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Scaling law and universal drop size distribution of coarsening in conversion-limited phase separation
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Phase separation is not only ubiquitous in diverse physical systems, but also plays an important organizational
role inside biological cells. However, experimental studies of intracellular condensates (drops with condensed
concentrations of specific collections of proteins and nucleic acids) have challenged the standard coarsening
theories of phase separation. Specifically, the coarsening rates observed are unexpectedly slow for many
intracellular condensates. Recently, Folkmann et al. [Science 373, 1218 (2021)] argued that the slow coarsening
rate can be caused by the slow conversion of a condensate constituent between the state in the dilute phase and
the condensate state. One implication of this conversion-limited picture is that standard theories of coarsening
in phase separation (Lifshitz-Slyozov-Wagner theory of Ostwald ripening and drop coalescence schemes) no
longer apply. Surprisingly, I show here that the model equations of conversion-limited phase separation can
instead be mapped onto a grain growth model in a single-phase material in three dimensions. I further elucidate
the universal coarsening behavior in the late stage using analytical and numerical methods.
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I. INTRODUCTION

Phase separation is a ubiquitous phenomenon in nature:
from the separation of quark matter with distinct baryon den-
sities in the early universe [1,2], to the everyday occurrence
of dew and fog on Earth today. Besides being integral to our
understanding of diverse physical systems, phase separation
also plays an important organizational role in living systems:
Many protein-nucleic acid condensates (i.e., drops with con-
densed concentrations of specific collections of proteins and
nucleic acids) exist intracellularly [3,4]. This recent revelation
led to an intense interest of cellular phase separation from cell
biologists and biophysicists [5–8]. One of the key outstanding
questions in this emergent field is as follows: Why do the
coarsening rates of many condensates observed in cells seem
negligible?

Coarsening of condensates refers to the evolution from an
emulsion of polydisperse condensates to a single condensate
coexisting with the dilute phase, as dictated by thermody-
namics. Coarsening in the late stage can take on two forms:
(i) the transfer of material from small drops to big drops
through the dilute phase in a process known as Ostwald
ripening, and (ii) the coalescence of diffusing drops when
they encounter each other [8]. To account for the slow con-
densate coarsening rates observed in experiments, various
proposals have been advocated: Driven chemical reactions
that convert constituent proteins between a soluble form and
a phase separating form can counter Ostwald ripening [9–11],
and intracellular viscoelastic networks (e.g., the cytoskeletal
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networks) can limit the growth of condensates through me-
chanical suppression [12–15], and render the condensates’
dynamics subdiffusive, which slows down coalescence [16].

More recently, drawing inspiration from the rugged energy
landscape picture that explains the slow elongation rates ob-
served in amyloid fibrillization [17–19], a conversion-limited
scheme was proposed to model the coarsening dynamics of
P granules—a type of cellular condensates found in the germ
cells of the nematode Caenorhabditis elegans [20]. Indeed,
in many in vitro amyloid fibrillization experiments with no
driven chemical reactions, no viscoelastic networks limiting
fibrillar growth, and no subdiffusive behavior, unexpectedly
slow elongation rates are nonetheless observed [21–25]. To
rationalize these findings, a rugged energy landscape pic-
ture was proposed in Ref. [17], in which the many local
free-energy minima arise from the various suboptimal con-
formations that a fibrillizing protein can be stuck in before
achieving the minimal free-energy state, which corresponds
to the fully integrated fibrillar form. The slow fibril elongation
rates observed can thus be explained by the generically slow
“diffusion” over a rugged energy landscape [26].

In cellular condensates, the constituents (proteins and nu-
cleic acids) can be thought of as polymers with multiple,
potentially unspecific, binding sites. Therefore, it was argued
in Ref. [20] that a condensate constituent in the dilute phase
also has to go through a series of local minima (e.g., a se-
ries of suboptimal binding configurations) before being fully
incorporated into the condensate [Fig. 1(a)]. As a result, a cor-
responding rugged energy landscape picture can potentially
explain the slow coarsening rates observed.

An immediate consequence of this conversion-limited pic-
ture is that the standard theories of coarsening are no longer
valid. In this paper, I will first review in detail the deriva-
tion of the model equations that describe coarsening in the
conversion-limited scheme as proposed in Ref. [20]. I will
then show that the model equations can be mapped onto a
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FIG. 1. Coarsening in the conversion-limited scheme. (a) A
schematic of the rugged energy landscape that a monomer (blue) has
to traverse through to become fully incorporated into the condensed
drop (pink). Here, the vertical axis depicts the free energy of the
blue polymer-red drop system constrained to the partially converted
state along the abstracted conversion coordinate. For a polymer with
multiple binding patches, the rugged energy landscape can arise
from the sequential binding-unbinding events, many of them frus-
trated, that the polymer has to go through before being integrated
into the drop. Since diffusion over a rugged energy landscape can
be very slow [26], the conversion step can become rate limiting
in coarsening. If this is the case, the concentration in the dilute
phase, c, can be assumed to be constant throughout the dilute phase
due to the fast molecular diffusion. (b) In a two-drop system (top
figure), the concentration along the x axis (red lines) according to the
conversion-limited scheme is shown in the bottom figure. Due to the
surface tension-induced Gibbs-Thomson relation [8], the equilibrium
concentration outside the big drop (purple circle) is lower than that of
the small drop (blue square). The mismatched concentrations outside
the two drops lead to an outflux of material from the small drop and
an influx into the big drop, resulting in the coarsening of the system.
Figures adapted from Ref. [20].

grain growth model in a single-phase material in three di-
mensions [27]. I further elucidate the universal coarsening
behavior in the late stage using analytical and numerical
methods.

II. MODEL EQUATIONS

To proceed analytically, I will use a simplified single-
component model, in which a single concentration captures
effectively the aggregate concentrations of the condensate
constituents. In an emulsion of polydisperse drops with a

uniform inner concentration cin, the equilibrium concentration
outside a drop of radius R is cout (1 + lGT/R), where cout is
the concentration outside a flat interface (R → ∞), and lGT is
a length scale that accounts for the Gibbs-Thomson relation
arising from the surface tension-induced Laplace pressure
acting on the drops [Fig. 1(b)] [8]. In the conversion-limited
regime, the slow process is the conversion of a constituent
molecule into and out of a drop at the interface, while molecu-
lar diffusion in the dilute phase is the fast process that renders
the concentration in the dilute phase, c, constant throughout.
By the principle of mass conservation, c is given by

c(t ) = ctotV − cinVdrops(t )

V − Vdrops(t )
, (1)

where ctot is the total solute concentration, V is the volume
of the system, and Vdrops(t ) = 4π

3

∑N
i=1 Ri(t )3 is the total drop

volume in the system with N being the number of drops.
To achieve the equilibrium state of having a single drop co-

existing with the dilute phase, the system inevitably coarsens.
To consider the universal behavior in the late stage, I will fo-
cus exclusively on coarsening by Ostwald ripening under the
conversion-limited scheme, and justify the neglect of coarsen-
ing by drop coalescence later.

The thermodynamic drive towards equilibrium is caused
by the mismatch between the radius-dependent equilibrium
concentrations outside the drops given by

cout

(
1 + lGT

R

)
, (2)

and the concentration of the dilute phase, c(t ) [Fig. 1(b)].
Here, I assume that the mismatch is small so that the resulting
material flux is proportional to the concentration difference.
Specifically, the flux JR(t ) into (when positive) and out of
(when negative) a drop of radius R is given by

JR(t ) = κ ′
[

c(t ) − cout

(
1 + lGT

R(t )

)]
, (3)

where κ ′ is a constant of dimension (length)/(time), which
is proportional to the effective adsorption (desorption) rate of
a polymer into (out of) the drop caused by the mismatched
boundary conditions at the drop’s interface. The rate is effec-
tive in the sense that it corresponds to the statistical average of
many microscopic adsorption of desorption events that occur
at the interface.

In an N-drop system, the rates of change of the drops’ radii
are thus

dRi(t )

dt
= JRi (t )

cin
= κ

(
1

Rc(t )
− 1

Ri(t )

)
, (4)

for 1 � i � N , where κ ≡ κ ′lGTcout/cin and

Rc(t ) = lGT

c(t )/cout − 1
, (5)

which is termed the critical radius since all drops of radii
below Rc shrink, and vice versa. The set of N differential equa-
tions (4) are coupled through the mass conservation condition
in (1) and (5).

Surprisingly, the model equations of conversion-limited
phase separation (4) can in fact be mapped onto a grain growth
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model in a single-phase material in three dimensions studied
by Hillert [27]. In this mapping, the parameter κ corresponds
to the proportionality constant that relates the velocity of the
advancement of a grain boundary and the local curvature
of the grain boundary. Interestingly, discrepancies between
actual grain growth and the Hillert’s model are known and
are caused by the mean-field assumption when calculating the
grain boundary curvature [28]. Such a deficiency does not
occur in our system since the drops remain spherical at all
times.

III. CONVERSION-LIMITED VERSUS
LIFSHITZ-SLYOZOV-WAGNER

In the Lifshitz-Slyozov-Wagner (LSW) scheme, the pref-
actor κ in (4) is replaced by DlGTcout/[cinR(t )] [8,29,30],
where D is the diffusion coefficient of the molecule in the
dilute phase. Comparing these two quantities, one expects that
the conversion-limited scheme is valid when the following
condition is satisfied:

κ � D

〈R(t )〉 . (6)

For a typical protein of linear dimension around 1 nm, D is
of the order 107 nm2/s [31]. Taking the typical condensate
size to be in the order of 1000 nm, the conversion-limited
regime is expected to be valid if κ � 104 nm/s. As an
example, a recent study of P granules in the single-cell em-
bryonic stage estimated that the parameter κ is of the order
1 nm/s [20]. Therefore, the conversion-limited scheme is ap-
propriate for that system.

IV. SCALING LAW AND UNIVERSAL SIZE DISTRIBUTION

Having reviewed the physics underlying the conversion-
limited scheme and compared the model equations to those of
the LSW scheme, I will now elucidate analytically the univer-
sal behavior of coarsening in the asymptotic long-time limit.
While it is unclear whether this asymptotic regime is relevant
to intracellular condensates in vivo, the emergent universal
physics can clearly be tested in controlled experiments, and
be applicable to diverse natural, reconstituted, or synthetic
phase-separating systems, such as various phase-separating
polymers with polyvalent binding sites.

As noted before, the model equations can be mapped onto
a grain growth model in a single-phase material in three di-
mensions [27], where the coarsening behavior has also been
analyzed analytically. For completeness, I will present a sim-
ilar derivation of the analytical results in this section, while
highlighting how they differ from the predictions of the stan-
dard theories of phase separation.

As the identities of individual drops are irrelevant, I will
start by focusing on the following time-dependent drop size
distribution function:

n(R, t ) = 1

V

N∑
i=1

δ(R − Ri(t )). (7)

Now, recall that in the asymptotic long-time limit of the
LSW regime, the distribution function n approaches the scal-

ing form [29,32]

lim
t→∞ nLSW(R, t ) = [Rc(t )]−4gLSW(z), (8)

where z(t ) ≡ R/Rc(t ) and gLSW is a dimensionless scaling
function given by

gLSW(z) ∝ z2 exp
(
1 − 3

3−2z

)
(
1 + z

3

)7/3(
1 − 2z

3

)11/3 , (9)

for 0 � z � 3/2. In other words, in the long-time regime, the
drop size probability distribution, once renormalized by the
critical radius, is temporally invariant. I will assume that the
same scale-invariant structure remains true for the conversion-
limited scheme. Specifically, I will use the ansatz

n(R, t ) = [Rc(t )]−4g(z(t )), (10)

where g(·) is a dimensionless function. In fact, the ansatz (10)
is, as in the LSW scheme, an inevitable outcome of mass con-
servation in the system. The demonstration of this asymptotic
behavior mirrors exactly that of the Lifshitz-Slyozov-Wagner
theory [27,29,32], and therefore will not be repeated here.

I will now calculate ∂t n by using first the definition of n
in (7) to get

∂t n(R, t ) = − ∂

∂R

[
κ

(
1

Rc(t )
− 1

R

)
n(R, t )

]
(11a)

= − κ

R6
c

[
g

z2
+

(
1 − 1

z

)
g′

]
. (11b)

In the second equality above, I have replaced all R and n in
the last expression by z and g using the ansatz (10).

Calculating ∂t n for a second time, but using the ansatz (10)
directly instead, we get

∂t n(R, t ) = − 1

R5
c

dRc

dt
(4g + zg′), (12)

where g′ = dg/dz.
Equating (12) and (11b), and then separating the Rc(t ) and

t on one side, and g(z) and z on the other, we have

Rc

κ

dRc

dt
= A = g/z2 + (1 − 1/z)g′

4g + zg′ , (13)

where A is a constant to be determined.
From the first equality, we can see that the critical radius

Rc scales as t1/2. Therefore, Rc increases much faster than
the LSW scaling law: RLSW

c (t ) ∼ t1/3. Since the scaling law
corresponding to coalescence-driven coarsening is identical to
that of the LSW scheme [33,34], the increase in the power
law in the conversion-limited scheme justifies the neglect of
coalescence-driven coarsening in the late stage.

Note that a generalized LSW scheme that accounts for a
concentration-dependent mobility term can also lead to mod-
ified scaling laws [35]. However, the models considered there
always lead to a slowing down of coarsening compared to the
LSW scheme.

Focusing now on the drop sizes, solving the differential
equation from the second equality in (13) leads to the uni-
versal normalized distribution,

g(z) ∝ z exp
(− 6

2−z

)
(2 − z)5

, (14)

043081-3



CHIU FAN LEE PHYSICAL REVIEW RESEARCH 3, 043081 (2021)

FIG. 2. Simulation vs theory. (a) The broadening of the drop size distribution that starts with a Gaussian distribution (mean = 10, standard
deviation = 3), but truncated so that the random variable is always positive (gray). The other parameters are N = 5×105, κ = 1, cout = 1,
cin = 20, ctot = cin + 99cout[1 + 〈R(t = 0)〉−1]. Note that the late-stage universal behaviors discussed here are not dependent on the choice
of the parameters. (b) The drop size distribution (at t = 1.5×105) and (c) the temporal evolution of 〈R(t )〉 show good agreement with the
theoretical predictions (14) and (15), respectively.

for 0 � z � 2. By calculating the average of the distribution,
we find the following,

〈R(t )〉 = 24

27
Rc(t ) ∼ t1/2, (15)

which is again different from the LSW theory: 〈R(t )〉 =
RLSW

c (t ). Note that the expressions in (14) and (15) are equiv-
alent to those of grain size distribution and growth rate in
the late stage found in Ref. [27]. Incidentally, the t1/2 scaling
law (15) also coincides with the scaling law expected from
the coarsening in a nonconserved system undergoing phase
ordering [36,37].

Figure 2 shows the verifications of all theoretical predic-
tions by numerically solving the model equations (1), (4),
and (5). The details of the numerical procedure are given in
the Appendix.

V. DISCUSSION AND OUTLOOK

In summary, I have discussed the physics underlying the
late-stage coarsening of a phase-separating system under the
conversion-limited scheme, and elucidated the scaling law and
universal drop size distribution in this regime. Besides the
change of the coarsening power law, the conversion-limiting
scheme is also arguably more universal compared to the LSW
scheme due to the uniform concentration in the dilute phase
because (i) the spatial correlation of drops is irrelevant and
thus the “mean-field” scenario considered here is exact [38],
and (ii) the universal behavior is independent of the spatial
dimension [39,40].

Referring back to the condition (6) under which the
conversion-limited regime is valid, it is clear that as the
average drop size grows (〈R(t )〉 → ∞), the system will tran-
sition into the LSW scheme eventually. In other words, the
asymptotic results described here are strictly speaking only
applicable to some intermediate-scaling regime. However, de-
pending on the model parameters, this intermediate-scaling
regime can be extremely long. For instance, using the pa-
rameters estimated in an in vivo study of P granules in the
one-cell embryo [20], one finds that the transition from the
conversion-limited regime to the LSW regime occurs when

〈R〉 ≈ 107 nm, which corresponds to an intermediate-scaling
regime that spans over 10 000 years.

A final surprise here is that the universal behavior is uncov-
ered in a system that is, while clearly motivated by a biological
system, purely thermal. This is in contrast to, e.g., another
class of living matter-motivated systems—polar active matter,
in which diverse novel universality classes emerge from the
nonequilibrium nature of the systems [41–48]. Overall, this
work highlights once again that biological systems constitute
a fertile ground for novel physics [49].

In terms of outlook, one potentially interesting direction
will be to consider the impact of having multiple coexistence
phases [50–53] on the coarsening behavior. Although for the
standard LSW theory, having multiple phases does not seem
to influence the asymptotic scaling behavior [54,55], it would
be interesting to see whether the growth of drops of distinct
phases in the intermediate stage will be affected by potential
competition over shared components.

Another interesting direction will be the study of how
the universal behavior of phase separation can be impacted
by nonequilibrium processes in cells, which can include the
active motility of the constituent components (e.g., due to
molecular motors) and driven chemical reactions [e.g., adeno-
sine triphosphate (ATP)-driven enzymatic reactions].
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APPENDIX: NUMERICAL PROCEDURE

To study the temporal evolution of the drop sizes (Fig. 2),
the following numerical procedure is used:

(1) Initiation. At time t = 0, Gaussian variables (with
mean = 10, standard deviation = 3) are repeatedly drawn un-
til N positive numbers are obtained. These will be the initial
radii of the N drops Ri(t = 0), i = 1, . . . , N .

(2) Evolution. The drop sizes are updated according to the
following,

Ri(t + �t ) = Ri(t ) + �t × κ

(
1

Rc(t )
− 1

Ri(t )

)
, (A1)
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where �t = 0.01, and Rc(t ) is calculated using (5). Any Ri(t )
that drops below 10−3 will be taken out of the system. Time t
is then updated to t + �t .

The model parameters used to simulate the results pre-
sented in Fig. 2 are shown in the caption. However, the
universal size distribution (14) and scaling law (15) are not
dependent on the choice of the parameters in the late stage.
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