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Microscopic theory of intrinsic timescales in spiking neural networks
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A complex interplay of single-neuron properties and the recurrent network structure shapes the activity of
cortical neurons. The single-neuron activity statistics differ in general from the respective population statistics,
including spectra and, correspondingly, autocorrelation times. We develop a theory for self-consistent second-
order single-neuron statistics in block-structured sparse random networks of spiking neurons. In particular, the
theory predicts the neuron-level autocorrelation times, also known as intrinsic timescales, of the neuronal activity.
The theory is based on an extension of dynamic mean-field theory from rate networks to spiking networks,
which is validated via simulations. It accounts for both static variability, e.g., due to a distributed number of
incoming synapses per neuron, and temporal fluctuations of the input. We apply the theory to balanced random
networks of generalized linear model neurons, balanced random networks of leaky integrate-and-fire neurons,
and a biologically constrained network of leaky integrate-and-fire neurons. For the generalized linear model
network with an error function nonlinearity, a novel analytical solution of the colored noise problem allows us to
obtain self-consistent firing rate distributions, single-neuron power spectra, and intrinsic timescales. For the leaky
integrate-and-fire networks, we derive an approximate analytical solution of the colored noise problem, based on
the Stratonovich approximation of the Wiener-Rice series and a novel analytical solution for the free upcrossing
statistics. Again closing the system self-consistently, in the fluctuation-driven regime, this approximation yields
reliable estimates of the mean firing rate and its variance across neurons, the interspike-interval distribution, the
single-neuron power spectra, and intrinsic timescales. With the help of our theory, we find parameter regimes
where the intrinsic timescale significantly exceeds the membrane time constant, which indicates the influence
of the recurrent dynamics. Although the resulting intrinsic timescales are on the same order for generalized
linear model neurons and leaky integrate-and-fire neurons, the two systems differ fundamentally: for the former,
the longer intrinsic timescale arises from an increased firing probability after a spike; for the latter, it is a
consequence of a prolonged effective refractory period with a decreased firing probability. Furthermore, the
intrinsic timescale attains a maximum at a critical synaptic strength for generalized linear model networks, in
contrast to the minimum found for leaky integrate-and-fire networks.
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I. INTRODUCTION

Neural dynamics in the cerebral cortex of awake behaving
animals unfolds over multiple timescales, ranging from mil-
liseconds up to seconds and more [1–5]. Such a heterogeneity
of timescales in the dynamics is a substrate for temporal
processing of sensory stimuli [6] and reflects integration of
information over different time intervals [3,4]. Intriguingly,
in vivo electrophysiological recordings reveal a structure in
the autocorrelation timescales of the activity on the level of
single neurons [2,7]. This structure could arise from system-
atic variations in single-neuron or synaptic properties [8,9],
from the intricate cortical network structure [10], or from a
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combination of both [11,12]. Furthermore, timescales may be
influenced by the external input to the network, and depend
on the chosen measurement procedure [13]. Thus, while these
timescales are referred to as intrinsic timescales, they are
shaped by intrinsic and extrinsic factors alike.

Explaining the timescales of individual neurons embedded
in a network poses a theoretical challenge: How to account for
a microscopic, neuron-level observable in a macroscopic the-
ory? Clearly, a straightforward coarse-graining of the activity
eliminates the microscopic observable of interest [14]. Dy-
namic mean-field theory (DMFT) [15–17] makes microscopic
observables accessible because, instead of coarse-graining the
activity of the neurons, it coarse-grains their input. Here, the
term “dynamic” specifies that the input is approximated as
a stochastic process that varies in time, in contrast to the
notion of a mean-field theory in physics, which usually de-
scribes processes embedded in a constant field. DMFT has led
to significant insights into the interrelation between network
structure and intrinsic timescales for recurrent networks of
(nonspiking) rate neurons [15–23]. In particular, it has been
shown that very slow intrinsic timescales emerge close to
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a transition to chaos in autonomous networks [15]. Interest-
ingly, simply adding a noisy input to the network significantly
reduces this effect and even leads to a novel dynamical regime
[21]. Furthermore, increasing the complexity of the single-
neuron dynamics reveals that timescales of slow adaptive
currents are not straightforwardly expressed in the network
dynamics [22], and leads to yet another dynamical regime
termed “resonant chaos” [23]. In combination, these results
suggest that the mechanisms shaping the intrinsic timescales
in recurrent networks are highly involved.

A characteristic feature of neural communication in the
brain is the spike-based coupling [24]: the output of a neuron
is a stereotypical pulse, a spike, that is produced once the
internal voltage exceeds a threshold and that travels along
the axon to the target neurons. Consequently, spiking neu-
ral network models have already yielded notable insights
into cortical neural dynamics. Prominent examples are the
excitatory-inhibitory balance mechanism which dynamically
generates strong fluctuations while keeping the activity in a
physiological range [25,26] and the mechanism of recurrent
inhibitory feedback leading to low cross-correlation between
neurons despite the high number of shared inputs [27,28].
From a theoretical perspective, spike-based coupling further
increases the complexity of the dynamics. This calls for an
extension of DMFT to spiking networks. Following early
works where slow synaptic dynamics reduced the spiking net-
works effectively to rate networks [18,29], this was recently
achieved with a model-independent framework [30] (see also
the pioneering work [31]).

Perhaps unintuitively, the main obstacle is not the reduc-
tion of the recurrent dynamics to the DMFT but the colored
noise problem: to obtain the output statistics of the neuron for
temporally correlated input statistics. Previous works relied
on numerical methods to address the colored noise problem
[31–36] because the spiking nonlinearity renders this prob-
lem in general analytically intractable. Such a self-consistent
numerical scheme already revealed an unexpected minimum
instead of a maximum in the intrinsic timescales for spiking
networks at a critical coupling strength [37]. However, nu-
merical solutions have the drawback that they lead to noisy
estimates of the autocorrelation function, which poses addi-
tional challenges on the inference of intrinsic timescales [38]
and other dynamical quantities from the neuronal and net-
work parameters. In addition, such a self-consistent numerical
scheme is computationally intensive.

In this paper, we use analytical approaches to close the self-
consistency equations for spiking networks. First, we transfer
the theory for rate networks to one for spiking networks start-
ing from the characteristic functional of the recurrent input.
This shows that the first two cumulants (mean and variance)
of the connectivity matrix suffice to fully characterize the
effective stochastic input, and automatically take the static
variabilities (firing rate, indegree) in the network into account.
Since it is based on DMFT, the resulting theory indeed ac-
counts for the timescales on the microscopic level, orthogonal
to approaches where the activity of a population of neurons is
reduced to an effective mesoscopic description [39]. Second,
we derive an analytical solution to the colored noise problem
for generalized linear model (GLM) neurons with exponential
and error function nonlinearity. Using these analytical solu-

tions, we validate that the self-consistent DMFT captures both
the static second-order statistics, the distribution of firing rates
across neurons, and the dynamic second-order statistics, the
population-averaged autocorrelation function. Furthermore,
we use the theory to investigate the conditions for longer
intrinsic timescales, like those observed in in vivo electrophys-
iological recordings [2,7], in a balanced random network of
GLM neurons. Due to the analytical tractability, our theory
exposes the factors that shape the intrinsic timescale. Third,
we derive a numerically efficient analytical approximation for
the colored noise problem for leaky integrate-and-fire (LIF)
neurons in the noise-driven regime based on the Wiener-Rice
series and the Stratonovich approximation thereof [40,41]. For
a different approach based on a Markovian embedding, which
leads to multidimensional Fokker-Planck equations with in-
volved boundary conditions that are solved numerically, see
[42]. In contrast, our approximation leads to integrals of which
the computationally most involved ones can be solved analyt-
ically. Lastly, we use these results to explore the parameter
space of a balanced random network of LIF neurons for
long timescales, and apply the theory to a more elaborate
model with population–specific connection probabilities that
are constrained by biological data [43].

We start this manuscript with the derivation of the DMFT
equations from the characteristic functional of the recurrent
input. The remainder of the results is structured according
to the neuron model. First we consider GLM neurons with
exponential and error function nonlinearity, respectively, then
we turn to LIF neurons. For each neuron model, we begin by
deriving the solution or approximation of the colored noise
problem. We then describe the numerical method to solve
the self-consistent DMFT equations for the given neuron type
(GLM or LIF). Subsequently, we use our theory to investigate
the timescale in the respective network models.

II. MICROSCOPIC THEORY OF INTRINSIC TIMESCALES

We consider random network topologies where the entries
of the matrix J containing the synaptic strengths, i.e., the
amplitudes of evoked post-synaptic currents due to incoming
spikes, are independent and identically distributed (i.i.d.). A
synapse from neuron j to neuron i exists (Ji j is nonzero) with
probability p; each nonzero entry Ji j is independently sampled
from the distribution of synaptic strengths with mean μJ and
variance σ 2

J < ∞:

Ji j =
{

Ji j with probability p
0 with probability 1 − p

. (1)

The connectivity is thus taken to be pairwise Bernoulli, yield-
ing maximally one synapse from a given presynaptic to a
given postsynaptic neuron. To account for Dale’s law and
further heterogeneities, we subdivide the network into popula-
tions, e.g., all pyramidal cells in cortical layer V, consisting of
statistically identical neurons and denote the population by a
Greek superscript. Within this generalization, the entries of J
are still i.i.d. random numbers for a given pair of populations
α, β, but pαβ and the distribution of Jαβ

i j can vary for different
pairs of populations [Fig. 1(a)]. For example, if I denotes a
population of inhibitory interneurons, all JαI

i j are negative.
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FIG. 1. Illustration of the theory. (a) We consider populations
of randomly connected neurons (α, β) that communicate via spike
trains xα

i (t ). The neurons of population β are connected to those of
population α with connection probability pαβ . (b) The theory reduces
a population to a single neuron driven by an effective stochastic input
ηα . The first- and second-order statistics μα

η and Cα
η of ηα depend

self-consistently on the output statistics, να and Cα
x . (c) From the sta-

tionary spike train autocorrelation function Cx (τ ) = νδ(τ ) + Ĉx (τ ),
we obtain the correlation time τc, the asymptotic decay τ∞, and
the variability of the rate across neurons, σ 2

ν . (d) Instead of the
stationary autocorrelation function we sometimes consider the power

spectrum Sx ( f ), which saturates at the firing rate, Sx ( f )
f →∞→ ν, and,

for a renewal process, has the zero-frequency limit Sx ( f )
f →0→ νCV2.

Throughout, we consider the population–averaged single-unit statis-
tics (black curve) instead of the statistics of the population-averaged
activity (gray curve).

In this manuscript, we focus on the situation where the
average number of synapses per neuron, the indegree Kαβ =
pαβNβ , is large: Kαβ � 1 due to a large number of presy-
naptic neurons Nβ � 1 in combination with a moderate
connection probability pαβ on the order of 10%, in agree-
ment with the situation in cortical networks [44]. In line
with the theory of balanced networks [45], we assume that
neither single spikes are sufficient to cause firing nor coherent
input from all presynaptic neurons is necessary. Moreover,
we consider networks which are in an asynchronous irregu-
lar state exhibited by cortical networks of awake, behaving
animals [46].

In the following, we first consider a single population for
clarity because the generalization to multiple populations is
straightforward.

A. Input statistics

Dynamic mean-field theory reduces the dynamics of the re-
current network to a set of self-consistent stochastic equations.
Its core idea is to approximate the recurrent input

ηi(t ) =
N∑

j=1

Ji jx j (t ) (2)

by independent Gaussian processes. In Eq. (2), and through-
out this manuscript, x j (t ) = ∑

n δ(t − t j,n) denotes the spikes
emitted at times t j,n by neuron j—the spike train of neuron
j—which are the output of neuron j and contribute to the

input of target neuron i. The sum in Eq. (2) extends over all N
neurons, using that Ji j = 0 for neurons that are not connected.

1. Gaussian process approximation

Here, we sketch the derivation to expose necessary condi-
tions for the DMFT. For the full treatment of the problem, we
refer to the model–independent DMFT developed in Ref. [30],
which is applicable to spiking networks.

We start from the deterministic input Eq. (2) and derive
its approximation as independent Gaussian processes. To this
end, let us consider the characteristic functional of the re-
current input. Because ηi(t ) is a deterministic quantity, its
distribution is a Dirac delta and its characteristic functional,
defined by 	η[u(t )] = 〈exp(i

∫ T
0 u(t )ᵀη(t )dt )〉η, is [40,47]

(see also Appendix A, Eq. (A2))

	η[u(t )] = exp

(
i
∫ T

0

N∑
i, j=1

ui(t )Ji jx j (t )dt

)
. (3)

In Eq. (3), ui(t ) are arbitrary test functions; the derivatives of
	η[u(t )] with respect to the test functions evaluated at ui(t ) =
0 yield the moments of the recurrent input.

Now we assume that the dynamics of the system are, on a
statistical level, very similar for any given realization of the
connectivity, i.e., we assume that the system is self-averaging.
Thus we can consider the average across realizations of J and
neglect the dependence of the spike trains on the realization of
J for this average. For the latter assumption, it is important
to keep in mind that we consider the statistics of the entire
network: while the spike train of a particular neuron is cer-
tainly highly correlated to the realization of the connectivity,
self-averaging means that this does not hold for the statistics
of the activity across the network. Put differently, the input to
the neuron, and hence the neuron itself, “loses its identity” and
becomes a statistical representative for an arbitrary neuron in
the network.

Under these assumptions, the average of the characteristic
functional is

〈	η[u(t )]〉J ≈ ei〈J 〉∑N
i, j=1

∫ T
0 ui (t )x j (t )dt

× e− 1
2 〈
J 2〉∑N

i, j=1(
∫ T

0 ui (t )x j (t )dt )2
,

where we used the independence of the Ji j , their characteris-
tic function 〈exp(iki jJi j )〉Ji j = exp(i〈J 〉ki j − 1

2 〈
J 2〉k2
i j +

. . . ), and neglected the cumulants of Ji j beyond the
second-order cumulant (the variance) 〈
J 2〉. Due to the
independence of the Ji j , the expectation factorizes into
a product

∏N
i, j=1 which leads to the sum

∑N
i, j=1 in

the exponent. Within each factor, the first (second) cu-
mulant leads to a linear (quadratic) term in the expo-
nent. Next, we rewrite the square, (

∫ T
0 ui(t )x j (t )dt )2 =∫ T

0

∫ T
0 ui(t )ui(t ′)x j (t )x j (t ′)dtdt ′, and introduce the network-

averaged auxiliary fields

μη(t ) = 〈J 〉
N∑

j=1

x j (t ), (4)

Cη(t, t ′) = 〈
J 2〉
N∑

j=1

x j (t )x j (t
′). (5)
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Using the auxiliary fields, the characteristic functional fac-
torizes, 〈	η[u(t )]〉J ≈ ∏N

i=1 	̂η[ui(t )], with the individual
factors given by

	̂η[u(t )] = ei
∫ T

0 u(t )μη (t )dt− 1
2

∫ T
0

∫ T
0 u(t )Cη (t,t ′ )u(t ′ )dtdt ′

,

which is the characteristic functional of a Gaussian process
with mean μη(t ) and correlation function Cη(t, t ′) [40,47]
(see Appendix A, Eq. (A3)). The factorization 〈	η[u(t )]〉J ≈∏N

i=1 	̂η[ui(t )] implies that the approximate inputs described
by 	̂η[u(t )] are independent across neurons.

The above sketch of a derivation reveals multiple assump-
tions we make in the DMFT. First, we assumed self-averaging.
This is a necessary assumption if one wants to derive a state-
ment that generalizes beyond a given connectivity matrix to
its statistics only. For a broad class of rate networks, one can
show rigorously that the statistics of the activity across the
network are indeed self-averaging by calculating the distri-
bution of the empirical measure 1

N

∑N
i=1 δ[y(t ) − xi(t )] across

realizations of the connectivity [48,49]. Here, we check this
assumption post–hoc by comparison of the theory with sim-
ulations for a single realization of the connectivity. Second,
we implicitly assumed ḡ := N〈J 〉 and g2 := N〈
J 2〉 do not
scale with N such that the auxiliary fields remain finite for
large networks. Using the mean number of inputs per neuron
K = pN and the properties of J , we get

ḡ = KμJ , g2 = K
(
σ 2

J + (1 − p)μ2
J

)
. (6)

Third, we neglected higher cumulants of the input. Using the
assumption Ji j = O(1/

√
K ) leads to μJ = O(1/

√
K ), σ 2

J =
O(1/K ) and thus ḡ = O(

√
K ), g2 = O(1) as well as O(1/

√
K )

for the neglected higher cumulants. Accordingly, in the regime
K � 1, neglecting the contributions from higher cumulants,
e.g., due to shot noise effects [35], is justified.

2. Self–consistency problem

Given these assumptions, the recurrent inputs ηi(t ) can
be approximated by independent Gaussian processes, which
leads to a coarse-grained description of the dynamics: since
all inputs are statistically equivalent, the neurons become
statistically equivalent as well and the system reduces to N
independent, identical stochastic equations. For N � 1, we
can replace the empirical averages in Eqs. (4) and (5) by en-
semble averages such that we arrive at a set of self-consistency
equations. This step can be made rigorous using the formalism
of Ref. [30], see Eqs. (2) and (3) and Appendix 1 therein.

In the stationary state, the self-consistency equations are
given by

μη = ḡ 〈x〉η, Cη(τ ) = g2 〈xx〉η(τ ). (7)

The averages 〈x〉η ≡ ν and 〈xx〉η(τ ) − ν2 ≡ Cx(τ ) denote the
mean (firing rate) and correlation function of the spike train
produced by a neuron driven by the effective stochastic input
η(t ). Since the input thereby appears on both the left-hand and
the right-hand sides, this poses a self-consistency problem.

To recapitulate, DMFT approximates the input of a single
neuron by an effective Gaussian process with self-consistent
statistics [Fig. 1(b)]. Thus the description, albeit stochastic,
is still on the level of individual neurons. These individual

neurons driven by Gaussian processes form an ensemble with
the same statistics across neurons as the original network.
In particular, this means that population-averaged quantities,
e.g., the autocorrelation function, but also distributions across
the neurons, e.g., the distribution of the firing rate, can be
computed from the DMFT.

3. Static contribution

The networks we consider are heterogeneous even within a
population—each neuron potentially has a different number
of presynaptic partners and thus also a different firing rate
[50]. On a first glance, DMFT neglects this heterogeneity.
However, Eqs. (7) in fact account for such static variabili-
ties: on the right-hand side the second moment of the spike
train appears instead of the correlation function. Rewriting
〈xx〉η(τ ) = Cx(τ ) + ν2 reveals a first static component g2ν2

of the variability of the effective input due to the firing rate of
individual neurons. Moreover, Cx(τ → ∞) ≡ σ 2

ν potentially
saturates on a plateau which accounts for the variability of the
firing rate across neurons [Fig. 1(c)]. To make this explicit, we
sometimes rewrite

η(t ) = ζ + ξ (t ), (8)

where ζ is a Gaussian random variable with μζ = ḡν, σ 2
ζ =

g2(ν2 + σ 2
ν ) and ξ (t ) a zero-mean Gaussian process with

Cξ (τ ) = g2(Cx(τ ) − σ 2
ν ).

B. Multiple populations

Using the expressions Eqs. (7) for a single population,
we can straightforwardly generalize the theory to multiple
populations. Due to the independence of the effective inputs in
DMFT, both mean and correlation function are a simple sum
over the contributions from all populations [18,51]:

μα
η =

∑
β

ḡαβνβ, (9)

Cα
η (τ ) =

∑
β

(gαβ )
2(

Cβ
x (τ ) + (νβ )

2)
, (10)

with the corresponding generalizations of Eqs. (6), ḡαβ =
Kαβμ

αβ
J and (gαβ )

2 = Kαβ ((σαβ
J )

2 + (1 − pαβ )(μαβ
J )

2
). This

leads to one stochastic equation per population [Fig. 1(b)].
As before, we can split the input into static and dynamic
contributions, ηα (t ) = ζ α + ξα (t ).

1. External input

We take the sum
∑

β to include external populations, e.g.,
excitatory neurons that drive the network dynamics with ho-
mogeneous Poissonian spike trains of rate νext. In Eqs. (9) and
(10), such an external Poisson input leads to a term Jα,extνext

and (Jα,ext )2
νextδ(τ ), respectively. If the network is driven by

a constant external input, only Eq. (9) obtains an additional
contribution μα

ext. An external zero-mean, stationary Gaussian
process leads to an additional term Cext (τ ) in Eq. (10).
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C. Output statistics

Approximating the input is only the first step. In a sec-
ond step, the self-consistency problem has to be solved. To
this end, the output statistics of a neuron driven by a non-
Markovian Gaussian process have to be calculated. In other
words, we need a solution for the colored noise problem. The
full non-Markovian problem has to be considered because a
Markovian approximation neglects the quantity of interest: the
temporal correlations. For sufficiently simple rate neurons, the
problem is analytically solvable [15,52]; the case of two spik-
ing neuron models is discussed in the following sections. For
the remainder of this section, let us assume that we are able
to solve the colored noise problem to obtain a self-consistent
solution of Eqs. (9) and (10).

1. Timescale

Given a self-consistent solution, we can calculate the in-
trinsic timescale from the spike-train autocorrelation function
Cα

x (τ ). Since Cα
x (τ ) always contains a delta peak [40], we

consider only the smooth part of the autocorrelation function
Ĉα

x (τ ) ≡ Cα
x (τ ) − ναδ(τ ). To characterize the timescale, we

use the definition of Ref. [40] [Fig. 1(c)]:

τα
c =

∫ ∞

0

∣∣∣∣Ĉα
x (τ ) − Ĉα

x (∞)

Ĉα
x (0) − Ĉα

x (∞)

∣∣∣∣dτ. (11)

Note that the definition of the autocorrelation time
is not unequivocal. Other possible definitions include

τα
c = ∫∞

−∞ | Ĉα
x (τ )−Ĉα

x (∞)
Ĉα

x (0)−Ĉα
x (∞)

|2dτ [37] and τα
c =

∫∞
0 τ |Ĉα

x (τ )−Ĉα
x (∞)|dτ∫∞

0 |Ĉα
x (τ )−Ĉα

x (∞)|dτ

[23]. We observed drastic differences between these defi-
nitions for empirical correlation functions directly obtained
from the simulations. These differences are in part an artifact
from the absolute value: the variance of the empirical estimate
grows with τ [53]; due to the absolute value these fluctuations
add up. The three functional forms carry with them different

fluctuations, e.g., the squared fluctuations | Ĉα
x (τ )−Ĉα

x (∞)
Ĉα

x (0)−Ĉα
x (∞)

|2 are

typically much smaller than | Ĉα
x (τ )−Ĉα

x (∞)
Ĉα

x (0)−Ĉα
x (∞)

| < 1, and hence lead
to different estimates. For theoretically predicted autocorrela-
tions, the difference is less drastic and we choose Eq. (11)
because it is the most simple definition. Due to this difficulty,
we always use the theoretical prediction of the autocorrela-
tion function to determine the timescale—after checking that
it matches the empirical autocorrelation function well apart
from fluctuations.

In addition to τα
c , we will also consider the asymptotic

decay constant [Fig. 1(c)]

Ĉα
x (τ ) − Ĉα

x (∞) ∼ exp
(−τ/τα

∞
)
, (12)

because in special cases τα
∞ directly follows from our the-

ory. For a simple exponential autocorrelation function, the
timescales in Eqs. (11) and (12) coincide. We work from the
assumption that Eq. (12) is a good approximation to Eq. (11)
and verify this assumption post hoc.

In the literature, there are even more definitions of intrinsic
timescales than the ones mentioned above. For example, [2]
assume an exponential correlation function and an offset, sim-
ilar to Eq. (12) but for all time lags and not just asymptotically.
In contrast, Ref. [54] determine the timescale by fitting a

Lorentzian to the power spectrum after removing oscillatory
components. Yet another approach, determining the half width
at half maximum of the autocorrelation function, is advocated
for in Ref. [55]. To avoid these ambiguities, we use the es-
tablished definitions, Eqs. (11) and (12), from the stochastic
processes literature.

Recently, two new approaches have been proposed to esti-
mate the timescale directly from spiking data [38,56]. While
both overcome important challenges, biases in the estimated
timescale related to and independent of subsampling, respec-
tively, we do not use them here because they rely on models
which implicitly assume (a mixture of) exponential correla-
tion functions: Ref. [56] assumes an autoregressive model and
Ref. [38] a mixture of Ornstein-Uhlenbeck processes.

2. Spike train power spectrum

Instead of the autocorrelation function, we sometimes con-
sider the spike train power spectrum [Fig. 1(d)]

Sα
x ( f ) =

∫ ∞

−∞
e2π i f τCα

x (τ )dτ. (13)

Due to the delta peak in the autocorrelation function, the

power spectrum always saturates at the firing rate, Sα
x ( f )

f →∞→
να . For a renewal process, the zero-frequency limit is

Sα
x ( f )

f →0→ ναCV2
α [24], which directly reveals the coefficient

of variation of the interspike-interval (ISI) distribution CVα .

3. Comparison with simulations

In our theory, we consider disorder-averaged quantities and
stationary processes. To compare the theory with a single sim-
ulation, we assume self-averaging in the sense that the activity
distribution across neurons is approximately the same for each
network realization. Since neurons with different indegrees
have different disorder- and time-averaged inputs, in practice
this means that we assume that neurons with comparable
indegree have comparable activity statistics in each network
realization.

The disorder averages preserve the static variability across
neurons, as we consider the same connectivity statistics, and
in particular the same indegree distribution, across realiza-
tions. Self-averaging works well when each neuron (or at least
a sufficiently large proportion of neurons) receives input from
a representative sample of the rest of the network.

Under stationarity, distributions across neurons of instan-
taneous rates at any given time point (but not of instantaneous
rates across time points—which we do not consider here)
equal distributions of time-averaged rates across neurons. To
obtain the rate distributions from the simulations, we use time-
averaged rates to reduce the variance of the corresponding
estimates. Similarly, we use time averages to compute the
single-neuron autocorrelation functions and power spectra.

We focus on the second-order statistics. Since first-order
statistics, i.e., the firing rate, scale the power spectra and
correlation function [24], we plot Sx( f )/ν and Cx( f )/ν2 to
eliminate this trivial dependency. Note that a multiplicative
factor does not influence the intrinsic timescale, Eq. (11).
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III. GENERALIZED LINEAR MODEL NEURONS

First, we consider generalized linear model (GLM) neu-
rons [24,57]. GLM neurons are stochastic model neurons that
spike according to an inhomogeneous Poisson process at a
rate determined by the synaptic input. Due to their simplicity,
GLM neurons are frequently fitted to experimental data [24];
here we consider them because they are analytically tractable.

A. Neuron dynamics

Each neuron generates a spike train according to an inho-
mogeneous Poisson process with intensity (rate)

λα
i (t ) = cα

1 φ
[
cα

2

(
V α

i (t ) − θα
)]

, (14)

where θα denotes the (soft) threshold, φ(V ) is a smooth,
nonnegative, monotonically increasing function, and cα

1 > 0,
cα

2 > 0 are free parameters. The voltage is given by a linear
filtering of the input

V α
i (t ) =

∫ ∞

−∞
κα (t − s)ηα

i (s − dαβ )ds, (15)

where dαβ allows for a transmission delay. For all simulations,
we choose a filter with a single exponential with time constant
τα

m, which corresponds to post-synaptic currents in the form of
delta spikes:

κα (t ) = �(t )e−t/τα
m . (16)

Here, �(t ) denotes the Heaviside function ensuring causality
of the filter. We rescale the synaptic weights Jαβ

i j and the
threshold θα using cα

2 such that cα
2 = 1 throughout the rest of

this section.

1. Colored noise problem

The effective stochastic input ηα (t ) leads to stochastic volt-
age dynamics. Because the voltage is given by a convolution,
the voltage becomes a Gaussian process with

μα
V = κ̄αμα

η , Cα
V (τ ) =

∫ ∞

−∞
κ̃α (τ − s)Cα

η (s)ds, (17)

where the filter determines κ̄α = ∫∞
−∞ κα (t )dt and

κ̃α (t ) = ∫∞
−∞ κα (s)κα (s − t )ds. For the single-exponential

filter that we used in simulations, we have κ̄α = τα
m and

κ̃α (t ) = τα
m
2 e−|t |/τα

m . Note that the transmission delay cancels
in the stationary case considered here.

All cumulants of the resulting spike trains x(t ) can
be obtained from their characteristic functional [40] [see
Appendix A, Eq. (A8)]:

	x[u(t )] = exp

(∫ T

0
(eiu(t ) − 1)λ(t )dt

)
.

From here, we temporarily drop the population index for the
sake of clarity. Averaging over realizations of the rates yields

〈	x[u(t )]〉λ ≈ e
∫ T

0 (eiu(t )−1)μλ(t )dt

× e
1
2

∫ T
0

∫ T
0 (eiu(t )−1)Cλ(t,t ′ )(eiu(t ′ )−1)dtdt ′

,

where μλ(t ) denotes the mean of λ(t ), Cλ(t, t ′) its correlation
function, and we neglect terms of O(u3) since we are only

interested in the first and second cumulants. Expanding also
eiu(t ) − 1 to second order in u(t ), we can simply read off the
stationary cumulants

ν = μλ, Cx(τ ) = μλδ(τ ) + Cλ(τ ), (18)

in agreement with the result of Ref. [58].
We are left with the task of calculating the first two cumu-

lants of λ(t ) from μV and CV (τ ), depending on the choice of
the nonlinearity φ(V ).

2. Exponential nonlinearity

First, we consider the commonly employed exponential
nonlinearity [24]

φ(V ) = exp (V ). (19)

Both cumulants are straightforward to obtain from the charac-
teristic functional of the voltage. We have [see Appendix A,
Eqs. (A4) and (A5)]

〈φ(V (t1))〉V = 〈e
∫ T

0 V (t )δ(t−t1 )dt 〉V

= eμV + 1
2 CV (0)

,

〈φ(V (t1))φ(V (t2))〉V = 〈e
∫ T

0 V (t )[δ(t−t1 )+δ(t−t2 )]dt 〉V

= e2μV +CV (0)+CV (t2−t1 ),

where we used the stationarity of V . Including the prefactor
and the threshold from Eq. (14), we get

μλ = c1 exp
(
μV − θ + 1

2CV (0)
)
, (20)

Cλ(τ ) = μ2
λ exp(CV (τ )) − μ2

λ. (21)

From Eq. (21), it follows that Cλ(τ ) has a static part as long as
CV (∞) > 0. Since Cη(τ ) contains a static part [see Eqs. (8)
and (10)], CV (τ ) and hence Cλ(τ ) and Cx(τ ) indeed also
contain a static contribution and saturate on a plateau.

Rate distribution. The rate distribution across neurons is
lognormal because the (static) input distribution is Gaussian
and the f-I curve is a simple exponential [50]. The theory
yields the mean ν = c1 exp(μV − θ + 1

2CV (0)) and variance
σ 2

ν = Cx(∞) = ν2(eCV (∞) − 1) of the firing rate. We note that
we can obtain the same result from a constant input with mean
μ̃V = μV − θ + 1

2CV (0) − 1
2CV (∞) and variance across neu-

rons σ̃ 2
V = CV (∞). Parameterized in terms of μ̃V and σ̃V , the

firing rate distribution is thus

p(ν) = ν−1 N
(

ln(ν/c1) | μ̃V , σ̃ 2
V

)
(22)

with the normal distribution N (x | μ, σ 2).

3. Error function nonlinearity

A drawback of the exponential function, Eq. (19), is that it
allows for infinite rates. Thus we also consider the bounded
nonlinearity

φ(V ) = 1
2 (1 + erf (V/

√
2)). (23)

The integrals to determine the cumulants can be solved
using the table [59] (details in Appendix B 1); the result
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is

μλ = c1

2
(1 + erf (h/

√
2)), (24)

Cλ(τ ) = c1μλ − 2c2
1T (h, a(τ )) − μ2

λ, (25)

where we again suppressed the population index, abbreviated
h = μV −θ√

1+CV (0)
and a(τ ) = ( 1+CV (0)−CV (τ )

1+CV (0)+CV (τ ) )1/2, and used Owen’s

T function T (h, a) = 1
2π

∫ a
0 dx e− 1

2 h2 (1+x2 )

1+x2 .
Rate distribution. Equivalent to the situation for the ex-

ponential nonlinearity, the input distribution across neurons
is Gaussian. Again, we consider the equivalent static prob-
lem which, in this case, leads to μ̃V = μV −θ√

1+CV (0)−CV (∞)
and

σ̃ 2
V = CV (∞)

1+CV (0)−CV (∞) . Parameterized in terms of μ̃V and σ̃V , the
firing rate distribution is

p(ν) = N
(

probit(ν/c1) | μ̃V , σ̃ 2
V

)
c1 N (probit(ν/c1) | 0, 1)

, (26)

where probit(x) denotes the inverse of the standard normal
cumulative distribution, i.e., probit(φ(V )) = V , and we used
φ′(V ) = N (V | 0, 1).

4. Numerical solution of the self-consistency problem

We solve the self-consistency problem using a fixed-point
iteration [32,35]. To initiate the algorithm, we set να = 1

2 cα
1

and Cα
λ (t ) = 0. Next, we determine the input statistics ac-

cording to Eqs. (9) and (10); then we determine the voltage
statistics according to (17). From the voltage statistics, we
can obtain the statistics of the rate via Eqs. (20) and (21)
[or Eqs. (24) and (25)]. Denoting the rate thus calculated as
μ̂α

λ,n+1, we then update the rate statistics using incremental
steps, μα

λ,n+1 = μα
λ,n + ε(μ̂α

λ,n+1 − μα
λ,n) for the mean rate,

and similarly for all entries of Cα
λ (t ). The new firing rate

statistics lead via (18) to new spike train statistics. Here,
the small update step ε < 1 is crucial because otherwise the
fixed-point iteration is numerically unstable. Now we iterate
and generate new voltage statistics. With the incremental up-
date and the initialization να = 1

2 cα
1 , the algorithm quickly

converged to the fixed point corresponding to the simulation in
the examples we considered. Due to the analytical solutions,
the only bottleneck for the numerics is the convolution in
Eq. (17), which can be solved efficiently using the fast Fourier
transform [60]. Thus, even the parameter scans with 5000
points described in the following run on a laptop in less than
two minutes.

B. Balanced random network

As a first application of the theory, we consider a balanced
random network of excitatory and inhibitory GLM neurons.
The network contains two populations [Fig. 2(a)], α ∈ {E , I},
and it is driven by an excitatory external input which we
incorporate into an effective threshold θeff = θ − μext. Here,
we use a constant external input rather than a Poisson drive be-
cause we are particularly interested in finding long timescales,
which might be hindered by the lack of temporal correlation
of Poisson spike trains. However, the theory can straight-
forwardly be applied to Poisson input. Although four times
more excitatory cells are present in the network, we typically
place it in an inhibition-dominated regime by increasing the
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(d) Autocorrelation

FIG. 2. Balanced random network of GLM neurons with expo-
nential nonlinearity. (a) Sketch of the network with populations of
excitatory (blue) and inhibitory (red) neurons. (b) Raster plot of
2% of the excitatory (blue) and inhibitory (red) neurons. (c) Fir-
ing rate distribution across all neurons from simulation (gray) and
theory (black) using Eq. (22). (d) Population-averaged single-unit
autocorrelation function from simulation (gray) and self-consistent
theory (black) using Eqs. (20) and (21). Here, we subtracted the
static contribution Cx (∞). Parameters: NE = 10000, NI = 2500,
JE = 0.25 mV, |JI/JE | = 4.5, p = 0.1, τm = 20 ms, θeff = 0 mV,
c1 = 50 s−1, c2 = 0.02 mV−1, and d = 1.5 ms.

synaptic weights of the inhibitory neurons. As well known
[26], this settles the network in the balanced state leading
to asynchronous irregular activity of the neurons [see, e.g.,
Fig. 2(b)].

In line with Brunel’s model A [26], we choose identi-
cal values for the single-neuron parameters. Since we also
choose the same connection probability of 10% for all pairs
of populations, both populations receive statistically identical
input in the DMFT approximation. Due to identical single-
neuron parameters and input statistics, the statistics of the
activity is the same for excitatory and inhibitory neurons [see,
e.g., Fig. 2(b)]; therefore, we do not distinguish between the
populations for the statistics in our plots. In contrast to the
network examined by Brunel, we consider the somewhat more
involved case of a fixed connection probability between a pair
of neurons instead of a fixed number of incoming synapses per
neuron (indegree). The fixed connection probability leads to
a (binomially) distributed indegree across neurons, such that
a strong variability across neurons is present in the network
[see, e.g., Fig. 2(c)]. This variability is already present on the
level of mean firing rates, i.e., there is static variability in the
network.

All simulations were performed using the NEST simulator
version 2.20.1 [61]. In all GLM network simulations, we
simulated 1 min of biological time with a time step of 0.1 ms
and discarded an initial transient of 1 s. For the GLM neurons,
we used the “pp_psc_delta” neuron model. To allow for the
error function nonlinearity, we modified the “pp_psc_delta”
model accordingly.

1. Exponential nonlinearity: absence of long timescales

First, we consider networks with an exponential nonlinear-
ity (Fig. 2). The fixed-point iteration yields a rate distribution
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FIG. 3. Parameter scan for a balanced random network of GLM
neurons with exponential nonlinearity. [(a) and (b)] Firing rate and
intrinsic timescale for varying neuron parameters c1 and c2. Param-
eters used in (c) and (d) and Fig. 2 indicated by orange crosses.
[(c) and (d)] Firing rate and intrinsic timescale for varying effective
threshold θeff and relative inhibitory strength |JI/JE |. Parameters
used in (a) and (b) and Fig. 2 indicated by orange crosses. Further
parameters as in Fig. 2.

and an autocorrelation function that closely match the simula-
tion [Figs. 2(c) and 2(d)]. The theory for the rate distribution
[Fig. 2(c)] is slightly biased towards higher rates; a possible
cause for this is a finite size effect because the mean inhibitory
indegree KI = pNI = 250 is relatively small. Nonetheless,
the theory predicts the autocorrelation function very well
[Fig. 2(d)] and yields a timescale τc ≈ τm = 20 ms.

For the parameters in Fig. 2, the intrinsic timescale is
close to the membrane time constant. This raises the question
whether longer timescales can be achieved in a network of
GLM neurons. To answer this question, we employ our theory
and perform parameter scans. First, we vary the single-neuron
parameters c1 and c2 [Figs. 3(a) and 3(b)]. The rate increases
monotonically with c1 while c2 has as smaller effect up to a
certain threshold [Fig. 3(a)]. Beyond this threshold, the rate
diverges rapidly to infinity in the threshold iteration [white
area in Fig. 3(a)]. The timescale is close to the membrane
time constant throughout the nondivergent regime and only in-
creases slightly towards the threshold where the rate diverges
[Fig. 3(b)]. Next, we vary the strength of the external input
by adjusting the effective threshold θeff and the inhibition
dominance by varying |JI/JE | for constant JE . We find a clear
threshold of |JI/JE | beyond which the rate diverges [Fig. 3(c)].
Again, this threshold corresponds to the regime where the
timescale slowly starts to grow above the membrane time
constant.

Put together, these observations suggest that the rate di-
vergence prevents recurrent dynamics with long timescales in
balanced random networks of GLM neurons with exponential
nonlinearity.

2. Error function nonlinearity: existence of long timescales

In the previous section, the rate divergence prevented
long timescales. To avoid the divergence, we consider the
bounded transfer function Eq. (23) and use our theory for
parameter scans (Fig. 4). The effect of the single-neuron

FIG. 4. Parameter scan for a balanced random network of GLM
neurons with error function nonlinearity. [(a) and (b)] Firing rate
and intrinsic timescale for varying neuron parameters c1 and c2.
Parameters used in (c) and (d) and Fig. 5 indicated by orange crosses.
[(c) and (d)] Firing rate and intrinsic timescale for varying effective
threshold θeff and relative inhibitory strength |JI/JE |. Parameters
used in (a) and (b) and Fig. 5 indicated by orange crosses. Further
parameters as in Fig. 2.

parameters c1 and c2 is similar to the unbounded case but
the rate divergence is absent [Fig. 4(a)]. This allows for a
parameter regime with longer timescales up to approximately
3τm [Fig. 4(b)]. Similarly, varying θeff and |JI/JE | uncovers
a regime with a rate close to the maximum c1 when the
network is not inhibition-dominated [Fig. 4(c)]. Outside the
inhibition-dominated regime, we expect that our theory does
not yield quantitatively accurate predictions. The effect on
the timescale is more subtle: within the inhibition-dominated
regime, for any given |JI/JE | the timescale displays a maxi-
mum whose location depends on the external input [Fig. 4(d)].

What kind of dynamics is displayed by the network at
such a local maximum of the timescale? The corresponding
spike trains show a strong variability of firing rate across
neurons and temporally correlated spikes [Fig. 5(a)]. The
rate distribution reveals that all rates between the minimum
zero and the maximum c1 are present, in excellent agreement
with the theoretical prediction [Fig. 5(b)]. In the example
considered, the empirical estimate of the network–averaged
single-unit autocorrelation displays an intrinsic timescale of
approximately 2τm; again, the empirical estimate and the the-
oretical prediction agree closely [Fig. 5(c)]. From the spike
train power spectrum, a high CV > 2 is apparent [Fig. 5(d)].
All of these characteristics agree with the “heterogeneous
asynchronous state” uncovered in [62].

3. Error function nonlinearity: mechanism of timescale

To uncover the mechanisms that shape the timescale, in
particular the local maximum in Fig. 4(d), we develop a theory
for the asymptotic timescale τ∞, Eq. (12). To this end, we use
that κ̃ (t ) = τm

2 e−|t |/τm is the fundamental solution to the dif-

ferential operator 1 − τ 2
m

d2

dt2 , i.e., (1 − τ 2
m

d2

dt2 )κ̃ (t ) = τ 2
mδ(t ).

Thus we can rewrite Eq. (17) into a differential equation:

τ 2
mC̈V = CV − τ 2

mCη
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FIG. 5. Balanced random network of GLM neurons with error
function nonlinearity. (a) Raster plot of 2% of the excitatory (blue)
and inhibitory (red) neurons. (b) Firing rate distributions across all
neurons from simulation (gray) and theory (black) using Eq. (26).
[(c) and (d)] Population-averaged single-unit autocorrelation func-
tion and power spectrum from simulation (gray) and self-consistent
theory (black) using Eqs. (24) and (25). As in Fig. 2, we sub-
tracted the static contribution Cx (∞). Parameters: c1 = 250 s−1,
c2 = 0.075 mV−1, and further parameters as in Fig. 2.

where the dependence of Cη on CV is determined by Eqs. (10),
(18), and (25). Next, we rescale time such that τm = 1 and lin-
earize this differential equation for small 
V (τ ) ≡ CV (τ ) −
CV (∞) to obtain


̈V =
(

1 − dCη(∞)

dCV (∞)

)

V + O

(

2

V

)
.

This allows for an exponential solution with time constant

τ∞ = 1√
1 − g2 dCλ(∞)

dCV (∞)

(27)

where we used Eqs. (10) and (18) to derive
dCη (∞)
dCV (∞) = g2 dCλ(∞)

dCV (∞) . We see that there are two factors that

determine the timescale: the cumulant of the connectivity g2

and the gain of the rate autocorrelation dCλ(∞)
dCV (∞) . For the latter,

we obtain from Eq. (25)

dCλ(∞)

dCV (∞)
= c2

1

2π

exp
(− (μV −θeff )2

1+CV (0)+CV (∞)

)
√

(1 + CV (0))2 − CV (∞)2
. (28)

Thus, given a self-consistent autocorrelation Cx and the cor-
responding voltage statistics from Eq. (17), the asymptotic
timescale Eq. (27) can be directly evaluated.

We vary θeff and |JI/JE | in Figs. 6(a)–6(c). First,
we plot dCλ(∞)

dCV (∞) alone, which we refer to as the gain
[Fig. 6(a)]. Due to the interplay between the exponential
suppression exp(− (μV −θeff )2

1+CV (0)+CV (∞) ) and the square root factor

1/
√

(1 + CV (0))2 − CV (∞)2 < 1 in Eq. (28), the gain al-
ready exhibits a maximum. The existence of the maximum
is mainly determined by the exponential suppression with
growing |μV − θeff | in Eq. (28): in both the excitation- and
the inhibition-dominated regimes, μV is far from the effec-
tive threshold θeff . The precise location of the maximum is

FIG. 6. Mechanisms that shape the asymptotic timescale.
(a) Asymptotic gain dCλ (∞)

dCV (∞) of the rate autocorrelation w.r.t. changes
in the voltage autocorrelation, Eq. (28). (b) Asymptotic gain multi-
plied by the second cumulant of the connectivity, g2. (c) Asymptotic
timescale according to Eq. (27), τ∞ = (1 − g2 dCλ (∞)

dCV (∞) )−1/2, for vary-
ing effective threshold θeff and relative inhibitory strength |JI/JE |.
(d) Same as c for varying excitatory synaptic strength JE with con-
stant |JI/JE |. Further parameters as in Fig. 5.

not necessarily at μV = θeff as it is also determined by the
square root factor. The latter decays reciprocally to CV (0) and
CV (∞). Both CV (0) and CV (∞) decay for growing effective
threshold and inhibition dominance, which results in a larger
square root factor that shifts the maximum towards the upper
right and broadens it. The cumulant of the connectivity g2

grows with |JI/JE |2, which further broadens the region of
the maximum [Fig. 6(b)]. The resulting asymptotic timescale
[Fig. 6(c)] agrees both qualitatively and quantitatively with the
intrinsic timescale [Fig. 4(d)]. This is likely due to the single-
exponential shape of the autocorrelation function [Fig. 5(c)].

To investigate the interplay of the gain and the connectivity
further, we vary the overall synaptic strengths by varying
the excitatory weight JE while keeping |JI/JE | fixed at an
inhibition-dominated value [Fig. 6(d)]. Increasing JE in the
inhibition-dominated regime shifts μV away from the effec-
tive threshold and decreases the gain; conversely g2 grows
with J2

E . This interplay leads to a broad region in parameter
space with an increased timescale. However, the exponential
decrease of the gain is more pronounced than the quadratic
increase of g2 such that the asymptotic timescale does not con-
tinue to grow with JE but saturates. Thus, although increasing
JE goes together with increased variability across neurons
as in the “heterogeneous asynchronous state” described by
Ostojic [62], this does not map systematically onto longer
single-neuron timescales.

4. Error function nonlinearity: external timescale

Our theory allows arbitrary Gaussian processes as external
input. To investigate the influence of an external timescale
on the intrinsic timescale, we choose a zero-mean Ornstein-
Uhlenbeck process with

Cext (τ ) = σ 2
ext

τm

(
1

τm
+ 1

τext

)
e−|τ |/τext . (29)
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FIG. 7. Influence of colored external input. [(a) and (b)] Firing
rate and intrinsic timescale for varying strength σ 2

ext and timescale
τext of an external Ornstein-Uhlenbeck process. Orange line in (b) in-
dicates the intrinsic timescale without external input. Parameters as
in Fig. 5.

Here, the scaling factors ensure that the external timescale
does not influence the resulting variance of the voltage,
CV (0) = ∫∞

−∞ κ̃ (s)Cext (s)ds = σ 2
ext for κ̃ (t ) = 1

2τme−|t |/τm .
We take the parameters from Fig. 5 where the intrinsic

timescale is maximal in the absence of external input. Increas-
ing the strength of the external input σ 2

ext leads to an increased
firing rate [Fig. 7(a)]. As desired, by construction of Eq. (29),
the external timescale has a negligible effect on the firing rate
at constant σ 2

ext [Fig. 7(a)]. The effect of the external timescale
on the intrinsic timescale is highly intuitive: If τext is smaller
than the intrinsic timescale without external input it decreases
the intrinsic timescale, and vice versa [Fig. 7(b)]. The strength
of this effect grows with the strength of the external input.
In the limit of strong external input, the intrinsic timescale
approaches the external timescale if τext > τm; if τext < τm

the intrinsic timescale approaches the minimum set by the
membrane time constant.

IV. LEAKY INTEGRATE-AND-FIRE NEURONS

Considering GLM neurons is a convenient choice due to
their analytical tractability. However, their intrinsic stochas-
ticity might fundamentally alter the network dynamics. Thus
we consider the frequently used leaky integrate–and–fire neu-
ron model in this section [24]. The synapses are taken to be
current-based with an exponential time course. An analytical
solution to the colored noise problem for LIF neurons is
an open challenge. Here, we focus on the fluctuation-driven
regime and employ an approach based on the Wiener–Rice
series [41,63,64] and the Stratonovich approximation thereof
[40,41]. Below, we briefly introduce both the Wiener–Rice se-
ries and its Stratonovich approximation. For a comprehensive
and pedagogic introduction to this approach, in particular with
a focus on LIF neurons, see Ref. [65] where the approach is
used to investigate LIF neurons driven by nonstationary input.

A. Neuron dynamics

The dynamics of individual neurons are governed by

τα
mV̇ α

i (t ) = −V α
i (t ) + Iα

i (t ), (30)

τα
s İα

i (t ) = −Iα
i (t ) + τα

mηα
i (t − dαβ ), (31)

where V α
i denotes the membrane voltage, Iα

i the synaptic
current, τα

m/s the membrane/synaptic time constant, and the
voltage is reset to V α

r and held constant during the refractory
period τα

ref whenever it reaches the threshold θα . Threshold

crossing triggers a spike which arrives at another neuron after
a delay dαβ . We set the resting potential to zero without loss
of generality and absorb the membrane resistance into the
synaptic current.

1. Effective stochastic dynamics

The effective stochastic input with statistics governed by
Eqs. (9) and (10) leads to a stochastic current with

μα
I = τα

mμα
η, (32)

Cα
I (τ ) =

(
τα

m

τα
s

)2 ∫ ∞

−∞
κ̃α (τ − s)Cα

η (s)ds, (33)

where κ̃α (t ) = τα
s
2 e−|t |/τα

s , similar to Eq. (17). Contrary to the
GLM neurons, the voltage cannot become a stationary process
for LIF neurons due to the fire-and-reset rule. To circumvent
this problem, we use the Wiener–Rice series which relates the
free process without reset to the spiking statistics.

2. Wiener–Rice series and Stratonovich approximation

We consider a LIF neuron after the refractory period and
the voltage dynamics that results if we do not allow for another
fire-and-reset. We denote this free voltage U (t ). Moreover,
we temporarily neglect the static contribution to the input
variability and drop the population index. The process starts
at U (0) = Vr and produces a system of random points {ti}
defined by the upcrossings U (ti ) = θ , U̇ (ti ) > 0. For this sys-
tem of random points, the probability that no point falls in the
interval [0, T ], i.e., the survival probability, is given by [40]

S(T ) = exp

( ∞∑
s=1

(−1)s

s!

∫ T

0
· · ·

∫ T

0
gs(t1, . . . , ts)dt1 . . . dts

)
,

where the gs(t1, . . . , ts) are related to the free upcrossing prob-
abilities ns(t1, . . . , ts) calculated below, similar to the relation
between moments and cumulants. For example, g1(t1) =
n1(t1) and g2(t1, t2) = n2(t1, t2) − n1(t1)n1(t2). Now we ap-
proximate the output process as a renewal process such that
the survival probability is sufficient to describe the statistics.
Instead of the survival probability, it is more convenient to
consider the cumulative hazard H (T ) = − ln S(T ) [24], i.e.,

H (T ) =
∞∑

s=1

(−1)s−1

s!

∫ T

0
· · ·

∫ T

0
gs(t1, . . . , ts)dt1 . . . dts.

This can be regarded as a resummation of the Wiener–Rice se-
ries in terms of the gs(t1, . . . , ts) instead of the free upcrossing
probabilities ns(t1, . . . , ts) [41].

Calculating the free upcrossing probabilities ns(t1, . . . , ts),
and thus the gs(t1, . . . , ts), is tedious. To avoid this difficulty,
Stratonovich proposed the approximation [40]

HS (T ) = −
∫ T

0
n1(t )

ln
(
1 − ∫ T

0 Q(t, t ′)n1(t ′)dt ′)∫ T
0 Q(t, t ′)n1(t ′)dt ′ dt, (34)

where Q(t1, t2) = 1 − n2(t1,t2 )
n1(t1 )n1(t2 ) . Briefly, to derive this approx-

imation, the gs(t1, . . . , ts) for s � 3 are expressed in terms of
n1(t1) and Q(t1, t2) such that both the symmetry of the time
arguments t1, . . . , ts and the equal-time limit gs(t1, . . . , t1) =
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(−1)s−1(s − 1)! n1(t1)s are fulfilled; the resulting approxi-
mated gs(t1, . . . , ts) are inserted into H (T ), which leads to a
series that can be evaluated and yields Eq. (34). The condition
gs(t1, . . . , t1) = (−1)s−1(s − 1)! n1(t1)s holds for a system of
nonapproaching points where ns(t1, . . . , t1) = 0 for s � 2,
hence Eq. (34) is an approximation constructed for such a
system. Although this seems intuitively reasonable because
the voltage dynamics is continuous and differentiable, this
condition is violated for LIF neurons with exponential post-
synaptic currents [65]. Nonetheless, it yields good results, as
shown in the following.

A much simpler alternative to the Stratonovich approxi-
mation would be to set gs(t1, . . . , ts) = 0 for s � 2, leading
to H (T ) = ∫ T

0 n1(t )dt . This approximation is sometimes re-
ferred to as the Hertz approximation. In particular, the Hertz
approximation leads to a closed expression for the hazard
function h(t ) ≡ d

dt H (t ) = n1(t ). Unfortunately, this approxi-
mation is too severe and strongly affects the resulting firing
rate. The main difference between the two approximations
is the asymptotic saturation of the hazard function. Thus
we employ an approximation suggested by Stratonovich for
long times [40]:

∫ T
0 Q(t, t ′)n1(t ′)dt ′ ≈ n0

∫∞
0 Q(t, t ′)dt ′ ≈

n0η with n0 = limt→∞ n1(t ) and η = limt→∞
∫∞

0 Q(t, t ′)dt ′.
Inserting this approximation into Eq. (34) leads to

hS (t ) = κS

n0
n1(t ), κS = −1

η
ln (1 − n0η). (35)

Equation (35) combines the simplicity of the Hertz approxi-
mation with the asymptotic behavior of the Stratonovich ap-
proximation. The asymptotic level is given by limt→∞ hS (t ) =
κS; to leading order in η we have κS = n0 + O(η), which
recovers the Hertz approximation. In the parameter regime
we consider, Eq. (35) yields very similar results to Eq. (34)
(see Appendix D). In all figures in the main text, we use
Eq. (35). Since we approximate the output spike train as a
renewal process, the hazard function Eq. (35) fully describes
its statistics [24].

From the hazard function, we obtain the firing rate

ν−1 =
∫ ∞

0
e− ∫ T

0 h(t )dt dT (36)

as well as the interspike-interval distribution [24]

p(T ) = h(T )e− ∫ T
0 h(t )dt . (37)

From the Fourier transform of the interspike-interval distri-
bution p̃( f ) = ∫∞

0 e2π i f T p(T )dT , we obtain the spike-train
power spectrum using [40]

Sx( f ) = ν
1 − | p̃( f )|2
|1 − p̃( f )|2 . (38)

Thus we are left with the task of calculating n1(t1) and
Q(t1, t2).

3. Free upcrossing probabilities

The free voltage dynamics are governed by Eq. (30)

τmU̇ (t ) = −U (t ) + I (t ),

where I is a Gaussian process determined by Eqs. (32) and
(33), and the initial condition is U (0) = Vr. U is a nonsta-

tionary Gaussian process due to the initial condition. For a
sufficiently smooth Gaussian process, the upcrossing proba-
bility is given by the Kac–Rice formulas [40,63,66]

n1(t ) =
∫ ∞

0
U̇1 p(θ, U̇1 |Vr, U̇0)dU̇1,

n2(t1, t2) =
∫ ∞

0

∫ ∞

0
U̇2U̇1 p(θ, U̇2; θ, U̇1 |Vr, U̇0)dU̇1dU̇2,

where p(θ, U̇1 |Vr, U̇0) denotes the probability that the process
is at the threshold after time t and has velocity U̇1 given that
it started at the reset at t = 0 with velocity U̇0. Similarly,
p(θ, U̇2; θ, U̇1 |Vr, U̇0) denotes the joint probability to be at
the threshold at t1 and t2 with velocities U̇1 and U̇2. All in-
tegrals are over positive velocities only, because we consider
upcrossings.

In both equations, we need to specify the distribution of the
initial velocity U̇0. Here, it is important to take into account
the biased sampling of the initial velocity [67]: at −τα

ref , the
neuron spiked due to an increased input current; hence, the
initial velocity τmU̇0 = −Vr + I0 is likely to be larger than
for an I0 drawn from the stationary current distribution. To
keep the integral in Eq. (39) tractable, we assume that I0

is Gaussian-distributed. To determine the mean and variance
of this distribution, we use that the velocity of a stationary
process at an upcrossing is Rayleigh-distributed [40] (details
in Appendix C).

For n2(t1, t2), we consider only the stationary two-point
upcrossing probability, so that it becomes a function of the
time difference t2 − t1 and loses the dependency on the initial
velocity. After marginalizing the initial velocity in n1(t ), we
obtain

n1(t ) =
∫ ∞

0
U̇1 p(θ, U̇1 |Vr )dU̇1, (39)

n2(t2 − t1) =
∫ ∞

0

∫ ∞

0
U̇2U̇1 p(θ, U̇2; θ, U̇1)dU̇1dU̇2, (40)

where n2(τ ) leads to a stationary Q(τ ) = 1 − n2(τ )
n2

0
. This

makes the integrals in Eq. (34) considerably easier to solve
numerically (details in Appendix D).

Since the free dynamics are linear, p(θ, U̇1 |Vr ) and
p(θ, U̇2; θ, U̇1) can be obtained analytically. Importantly, the
integral in Eq. (39) as well as the double integral in Eq. (40)
are analytically solvable using the table [59] (details in
Appendixes B 2 and C). The closed-form analytical expres-
sion Eq. (B6) for the two-point upcrossing probability of
a stationary Gaussian process is a novel result, to the best
of our knowledge, and considerably simplifies the numerical
evaluation of Eq. (35).

4. Numerical solution of the self-consistency problem

Just as for the GLM networks, we solve the colored noise
problem using a fixed-point iteration. To initiate the algo-
rithm, we set the rates to να = 1/τα

m. We use these rates to
calculate the input mean, variance, and spectrum according to
Eqs. (9) and (10), beginning with the diffusion approximation
Sα

x (t ) = να and σα
ν = 0 across neurons. Despite assuming ini-

tially equal rates across neurons, it is possible to have static
input variability both due to distributed indegrees [see Eq. (8)
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FIG. 8. Colored noise problem for LIF neurons. Comparison
between theory, Eq. (35), and LIF neurons driven by Gaussian pro-
cesses (GPs). (a) Mean (blue) and standard deviation across neurons
(orange) of the membrane potential due to the static contribution τmζ .
(b) Noise strength of the effective input measured by the standard
deviation of the membrane potential fluctuations relative to the dis-
tance to threshold σU /(θ − μU ). (c) Absolute difference |
| between
rate from theory and GP-driven LIF neurons. (d) Same as (c) but for
the standard deviation of the rate across neurons. (e) Kolmogorov-
Smirnov distance using 2.5-ms bins between ISI distribution from
theory and GP-driven LIF neurons. (f) Maximal absolute distance
max(|
|) between power spectra from theory and GP-driven LIF
neurons. [(g) and (h)] Example ISI distributions and power spectra
from theory (black) and GP-driven LIF neurons (colored) for the
parameter values indicated by crosses in (c)–(f). Parameters: NE =
40 000, NI = 10 000, JE = 0.1 mV, |JI/JE | = 6.0, p = 0.1, τm =
20 ms, τs = 5 ms, τref = 2 ms, d = 1.5 ms, θ = 20 mV, Vr = 0 mV,
and μext = 22 mV.

and Fig. 8(a)] and due to evolution of the rates during the
fixed-point iteration. To account for the static variability, we
consider an ensemble of inputs μα + ζ α and determine the
corresponding hazard functions hα

S (t | μα + ζ α ), Eq. (35), out-
put rates να (μα + ζ α ), Eq. (36), ISI distributions pα (T | μα +
ζ α ), Eq. (37), and spectra Sα

x ( f | μα + ζ α ), Eq. (38). From
this ensemble, we obtain the final output statistics from a
numerical average over the ensemble:

να =
∫ ∞

−∞
να (μα + ζ α )N

(
ζ α | 0, σ α

ζ

)
dζ α, (41)

(
σα

ν

)2 =
∫ ∞

−∞
[να (μα + ζ α ) − να]2N

(
ζ α | 0, σ α

ζ

)
dζ α, (42)

pα (T ) =
∫ ∞

−∞
pα (T | μα + ζ α )N

(
ζ α | 0, σ α

ζ

)
dζ α, (43)

Sα
x ( f ) =

∫ ∞

−∞
Sα

x ( f | μα + ζ α )N
(
ζ α | 0, σ α

ζ

)
dζ α. (44)

We solve the above Gaussian integrals using Gauss-Hermite
quadrature [60]. Gauss-Hermite quadrature of order k solves
Gaussian integrals of polynomials up to power k exactly by
construction. This allows us to keep the ensemble very small;
throughout we use k = 5. Finally, we update the statistics
using incremental steps, e.g., να

n+1 = να
n + ε(ν̂α

n+1 − να
n ) for

the firing rate, where ν̂α
n+1 denotes the estimated rate based

on the input at the previous step. Here, the small update
step ε < 1 is crucial because otherwise the algorithm is nu-
merically unstable. Now we iterate and generate new input
statistics. Repeated application of this scheme suggests that
the self-consistent problem for the type of networks under
consideration possesses only a single fixed point to which the
algorithm always converges.

B. Balanced random network

First, we consider the same balanced random network as
we did for the GLM neurons [Fig. 2(a)]. In particular, we
place the network in the inhibition-dominated regime, drive
the network with a constant external input, and use iden-
tical single-neuron parameters for excitatory and inhibitory
neurons. In order to obtain a biologically plausible activity
below 10 spks/s, we keep the external input weak to place the
network deep in the fluctuation-driven regime. In this regime,
the mean input to a neuron is far below threshold and only
occasional large fluctuations in the input drive it above the
spike threshold [Figs. 8(a) and 8(b)]. If the mean interspike
interval exceeds the correlation time of the input, the renewal
approximation is admissible. Indeed, since the firing rates are
low by construction, even moderate input correlation times are
smaller than the inverse firing rate.

1. Colored noise problem

First, we isolate the colored noise problem to gauge the
above approximations. To this end, we compare the theory
with a population of unconnected LIF neurons driven by
independent Gaussian processes (GPs). If the colored noise
solution works well for isolated GP-driven LIF neurons, it
will also work well for LIF neurons embedded in a balanced
random network in the asynchronous irregular regime [35].
The reason for considering a population of neurons is to
account for the static input variability that leads to distributed
single-neuron firing rates.

We want to investigate the LIF neurons in a regime compa-
rable to that in the balanced random network. However, we do
not determine the effective input statistics using network sim-
ulation results here, because this would preclude a systematic
scan over the parameters of the input, which consists of both
external and recurrent network contributions. Instead, we fix
the effective external input and determine the statistics of the
effective recurrent input in terms of the input spiking statistics
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νin, σ in
ν = 0 across neurons, and

Sin
x ( f ) = νin

1 − ∣∣(1 − 2π iCV2
in f /νin

)−1/CV2
in
∣∣2∣∣1 − (

1 − 2π iCV2
in f /νin

)−1/CV2
in
∣∣2 , (45)

corresponding to a gamma process with rate νin and CV of
the ISI distribution CVin, cf. Eq. (38). This leaves a two-
dimensional parameter space spanned by νin and CVin. From
the spiking statistics, we obtain the statistics of the effective
input using Eqs. (9) and (10) where ḡ and g are determined
by the parameters of the balanced random network. Note that
although σ in

ν = 0, the static variability of the effective input is
nonzero, σζ > 0, due to the distributed indegree, see Eq. (8)
and Fig. 8(a). Hence, we can compare both the averaged
output statistics and the rate variability in the population. For
the comparison, we simulate 250 GP-driven LIF neurons for
50 s with a time step of 0.05 ms; we use the same interval and
time step for the theory.

Guided by the regime attained in full simulations, we
choose νin ∈ [0.5, 2.5] spks/s and CVin ∈ [0.5, 1.5] (Fig. 8).
The network is in the inhibition-dominated regime; thus
the mean input decreases with νin starting from the value
that brings the membrane potential on average to threshold
[Fig. 8(a)]. In contrast, the static variability increases mono-
tonically with νin [Fig. 8(a)]. To measure the strength of the
dynamic variability, we divide the resulting standard deviation
of the free membrane voltage by the distance of the mean free
membrane voltage to the threshold, σU /(θ − μU ). Since the
numerator grows with

√
νin while the denominator grows lin-

early with νin in inhibition-dominated networks, the standard
deviation relative to the distance to threshold decreases with
increasing νin; in contrast, it slightly increases with increasing
CVin [Fig. 8(b)]. For the entire parameter regime, the abso-
lute difference in the firing rate is smaller than 1 spks/s and
it is maximal at the brink of the fluctuation-driven regime
[Fig. 8(c)]. For the static rate variability, we also consider
the absolute difference, which is below 0.3 spks/s through-
out the parameter space [Fig. 8(d)]. Next, we compare the
ISI distributions using their Kolmogorov-Smirnov distance,
i.e., the maximal absolute difference between the cumulative
distributions. The Kolmogorov-Smirnov distance is maximal
deep in the fluctuation-driven regime where the firing rate is
well below 1 spks/s and the estimate of the ISI distribution is
noisy [Fig. 8(e)]. Finally, we compare the output spectra using
the maximum absolute distance between the scaled spectra
Sx( f )/ν. Here, the deviation is below 0.1 in most parts of the
parameter space except for low CVin � 0.6, high CVin � 1.3,
and at the brink of the fluctuation-driven regime [Fig. 8(f)]. To
give meaning to the quantitative results, we plot two example
ISI distributions [Fig. 8(g)] and spectra [Fig. 8(h)]. For the ISI
distribution, we see the noisy estimate at low rates. For the
spectra, we note that the main difference is a constant offset
caused by a small error in the rate, see Eq. (38), while the
shape is well matched.

To conclude, the above approximations work well
in the fluctuation-driven regime for moderate values
0.6 < CVin < 1.3. Within this regime, the firing rate and its
variability across neurons, the ISI distribution, and the power
spectra are well predicted. Most importantly for the prediction

FIG. 9. Parameter scan for a balanced random network of LIF
neurons using Eq. (35). [(a) and (b)] Firing rate and intrinsic
timescale for varying external input μext and relative inhibitory
strength |JI/JE |. [(c) and (d)] Scaled autocorrelation Cx (τ )/ν2 and
power spectrum Sx ( f )/ν for the parameter values indicated by sym-
bols in (a,b). Further parameters as in Fig. 8.

of the intrinsic timescale, the theory closely predicts the scaled
spectrum Sx( f )/ν.

2. Timescales in balanced random networks of LIF neurons

Having established the validity of the theory, we employ it
to investigate the intrinsic timescale. It is well known that in-
creasing the overall synaptic strength leads to a network state
with long temporal correlations [37,62]. However, this state
comes along with giant fluctuations of the membrane potential
[68] which are well beyond the physiological regime and
which our theory can capture only to a limited extent (in par-
ticular, it underestimates the strong increase in low-frequency
power observed for strong couplings [37,69]). Hence, we
focus on the influence of the external input μext and the inhibi-
tion dominance |JI/JE |, in line with our above investigations
for GLM neurons. We solve the theory on a 
t = 0.05 ms
grid to a maximum of T = 10 s, use an ensemble size of k = 5
for the Gauss-Hermite quadrature, and choose an update step
ε = 0.2.

We investigate the regime |JI/JE | ∈ [4.1, 6] and
μext ∈ [21, 30] mV. Within this regime, the rate is below
approximately 20 spks/s, increases with μext, and decreases
with |JI/JE | [Fig. 9(a)]. In contrast, the intrinsic timescale
decreases with μext, increases with |JI/JE |, and reaches a
maximum of approximately 60 ms = 3τm [Fig. 9(b)]. The
autocorrelation function reveals that the nature of these
longer intrinsic timescales in LIF networks is fundamentally
different to the GLM networks above [Fig. 9(c)]: in the
GLM networks, the autocorrelation function is positive,
which corresponds to an increased probability to spike
in succession; in the LIF networks it is negative, which
corresponds to a prolonged effective refractory period caused
by the fire-and-reset mechanism in combination with the
input statistics. Indeed, in the corresponding power spectra
and their zero-frequency limit, we see that the CV is well
below 1 [Fig. 9(d)]. Hence, the process is more regular than a
Poisson process, as opposed to the high irregularity CV > 1
that would go along with bursty spiking.
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FIG. 10. Balanced random network of LIF neurons. (a) Raster
plot of 2% of the excitatory (blue) and inhibitory (red) neu-
rons. (b) Firing rate distribution across all neurons. [(c)–(e)]
Population-averaged ISI distribution, population-averaged autocor-
relation function, and population-averaged power spectrum from
simulation (gray) and theory (black). (f) Power spectrum of the
population activity. Parameters as in Fig. 8.

3. Simulation of balanced random network of LIF neurons

We validate the theoretical predictions for the balanced
random network of LIF neurons by comparing with a network
simulation. To acquire sufficient statistics, we simulate the
network for T = 2.5 min with time step 
t = 0.1 ms and
discard the first 10 s as an initial transient. After this transient,
the network is in an asynchronous irregular state [Fig. 10(a)].
The rates of individual neurons are mostly below 5 spks/s
with a peak at around 1 spks/s [Fig. 10(b)]. The theory closely
predicts the ISI distribution apart from a slight overestimation
of the tail [Fig. 10(c)]. Thus the resulting autocorrelation func-
tion is also well matched and the predicted intrinsic timescale
of approximately 55 ms is confirmed [Fig. 10(d)]. Also the
scaled spectrum is closely reproduced and reveals a CV2 ≈
0.75 [Fig. 10(e)].

To illustrate the difference between the single-unit and the
population statistics, we furthermore plot the power spectrum
of the population activity y(t ) = 1

N

∑N
i=1 xi(t ) [Fig. 10(f)].

For vanishing cross-correlations, these two spectra would be
proportional to each other. Already weak cross-correlations
can shape the population spectrum since their contribution is
of O(N2) compared to O(N ) contributions from the autocor-
relations, leading to the clear differences we see between the
single-unit and the population spectrum. A notable difference
between the two spectra is the peak around 30 Hz in the
population spectrum, contrasting with the roughly 10-Hz peak
in the single-unit spectrum. Furthermore, the population spec-
trum displays increased power at low frequencies compared to
high frequencies, while the reverse is true for the single-unit
spectrum.

C. Biologically constrained network model

Thus far, we only considered balanced random networks
with identical excitatory and inhibitory neurons that reduce
to a single effective population. Despite this simplification,
these balanced random networks already span a large param-
eter space. Here, we apply our theory to a multipopulation
network model constrained by biological data [43]. Beyond
the aspect of multiple populations, this network model allows
us to highlight two additional features of our theory that we
left out thus far: the possibility to include external Poisson
input and distributed synaptic weights. We solve the theory
on a 
t = 0.05 ms grid to a maximum of T = 10 s, use an
ensemble size of k = 5 for the Gauss-Hermite quadrature,
choose an update step ε = 0.1, and initialize all populations
with a rate of 10 spks/s.

The model represents the neurons under 1 mm2 of surface
of generic early sensory cortex. It comprises eight popula-
tions: layers 2/3, 4, 5, and 6 with a population of excitatory
cells and inhibitory interneurons for each layer [Fig. 11(a)].
In total, this leads to 77 169 neurons connected via approxi-
mately 3 × 108 synapses, with population-specific connection
probabilities pαβ based on an extensive survey of the anatom-
ical and physiological literature. In contrast to the original
model, we directly use the connection probabilities to create
the connectivity such that the total number of synapses can
vary across instantiations of the model, and we draw source
and target neurons without replacement, so that multapses are
not allowed. Transmission delays follow truncated normal dis-
tributions with mean ± standard deviation of 1.5 ± 0.75 ms for
excitatory source neurons and 0.75 ± 0.375 ms for inhibitory
source neurons, both with a cutoff at 0.1 ms. The synaptic
strengths Jαβ

i j are normally distributed with μαI
J = −351.2 pA

for inhibitory source neurons and μαE
J = 87.8 pA for exci-

tatory source neurons except for connections from layer 4
excitatory to layer 2/3 excitatory neurons, which have a mean
strength of 175.6 pA. For all synaptic strengths, the standard
deviation is fixed to 10% of the mean. The network is driven
by external Poisson input with layer-specific rates (for further
details see Ref. [43]).

The intrinsic parameters of the neurons do not vary across
populations. Shaped by the connectivity, a layer-specific ac-
tivity arises [Fig. 11(b)] with mean firing rates between 1 and
10 spks/s [Fig. 11(c)] and a standard deviation across neurons
between 1 and 5 spks/s [Fig. 11(d)]. While the quantitative
agreement is not perfect, our theory captures the specificity of
both mean firing rate and its variability across neurons well.

A prominent feature of the model are oscillations on the
population level [70] which are already visible in the raster
plot of only 2% of the population [Fig. 11(b)]. These oscilla-
tions lead to a clear peak at about 80 Hz in the power spectrum
of the population activity in all layers [70]. Here, we only
show a representative population spectrum [Fig. 11(e)]. These
population-level oscillations clearly violate the independence
assumption of the effective inputs. Thus they could potentially
explain the deviations of the predicted firing rate from the
simulation.

For most populations, the peak in the population-level
oscillations also manifests itself in the population-averaged
single-unit spectra [Figs. 11(f) and 11(g)]. Apart from this
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FIG. 11. Multipopulation network of LIF neurons. (a) Sketch
of the model, figure adapted from [43]. (b) Raster plot of 2% of
the neurons of each population. [(c) and (d)] Neuron-averaged fir-
ing rates and their standard deviation from simulations (bars) and
theoretical predictions (black crosses). (e) Population spectrum of
the layer 4 excitatory population. [(f) and (g)] Spike-train power
spectra obtained from simulations (colored) and theory (black) and
the corresponding intrinsic timescale. Parameters as specified in [43].

peak, our theory closely captures the shape of all spectra
[Figs. 8(f) and 8(g)]. Note that, despite the large heterogeneity
of mean rates, the intrinsic timescale is similar across pop-
ulations. As in the balanced random network, the intrinsic
timescales are on the order of magnitude of the membrane
time constant (here 10 ms); concretely, the intrinsic timescale
is approximately twice as large.

V. DISCUSSION

We developed a self-consistent theory for the second-order
statistics, in particular the intrinsic timescales as defined
by autocorrelation decay times, in block-structured random
networks of spiking neurons in an asynchronous irregular
state. Orthogonal to approaches based on the mean activity
of a population of neurons, we consider population-averaged

single-neuron statistics. To this end, we built on the model-
independent dynamic mean-field theory (DMFT) developed
in Ref. [30] and applied it to networks of spiking neurons.
We sketched the derivation starting from the characteristic
functional of the recurrent input, Eq. (3), to expose the in-
herent assumptions of the DMFT as well as its main result. In
particular, we showed that the mean-field equations, Eqs. (9)
and (10), where the connectivity matrix enters only through
its first two cumulants, account for both (static) interneu-
ron variability and (dynamic) temporal fluctuations. In order
to close the self-consistency problem, we derived a novel
analytical solution for the output statistics of a generalized
linear model (GLM) neuron with error-function nonlinearity
driven by a Gaussian process (GP), Eq. (25), and an ana-
lytical approximation for the output statistics of a GP-driven
leaky integrate-and-fire (LIF) neuron in the fluctuation-driven
regime, Eq. (35). These theoretical results yield firing rate dis-
tributions, spike-train power spectra, and interspike interval
distributions that are close to those obtained from numerical
simulations (Figs. 2, 5, and 10) even for a complex, biologi-
cally constrained network model (Fig. 11).

The excellent agreement between theory and simulations
demonstrates the validity of the DMFT approximation, i.e.,
the approximation of the recurrent inputs as independent
Gaussian processes. The validity of the DMFT approxima-
tion is most clearly demonstrated by the networks of GLM
neurons, since in that case the DMFT assumption constitutes
the only approximation, while the remainder of the solution is
exact; while for the LIF networks, additional approximations
are made, so that the effects of the DMFT assumption can be
less well isolated.

Focusing on balanced random networks, we leveraged our
theory to investigate the influence of network parameters on
the intrinsic timescale for both GLM (Figs. 3 and 4) and LIF
(Fig. 9) neurons. For the former neuron model with error
function nonlinearity, our theory unveils that a product of two
factors determines the intrinsic timescale [Eq. (27), Fig. 6]:
the gain of the rate autocorrelation function with respect to
changes in the membrane voltage autocorrelation function
for τ → ∞, Eq. (28), and the variance of the connectivity,
Eq. (6). Furthermore, providing a temporally correlated ex-
ternal drive causes the intrinsic timescale to monotonically
approach the extrinsic timescale as the input strength is in-
creased (Fig. 7).

For both GLM neurons with error function nonlinearity
and LIF neurons, we find parameter regimes where the in-
trinsic timescale τc is longer than the largest time constant
of the single-neuron dynamics, the membrane time constant
τm (Figs. 5 and 9). This demonstrates that the recurrent dy-
namics shape the intrinsic timescale. Note that we consider a
regime where the inverse firing rate ν−1 is large compared to
τm. In contrast, [18,29] consider the opposite regime where
slow neuronal timescales lead to effective rate dynamics, and
the spiking noise is either left out or treated perturbatively.
Our results show that it is possible to obtain longer intrin-
sic timescales even in a regime where the white component
of the spiking noise contributes non-negligibly to the mem-
brane voltage fluctuations. However, the temporal structure
that causes the prolonged intrinsic timescale is very different
for the two models that we consider: For GLM neurons, the
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autocorrelation is positive for a period on the order of τc,
corresponding to an increased spiking probability. For LIF
neurons, the autocorrelation function is negative, correspond-
ing to a prolonged effective refractory period.

Furthermore, LIF networks exhibit a minimum in the in-
trinsic timescale [37], while the corresponding GLM networks
exhibit a maximum (Fig. 6). We hypothesize that this dif-
ference is due to the difference in the temporal structure:
The minimum in the timescale for LIF networks is caused
by a switch from an increased effective refractory period (a
negative autocorrelation function for τ → 0) to an increased
probability for another spike (a positive autocorrelation func-
tion for τ → 0). This hypothesis is consistent with the switch
from decreased low-frequency power, Sx( f → 0) < ν, to in-
creased low-frequency power, Sx( f → 0) > ν, highlighted in
Refs. [37,69]. For GLM networks, this switch and hence the
minimum is absent. Instead, the more subtle interplay between
the gain and the variance of the connectivity leads to the max-
imum. The presence of a maximum rather than a minimum in
the intrinsic timescales renders the GLM networks more simi-
lar to networks of rate units [15]. If similar mechanisms are at
play as in rate networks, the white spiking noise of the input to
the GLM neurons may temper the size of the largest possible
timescale [21]. However, due to the inherent stochasticity of
GLM neurons, it is unclear whether the maximum occurs at a
transition to chaos as it does in rate networks [15].

Considering a more complex block-structured network
model that is constrained by biological data [43] exposes
limits of our theory: while the theory accurately captures the
nonoscillatory components of the power spectra, it misses
a high-frequency oscillation (Fig. 11). These high-frequency
oscillations are caused by correlated activity on the population
level [70]; hence, the peak in the population-averaged single-
neuron spectra demonstrates an interplay between single-unit
and population-level statistics that was absent in the simpler
balanced random network models. By construction, our theory
only accounts for population-averaged single-neuron statistics
and thus misses the high-frequency peak. It is an interesting
challenge to derive a self-consistent theory on both scales
simultaneously.

In general, the limits of DMFT when applied to spiking
networks merit further investigation. For example, assuming
that the network is sparse, K  N or p  1, is not a necessary
condition for a DMFT to apply [18]. Nonetheless, increasing
sparsity reduces the pairwise correlations between the neurons
[26,62,71] such that DMFT is expected to yield better results.
Another important aspect is that for the synaptic weights
scaling as Ji j = O(1/

√
K ), the fluctuations of the mean input

μη(t ) can be O(1), i.e., not scale with K−α , α > 0, as the
network size increases and p is kept constant. In Eq. (7), μη(t )
and Cη(t, t ′) are replaced by their average, neglecting fluctua-
tions; including the fluctuations of the mean input would lead
to an additional term in Cη(t, t ′) [28]. Since these fluctuations
of the mean input reflect pairwise correlations, the latter need
to be small for the theory to be accurate. The above scaling
argument shows that it is nontrivial that the pairwise correla-
tions vanish, even in the large network limit. They only do so
for an asynchronous state in which the pairwise correlations
are small already for finite networks, e.g., due to a sparse
network or due to inhibitory feedback [27]. Conversely, if a

network is in an asynchronous irregular state, which has low
pairwise correlations by definition, DMFT is expected to yield
reliable results.

The heterogeneity of timescales even within a cortical area
[72] suggests another interesting extension, namely to cal-
culate the variability of the timescale within a population.
This requires calculating the variability of the second-order
statistics, which has recently been achieved for linear rate
networks [73] but to the best of our knowledge is an open
challenge even for simple nonlinear rate networks, let alone
for spiking networks.

The microscopic theory presented here enables direct
comparisons with experimental measurements of neuron-
level intrinsic timescales [2], in contrast to previous works
which have considered population rate models [10,74].
It is important to distinguish between neuron-level and
population-level autocorrelations, since the latter are shaped
by O(N2) cross-correlations and can therefore differ substan-
tially from neuron-level autocorrelations, as we have illus-
trated for the balanced random network model [Figs. 10(e)
and 10(f)] and the biologically constrained network model
[Figs. 11(e)–11(g)].

Establishing a direct link between the connectivity and
the emergent intrinsic timescales opens up the possibility of
a thorough investigation of the effect of network architec-
ture. Moreover, within our theory, it is possible to account
for population-specific intrinsic neuron parameters. Thus the
theory also provides an avenue for investigations of the com-
plex interplay between intrinsic parameters [8,9] and the
network structure [10]. In this context, an interesting appli-
cation is clustered networks which feature slow switching
between transiently active clusters [75]. In particular, clus-
tered networks with both excitatory and inhibitory clusters
[76–78] could be of interest because they robustly give rise
to winnerless competition. From a modeler’s point of view,
uncovering mechanisms shaping intrinsic timescales could
be used to fine-tune network models [79–82] to match the
experimentally observed hierarchy of timescales [2]. Focusing
on computational aspects, diverse timescales strongly enhance
the computational capacity of a recurrent network [83–85],
and neurons with long intrinsic timescales carry more infor-
mation in a working memory task [86] (but see [87]). In
this light, the results presented here may also contribute to
improved understanding of aspects of information processing
in the brain.
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APPENDIX A: CHARACTERISTIC FUNCTIONALS

Here, we briefly introduce the characteristic functionals for
both types of stochastic processes we consider: Gaussian pro-
cesses and point processes. We closely follow Stratonovich’s
book [40], in particular Chaps. I.1. and I.6.

1. Stochastic processes

The characteristic functional of a stochastic process ξ (t ) is
defined as

	ξ [u(t )] = 〈ei
∫ T

0 u(t )ξ (t )dt 〉ξ
where u(t ) is an arbitrary test function. In terms of the cumu-
lants kr (t1, . . . , tr ) the characteristic functional can be written
as

	ξ [u(t )] = e
∑∞

s=1
is

s!

∫ T
0 ··· ∫ T

0 ks (t1,...,ts )u(t1 )...u(ts )dt1...dts . (A1)

All properties of a stochastic process are determined by its
characteristic functional.

If all cumulants except for the first vanish, the process is
deterministic and has the characteristic functional

	ξ [u(t )] = 〈ei
∫ T

0 u(t )ξ (t )dt 〉ξ = ei
∫ T

0 u(t )ξ (t )dt . (A2)

In this case, the first cumulant coincides with the process
itself, k1(t ) = ξ (t ). If only the first and the second cumulants
are nonvanishing, the process is a Gaussian process. The cor-
responding characteristic functional reads

	ξ [u(t )] = ei
∫

k1(t1 )u(t1 )dt1− 1
2
∫∫

u(t1 )k2(t1,t2 )u(t2 )dt1dt2 . (A3)

If the Gaussian process is stationary, k1(t1) = k1 and
k2(t1, t2) = k2(t2 − t1), the characteristic functional simplifies

further to 	ξ [u(t )] = eik1
∫

u(t1 )dt1− 1
2
∫∫

u(t1 )k2(t2−t1 )u(t2 )dt1dt2 .
The characteristic functional describes the statistics at all

points in time. It is often useful to relate the characteristic
functional to the distribution of the values of ξ (t ) at fixed
points in time, for instance to compute the statistics of the cur-
rent at upcrossings and after the refractory period, or to obtain
marginal activity statistics which, given stationarity, reflect
time-averaged activity. To this end, we can use the test func-
tions u(t ) = u1δ(t − t1) and u(t ) = u1δ(t − t1) + u2δ(t − t2)
to obtain

	ξ (u1) = eik1(t1 )u1− 1
2 k2(t1,t1 )u2

1 , (A4)

	ξ (u1, u2) = ei(k1(t1 )u1+k1(t2 )u2 )

× e− 1
2 (k2(t1,t1 )u2

1+2k2(t1,t2 )u1u2+k2(t2,t2 )u2
2 ). (A5)

These are the characteristic functions of a Gaussian with
cumulants determined by k1 and k2. Knowing these char-
acteristic functions for all times t1 and t2 provides the full
picture; this is the marginalization property of Gaussian
processes [88].

2. Point processes

The equivalence to the characteristic functional for a
point process is the generating functional. For a spike train
{t1, . . . , tn} (a “system of random points” in Stratonovich’s
naming) with ti ∈ [0, T ] for all i, the generating functional is
defined by

LT [v(t )] =
〈

n∏
j=1

[1 + v(t j )]

〉
.

Here, the number of spikes n is itself a random variable
because the average is taken with respect to all possible re-
alizations of the spike train [89].

For point processes, the role of the moments is taken
by the “distribution functions” nr (t1, . . . , tr ) which denote
the probability of having at least one point in each interval
[ti, ti + dt]. The role of the cumulants is taken by the functions
gr (t1, . . . , tr ), which are related to the distribution functions
as the cumulants of a stochastic process are related to its mo-
ments. In terms of the gr (t1, . . . , tr ), the generating functional
can be written as [89]

LT [v(t )] = e
∑∞

s=1
1
s!

∫ T
0 ··· ∫ T

0 gs (t1,...,ts )v(t1 )...v(ts )dt1...dts . (A6)

The generating functional is directly related to a few useful
quantities: The characteristic function of the number of spikes
n in the interval [0, T ] is given by 〈einu〉 = LT [eiu − 1]; the
probability that no point falls into [0, T ], i.e., the survival
probability, is given by LT [−1]. The simplest case of a point
process where only g1 is nonvanishing is a Poisson process.
The corresponding generating functional reads

LT [v(t )] = exp

(∫ T

0
g1(t1)v(t1)dt1

)

with survival probability S(T ) = LT [−1] = e− ∫ T
0 g1(t1 )dt1 .

The generating functional is directly related to the charac-
teristic functional of the stochastic process ξ (t ) = ∑n

j=1 δ(t −
t j ):

	ξ [u(t )] = 〈ei
∑n

j=1 u(t j )〉 = LT [eiu(t ) − 1]. (A7)

This relation links the distribution functions nr through the gr

to the cumulants of the spike train. For example, the charac-
teristic functional of a Poisson spike train is

	ξ [u(t )] = exp

(∫ T

0
g1(t1)(eiu(t1 ) − 1)dt1

)
. (A8)

Note that by convention, g1(t ) is typically called λ(t ) for a
Poisson process—we adopted this convention in the main text,
in particular in Eq. (14). Expanding the exponent on the right-
hand side of Eq. (A7) to second order in u(t ), we obtain the
relations

k1(t1) = g1(t1),

k2(t1, t2) = g1(t1)δ(t1 − t2) + g2(t1, t2)

between the gr and the first two cumulants of the spike train.
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3. Gaussian integrals

We solve several Gaussian integrals using the impressive
table by Owen [59]. First, we introduce his notation

G(x) = 1

2
(1 + erf (x/

√
2)), g(x) = 1√

2π
e−x2/2

for the standard normal CDF and PDF. Furthermore, we need
Owen’s T function

T (h, a) = 1

2π

∫ a

0

e− 1
2 h2(1+x2 )

1 + x2
dx.

All formulas were numerically validated using numerical in-
tegration routines implemented in SCIPY [90].

a. GLM error function

Here, we derive Eqs. (24) and (25). In the notation of
Eq. (23), we have φ(x) = G(x).

For the mean, we need the expectation 〈φ(z)〉 where z is
Gaussian with mean μ and variance σ 2. Equivalently, we can
calculate 〈φ(μ + σx)〉 where x is standard normal. Expressing
the standard normal Gaussian expectations using g(x), we
have

〈φ〉 =
∫ ∞

−∞
g(x)G(μ + σx)dx.

Using Eq. (10,010.8) from Ref. [59], we get

〈φ〉 = G

(
μ√

1 + σ 2

)
.

Equation (24) follows after taking the multiplying factor c1

and μ = μV − θ from Eq. (14) into account.
For the second moment, we need 〈φ(z1)φ(z2)〉 were z1 and

z2 are jointly Gaussian with mean μ, variance σ 2 and cor-
relation coefficient ρ. Equivalently, we can calculate 〈φ(μ +
βx − αy)φ(μ + βx + αy)〉 where x and y are standard normal
and α = σ

√
(1 − ρ)/2, β = σ

√
(1 + ρ)/2. Again using g(x)

to express the standard normal Gaussian expectations, we get

〈φφ〉 =
∫ ∞

−∞
g(x)I (x)dx with

I (x) =
∫ ∞

−∞
g(y)G(μ + βx − αy)G(μ + βx + αy)dy.

Now, we use Eq. (20,010.3) in Ref. [59] for I (x) to obtain

〈φφ〉=
∫ ∞

−∞
g(x)(G(a + bx)−2T (a + bx, c))dx

with a = μ/
√

1 + σ 2(1 − ρ)/2, b =
σ
√

1 + ρ/
√

2 + σ 2(1 − ρ), c =
√

1 + σ 2(1 − ρ), and
Owen’s T function T (h, a). For the final integral, we use
Eqs. (10,010.8) and (c00,010.1) from Ref. [59] to derive

〈φφ〉=G

(
μ√

1 + σ 2

)
−2T

(
μ√

1 + σ 2
,

√
1 + σ 2(1 − ρ)

1 + σ 2(1 + ρ)

)
.

Equation (25) follows after subtracting 〈φ〉2.

b. Free upcrossing probabilities

For the free two-point upcrossing probability, we need
integrals of the form

In(a, b) =
∫ ∞

0
xng(x)G(ax + b)dx.

For arbitrary n, Eq. (10,01n.4) from Ref. [59] provides the
solution

In(a, b) = �((n + 1)/2)2(n−1)/2

√
2π

Fn+1,−b(
√

n + 1a),

where Fν,μ(x) denotes the cumulative distribution function
of noncentral t-distribution with ν degrees of freedom and
noncentrality parameter μ. Analytical expressions for Fν,μ(x)
in terms of g(x), G(x), and T (h, a) can be found in Ref. [91]
(the ones in Ref. [59] contain typos). Using these expressions,
the solutions for n = 0, 1, and 2 are

I0(a, b) = 1

2
G(bB) + T (bB, a),

I1(a, b) = 1√
2π

G(b) + M0(a, b),

I2(a, b) = I0(a, b) + M1(a, b)

where we used the shorthand notation B = 1/
√

1 + a2 and

M0(a, b) = aB g(bB) G(−abB),

M1(a, b) = B2(−abM0(a, b) + ag(b)/
√

2π ).

Since we consider only up to n = 2, we are spared the increas-
ingly cumbersome expressions for n > 2.

APPENDIX B: FREE UPCROSSING PROBABILITIES

The dynamics of the free membrane voltage and the current
for the LIF neuron model are given by

U̇ = −U + I, (B1)

τs İ = −I + η, (B2)

where we measure time in units of the membrane time con-
stant τm, i.e., we set τm = 1. Furthermore, we set 〈η〉 = 0,
i.e., we measure U and I relative to the mean input. Lastly,
we define t = 0 to be the end of the refractory period, i.e., the
time when the free dynamics start evolving.

First, we need the distribution of the voltage and the cur-
rent. Since η is a Gaussian process, both are Gaussian for
arbitrary time arguments. Thus it is sufficient to calculate the
first two conditional cumulants. Throughout, we assume a
correlation-free preparation [92], i.e., we assume that η and
I are uncorrelated prior to t = 0.

1. Nonstationary mean and variance of U and I

We need the nonstationary mean and variance of U and
I to calculate the free upcrossing probability. For a given
initial current and initial voltage, Eqs. (B1) and (B2) lead
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to

I (t ) = I0e−t/τs + 1

τs

∫ t

0
e−(t−s)/τsη(s)ds,

U (t ) = U0e−t +
∫ t

0
e−(t−s)I (s)ds.

This leads immediately to the mean

μI (t ) = I0e−t/τs ,

μU (t ) = U0e−t + τs

1 − τs
I0(e−t − e−t/τs ).

To obtain the variances numerically, we use that they follow
linear differential equations: taking the temporal derivatives
of I (t )2, I (t )U (t ), and U (t )2, using Eqs. (B1) and (B2), and
averaging leads to

τs

2
σ̇ 2

I = −σ 2
I + σ 2

Iη,

τsσ̇
2
IU = −(1 + τs)σ 2

IU + τsσ
2
I + σ 2

Uη,

1

2
σ̇ 2

U = −σ 2
U + σ 2

IU .

The initial conditions for all of the above differential equations
are σ 2

I (0) = σ 2
IU (0) = σ 2

U (0) = 0. They are straightforward
to solve numerically in the order that they appear, but they
require two additional quantities:

σ 2
Iη(t ) = 1

τs

∫ t

0
e−s/τsCη(s)ds,

σ 2
Uη(t ) = 1

1 − τs

∫ t

0
(e−s − e−s/τs )Cη(s)ds,

which can be numerically computed using a composite trape-
zoidal rule. If Cη(τ ) contains a Dirac delta, Cη(τ ) = Ĉη(τ ) +
2Dδ(τ ), we have to separate it analytically in σ 2

Iη(t ):

σ 2
Iη(t ) = σ̂ 2

Iη(t ) + D

τs
.

Note the factor 1/2 because we only integrate “half” of the
Dirac delta. In σ 2

Uη(t ), the Dirac delta does not contribute
because the integrand vanishes at zero, i.e., σ 2

Uη(t ) = σ̂ 2
Uη(t ).

Ultimately, we need the cumulants of U and U̇ instead of
U and I . To relate the respective quantities, we use Eq. (B1).
For the initial conditions, we have

U̇0 = I0 − U0.

The first cumulants are

μU (t ) = U0e−t + (U̇0 + U0)A(t ),

μU̇ (t ) = −μU (t ) + (U̇0 + U0)e−t/τs

= −U0e−t + (U̇0 + U0)B(t ),

where we used Eq. (B1) for μU̇ (t ) and abbreviated

A(t ) = τs

1 − τs
(e−t − e−t/τs ), B(t ) = e−t/τs − A(t ).

The second cumulants do not depend on the initial conditions
and we get from Eq. (B1):

σ 2
UU̇ (t ) = −σ 2

U (t ) + σ 2
IU (t ),

σ 2
U̇ (t ) = σ 2

U (t ) − 2σ 2
IU (t ) + σ 2

I (t ).

Finally, we need to marginalize the initial velocity.
We assume that U̇0 is Gaussian distributed with mean μU̇0

and variance σ 2
U̇0

. Marginalizing U̇0 again results in a Gaus-

sian distribution because p(U̇0) and p(U1, U̇1 | U0, U̇0) are
Gaussian. Hence, we only need to compute the cumulants. For
the mean, we simply have to replace U̇0 → μU̇0

. The second
cumulants are

σ̃ 2
U (t ) = σ 2

U (t ) + σ 2
U̇0

A(t )2,

σ̃ 2
UU̇ (t ) = σ 2

UU̇ (t ) + σ 2
U̇0

A(t )B(t ),

σ̃ 2
U̇ (t ) = σ 2

U̇ (t ) + σ 2
U̇0

B(t )2.

With this, we can evaluate the mean and the variance numeri-
cally from the statistics of η(t ) and U̇0.

2. Initial velocity distribution

For the distribution of initial velocities, we assume that
the voltage has reached a stationary distribution by the time
it crosses the threshold. The velocity at an upcrossing of
a stationary Gaussian process is Rayleigh distributed [40].
Because at the threshold we have U̇up = −θ + Iup (remember
that t = 0 denotes the end of the refractory period, that the
membrane resistance is absorbed into the current, and time
is rescaled such that τm = 1), the current is also Rayleigh
distributed,

p(Iup) =
{

(Iup−θ )
σ 2

I
exp

( − (Iup−θ )2

2σ 2
I

)
for Iup � θ

0 otherwise
,

where σ 2
I = −C̈U (0) with the stationary autocorrelation

CU (τ ) of the free voltage. We assume that the further de-
velopment of the current is also stationary, and neglect
the conditional dependencies of the transition probability
p(I0 | Iup) on the threshold crossing beyond Iup, e.g., on
İup and Ïup. This transition probability can thus be obtained
from the unconstrained (“free”) stationary statistics of the
current—not conditioned on a threshold crossing—which are
Gaussian: p(I0 | Iup) = pfree(I0, Iup)/pfree(Iup). The uncon-
strained joint and instantaneous distributions here function
as auxiliary quantities for computing p(I0 | Iup). The uncon-
strained joint distribution is a Gaussian with variance σ 2

I and
covariance σ 2

I RI (τref ) where RI (τ ) = −C̈U (τ )/σ 2
U . We derive

CU (τ ) most conveniently by Fourier transforming Eqs. (B1)
and (B2), which leads to SU ( f ) = Sη( f )/(1 + (2π f )2)/(1 +
(2πτs f )2), and using the Wiener-Khinchin theorem to ob-
tain the autocorrelation. From the unconstrained joint and
instantaneous distributions, we obtain the transition probabil-
ity p(I0 | Iup), which is again a Gaussian with [88]

μ̃I (τref ) = IupRI (τref ), σ̃ 2
I (τref ) = σ 2

I (1 − RI (τref )2).
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Combining this with the Rayleigh-distributed p(Iup) yields

p(I0) =
∫ ∞

θ

p(I0 | Iup)p(Iup)dIup,

which is not a Gaussian anymore. We only calculate the first
two cumulants,

μ̂I (τref ) = 〈μ̃I (τref )〉I0 =
(√

π

2
σ 2

I + θ

)
RI (τref ),

σ̂ 2
I (τref ) = σ̃ 2

I (τref ) + 〈(μ̃I (τref ) − 〈μ̃I (τref )〉I0 )2〉I0

= σ̃ 2
I (τref ) + 4 − π

2
σ 2

I RI (τref )2,

and neglect the higher cumulants to arrive at a Gaussian ap-
proximation. Finally, after the refractory time we have U̇0 =
−Vr + I0. Combining the above equations leads to

μU̇0
=
(√

π

2
σ 2

I + θ

)
RI (τref ) − Vr, (B3)

σ 2
U̇0

= σ 2
I

(
1 − π − 2

2
RI (τref )2

)
, (B4)

which determine the Gaussian approximation of the initial
velocity distribution.

3. One-point upcrossing probability

Here, we calculate the upcrossing probability Eq. (39),

n1(t ) =
∫ ∞

0
U̇1 p(θ, U̇1 | Vr )dU̇1.

Due to the linearity of Eqs. (B1) and (B2), the distribution
p(θ, U̇1 | Vr ) is a Gaussian with the cumulants we calculated
above [92]. Hence, it takes the form

p(θ, U̇1 | Vr )= 1√
det(2πC)

exp

(
−1

2
(u − μ)T C−1(u − μ)

)
,

where uT = (θ, U̇1) and the mean and the correlation matrix
are given by

μ =
(

μ̃U (t )
μ̃U̇ (t )

)
, C =

(
σ̃ 2

U (t ) σ̃ 2
UU̇

(t )

σ̃ 2
UU̇

(t ) σ̃ 2
U̇

(t )

)
.

Inverting C leads to

C−1 = 1

det(C)

(
σ̃ 2

U̇
(t ) −σ̃ 2

UU̇
(t )

−σ̃ 2
UU̇

(t ) σ̃ 2
U (t )

)
,

det(C) = σ̃ 2
U (t )σ̃ 2

U̇ (t ) − σ̃ 4
UU̇ (t ).

The exponent of p(θ, U̇1 | Vr ) takes the form

(u − μ)T C−1(u − μ) = 1

det(C)

[
aU̇ 2

1 − 2bU̇1 + c2]
with a = σ̃ 2

U (t ), b = μ̃U̇ (t )σ̃ 2
U (t ) + (θ − μ̃U (t ))σ̃ 2

UU̇
(t )

and c2 = μ̃U̇ (t )2σ̃ 2
U (t ) + 2(θ − μ̃U (t ))μ̃U̇ (t )σ̃ 2

UU̇
(t ) + (θ −

μ̃U (t ))2σ̃ 2
U̇

(t ).
Putting it together, n1 is given by

n1(t ) = 1√
det(2πC)

∫ ∞

0
U̇1 exp

(
−aU̇ 2

1 − 2bU̇1 + c2

2 det(C)

)
dU̇1.

The integral can be solved in terms of an error function:∫ ∞

0
U̇1e− aU̇2

1 −2bU̇1+c2

2 det(C) dU̇ = det(C)

a
e−c̃2

+ det(C)

a
e−c̃2√

π b̃eb̃2
(1 + erf (b̃)),

where b̃ = b/
√

2a det(C) and c̃ = c/
√

2 det(C). Thus we get

n1(t ) =
√

det(C)

2πσ̃ 2
U (t )

e−c̃2
(1 + √

π b̃eb̃2
(1 + erf (b̃))) (B5)

for the free upcrossing rate.

4. Stationary correlation function of U and U̇

For the stationary two-point upcrossing probability, we
need the stationary correlation functions of U , U̇ , and between
U and U̇ . The power spectrum of U follows from the power
spectrum of η using

SU ( f ) = Sη( f )

(1 + (2π f )2)(1 + (2π f τs)2)
.

An inverse Fourier transform leads to the stationary correla-
tion function CU (τ ). For stationary processes, the formulas

CUU̇ (τ ) = −CU̇U (τ ) = ĊU (τ ), CU̇ (τ ) = −C̈U (τ )

yield the remaining correlation functions. The first
formula follows from 〈U (t )U̇ (t + τ )〉 = d

dτ
〈U (t )U (t + τ )〉

and 〈U̇ (t )U (t + τ )〉 = 〈U̇ (t − τ )U (t )〉 = − d
dτ

〈U (t −
τ )U (t )〉, the second from 〈U̇ (t )U̇ (t + τ )〉 = d

dτ
〈U̇ (t )U (t +

τ )〉 = d
dτ

〈U̇ (t − τ )U (t )〉 = − d2

dτ 2 〈U (t − τ )U (t )〉.

5. Stationary two-point upcrossing probability

Here, we calculate the stationary two point upcrossing
probability Eq. (40),

n2(τ ) =
∫ ∞

0

∫ ∞

0
U̇2U̇1 p(θ, U̇2; θ, U̇1)dU̇1dU̇2.

The joint density p(U2, U̇2;U1, U̇1) takes the form

p(U2, U̇2;U1, U̇1) = 1√
det

(
2πσ 2

U C
) exp

(
− 1

2σ 2
U

uT C−1u
)

,

where uT = (U1, U̇1,U2, U̇2) and σ 2
U = CU (0). The correla-

tion matrix is given by

C =

⎛
⎜⎜⎝

1 0 R(τ ) Ṙ(τ )
0 −R̈(0) −Ṙ(τ ) −R̈(τ )

R(τ ) −Ṙ(τ ) 1 0
Ṙ(τ ) −R̈(τ ) 0 −R̈(0)

⎞
⎟⎟⎠,

where we introduced CU (τ ) = σ 2
U R(τ ) and used ĊU (0) = 0

for stationary processes with a differentiable correlation func-
tion. Inverting C is cumbersome and eventually leads to

C−1 = 1

det(C)

⎛
⎜⎝

α β γ δ

β ε −δ ζ

γ −δ α −β

δ ζ −β ε

⎞
⎟⎠ with

α = R̈(0)2 + Ṙ(τ )2R̈(0) − R̈(τ )2,
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β = R(τ )Ṙ(τ )R̈(0) − Ṙ(τ )R̈(τ ),

γ = −R(τ )R̈(0)2 + R(τ )R̈(τ )2 − Ṙ(τ )2R̈(τ ),

δ = Ṙ(τ )R̈(0) − R(τ )Ṙ(τ )R̈(τ ) + Ṙ(τ )3,

ε = −R̈(0) + R(τ )2R̈(0) − Ṙ(τ )2,

ζ = R̈(τ ) − R(τ )2R̈(τ ) + R(τ )Ṙ(τ )2.

The determinant of C is given by

det(C) = [1 − R(τ )2][R̈(0)2 − R̈(τ )2]

+ Ṙ(τ )2[2R̈(0) − 2R(τ )R̈(τ ) + Ṙ(τ )2].

Now, we have to solve the integrals. The exponent of
p(U2, U̇2;U1, U̇1) takes the form

uT C−1u = 1

det(C)

[
ε
(
U̇ 2

1 + U̇ 2
2

) + 2ζU̇1U̇2

+ 2(δ − β )θ (U̇2 − U̇1) + 2(α + γ )θ2].
With the transformation v1 = 1√

2
(U̇2 − U̇1) and v2 =

1√
2
(U̇2 + U̇1), we have U̇ 2

1 + U̇ 2
2 = v2

1 + v2
2 , U̇1U̇2 =

1
2 (v2

2 − v2
1 ) and thus

n2(τ ) = e
− (α+γ )θ2

σ2
U det(C)

2
√

det
(
2πσ 2

U C
)
∫ ∞

0
e
− (ε+ζ )v2

2
2σ2

U det(C)

×
∫ v2

−v2

(
v2

2 − v2
1

)
e
− (ε−ζ )v2

1 +2
√

2(δ−β )θv1
2σ2

U det(C) dv1dv2.

The substitution ṽi = vi/
√

2σ 2
U det(C) simplifies the integrals

to

n2(τ ) = det(C)3/2

2π2
e
−
(

(α+γ )− (β−δ)2
(ε−ζ )

)
θ2

σ2
U det(C)

∫ ∞

0
e−(ε+ζ )ṽ2

2

×
∫ ṽ2

−ṽ2

(
ṽ2

2 − ṽ2
1

)
e
−(ε−ζ )

(
ṽ1− β−δ

ε−ζ
θ√

σ2
U det(C)

)2

d ṽ1d ṽ2.

The inner integrals over ṽ1 can be solved in terms of error
functions:

I0(ṽ2; a, b) ≡
∫ ṽ2

−ṽ2

e−a(ṽ1−b)2
d ṽ1

=
[

1

2

√
π

a
erf (ṽ1)

]√
a(b+ṽ2 )

√
a(b−ṽ2 )

,

I1(ṽ2; a, b) ≡
∫ ṽ2

−ṽ2

ṽ2
1e−a(ṽ1−b)2

dx

=
[

1 + 2ab2

4a3/2

√
π erf (ṽ1)

]√
a(b+ṽ2 )

√
a(b−ṽ2 )

+
[
− 1

2a3/2
ṽ1e−ṽ2

1 + b

a
e−ṽ2

1

]√
a(b+ṽ2 )

√
a(b−ṽ2 )

,

where a = ε − ζ and b = β−δ

ε−ζ
θ√

σ 2
U det(C)

. Some of the outer

integrals over ṽ2 can also be solved in terms of error functions:

I2(a, b, c) ≡ −b

a

∫ ∞

0
e−cṽ2

2 [e−ṽ2
1 ]

√
a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2

= b

a

√
π

a + c
e−ab2+ a2b2

a+c erf

(
ab√
a + c

)
,

I3(a, b, c) ≡ 1

2a3/2

∫ ∞

0
e−cṽ2

2 [ṽ1e−ṽ2
1 ]

√
a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2

= 1

2a(a + c)
e−ab2

−
bc
√

π
a+c

2a(a + c)
e−ab2+ a2b2

a+c erf

(
ab√
a + c

)
,

with c = ε + ζ . The remaining integrals over ṽ2, i.e.

I4(a, b, c) ≡ −1 + 2ab2

4a3/2

√
π

∫ ∞

0
e−cṽ2

2 [erf (ṽ1)]
√

a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2,

I5(a, b, c) ≡ 1

2

√
π

a

∫ ∞

0
ṽ2

2e−cṽ2
2 [erf (ṽ1)]

√
a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2,

can be solved in terms of Owen’s T function T (h, a) =
1

2π

∫ a
0

1
1+x2 e− 1

2 h2(1+x2 )dx (Ref. [59], see Appendix B 2). Com-
bining everything, we obtain

n2(τ ) = det(C)3/2

(2π )2ac
Iana(ã, b̃, c̃, d̃ ),

Iana(ã, b̃, c̃, d̃ ) = e−d̃2 + √
π (1 + c̃)b̃eb̃2−d̃2

erf
(
b̃
)

+ 2π
√

c̃(1/c̃ − 2ã2 − 1)eã2−d̃2

× T (
√

2c̃b̃, 1/
√

c̃), (B6)

with ã = √
ab = β−δ√

ε−ζ

θ√
σ 2

U det(C)
, b̃ = a√

a+c
b =

β−δ√
2ε

θ√
σ 2

U det(C)
, c̃ = c

a = ε+ζ

ε−ζ
, d̃ = √

α + γ θ√
σ 2

U det(C)
. From

n2(τ ), we obtain

Q(τ ) = 1 − n2(τ )

n2
0

and η = 2
∫ ∞

0
Q(τ )dτ

which allow us to evaluate the Stratonovich approximation.

APPENDIX C: STRATONOVICH APPROXIMATION

Here, we compare the full Stratonovich approximation
Eq. (34),

HS (T ) = −
∫ T

0
n1(t )

ln
(
1 − ∫ T

0 Q(t, t ′)n1(t ′)dt ′)∫ T
0 Q(t, t ′)n1(t ′)dt ′ dt,

with its approximation Eq. (35),

hS (t ) = κS

n0
n1(t ), κS = −1

η
ln (1 − n0η).

Importantly, both lead to equivalent hazard functions for infi-
nite times [40].

To see this, we need two properties of n1 and n2. First,
the upcrossing probability saturates at a finite value once the
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FIG. 12. Comparison of the full Stratonovich approxima-
tion with its approximation Eq. (35). (a) ISI distribution from
Stratonovich approximation (colors) and Eq. (35) (black). (b) Same
for the power spectra. Parameters as in Figs. 8(g) and 8(h).

transient effect of the voltage reset is over, n0 = limt→∞ n1(t ).
Second, Q(t1, t2) = 1 − n2(t1,t2 )

n1(t1 )n1(t2 ) decays to zero for |t2 −
t1| → ∞ because the upcrossings decorrelate, n2(t1, t2) →
n1(t1)n1(t2). Thus one can approximate

∫ T
0 Q(t, t ′)n1(t ′)dt ′ ≈

n0
∫∞

0 Q(t, t ′)dt ′ ≡ n0η for 0  t  T . Then, neglecting the

contributions of
∫ T

0 Q(t, t ′)n1(t ′)dt ′ − n0η for t close to 0 or

T leads to HS (T ) ≈ ∫ T
0

κS
n0

n1(t )dt . Neglecting these contribu-
tions is justified for large T because the integral is dominated
by the contributions in between these boundaries. Hence, we
arrive at limT →∞ d

dT HS (T ) = limt→∞ hS (t ) = κS or, in terms
of the ISI distribution, p(T ) ∼ exp(−κST ) for t → ∞.

Since the long-time asymptotics are the same, differences
can only occur at short times. In Fig. 12, we compare the full
Stratonovich approximation with Eq. (35) for two representa-
tive examples. Fortunately, both the resulting ISI distributions
[Fig. 12(a)] and the power spectra [Fig. 12(b)] agree closely
for all times. Solving the full Stratonovich is numerically
challenging (see below); thus, we use the simpler and more
efficient approximation throughout in the main text.

1. Numerics

Here, we develop a numerical implementation of the
Stratonovich approximation that is feasible for long time in-
tervals without excessive demands on the working memory.

For stationary Q(t, t ′) = Q(|t ′ − t |), the Stratonovich ap-
proximation Eq. (34) reads

HS (T ) = −
∫ T

0
n1(t )

ln
[
1 − ∫ T

0 Q(|t ′ − t |)n1(t ′)dt ′]∫ T
0 Q(|t ′ − t |)n1(t ′)dt ′ dt .

With the definition

f (T, t ) =
∫ T

0
Q(|t ′ − t |)n1(t ′)dt ′,

we have

HS (T ) = −
∫ T

0
n1(t )

ln[1 − f (T, t )]

f (T, t )
dt .

Since Q(τ → ∞) → 0, i.e., it vanishes for long time lags, we
can introduce an associated timescale: Q(τ ) ≈ 0 for all τ >

τQ. Similarly, n1(t → ∞) → n0 on the timescale τn such that
n1(t ) ≈ n0 for all t > τn.

The main problem in computing HS (T ) is that a large three-
dimensional grid is necessary for the three time arguments t ,
t ′, and T . To circumvent this problem, we split the domain
of integration such that the full grid is only needed in small
subdomains. In the remainder of the domain, the integrals can
be solved by successive one-dimensional integration.

We consider f (T, t ) first. Because Q(|t ′ − t |) vanishes for
|t ′ − t | > τQ, we know that the integrand only contributes in
the vicinity of t . Thus we can extend the upper limit to infinity,
f (T, t ) ≈ f (∞, t ) if t < T − τQ. Accordingly, we split the
integral where possible:

HT�τQ

S (T ) = −
∫ T

0
n1(t )

ln[1 − f (T, t )]

f (T, t )
dt,

HT >τQ

S (T ) ≈ −
∫ T −τQ

0
n1(t )

ln[1 − f (∞, t )]

f (∞, t )
dt

+ RT >τQ (T ),

RT >τQ (T ) = −
∫ T

T −τQ

n1(t )
ln[1 − f (T, t )]

f (T, t )
dt .

The remainder RT >τQ (T ) becomes constant for T > τn + 2τQ

because n1(t ) ≈ n0 in both integrals in this regime and we
can set RT >τn+2τQ (T ) ≈ RT >τn+2τQ (τn + 2τQ). Hence, we only
have to calculate the full integral for HT�τQ

S (T ) and for
RT >τQ (T ) until it is constant.

The remaining integrals in HT >τQ

S (T ) can be solved suc-
cessively. First, we solve the convolution integral

f (∞, t ) =
∫ ∞

0
Q(|t ′ − t |)n1(t ′)dt ′

using Fourier transformation. Then, we can insert the result
in HT >τQ

S (T ) and solve the integral over t . All integrals are
approximated by their respective Riemann sum.
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