
kinds of neurons [see Fig. 6(d)]. Therefore, the decoding
efficiency does not necessarily increase along with the mean
Hgs. Limited by the size of our experiments, the observed
phenomenon in Fig. 6(e) is that the decoding efficiency (FI)
increases when the mean Hg is relatively small and decreases
when the randomness is sufficiently large. If the analysis is
implemented on a sufficiently large neuron population (the
variation range of the mean Hgg is enlarged) that processes
stimuli in a sufficiently long interval (the tuning curves of
intermediary neurons become more smooth), we hypothesize
that the variation trend of decoding efficiency will become

will be max-

r'>r

r'>r
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more smoother and completely decreasing along with the
mean Hgg. Meanwhile, the quantity gap between input neu-
rons and intermediary neurons in decoding efficiency will
decrease to a reasonable range. In brief, Finding 3 mainly
arises from neural tuning properties rather than the mathemat-
ical attributes of the proposed information-theoretical metrics.
Although we hypothesize that Finding 3 principally holds in
most cases, any generalization of Finding 3 should be verified
carefully.

Finding 4 arises when we explore the neural representation
of the stimulus distribution. In our research, we propose a
new conception, the encoding scope i, to capture the char-
acteristics of neural representation. The encoding scope u
principally measures the proportion of stimulus subset S,
that has better interpretability for neural activities (the noise
entropy quantities of encoding them are below average) in all
stimuli. In Fig. 6(f) we have observed that the encoding scope
decreases along with the mean Hgg, implying that shallow-
layer neurons have smaller encoding scope than deep-layer
neurons. Moreover the local interpretability (the interpretabil-
ity of neural activities by the stimuli within S,,) decreases
from shallow-layer neurons to deep-layer neurons. In general,
we suggest that these phenomena result from the mathemati-
cal nature of noise entropy [see Eqgs. (C4) and (C7)] as well
as the differences between shallow- and deep-layer neurons
in neural tuning properties. Note that the noise entropy to-
wards stimulus s [see Eq. (C7)] is defined as HE(N,, 1) =
=3 PY(r|s,0,ts())log, PY(r | 5,0, ts(t)). Following a
similar idea that we have applied on Finding 1, the entropy
quantity will be maximized if the probability distribution
{73,3j (r]s,0, ts(t))}, approaches the uniform distribution on
[0,7] (e.g., the peaks of distribution becomes broader). Be-
cause 77,? (r|s,0,ts(t)) is governed by the tuning curve G,
of neuron N,, the approaching process essentially requires
the response coefficient G, (s) to be large. Otherwise the den-
sity of {77,? (r|s,0,ts(t))}, will concentrate on a narrow
subinterval of [0,7] where r is small. One can verify that
shallow-layer neurons (e.g., input neurons) usually feature
broader tuning curve peaks and higher maximum response
coefficients than deep-layer neurons [e.g., see Fig. 6(d)].
For shallow-layer neurons, this property makes the noise en-
tropy towards a wider range of stimuli located near tuning
curve peaks sufficiently large, leading to higher noise entropy
quantities [see Fig. 6(c)]. Meanwhile, there remain relatively
few stimuli with low response coefficients, implying a small
size of S, because most stimuli correspond to high noise
entropy. Therefore, the encoding scopes of shallow-layer neu-
rons are frequently small. Opposite situations can be seen in
deep-layer neurons because of their relatively low response
coefficients to stimuli and narrower tuning curve peaks. As
for the differences between shallow- and deep-layer neurons
in local interpretability, although we hypothesize that this
phenomenon arises from neural tuning properties, we cannot
derive it mathematically in the current work.

In summary, we suggest that Finding 1 and Finding 2
emerge from the mathematical properties of the neural tuning
Kolmogorov-Sinai entropy Hgs and keep consistency with
neural characteristics. The validity and generalization ability
of these two findings can be partly ensured. As for Finding 3
that results from neural tuning properties, we hypothesize that

it principally holds under different conditions because the in-
volved neural tuning properties are basic properties of neural
systems. However, we need to emphasize that our results have
not been verified in large-scale and long-run experiments. The
phenomenon itself, as well as related discussions, should be
treated carefully. For Finding 4, although the phenomenon
relevant with encoding scope can be mathematically derived
from noise entropy and neural tuning properties, the phe-
nomenon related to local interpretability remains a subject for
further investigation.

C. Future directions

Understanding the connection between dynamics and in-
formation in the brain has become one of the most critical
challenges in physics and neuroscience, leading to a promis-
ing way to improve the interpretability of information and
cognitive functions based on physical foundations [4].

Our theoretical framework is a possible paradigm towards
the unified measurement and analysis of dynamics and in-
formation attributes of neural activities. As suggested above,
more verification is necessary for the potential connections
between information and dynamics identified by this frame-
work. In future works, one can further explore our framework
in the aspect of the stochastic dynamics of the master equa-
tion [86,87] (also known as the Schnakenberg network theory
[88,89]). Another valuable direction in the theoretical analy-
sis is to further study the potential connections between the
proposed neural tuning Kolmogorov-Sinai entropy and the
Lyapunov spectra (one can turn to [49,50] for the applications
of the Lyapunov spectra in neural network studies). Built
on the current qualitative connection established by Ruelle
inequality [56] (or Pesin identity [55]), more intrinsic prop-
erties of neural dynamics might be revealed if a systematic
unification is implemented between these two kinds of metrics
in neural activities at a more quantitative level. Moreover,
although the roles of neural plasticity (e.g., STDP [90,91])
have not been included in our current analysis, the proposed
stimulus-triggered neural activity characterization can be eas-
ily generalized to plasticity conditions to study the effects
of memory [e.g., defining the neural response threshold Y
in (A10) as time-dependent]. It is expected that this unified
framework features the potential to deepen our understanding
of the emergence of various characteristics of neural informa-
tion processing from physical bases.

In the current research, we have focused on implement-
ing the unification on the sub-cortex scale (e.g., a neural
population with thousands of neurons), where each neu-
ron plays a critical role and the cognitive functions have
not emerged yet. Our future pursuit is to generalize the
present framework to the cortex scale and further analyze
cognitive functions. On the cortex surface, the ultradense
distributions of neurons and synapses make the roles of the
individual neuron or local neural network topology covered
up by the global cortex dynamics during the information
processing process [92]. Therefore, the challenge we face
is to develop a macroscopic description of the information-
processing-related neural dynamics. One possible approach
is to implement the renormalization group [93-95] on neural
dynamics and analyze the multiscale dynamics transforma-
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tion. Such analysis allows us to understand the accumulation
of dynamics from cellular scale to cortical scale. Another
potential way is to develop a continuous formulation of neu-
ral dynamics by approaching the thermodynamic limit of
the proposed neural activity characterization in our research
[48]. Then we can combine our characterization framework
with specific cortical field models of perception (e.g., the
ring models of primary visual cortex [96,97]) to generate
the information-processing-related dynamics in the ultralarge
neural population of certain sensory cortices. Based on these
implementations, it might be possible for our framework to be
applied in further studying how cognitive functions are shaped
by global cortex dynamics.

In the viewpoint of Stevens [98], models are common in
neuroscience, but theories are relatively scarce. Neuroscience
has amassed various models to describe specific phenom-
ena, but few theories offer general frameworks for a wide
range of facts and find the underlying connections between
different issues. Our research, as well as diverse previous
explorations (e.g., see the works on neural information func-
tions [18] and the works on neural dynamics [9]), demonstrate
a possible way to identify the general connections between
information and dynamics in the brain. These present theo-
ries and discoveries suggest an evolutionary perspective that
the characteristics of neural information functions and fur-
ther cognitive functions naturally emerge from the physically
fundamental properties of neural ensembles rather than be
designed by complex high-level mechanisms. This suggested
perspective is worthy of further explorations in the future.
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APPENDIX A: THE STOCHASTIC PROCESS
OF NEURAL ACTIVITIES

1. Characterize neural populations

We begin with a random neuron population N'(V, &),
where V is the set of all neurons and £ is the set of all
synapses. We use the weighted adjacent matrix C to describe
the synaptic connection strength between any two neurons N;
and N; as C;; € [—1, 1] (here C;; < 0 stands for the inhibitory
connection, and C;; > 0 stands for the excitatory connection,
and C;; = 0 means that there is no synaptic connection). In
experiments, we randomly generate V), £, and C for univer-
sality. Specifically, the randomization of £ utilizes a basic
approach introduced by Erdds and Rényi [99,100]. The prob-
ability for any two neurons to feature a synaptic connection
is set as p, implying that the average degree of neurons
equals p(|V| — 1). For convenience, our research randomizes
p € [0.02, 0.025] in every experiment. As for C, each element
in it is uniformly randomized from [—1, 1].

In a neural population, the stimulus inputs cannot be simul-
taneously received by all the neurons. We refer to the neurons

that receive inputs directly and instantaneously as the input
neurons. As for the neurons that are not directly triggered by
stimulus inputs, they can be activated by the stimulus informa-
tion transmitted from the neurons in its receptive field (the set
of its presynaptic neurons). We call them intermediary neu-
rons. To keep our experiments universal, we randomly pick
a subset of neurons in a generated neural population as input
neurons. As for the remaining neurons, they are considered as
intermediary neurons.

2. The neural activity of input neuron

Each input neuron N; processes stimuli directly, whose
activity profile is appropriately shaped by its tuning properties
(i.e., response selectivity to stimuli). A neural tuning curve is
a standard model to describe the response selectivity [2,53],
where the stimulus at the peak evokes the highest response
rate [53]. A representative example is the bell-shaped tuning
curve [2,53], which is

~\ 2
Gi(s) = Eexp |:—0.5(s — Si) i|,
O

where I?\, is the maximum response coefficient, 5; is the
preferred stimulus selected from the stimulus set S, and o;
represents the width of the tuning curve.

Assume that a stimulus sequence &’ occurs in a given
time interval [0, t”]. For convenience, sequence S’ is sampled
from S uniformly in our experiments, and the time unit Az
(minimum time step for discretization) is set as 1. Note that
other kinds of randomization and discretization can also be
applied.

Following the perspective of rate coding [2], we implement
the neural activity characterization as the probability for the
neural response to reach a specific frequency at a given mo-
ment. The Poisson process is efficient in approximating this
probability in most cases [2]. Given the stimulus sequence &,
the probability for the cumulative neural response count of
an input neuron N; to reach a specific quantity r at moment
t (t €[0,¢”]) can be approximated by a nonhomogeneous
Poisson process, whose probability distribution is

(AD)

Pir|S,0,1) = m exp [—A;(0, )], (A2)
where A;(0, ) is the cumulative intensity function
Ai(0,1) = /Ot Ai(m)dm, (A3)
and A;(m) denotes the time-varying intensity function
Ai(m) = Gi[S'(m)]. (A4)

Given (A2)-(A4), the activity profile of input neuron A, is de-
fined based on the interactions between the stimulus sequence
S’ and the neural tuning properties G;(s).

Given the above definition, we can further generate possi-
ble neural activities. This research generates neural activities
by predicting the arrival time sequence of neural responses
with the maximum probability method (MP). For the rth
neural response, we can find the location of the maximum
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probability of it by working out

7, = argmax [Pi(r | S', 0, 1)]. (A5)
t

The obtained result 7, by the operator argmax is the mo-
ment that maximizes the probability P;(r | §’, 0, t), meaning
that the probability for the rth neural response to arrive at
moment 7, is highest. Therefore, the rth neural response
very frequently occurs at moment 7, in real situations. The
MP method benefits neural response generation for its low
computational costs and its ability to approximate the neu-
ral response generation by large-scale Monte Carlo sampling
[101] on probability distributions (maximum probability im-
plies the highest occurrence frequency when the sampling size
is large enough). One can replace the MP method with large-
scale Monte Carlo sampling when computing power allows.
A potential limitation of the MP method lies in that it es-
sentially creates a deterministic mapping from the probability
distribution P;(r | §’, 0,¢) to the neural response. Although
this property does not affect our research because neural re-
sponse trains that strictly reflect P;(r | S’, 0, 1) are exactly
demanded in our analysis, the MP method is not applica-
ble when one demands more randomness in neural response
generation [e.g., to simulate noisy neural responses that do
not follow P;(r | S',0,¢) strictly]. In the latter situation, a
relatively small-scale Monte Carlo sampling can be used to
create more randomness.

By traversing all possible response rate r, we can obtain a
set of moments {7,},cn+ based on (A5). Given the properties
of Poisson process, we know that {1} ren+ is naturally ensured
to be not decreasing. For convenience, we mark every neural
response in the timeline following

Rit) =Y 8t —1).

neT;

(A6)

where 7; = {i,},en+ and 8 denotes Dirac delta function. The
obtain sequence R;(t) equals +oo if a neural response arrives
at moment 7. Otherwise it equals 0. Note that one should
replace all +o00 in R; by 1 in computational implementations.

3. The neural activity of intermediary neuron

Each intermediary neuron N; is driven by the presynap-
tic neurons RF(N;) and affected by the network dynamics,
whose activities cannot be simplified as (A2). This research
characterizes the neural activity profile of N; by describing its
synaptic inputs and neural responses to these inputs.

For each neuron Nj in RF(N;), let its neural response
arrival sequence be ﬁk(t); then we can describe the synaptic
input given from Ny to N; as Ri(¢)Ci;. In most cases, the
cumulative synaptic inputs on neuron N; have a dissipation
term £2;(¢) (e.g., the leaky term in the leaky integrate-and-fire
neuron [32]). N; emits a neural response only if the cumulative
synaptic inputs reach a specific response threshold Y;(z) (e.g.,
spiking threshold [32]). Therefore, we can define the neural
response of N; as

Ri(t) = u[/o (W (x) + 2;(x))dx — T,»(t)] (A7)

where v(-) denotes the unit step function, and W¥;(x) :=
D NeeR Fv;) Rie(x)Cy;j denotes the synaptic inputs. In our ex-
periments, the definitions of €2;(t) and Y;(¢) are proposed in
general forms. Specifically, €2;(¢) satisfies

/ Q;(x)dx = —v(t—?)/_r U;(x)dx +e(t), (A8)
0 0

where T denotes the minimum time consumption of gen-
erating spikes and &(¢) is the time-dependent perturbation.
Based on (A8), we can realize that, first, for r € [0, T), the
cumulative synaptic inputs of N; during [0, ¢] will be only
perturbed by e(¢) rather than dissipated. This is natural be-
cause the first spike generation does not end yet and historical
accumulations should not dissipate. Second, for ¢ € [T, "],
the cumulative synaptic inputs of N; during [0, ¢] will be dis-
sipated to j;i? W;(x)dx + &(t) at moment ¢ by the dissipation
term. This definition ensures that the kth spike generation
(k > 1) is driven by the cumulative synaptic inputs during
[t —7,t] and a small quantity of historical perturbations re-
maining for dissipation. In computational implementations,
we can do discretization (set the minimum time step At = 7)
on (AS8) to realize that historical accumulations before the
(n — 1)-th step will dissipate at the nth step and leave behind
only specific perturbations. A concrete example of the general
definition in Eq. (A8) is the leaky term in the leaky integrate-
and-fire neuron [32], where the time-dependent perturbation
(1) is frequently omitted. In our research, this perturbation is
defined as

e(t) e |:—l max W (1), lmax \IJj(t):|, (A9)
Ve 1 Ve 1

in which y, is the degree of perturbation. In our experiment,
we randomly define y, € [20, 50] to control the intensity
of perturbation. As for the time-dependent neural response
threshold Y;(¢), it can be defined in various forms to achieve
plasticity mechanisms [90,91]. In our experiment, we use a
simplified definition

vt, Ti(t) =10 max W), (A10)
in which we randomly set 6 € [}1, %] based on the ratio of the
difference between the response threshold and the resting state
to the difference between the response apex and the resting
state [35,102,103].

Based on (A7), we can obtain an observed neural response
sequence of the intermediary neuron N;. We repeat the experi-
ment with the stimulus sequence S’ h times, and each time we
can obtain an observed result R;,(t) (a € Z N[1, h]). Then
we can use the maximum likelihood estimation to construct
the observed nonhomogeneous Poisson process of the neural
activities of N;, where the observed time-varying intensity
function /):j(t) is given as

Ai(t) = % D> Rja).

aeZN[1,h]

(Al1)

Based on (Al1l), the observed Poisson process of N; features
a probability distribution

Pi(r|8,0,1) = 14,0, 0F exp(=A;(0. 1)),

(A12)
r!
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where A (0, 1) is the observed cumulative intensity function,

t
A;j(0,1) = / Aj(m)dm. (A13)
0
Given (A12), the MP method in (AS5) can be applied to obtain
an observed neural response sequence R ;(t).
Moreover, if S € &', then we can also obtain the observed
tuning curve of N; as

GiIS' (m)] = %,(m). (A14)

Algorithm 1 Algorithm of neural activity generation.

Data: Stimulus sequence S’, the number of neurons
m € N7, the proportion of input neurons
p € (0,1), the number of repetition h in (A11),
the unit time step At, and the ending time t”
Result: Probability distribution and neural response
sequence of each neuron N,

Neural population < Randomized following appendix
A 1, where there are mp input neurons and m (1 — p)
intermediary neurons;

for N,, in the neural population do

if N,, is an input neuron then

Neural tuning curve G, (s) < Randomized
following (Al);

end

end

ortc {At,....t" — At,t"} do

for N, in the neural population do

if N,, is an input neuron then

Probability distribution Pp (r|S’,0,t) +
Updated following (A2-A4);

Neural response sequence Ry, (T) with
t — At < 7 <t < Updated following
(A5-A6);

="

else
for a € ZN[1,h] do
Observed neural response sequence
Ropa () with t — At <7 <t
Updated following (A7-A10);
end
Probability distribution Py, (| S',0,t) +
Estimated from set {ﬁn,a}aelﬁ[l,h]
following (A11-A12);
Neural response sequence Ry, (T) with
t — At < 7 <t <+ Updated following
(A5-A6);

end
end
end

4. Summary of neural activity characterization

To this point, we have characterized the stimulus-triggered
neural activities in a neural population. For convenience, we
define the stochastic process of each neuron N, following

Pu(r18',0,1),
ﬁl’l(r | S/y O’ t)’

0=1

PP(r|S,0,t) = ;
Q=0

(A15)

where Q acts as an index of the type of neuron. © = 1 stands
for that N, is an input neuron and its neural activities are de-
fined by (A2), while O = 0 means that N, is an intermediary
neuron that follows (A12).

In our characterization, we distinguish between input and
intermediary neurons because input neurons are similar to
the sensory cells that perceive external stimuli in the early
information-processing stage. From a physics perspective, in-
put neurons serve to transform stimuli into nonhomogeneous
Poisson processes following their neural tuning properties.
Although this physics property can be mathematically sim-
plified by direct signal transformation (e.g., see Ref. [2]), we
suggest that the study of neural information function benefits
from including input neurons into neural populations.

To computationally generate neural activities in neural
populations, one can consider the following algorithm.

APPENDIX B: NEURAL ACTIVITIES
AS A DYNAMICAL SYSTEM

1. Neural activities follow the nonhomogeneous
continuous Markov chain

In (A2) and (A12), we have described the neural activities
of both input and intermediary neurons in a neural population
with nonhomogeneous Poisson processes. A beneficial prop-
erty for further analysis is that any Poisson process is a kind of
continuous Markov chain. Therefore, we reformulate neural
activities in the form of the Markov chain.

Assume the neural population encodes a stimulus sequence
S’ in an interval [0, ¢”]. For a neuron N, in the neural pop-
ulation, we concentrate on the probability that the neural
response rate at moment ¢ is r and that at moment ¢t + 7
(r > 0) is ¥'. This probability describes the transformation
possibility from neural response state r to state r’, which can
be defined as v(r' — rYPY(r' —r | S, t,t +T).

The first step to construct the Markov chain is to define the
time-varying transition matrix W(S',¢,¢ 4+ 1) as

Wi (S t,t+1)=v(i—DPY(—il S, t,t+7). (Bl)

The second step is to propose the master equation of the
Markov chain of neuron N,, which is given as

3
57’,?0 | S t,t+ 1)

=D WSt 1+ 1) = W (S 1.1+ 0. (B2)

r

where 7 > 0 and
Wi (S 1t 4+ 1) =Wi(S, 1,1 + TP | S',0,1). (B3)

(B2) is written in its basic form. Based on (B1), we can also
rewrite the master equation as

3 ,
579,?<r|8,t,r+r)

=D WS\t ) =) WS 1t +1). (B
r<r r'>r
Based on (B4), we can describe the stimulus-triggered neural
activity of N, with the nonhomogeneous continuous Markov
chain.

043085-14



BRIDGING THE INFORMATION AND DYNAMICS ...

PHYSICAL REVIEW RESEARCH 3, 043085 (2021)

2. Defining Kolmogorov-Sinai entropy depending
on neural tuning properties

Kolmogorov-Sinai entropy characterizes the randomness
of a dynamical system forward in time [54,58]. The classical
definition of Kolmogorov-Sinai entropy is

1
HKSZ— lim — Z P(Co—>—>c,,)
n—>+o00 nT
Co,....Cn
X IHP(C() —> s —> Cn), (BS)

where t is the variation time step. Each C; denotes the state of
the dynamical system (e.g., the neural response rate we have
analyzed before). In general, parameter T can be understood
as the time interval between any two times of sampling for
the dynamical system. Enlarging t is similar with the coarse
graining. One can turn to [54,58] for a systematic analysis of
Kolmogorov-Sinai entropy in statistical physics.

This research defines the neural activities of each neu-
ron as a kind of nonhomogeneous continuous Markov chain.
However, this does not mean that we need to consider
Kolmogorov-Sinai entropy with a continuous-time limit (the
variation time step satisfies t — 0). In the neural system, any
kind of variation of neural states takes time (e.g., the time
cost of biochemical reaction and the absolute refractory pe-
riod). Thus, in the calculation of Kolmogorov-Sinai entropy,
we need to consider only the situation where the selectable
moment [e.g., ¢ in Eq. (B4)] is continuous (this is ensured by
the Poisson process) and the variation time step [e.g., T in
Eq. (B4)] is not approaching 0 so as to meet the properties of
the neural system.

Based on the knowledge of Markov chain, it is trivial that
(B5) can be written as

His = —% d_POWE —CHinWwEC -, (B6)
cc

where P(C) is the probability of state C, and W(C — C’)
defines the transformation probability from state C to state C’
[54,58].

In this research, the probability of neural activities is de-
scribed in Eq. (B4). For each neuron N,, Kolmogorov-Sinai
entropy Hgs can be defined as a metric of its stimulus-
triggered neural dynamics (we refer to it as the neural tuning
Kolmogorov-Sinai entropy)

1
]\]1198/9 ) = - © 8/1 07
His( Lt =—-3 ) P )

ror'>r

X Wi (S t,t + 1) In W (S, 1,1 + 7). (B7)

Equation (B7) defines the Kolmogorov-Sinai entropy Hgs
of probability distribution 73,? (r| &', 0,1) and, therefore, pro-
poses a natural approximation of entropy Hgy in the generated
neural response trains by PY(r | &', 0, ). The approximation
is valid when neural response generation is implemented by
the MP method or a large-scale Monte Carlo sampling on
73,? (r|8',0,1) [101] because these two approaches gener-
ate neural response trains strictly following PY(r | &', 0,1).
However, the approximation becomes invalid when one uses
small-scale Monte Carlo sampling or other randomization
methods to involve neural response generation with more

randomness (e.g., while simulating noisy neural responses). In
that case neural response trains do not strictly follow PY(r |
§’, 0, t) and may have their unique entropy quantities.

3. Chaos of neural activities

An important property of the Kolmogorov-Sinai entropy is
that the Kolmogorov-Sinai entropy of a dynamic system is no
more than the summation of all the positive Lyapunov expo-
nents of this system (see Ruelle inequality [56]). This property
connects the Kolmogorov-Sinai entropy with the Lyapunov
spectra analysis [49,50], supporting an analysis of chaos.

For each neuron N,, we have defined its neural tuning
Kolmogorov-Sinai entropy by (B7). Based on Ruelle inequal-
ity, there is

Hgs(Na, S’ 1,1 +7) < Y Lo 400, (BY)
&

where each £ is a Lyapunov exponent of the dynamic system
that describes the neural activities of N, and 7 is the indica-
tive function. Here the equality holds only when the system is
endowed with an Sinai-Ruelle-Bowen (SRB) measure [104].
Under this condition, (B8) is usually referred to as a Pesin
identity [55].

In dynamics theory, Lyapunov exponent & characterizes
the separation or convergence rate of different infinitesimally
close trajectories in the phase space (the space of all states of
the dynamical system). Here are several key properties of the
Lyapunov exponent that need to be emphasized:

(1) For a dynamical system with n parameters, the phase
space is n-dimensional and there are n Lyapunov exponents.

(2) For a Lyapunov exponent &, if it is positive, then it
measures the separation rate of close trajectories in the cor-
responding direction; if it is negative, then it measures the
convergence rate; if it equals 0, then the trajectories will not
separate or converge in this direction.

(3) For adynamical system with n Lyapunov exponents, if
at least one Lyapunov exponent is positive, then the dynamical
system can be chaotic.

Therefore, if Hs is positive for neuron N, then the neural
activities of this neuron is chaotic. When Hgyg increases, the
chaos is intensified.

APPENDIX C: PROPERTIES OF THE NEURAL
INFORMATION PROCESSING

In this section, we will calculate the parameters related to
neural encoding and decoding properties. To provide a clear
goal, here we give basic explanations for those two concep-
tions:

(1) Neural encoding concerns how neural responses en-
code and represent the input stimulus.

(2) Neural decoding studies how to decode the coded in-
formation of stimulus from neural signals.

1. Properties of neural encoding

To measure the encoding efficiency of neurons, there are
three widely used parameters:

(1) Total response entropy H. It measures the total varia-
tion of neural responses to stimuli.
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(2) Noise entropy H2. It measures the variation of neural
responses that cannot be explained by stimuli.

(3) Mutual information H 2. It measures the variation of
neural responses that can be explained by stimuli.

The classic definitions of these three parameters have been
summarized in [2]. In this research, we reformulate the calcu-
lation of them to fit dynamic situations. Before implementing
the reformulation, there are several necessary derivations to
carry out.

First, for the stimulus sequence &’ that occurs in [0, "], it
can be recorded to obtain an a posteriori probability distribu-
tion of stimuli based on the frequency statistics. A stimulus s
cannot be recorded until it occurs. Thus, the a posteriori prob-
ability distribution of stimuli is time-dependent (the frequency
statistics results of stimuli are updated in real time). For con-
venience, we use S’(0, t) to represent the stimulus sequence
that has been recorded in [0, 7]. For each moment ¢ in [0, ¢"],
the corresponding distribution is defined as P(S’, 0, t).

Second, for each stimulus s, the occurrence duration can be
recorded as well. A stimulus might occur multiple times, and
each time corresponds to an occurrence duration. Although
the stimulus sequence S’ is sampled from a stationary process
in our experiments (therefore, the occurrence duration is fixed
as 1), we still present our theory in a general form to fit more
situations. For every moment ¢ in [0, t"], we can do frequency
statistics to obtain P(zt, 0, 1) as the a posteriori probability
distribution of the occurrence duration length of stimulus s
based on the records in [0, ¢]. Then we define

wst)= Y Ps,0,0) P, 0,07, (C

s€8'(0,1) Ts

where ts(t) is the mean duration length averaged from all
possible duration length of every stimulus in S’ that occurs
in [0, 7].

Third, based on the proposed stimulus-triggered neural
activity characterization, we can define

Pr(rn0.0)= > PY(r|s0,ts)P(s,0,0), (C2)
5€8/(0,1)

where 77,? (r]s,0, ts(t)) denotes the probability for the neu-
ral response rate to reach r with a stimulus s lasting for tg,
which can be calculated by (A15). It can be seen that (C2)
defines a neural response probability distribution of N, based
on the frequency statistics in [0, 7].

Given these above derivations, we can define the time-
dependent total response entropy as

HNy 1) ==Y PY(r.0.0)log, PY(r,0,1).  (C3)

Then we define the time-dependent noise entropy as

HEWN, )= Y P(s,0,0)
s€S'(0,1)

x [_ D P 15,0, ts(t)log, Py (r | 5,0, fs(ﬂ)}

(C4)

Finally, we can calculate time-dependent mutual information
as

HAA(Nm 1) = H(Nna t) - HA(Nna t)-

Moreover, we can also measure the time-dependent en-
tropy of the stimulus sequence as

(C5)

Hs(S,1)=— Y P(s,0,1)log, P(s,0,1).  (C6)
s€S8’(0,t)
If we further define
HE (N, 1)
=~ PP 5.0, 7s(1) log, P(r | 5.0, 75 (1)),
(C7)

we can measure the noise from the encoding of stimu-
lus s. It is clear that the noise entropy H”* is averaged
from ’HSA (N, t) of every stimulus. For each stimulus s, if
HE(Ny, 1) < HA(N,, 1), then the noise from the encoding
process of it is relatively less. In other words, the interpretabil-
ity of neural activities based on s is relatively high. Given this
definition, if we define a specific subset

Su(0,1) = {s | HE (N, 1) < H"(Na, 1)}, (C8)
and define that
15,00, 1)]
Nn, = ’ C9
D = 1500, 1) )

then (N, t) measures the proportion of the stimuli that can
better explain neural activities in all stimuli. We refer to u as
the encoding scope.

Until now we can calculate the total response entropy,
noise entropy, and mutual information based on only the stim-
ulus in S, (here S, can be treated as specific local stimulus
distribution). Most parts of calculations stay the same as what
has been defined above. The only two differences lie in that we
need to recalculate the occurrence probability of the stimuli in
S, and the occurrence duration length (since we focus only
on the local part of the stimulus distribution). Specifically, for
each s in S, its new probability P’(s, 0, ¢) is recalculated as

P(s,0,1)

P'(s,0,1) = : (C10)
ZSIES;L P/(S[, O» t)
Apart from that, the new occurrence duration length is
)= Y P(.0,0) Pr.,0.0)r.  (Cll)

5€85,(0,1) Ts

Based on the new probability redefined in Eq. (C10) and
(C11), we can further calculate all parameters based on (C2)—
(C5).

2. Properties of neural decoding

Decoding the stimulus parameter from given neural signals
is important for neuroscience studies. With a decoding (or es-
timation) technique, researchers can predict the input stimulus
based on the neural response.

For neuron »,, assume that we have recorded its neural
response sequence to &’ in [0, #”]. At any moment ¢ in [0, t"],
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a decoding technique is applied to obtain a time-dependent
estimated stimulus sequence S, (0, ¢) based on the neural
response sequence in [0, ¢]. If we repeat the experiment with
same stimulus sequence S’ for k times and each time we do
an estimation, then we can obtain an averaged time-dependent
estimate

k
, 1 .
Vs € 8(0,0), {sew(0,) = & ;sm(o,r, i, (Cl12)

where s, (0,1,i) is the estimated result of stimulus s of
S’(0, t) in the ith experiment.

Then we can measure the time-dependent accuracy of the
decoding technique applied on neuron N, with the bias B, ()
and the variance D, (t) as

B, (1) = Z P(s,0,)(s — (ses(0,1))) (C13)
s€S’(0,1)
and
Dy(t)
1
= z Z [ Z P(SESlv 01 t)(sest (Ov tv l) - <S€St (07 t)) )2] .
i=1 LseS’(0,r)
(C14)

For a decoding technique, it is optimized if its variance ap-
proaches O.

In statistical theory, the Cramér-Rao bound suggests that
the FI limits the accuracy with which any decoding technique
can estimate the target parameter of the stimulus. Assume that
B,‘f (t)and Df (t) are the bias and variance obtained based on a
decoding technique & that is applied on N,,.. Then the Cramér-
Rao bound can be given as [2]

(L+ 555 @)

V&, DE(1) >
F(Ny, 1)

, (C15)

where F(N,, t) denotes the time-dependent FI of neuron N,,.
Based on (C15), it can be seen that the calculation of F (N, t)
is important since it acts as the lower bound of the variance
of any decoding technique applied on neuron N,. Even for
the unbiased decoding [BZ(¢) = 0, thus %Bf (t) = 0], the
variance is still no less than m [2].

To measure the precision limitation of any possible decod-
ing technique that can be applied on neuron »,, we calculate
the time-dependent FI F(N,, t) as

F(Nyut)y= Y P(s,0, z){ZPf(r 5,0, Ts(1))

s€S'(0,t)
< [A(nPO(r | 5,0, tg(t)))]z}, (C16)

where A;(-) is the first-order difference with respect to s. The
FI proposed in Eq. (C16) is in discrete form. In special cases,
if 73,? (r1s,0,ts(t)) is sufficiently smooth with respect to
s, we can also use the partial derivative to replace the first-
order difference to obtain a continuous form. Moreover, the
calculated quantity in Eq. (C16) is the FI of the whole stim-
ulus sequence. It can be treated as the expectation of the FI

3, P2(r 5,0, ts))A(InPY(r | 5,0, 75()))]*} of each
stimulus s in the sequence.

For a decoding method &, it is optimal if and only if its
variance satisfies D¢ (t) = m It can be seen that for neu-
ron N, if its Fl increases, then the optimal decoding technique
applied on it can realize a better precision.

To this point, we have defined the information processing
properties of neural activities from the perspectives of encod-
ing and decoding. Similar to the neural tuning Kolmogorov-
Sinai entropy Hks, those information-processing properties
are defined based on probability distribution Py (r | ', 0, 1),
approximating the properties of neural response trains. The
validity of approximation relays on whether neural responses
strictly follow 73,? (r18’,0,1) and, consequently, cannot be
ensured when one generates noisy neural neural responses
with more randomness.
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