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Certifying the classical simulation cost of a quantum channel
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A fundamental objective in quantum information science is to determine the cost in classical resources of
simulating a particular quantum system. The classical simulation cost is quantified by the signaling dimension
which specifies the minimum amount of classical communication needed to perfectly simulate a channel’s input-
output correlations when unlimited shared randomness is held between encoder and decoder. This paper provides
a collection of device-independent tests that place lower and upper bounds on the signaling dimension of a
channel. Among them, a single family of tests is shown to determine when a noisy classical channel can be
simulated using an amount of communication strictly less than either its input or its output alphabet size. In
addition, a family of eight signaling dimension witnesses is presented that completely characterize when any
four-outcome measurement channel, such as a Bell measurement, can be simulated using one communication
bit and shared randomness. Finally, we bound the signaling dimension for all partial replacer channels in d
dimensions. The bounds are found to be tight for the special case of the erasure channel.
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I. INTRODUCTION

The transmission of quantum states between devices
is crucial for many quantum network protocols. In the
near-term, quantum memory limitations will restrict quan-
tum networks to “prepare and measure” functionality [1],
which allows for quantum communication between sepa-
rated parties but requires measurement immediately upon
reception. Prepare and measure scenarios exhibit quantum
advantages for tasks that involve distributed information
processing [2] or establishing nonlocal correlations which
cannot be reproduced by bounded classical communica-
tion and shared randomness [3]. These nonlocal correlations
lead to quantum advantages in random access codes [4,5],
randomness expansion [6], device self-testing [7], semi-
device-independent key distribution [8], and dimensionality
witnessing [9,10].

The general communication process is depicted in Fig. 1(a)
with Alice (the sender) and Bob (the receiver) connected
by some quantum channel N A→B. Alice encodes a classical
input x ∈ X into a quantum state ρx and sends it through
the channel to Bob, who then measures the output using a
positive-operator valued measure (POVM) {�y}y∈Y to obtain
a classical message y ∈ Y . The induced classical channel,
denoted by PN , has transition probabilities

PN (y|x) = Tr[�yN (ρx )]. (1)
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A famous result by Holevo implies that the communication
capacity of PN is limited by log2 d , where d is the input
Hilbert space dimension of N [11]; hence, a noiseless clas-
sical channel transmitting d messages has a capacity no less
than PN .

However, channel capacity is just one figure of merit, and
there may be other features of a PN that do not readily admit
a classical simulation. The strongest form of simulation is an
exact replication of the transition probabilities PN (y|x) for
any set of states {ρx}x∈X and POVM {�y}y∈Y . This prob-
lem falls in the domain of zero-error quantum information
theory [12–16], which considers the classical and quantum
resources needed to perfectly simulate a given channel. Unlike
the capacity, a zero-error simulation of PN typically requires
additional communication beyond the input dimension of N .
For example, a noiseless qubit channel id2 can generate chan-
nels Pid2 that cannot be faithfully simulated using one bit of
classical communication [3] (see Fig. 2).

The simulation question becomes more interesting if
“static” resources are used for the channel simulation [17,18],
in addition to the “dynamic” resource of noiseless classical
communication. For example, shared randomness is a rela-
tively inexpensive classical resource that Alice and Bob can
use to coordinate their encoding and decoding maps used in
the simulation protocol shown in Fig. 1(b). Using shared ran-
domness, a channel can be exactly simulated with a forward
noiseless communication rate that asymptotically approaches
the channel capacity; a fact known as the Classical Reverse
Shannon Theorem [19]. More powerful static resources such
as shared entanglement or nonsignaling correlations could
also be considered [15,20,21].

While the Classical Reverse Shannon Theorem describes
many-copy channel simulation, this work focuses on zero-
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FIG. 1. A general classical communication process. We repre-
sent classical information as blue double lines, quantum information
as black solid lines, and shared randomness as dotted red lines.
(a) A classical channel PN is generated from a quantum channel
N via Eq. (1). A classical-quantum encoder � maps the classical
input x ∈ X into a quantum state ρx . A quantum-classical decoder
� implements POVM {�y}y∈Y . (b) Channel PN is simulated using
shared randomness and a noiseless classical channel via Eq. (2).
Alice encodes input x into classical message m with probability
Tλ(m|x) while Bob decodes message m into output y with probability
Rλ(y|m). The protocol is coordinated using a shared random value λ

drawn from sample space � with probability q(λ).

error channel simulation in the single-copy case. The min-
imum amount of classical communication (with unlimited
shared randomness) needed to perfectly simulate every clas-
sical channel PN having the form of Eq. (1) is known as
the signaling dimension of N [22]. Significant progress in
understanding the signaling dimension was made by Frenkel
and Weiner who showed that every d-dimensional quantum
channel requires no more than d classical messages to per-
fectly simulate [23]. This result is a “fine-grained” version
of Holevo’s Theorem for channel capacity mentioned above.
However, the Frenkel-Weiner bound is not tight in general.
For example, consider the completely depolarizing channel on
d dimensions, D(ρ) = I/d . For any choice of inputs {ρx}x and
POVM {�y}y, the Frenkel-Weiner protocol yields a simulation
of PD that uses a forward transmission of d messages. How-
ever, this is clearly not optimal since PD can be reproduced
with no forward communication whatsoever; Bob just sam-
ples from the distribution P(y) = Tr[�y]/d . A fundamental
problem is then to understand when a noisy classical channel
sending d messages from Alice to Bob actually requires d
noiseless classical messages for zero-error simulation. As a
main result of this paper, we provide a family of simple tests
that determine when this amount of communication is needed.
In other words, we characterize the conditions in which the
simulation protocol of Frenkel and Weiner is optimal for the
purposes of sending d messages over a d-dimensional quan-
tum channel.

This work pursues a device-independent certification of
signaling dimension similar to previous approaches used for
the device-independent dimensionality testing of classical and
quantum devices [24–28]. Specifically, we obtain signaling
dimension witnesses that stipulate necessary conditions on

the signaling dimension of N in terms of the probabilities
PN (y|x), with no assumptions made about the quantum states
{ρx}x, POVM {�y}y, or channel N [29]. Complementary re-
sults have been obtained by Dall’Arno et al. who approached
the simulation problem from the quantum side and character-
ized the set of channels PN that can be obtained using binary
encodings for special types of quantum channels N [29]. In
this paper, we compute a wide range of signaling dimension
witnesses using the adjacency decomposition technique [30],
recovering prior results of Frenkel and Weiner [23] and gen-
eralizing work by Heinosaari and Kerppo [31]. For certain
cases we prove that these inequalities are complete, i.e., pro-
viding both necessary and sufficient conditions for signaling
dimension. As a further application, we compute bounds for
the signaling dimension of partial replacer channels. Proofs
for our main results are found in the Appendix while our
supporting software is found on Github [32]. For convenience,
we provide a glossary of this work’s notation in Appendix A.

II. PRELIMINARIES

We begin our investigation by reviewing the structure
of channels that use noiseless classical communication and
shared randomness. Let Pn→n′

denote the family of channels
having input set X = [n] := {1, · · · , n} and output set Y =
[n′]. A channel P ∈ Pn→n′

is represented by an n′ × n column
stochastic matrix, and we thus identify Pn→n′

as a subset of
Rn′×n, the set of all n′ × n real matrices. In general, we refer
to a column (or row) of a matrix as being stochastic if its
elements are nonnegative and sum to unity, and a column (re-
spectively, row) stochastic matrix has only stochastic columns
(respectively, rows). The elements of a real matrix G ∈ Rn′×n

are denoted by Gy,x, while those of a column stochastic matrix
P ∈ Pn→n′

are denoted by P(y|x) to reflect their status as con-
ditional probabilities. The Euclidean inner product between
G, P ∈ Rn′×n is expressed as 〈G, P〉 :=∑x,y Gy,xP(y|x), and

for any G ∈ Rn′×n and γ ∈ R, we let the tuple (G, γ ) denote
the linear inequality 〈G, P〉 � γ .

A. Signaling polytopes

Consider now a scenario in which Alice and Bob have
access to a noiseless channel capable of sending d distinct
messages. They can use this channel to simulate a noisy
channel by applying pre- and post-processing maps. If they
coordinate these maps using a shared random variable λ with
probability mass function q(λ), then they can simulate any
channel P that decomposes as

P(y|x) =
∑

λ

q(λ)
∑

m∈[d]

Rλ(y|m)Tλ(m|x), (2)

where m ∈ [d] is the message sent from Alice to Bob and
Tλ(m|x) [respectively, Rλ(y|m)] is an element of Alice’s en-
coder Tλ ∈ Pn→d (respectively, Bob’s decoder Rλ ∈ Pd→n′

).
Definition 1. The signaling polytope Cn→n′

d is the set of
all channels satisfying Eq. (2) for any positive integers n, n′,
and d (see Fig. 2).

The signaling polytope Cn→n′
d is convex due to the fact that

any randomness in the encoding or decoding maps of Eq. (2)
can be absorbed into the shared randomness distribution q(λ).
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FIG. 2. A graphical analogy illustrating key features of signaling
polytopes. Note that the geometry has been simplified by remov-
ing vertices and and projecting the polytope onto a plane. The
example shows a hierarchy of three signaling polytopes C3→3

d with
d ∈ [1, 3]. Each signaling polytope is a convex set where hierar-
chy C3→3

d=1 ⊂ C3→3
d=2 ⊂ C3→3

d=3 holds for any n and n′. The vertices of
each polytope are depicted as circles while the facets are lines. The
C3→3

d=1 polytope is blue, the C3→3
d=2 polytope is orange, and the C3→3

d=3 =
P3→3 polytope is black. A signaling dimension witness constitutes
a facet of the signaling polytope. The channel PRed (red star) has
κ (PRed) = 3 while the channel PGreen (green star) has κ (PGreen) = 2.

As a result, the extreme points or vertices of the signaling
polytope are deterministic channels V ∈ Pn→n′

such that V
has 0/1 matrix elements and rank(V) � d where d is the num-
ber of distinct classical messages. We see that dim(Cn→n′

d ) =
n(n′ − 1) when d � 2 as a result of the n normalization con-
straints on Pn→n′

. For d = 1, dim(Cn→n′
d=1 ) = n′ due to the

independence between input and output, P(y|x) = P(y|x′) for
all x, x′ ∈ X and y ∈ Y . By the Weyl-Minkowski Theorem
[33], the signaling polytope can be described as the intersec-
tion of a finite set of linear inequalities describing half-spaces
{〈Gk, P〉 � γk}r

k=1. For a channel P, it follows that P ∈ Cn→n′
d

iff it satisfies all inequalities in this set. The signaling polytope
is previously described in part by references [22,23]. In the
main body we highlight key features of its structure while a
more detailed characterization is found in Appendix B.

B. Communication cost of simulating a channel

Having introduced signaling polytopes, we can now define
the signaling dimension of quantum and classical channels
within our framework. This terminology is adopted from re-
cent work by Dall’Arno et al. [22] who defined the signaling
dimension of a system in generalized probabilistic theories;
an analogous quantity without shared randomness has also
been studied by Heinosaari et al. [34]. In what follows, we
assume that N : S (A) → S (B) is a completely positive trace-
preserving (CPTP) map, with S (A) denoting the set of density
operators (i.e., trace-one positive operators) on system A, and
similarly for S (B).

Definition 2.
(i) The signaling dimension of a classical channel P,

expressed as κ (P), is the zero-error communication cost sim-

ulating P. In other words, for P ∈ Pn→n′
, κ (P) is the smallest

integer d such that P ∈ Cn→n′
d .

(ii) For a quantum channel N : S (A) → S (B), let Pn→n′
N

denote the set of all classical channels PN ∈ Pn→n′
generated

from N via Eq. (1). The n → n′ signaling dimension of a
quantum channel, expressed as κn→n′

(N ), is defined as the
smallest integer d such that Pn→n′

N ⊂ Cn→n′
d .

(iii) The signaling dimension of a quantum channel is
expressed as κ (N ) where κ (N ) is the smallest integer d such
that Pn→n′

N ⊂ Cn→n′
d for all n, n′.

For any classical channel P ∈ Pn→n′
or quantum channel

N with fixed n and n′, a trivial upper bound on their respective
signaling dimensions are given by

κ (P) � min{n, n′} and κn→n′
(N ) � min{n, n′}. (3)

Indeed, when this bound is attained, Alice and Bob can
simulate any P ∈ Pn→n′

: either Alice applies channel P on
her input and sends the output to Bob, or she sends the
input to Bob and he applies P on his end. In Theorem 1
we provide necessary and sufficient conditions for when this
trivial upper bound is attained. For a quantum channel N , a
stronger upper bound is found with respect to Hilbert space
dimension,

κ (N ) � min{dA, dB}, (4)

where dA and dB are the Hilbert space dimensions of Alice
and Bob’s systems. This bound is a direct consequence of
Frenkel and Weiner’s result [23], which can be restated in our
terminology as κ (idd ) = d , where idd is the noiseless channel
on a d-dimensional quantum system. To prove Eq. (4), Alice
can either send the states {ρx}x to Bob who then performs
the POVM {N †(�y)}y, or she can send the states {N (ρx )}x

to Bob who then performs the POVM {�y}y. Here N † de-
notes the adjoint map of N . Another relationship we observe
is

κn→n′
(N ) = κn→d2

B (N ) ∀ n′ � d2
B. (5)

This follows from Carathéodory’s Theorem [35], which im-
plies that every POVM on a dB-dimensional system can be
expressed as a convex combination of POVMs with no more
than d2

B outcomes [36]. Since shared randomness is free, Alice
and Bob can always restrict their attention to POVMs with no
more than d2

B outcomes for the purposes of simulating any
channel in Pn→n′

N when n′ � d2
B.

The signaling dimension of quantum and classical channels
can be unified through the following observation. A classical
channel from set X to Y can be represented by a CPTP map
N : S (C|X |) → S (C|Y|) that completely dephases its input
and output in fixed orthonormal bases {|x〉}x∈X and {|y〉}y∈Y ,
respectively. The transition probabilities of N are then given
by Eq. (1) as PN (y|x) = Tr[|y〉〈y|N (|x〉〈x|)]. The channel N
can be used to generate another channel N with input and out-
put alphabets X and Y by performing a pre-processing map
T : X → X and post-processing map R : Y → Y , thereby
yielding the channel PN = RPN T. When this relationship
holds, PN is said to be ultraweakly majorized by PN [31,34],
and the signaling dimension of PN is no greater than that
of PN [15]. Thus, κ (PN ) can always be obtained from the
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transition probabilities PN (y|x) directly with no need for
pre/post-processing.

C. Witnessing signaling dimension

The signaling dimension is a device-independent quantity
that can be ascertained from input-output correlations of a
channel. To certify the signaling dimension of a classical
channel PN , one must find the smallest d such that PN ∈
Cn→n′

d . Hence, we can apply the structure of the signaling
polytope to develop device-independent tests of signaling
dimension. Within this framework, the linear inequalities
bounding a signaling polytope Cn→n′

d are used to witness a
channel’s inclusion in or exclusion from Cn→n′

d . This approach
is taken by Dall’Arno et al. to demonstrate a violation of the
No-Hypersignaling Principle [22]. These linear witnesses are
similar to those applied in classical and quantum dimension-
ality witnessing [24–28].

Definition 3. A signaling dimension witness of the sig-
naling polytope Cn→n′

d is a linear inequality 〈G, P〉 � γ that
satisfies Cn→n′

d ⊂ {P ∈ Pn→n′ | 〈G, P〉 � γ }. A signaling di-
mension witness is “tight” if the equality 〈G, P〉 = γ is
satisfied by dim(Cn→n′

d ) = n(n′ − 1) affinely independent ver-
tices. In other words, a tight signaling dimension witness
describes a facet of Cn→n′

d (see Fig. 2).
It follows for a channel P ∈ Pn→n′

that if 〈G, P〉 	� γ , then
P /∈ Cn→n′

d . That is, if the correlations P(y|x) violate a signal-
ing dimension witness of Cn→n′

d , then the signaling dimension
is lower bounded as κ (P) > d . Alternatively, if P satisfy all
signaling dimension witnesses belonging to the complete set
of signaling polytope facets, then the signaling dimension is
upper bounded as κ (P) � d . It then becomes our objective to
procure signaling dimension witnesses that can be applied in
the device-independent certification of signaling dimension.

III. WITNESSES FOR SIGNALING DIMENSION

In this section we discuss the signaling dimension wit-
nesses that bound signaling polytopes. Since signaling
polytopes are invariant under the relabelling of inputs and
outputs, all discussed inequalities describe a family of in-
equalities where each element is obtained by a permutation
of the inputs and/or outputs. Additionally, a signaling di-
mension witness for one signaling polytope can be lifted
to a polytope having more inputs and/or outputs [37,38].
Formally, a signaling dimension witness 〈G, P〉 � γ is said
to be input lifted to 〈G′′, P〉 � γ if G′′ ∈ Rn′×m is obtained
from G ∈ Rn′×n by padding it with (m − n) all-zero columns.
However, a signaling dimension witness 〈G, P〉 � γ is said
to be output lifted to 〈G′, P〉 � γ if G′ ∈ Rm′×n is obtained
from G ∈ Rn′×n by copying rows; i.e., there exists a surjective
function f : [m′] → [n′] such that G′

y,x = G f (y),x for all y ∈
[m′] and x ∈ [n]. Note that these descriptions of input/output
liftings requires that m′ > n′ and m > n. As an example, we
demonstrate liftings on the identity matrix G = I3,

G =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ Input−−−→
Lifting

G′′ =
⎡⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤⎦, (6)

G =
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ Output−−−→
Lifting

G′ =

⎡⎢⎣1 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎦. (7)

To obtain polytope facets, it is typical to first enumerate the
vertices, then use a transformation technique such as Fourier-
Motzkin elimination to derive the facets [33]. Software such
as PORTA [39,40] assists in this computation, but the large
number of vertices leads to impractical run times. To improve
efficiency, we utilize the adjacency decomposition technique
which heavily exploits the permutation symmetry of signaling
polytopes [30] (see Appendix C). Our software and computed
facets are publicly available on Github [32] while a catalog
of general tight signaling dimension witnesses is provided in
Appendix D. We now turn to a specific family of signaling
dimension witnesses motivated by our computational results.

A. Ambiguous guessing games

For k ∈ [0, n′] and d � min{n, n′}, let Gn,n′
k,d be any n′ × n

matrix such that (i) k rows are stochastic with 0/1 elements,
and (ii) the remaining (n′ − k) rows have 1/(n − d + 1) in
each column. As explained below, it will be helpful to refer
to rows of type (i) as “guessing rows” and rows of type (ii)
as “ambiguous rows.” For example, if n = n′ = 6, k = 5, and
d = 2, then up to a permutation of rows and columns we have

G6,6
5,2 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1
5

1
5

1
5

1
5

1
5

1
5

⎤⎥⎥⎥⎥⎥⎦. (8)

Note that the example matrix in Eq. (8) is nonunique and
represents a member of the family of ambiguous guessing
games with five guessing rows. For any channel P ∈ Cn→n′

d ,
the signaling dimension witness〈

Gn,n′
k,d , P

〉
� d (9)

is satisfied. To prove this bound, suppose without loss of
generality that the first k rows of Gn,n′

k,d are guessing rows.

Let V be any vertex of Cn→n′
d where t of its first k rows are

nonzero. If t = d , then clearly Eq. (9) holds. Otherwise, if
t < d , then 〈Gn,n′

k,d , V〉 � t + (n − t )/(n − d + 1) � d , where
the last inequality follows after some algebraic manipulation.

Equation (9) can be interpreted as the score of a guessing
game that Bob plays with Alice. Suppose that Alice chooses
a channel input x ∈ [n] with uniform probability and sends
it through a channel P. Based on the channel output y, Bob
guesses the value of x. Formally, Bob computes x̂ = f (y)
for some guessing function f , and if x̂ = x then he receives
one point. In this game, Bob may also declare Alice’s in-
put as being ambiguous or indistinguishable, meaning that
f : [d] → [n] ∪ {?} with “?′′ denoting Bob’s declaration of
the ambiguous input. However, whenever Bob declares “?′′
he only receives 1/(n − d + 1) points. Then, Eq. (9) says that
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whenever P ∈ Cn→n′
d Bob’s average score is bounded by d

n .

Note, there is a one-to-one correspondence between each Gn,n′
k,d

and the particular guessing function f that Bob performs. If y
labels a guessing row of Gn,n′

k,d , then f (y) = x̂, where x̂ labels
the only nonzero column of row y. However, if y labels an
ambiguous row, then f (y) = “?′′.

We define the (k, d )-ambiguous polytope An→n′
k,d as the col-

lection of all channels P ∈ Pn→n′
satisfying Eq. (9) for every

Gn,n′
k,d . Naturally, Cn→n′

d ⊂ An→n′
k,d for all k ∈ [0, n′], therefore,

if P /∈ An→n′
k,d , then P /∈ Cn→n′

d . Based on the discussion of the
previous paragraph, it is easy to decide membership of An→n′

k,d .
Proposition 1. A channel P ∈ Pn→n′

belongs to An→n′
k,d iff

max
π∈Sn′

k∑
i=1

‖rπ (i)‖∞ + 1

n − d + 1

n′∑
i=k+1

‖rπ (i)‖1 � d, (10)

where the maximization is taken over all permutations on [n′],
ri denotes the ith row of P, ‖ri‖∞ is the largest element in ri,
and ‖ri‖1 is the row sum of ri.

The maximization on the left-hand side (LHS) of Eq. (10)
can be performed efficiently using the following procedure.
For each row ri we assign a pair (ai, bi ) where ai = ‖ri‖∞ and
bi = 1

n−d+1‖ri‖1. Define δi = ai − bi, and relabel the rows
of P in nonincreasing order of the δi. Then according to
this sorting, we have an ambiguous guessing game score of∑k

i=1 ai +∑n′
i=k+1 bi, which we claim attains the maximum

on the LHS of Eq. (10). Indeed, for any other row permutation
π , the guessing game score is given by∑

i ∈ {1, · · · , k}
π (i) ∈ {1, · · · , k}

ai +
∑

i ∈ {1, · · · , k}
π (i) ∈ {k + 1, · · · , n′}

bi

+
∑

i ∈ {k + 1, · · · , n′}
π (i) ∈ {1, · · · , k}

ai +
∑

i ∈ {k + 1, · · · , n′}
π (i) ∈ {k + 1, · · · , n′}

bi. (11)

Hence, the difference in these two scores is∑
i ∈ {1, · · · , k}

π (i) ∈ {k + 1, · · · , n′}

(ai − bi ) −
∑

i ∈ {k + 1, · · · , n′}
π (i) ∈ {1, · · · , k}

(ai − bi ) � 0,

(12)

where the inequality follows from the fact that we have or-
dered the indices in nonincreasing order of (ai − bi ), and the
number of terms in each summation is the same since π is a
bijection.

A special case of the ambiguous guessing games arises
when k = n′. Then up to a normalization factor 1

n , we in-
terpret the LHS of Eq. (10) as the success probability when
Bob performs maximum likelihood estimation of Alice’s input
value x given his outcome y [i.e., he chooses the value x
that maximizes P(y|x)]. We hence define Mn→n′

d := An→n′
n′,d

as the maximum likelihood (ML) estimation polytope. Using
Proposition 1 we see that

P ∈ Mn→n′
d ⇐⇒

n′∑
y=1

max
x∈[n]

P(y|x) � d. (13)

An important question is whether the ambiguous guessing
signaling dimension witnesses of Eq. (9) are tight for a sig-
naling polytope Cn→n′

d . In general, this will not be case. For
instance, 〈Gn,n′

k,d , P〉 � d is trivially satisfied whenever k = 0.
Nevertheless, in many cases we can establish tightness of
these inequalities. A demonstration of the following facts is
carried out in Appendix E.

Proposition 2.
(i) For min{n, n′} > d > 1 and k = n′, Eq. (9) is a tight

signaling dimension witness of Cn→n′
d iff Gn,n′

k,d can be obtained
by performing input/output liftings and row/column permu-
tations on an m × m identity matrix Im, with min{n, n′} �
m > d .

(ii) For n′ > k � n > d > 1, Eq. (9) is a tight signaling
dimension witness of Cn→n′

d iff Gn,n′
k,d can be obtained from the

(n + 1) × n matrix[
In

1
n−d+1 · · · 1

n−d+1 · · · 1
n−d+1

]
(14)

by performing output liftings and row/column permutations.
Note that the input/output liftings are used to manipu-

late the identity matrix Im and the matrix of Eq. (14) into
an n′ × n matrix Gn,n′

k,d . The tight signaling dimension wit-
nesses described in Proposition 2(i) completely characterize
the ML polytope Mn→n′

d . For this reason, we refer to any Gn,n′
k,d

satisfying the conditions of Proposition 2(i) as a maximum
likelihood (ML) facet (see Appendix D 2). Likewise, we refer
to any Gn,n′

k,d satisfying the conditions of Proposition 2(ii) as an
ambiguous guessing facet (see Appendix D 3).

B. Fully characterized signaling polytopes

In general, we are unable to identify the complete set of
tight signaling dimension witnesses that bound each signaling
polytope Cn→n′

d . However, we analytically solve the problem
in special cases.

Theorem 1. Let n and n′ be arbitrary integers.
(i) If d = n′ − 1, then Cn→n′

d = Mn→n′
d .

(ii) If d = n − 1, then Cn→n′
d =

n′⋂
k=n

An→n′
k,d .

In other words, to decide whether a channel can be simu-
lated by an amount of classical messages strictly less than the
input/output alphabets, it suffices to consider the ambiguous
guessing games. Moreover, by Eq. (10) it is simple to check
if these conditions are satisfied for a given channel P. A proof
of Theorem 1 is found in Appendix F.

We also characterize the Cn→4
2 signaling polytope. As an

application, this case can be used to understand the classical
simulation cost of performing Bell measurements on a two-
qubit system, since this process induces a classical channel
with four outputs.

Theorem 2. For any integer n, a channel P ∈ Pn→4 belongs
to Cn→4

2 iff it satisfies the eight signaling dimension witnesses
depicted in Table I and all their input/output permutations.

Remarkably, this result shows that no new facet classes for
Cn→4

2 are found when n > 6. Consequently, to demonstrate
that a channel P ∈ Pn→4 requires more than one bit for simu-
lation, it suffices to consider input sets of size no greater than
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TABLE I. Generator facets for the C6→4
2 signaling polytope. Each inequality is expressed as γ � G where the inner product 〈G, P〉 is

implied. (a) ML facet input/output lifted from C3,3
2 . (b) ML facet output lifted from C4→4

2 . (c) Anti-guessing facet output lifted from C4→4
2 .

(d) k-guessing facet of C6→4
2 . (e) Ambiguous guessing facet output lifted from C3→4

2 . (f–h) Rescalings of the C3→4
2 ambiguous guessing facet

output lifted to C6→4
2 . General forms of these tight signaling dimension witnesses are derived in Appendix D.

(a) 2 �

⎡⎢⎢⎣
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎥⎥⎦ (b) 2 �

⎡⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤⎥⎥⎦

(c) 3 �

⎡⎢⎢⎣
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0

⎤⎥⎥⎦ (d) 5 �

⎡⎢⎢⎣
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎤⎥⎥⎦

(e) 4 �

⎡⎢⎢⎣
2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
1 1 1 0 0 0

⎤⎥⎥⎦ (f) 4 �

⎡⎢⎢⎣
2 0 0 0 0 0
0 2 0 0 0 0
0 0 1 1 0 0
1 1 1 0 0 0

⎤⎥⎥⎦

(g) 4 �

⎡⎢⎢⎣
2 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
1 1 1 0 0 0

⎤⎥⎥⎦ (h) 4 �

⎡⎢⎢⎣
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0

⎤⎥⎥⎦

six. For n < 6, the facet classes of Cn→4
2 are given by the facets

in Table I having (6 − n) all-zero columns. We conjecture that
in general, no more than

(n′
d

)
inputs are needed to certify that

a channel P ∈ Pn→n′
has a signaling dimension larger than d .

A proof of Theorem 2 is found in Appendix G.

IV. CERTIFYING THE SIGNALING DIMENSION OF A
QUANTUM CHANNEL

In practice, the classical or quantum channel connecting
Alice and Bob may be unknown or not fully characterized.
This is the case in most experimental settings where unpre-
dictable noise affects the encoded signaling states. In such
scenarios, it is desirable to ascertain certain properties of
the channel without having access to the physical device or
pre-established trust in the hardware. A device-independent
approach infers properties of the channel by analyzing the
observed classical input-output correlations P(y|x) obtained
as sample averages over many uses of the memoryless channel
[29].

To certify the device signaling dimension of a quantum
channel, Alice and Bob use trusted state preparations and
measurements, but make minimal assumptions about the un-
trusted channel N A→B (see Fig. 3). Their objective is to
bound κ (N ) using observed classical input-output correla-
tions PN (y|x) and the certification procedure for κ (PN ).
Applying the results of the previous section, if 〈G, P〉 � γ

is a signaling dimension witness for Cn→n′
d and

max
{ρx}x,{�y}y

∑
y,x

Gy,xTr[�yN (ρx )] > γ , (15)

then min{dA, dB} � κ (N ) > d where the upper bound comes
from Eq. (4). The conic optimization problem in Eq. (15) can
be analytically solved only in special cases [41]. Hence, decid-
ing whether a given quantum channel can violate a particular
signaling dimension witness is typically quite challenging.

One convenience is that we no longer need to consider per-
mutations of the induced classical channel PN because these
permutations can be achieved through selecting appropriate
quantum states {ρx}x and measurements {�y}y.

The upper bound provided by Eq. (4) draws a connec-
tion between the signaling dimension of a quantum channel
and the dimension of its input/output Hilbert spaces. Hence,
a device-independent certification of signaling dimension
leads to a device-independent certification of the physical
input/output Hilbert spaces of the channel connecting Alice
and Bob.

Despite the general difficulty of computing κ (N ), we
nevertheless establish bounds for the signaling dimension of

FIG. 3. A depiction of the required device trust to implement
the device-independent certification of the signaling dimension for
classical and quantum channels. (a) Alice and Bob certify the sig-
naling dimension of an untrusted classical channel PN using only
the probabilities PN (y|x) for all x ∈ X and y ∈ Y . (b) Alice and
Bob certify the signaling dimension of an untrusted quantum channel
N using trusted state preparation � and trusted measurement �. If
Alice and Bob do not trust their encode/decode devices, then bounds
on the signaling dimension can still be established by treating the
quantum communication system as a classical channel.
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partial replacer channels. A d-dimensional partial replacer
channel has the form

Rμ(X ) = μX + (1 − μ)Tr[X ]σ, (16)

where 1 � μ � 0 and σ is some fixed density matrix. The
partial depolarizing channel Dμ corresponds to σ being the
maximally mixed state whereas the partial erasure channel Eμ

corresponds to σ being an erasure flag |E〉〈E | with |E〉 being
orthogonal to {|1〉, · · · , |d〉}.

Theorem 3. The signaling dimension of a partial replacer
channel is bounded by

�μd + 1 − μ� � κ (Rμ) � min{d, �μd + 1�}. (17)

Moreover, for the partial erasure channel, the upper bound is
tight for all μ ∈ [0, 1].

Proof. We first prove the upper bound in Eq. (17). The
trivial bound κ (Rμ) � d was already observed in Eq. (4). To
show that κ (Rμ) � �μd + 1�, let {ρx}x be any collection of
inputs and {�y}y a POVM. Then

PRμ
(y|x) = μP(y|x) + (1 − μ)S(y), (18)

where P(y|x) = Tr[�yρx] and S(y) = Tr[�yσ ]. From
Ref. [23], we know that P(b|x) can be decomposed like
Eq. (2). Substituting this into Eq. (18) yields

PRμ
(u|x) =

∑
λ

q(λ)
d∑

m=1

Rλ(m|x)

× [μTλ(y|m) + (1 − μ)S(y)]. (19)

For r = �μd + 1�, let ν be a random variable uniformly dis-
tributed over {( d

r−1

)}, which is the collection of all subsets
of [d] having size r − 1. For a given λ, ν, and input x,
Alice performs the channel Tλ. If m ∈ ν, then Alice sends
message m′ = m; otherwise, Alice sends message m′ = 0.
Upon receiving m′, Bob does the following: if m′ 	= 0 he
performs channel Rλ with probability μd

r−1 and samples from

distribution S(y) with probability 1 − μd
r−1 ; if m′ 	= 0 he sam-

ples from S(y) with probability one. Since Pr{m ∈ ν} = r−1
d ,

this protocol faithfully simulates PRμ
. To establish the lower

bound in Eq. (18), suppose that Alice sends orthogonal states
{|1〉, · · · , |d〉} and Bob measures in the same basis. Then

d∑
i=1

〈i|Rμ(|i〉〈i|)|i〉 = dμ + (1 − μ), (20)

which will violate Eq. (9) for the ML polytope Md→d
r when-

ever r < μd + (1 − μ). Hence, any zero-error simulation will
require at least �μd + 1 − μ� classical messages. For the
erasure channel, this lower bound can be tightened by con-
sidering the score for other ambiguous games, as detailed in
Appendix H.

V. SUMMARY AND DISCUSSION

In this work, we have presented the signaling dimension of
a channel as its classical simulation cost. In doing so, we have
advanced a device-independent framework for certifying the
signaling dimension of quantum and classical channels as well
as their input/output dimensions. While this work focuses on

communication systems, our framework also applies to any
quantum process including computation and memory tasks.

In principle, given a classical channel P ∈ Pn→n′
the sig-

naling dimension κ (P) can be certified incrementally. In each
step, the parameter d is fixed and all signaling dimension
witnesses bounding Cn→n′

d , 〈Gk, P〉 � γk , are checked for vi-
olation. If no violation is found, then P ∈ Cn→n′

d and we
decrement the integer d → d − 1. The procedure ends when
violation to a signaling dimension witness is found thereby
placing a tight lower bound on the signaling dimension. Un-
fortunately, this task becomes intractable as n and n′ increase
because the complete set of facet inequalities of the signaling
polytope Cn→n′

d is challenging to computationally obtain and
the number of inequalities to test increases dramatically. To
address this issue, we apply the Propositions and Theorems of
Sec. III.

To efficiently obtain a lower bound for the signaling dimen-
sion κ (P) we apply Proposition 1 and employ the bounds of
the (k, d )-ambiguous polytope An→n′

k,d as signaling dimension
witnesses for Cn→n′

d . The most efficient lower bound is ob-
tained when no ambiguous rows are considered (k = n′). The
lower bound on κ (P) is then found through the maximum-
likelihood estimation described by Eq. (13) to find

κ (P) �
⌈

n′∑
y=1

max
x∈[n]

P(y|x)

⌉
. (21)

To improve upon this lower bound, one may perform the
maximization in Eq. (10) for each value k ∈ [1, n′]. Assuming
that the rows of P have been sorted to maximize Eq. (10), the
lower bound on signaling dimension is then witnessed to be

κ (P) �
⌈

max
k∈[1,n′]

k∑
i=1

‖rπ (i)‖∞ +
n′∑

i=k+1

‖rπ (i)‖1

n − d + 1

⌉
. (22)

An upper bound on the signaling dimension of a classical
channel is found using Theorem 1. For the cases d = n − 1
or d = n′ − 1 the signaling polytope is fully characterized
and the complete set of tight signaling dimension witnesses
are known to be ambiguous guessing games. Naturally, if the
right-hand side (RHS) of Eq. (22) is found to be greater than
(n − 1) or (n′ − 1), then κ (P) = min{n, n′}. Otherwise, the
upper bound on the signaling dimension is witnessed to be

κ (P) � min{n, n′} − 1. (23)

If a classical channel P ∈ Pn→4 has 4 outputs (n′ = 4),
then the exact signaling dimension can be certified. By Theo-
rem 2 the complete set of tight signaling dimension witnesses
are known for the Cn→4

d=2 signaling polytope. For a channel
P ∈ Pn→4, if P ∈ Cn→4

d=2 , then the inequality

max
πA∈Sn,πB∈Sn′

〈Gk, πBPπA〉 � γk (24)

must be satisfied for all signaling dimension witnesses
(Gk, γk ) listed in Table I. Note that the LHS of Eq. (24) is
maximized with respect to all row and column permutations
of P. Hence, for the n′ = 4 case, we can easily decide if
κ (P) = 2. If a violation of Eq. (24) is found, then we then
apply Theorem 1 to decide whether P ∈ Cn→4

d=3 . The signaling
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dimension is found to be κ (P) = 3 if P ∈ Cn→4
d=3 , otherwise

κ (P) = 4.
The family of ambiguous guessing games includes

the maximum likelihood facets, which say that
∑n′

y=1

maxx∈[n] P(y|x) � d for all P ∈ Cn→n′
d . Since the results of

Frenkel and Weiner imply that Pn→n′
N ⊂ Cn→n′

d whenever d �
min{dA, dB} for channel N A→B [23], it follows that

max
{ρx}x∈[n] {�y}y∈[n]

n∑
x=1

Tr[�xN (ρx )] � d, (25)

an observation also made in Ref. [27]. Despite the simplic-
ity of this bound, in general it is too loose to certify the
input/output Hilbert space dimensions of a channel. For ex-
ample, consider the 50 : 50 erasure channel E1/2 acting on a
dA = 3 system. It can be verified that Pn→n′

E1/2
⊂ Mn→n′

2 , i.e.,∑
x Tr[�xE1/2(ρx )] � 2 for all {ρx}x and {�y}y. Hence, maxi-

mum likelihood estimation yields the lower bound κ (E1/2) �
2. However, the classical channel

PE1/2 =

⎡⎢⎣0.5 0 0
0 0.5 0
0 0 0.5

0.5 0.5 0.5

⎤⎥⎦ (26)

generated by orthonormal input states {|1〉, |2〉, |3〉} and a
measurement in the orthonormal basis {|1〉, |2〉, |3〉, |E〉} vi-
olates Eq. (10) for the A3→4

3,2 ambiguous polytope. Hence,
PE1/2 /∈ A3→4

3,2 , and it follows that κ3→4(E1/2) � 3. Therefore,
the ambiguous guessing game certifies the qutrit nature of the
input space whereas maximum likelihood estimation does not.

Our results can be extended in two key directions. First,
our characterization of the signaling polytope is incomplete.
Novel signaling dimension witnesses, lifting rules, and com-
plete sets of facets can be derived beyond those discussed
in this work. Such results would help improve the signaling
dimension bounds and the efficiency of computing signaling
dimension witnesses. Second, the signaling dimension spec-
ifies the classical cost of simulating a quantum channel, but
not the protocol that achieves the classical simulation. Such
a simulation protocol would apply broadly across the field of
quantum information science and technology.

VI. SUPPORTING SOFTWARE

This work is supported by SignalingDimension.jl [32].
This software package includes our signaling polytope com-
putations, numerical facet verification, and signaling dimen-
sion certification examples. SignalingDimension.jl is publicly
available on Github and written in the Julia programming
language [42]. The software is documented, tested, and re-
producible on a laptop computer. The interested reader should
review the software documentation as it elucidates many de-
tails of our work.
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APPENDIX A: NOTATION GLOSSARY

See Table II for a glossary of notation introduced within
this work.

APPENDIX B: SIGNALING POLYTOPE STRUCTURE

In this Appendix we provide details about the structure of
signaling polytopes (see Definition 1). The signaling poly-
tope, denoted by Cn→n′

d , is a subset of Pn→n′
. Therefore,

a channel P ∈ Cn→n′
d has matrix elements P(y|x) subject to

the constraints of nonnegativity P(y|x) � 0 and normalization∑
y∈[n′] P(y|x) = 1 for all y ∈ [n′] and x ∈ [n]. Furthermore,

since channels P ∈ Cn→n′
d are permitted the use of shared

randomness, the set Cn→n′
d is convex.

In the two extremes of communication, the signaling poly-
tope admits a simple structure. For maximum communication,
d = min{n, n′}, any channel P ∈ Pn→n′

can be realized, hence
Cn→n′

min{n,n′} = Pn→n′
. For no communication, d = 1, Bob’s out-

put y is independent from Alice’s input x meaning that
P(y|x) = P(y|x′) for any choice of x, x′ ∈ [n] and y ∈ [n′].
This added constraint simplifies the signaling polytope Cn→n′

1

to P1→n′
which is formally an n′-simplex [33]. For all other

cases, min{n, n′} > d > 1, the signaling polytope Cn→n′
d takes

on a more complicated structure.

1. Vertices

The vertices of the signaling polytope are denoted by
Vn→n′

d . Signaling polytopes are convex and therefore de-
scribed as the convex hull of their vertices, Cn→n′

d =
conv(Vn→n′

d ). As noted in the main text, a vertex V ∈ Vn→n′
d is

an n′ × n column stochastic matrices with 0/1 elements and
rank rank(V) � d . For instance,

V =
⎡⎣1 0 0 1

0 0 0 0
0 1 1 0

⎤⎦ (B1)

is a vertex V ∈ V4→3
2 . Naturally, each vertex V ∈ Vn→n′

d has
no more than d nonzero rows. A straightforward counting
argument shows that Vn→n′

d contains
∑d

c=1

{n
c

}(n′
c

)
c! vertices

(see Supplemental Material of Ref. [22]), where
{n

c

}
denotes

Stirling’s number of the second kind and
(n′

c

)
a binomial coef-

ficient. An important observation is that number of vertices in
Vn→n′

d grows exponentially in the number of inputs, n, and
factorially in the number of outputs, n′. The large number
of vertices represents a key challenge in characterizing the
signaling polytope.

2. Polytope dimension

The dimension of the signaling polytope dim(Cn→n′
d ) �

dim(Pn→n′
) = n(n′ − 1). This upper bound follows from the

facts that Cn→n′
d ⊆ Pn→n′

and any P ∈ Pn→n′
must satisfy n

normalization constraints, one for each column of P. Naively,
Pn→n′ ⊂ Rn′×n where dim(Rn′×n) = n(n′), however, the n
normalization constraints restrict Pn→n′

to dim(Pn→n′
) =

n(n′ − 1). To evaluate the dimension of Cn→n′
d with greater

precision, the number of affinely independent vertices in
Vn→n′

d can be counted where dim(Cn→n′
d ) is one less than the
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TABLE II. Notation used throughout this work.

Notation Terminology Definition

Pn→n′
Set of Classical Channels The subset of Rn′×n containing column stochastic matrices.

P Classical Channel An element of Pn→n′
that represents a classical channel with n

inputs and n′ outputs.
N Quantum Channel A completely positive trace-preserving map.
Pn→n′

N Set of Classical Channels Generated from N The subset of Pn→n′
which decomposes as Eq. (1) for some

quantum channel N .
Cn→n′

d Signaling Polytope The subset of Pn→n′
containing channels that decomposes as

Eq. (2) (see Def. 1).
(G, γ ) Linear Inequality A tuple describing the linear inequality 〈G, P〉 � γ where

G ∈ Rn′×n, γ ∈ R, and P ∈ Pn→n′
.

κn→n′
(N ) The n → n′ Signaling Dimension of N The smallest integer d such that Pn→n′

N ⊂ Cn→n′
d (see Def. 2).

κ (N ) The Signaling Dimension of N The smallest integer d such that Pn→n′
N ⊂ Cn→n′

d for all positive
integers n and n′ (see Def. 2).

(Gn,n′
k,d , d ) Ambiguous Guessing Game A signaling dimension witness where Gn,n′

k,d ∈ Rn′×n has k rows
that are row stochastic with 0/1 elements and (n′ − k) rows with
each column containing 1/(n − d + 1).

An→n′
k,d Ambiguous Polytope The subset of Pn→n′

which is tightly bound by inequalities of the
form (Gn,n′

k,d , d ).
Mn→n′

d Maximum Likelihood Estimation Polytope The subset of Pn→n′
defined as the ambiguous polytope An→n′

k,d

where k = n′.
Rμ Partial Replacer Channel A quantum channel that replaces the input state ρx with quantum

state σ with probability (1 − μ).
Eμ Partial Erasure Channel A partial replacer channel that replaces the input with σ = |E〉〈E |

where |E〉 is orthogonal to the input Hilbert space.
Vn→n′

d Signaling Polytope Vertices The subset of Cn→n′
d containing classical channels with 0/1

elements.
F n→n′

d Signaling Polytope Facets The complete set of linear inequalities tightly bounding Cn→n′
d .

Gn→n′
d Signaling Polytope Generator Facets The subset of Fn→n′

d containing a representative of each facet class
in F n→n′

d (see Appendix B 5).

(Gn′,k
K , γ n′,k,d

K ) k-Guessing Facet Tight signaling dimension witness (see Appendix D 1).

(Gn′
ML, d ) Maximum Likelihood Facet Tight signaling dimension witness (see Appendix D 2).

(Gn′,d
? , γ n′,d

? ) Ambiguous Guessing Facet Tight signaling dimension witness (see Appendix D 3).

(Gε,m′
A , γ ε,d

A ) Anti-Guessing Facet Tight signaling dimension witness (see Appendix D 4).

number of affinely independent vertices. When d � 2, one can
count n(n′ − 1) + 1 affinely independent vertices in Vn→n′

d ,
therefore, dim(Cn→n′

d ) = n(n′ − 1). In the remaining case of
d = 1, each of the n′ vertices are affinely independent and
dim(Cn→n′

1 ) = n′ − 1. This result is not surprising because, as
noted before, Cn→n′

1 = P1→n′
and dim(P1→n′

) = n′ − 1.

3. Facets

A linear inequality is represented as a tuple (G, γ )
with G ∈ Rn′×n and γ ∈ R where the inequality 〈G, P〉 =∑

x,y Gy,xP(y|x) � γ is formed by the Euclidean inner product

with a channel P ∈ Pn→n′
. For convenience, we identify two

polyhedra of channels

C(G, γ ) := {P ∈ Pn→n′ | 〈G, P〉 � γ }, (B2)

F (G, γ ) := {P ∈ Pn→n′ | 〈G, P〉 = γ }. (B3)

Lemma 1. An inequality (G, γ ) is a tight bound of the
Cn→n′

d signaling polytope iff

(1) Cn→n′
d ⊂ C(G, γ );

(2) dim[Cn→n′
d ∩ F (G, γ )] = dim(Cn→n′

d ) − 1.
Condition 1 requires that signaling dimension witness

(G, γ ) contains all channels P ∈ Cn→n′
d while Condition 2

requires that inequality (G, γ ) is both a proper half-space
and a facet of Cn→n′

d . Tight signaling dimension witnesses and
facets are closely related and described by the same inequality
(G, γ ). The key difference is that a tight signaling dimen-
sion witness is a half-space inequality 〈G, P〉 � γ whereas
a facet is the polytope Cn→n′

d ∩ F (G, γ ). The complete set of
signaling polytope facets is denoted by Fn→n′

d and the signal-
ing polytope is simply the intersection of all tight signaling
dimension witnesses (Gm, γm) ∈ Fn→n′

d ,

Cn→n′
d =

r⋂
m=1

C(Gm, γm). (B4)

The number of facet inequalities r is typically larger than
the set of vertices Vn→n′

d presenting another challenge in the
characterization of signaling polytopes.
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Remark A given signaling dimension witness (G, γ ) ∈
Fn→n′

d does not have a unique form. Therefore, it is conve-
nient to establish a normal form for a given facet inequality
[30]. First, observe that multiplying an inequality (G, γ ) by a
scalar a ∈ R does not change the inequality, that is, C(G, γ ) =
C[aG, a(γ )]. Second, observe that the vertices in Vn→n′

d have
0/1 elements and the rational arithmetic in Fourier-Motzkin
elimination [33,39] results in the matrix coefficients of G
being rational. Therefore, there exists a rational scalar a
such that aGy,x and aγ are integers for all x ∈ [n] and y ∈
[n′]. Third, observe that the normalization and nonnegativity
constraints for channels P ∈ Pn→n′

allows the equivalence
between the two inequalities

γ � 〈G, P〉 ⇐⇒ γ + 1 � 〈G, P〉+
∑
y∈[n′]

Gy,x′P(y|x′) (B5)

for any x′ ∈ [n]. Therefore, it is always possible to find a form
of inequality (G, γ ) where Gy,x � 0 for all y ∈ [n′] and x ∈
[n]. Hence, we define a normal form for any tight signaling
dimension witness (G, γ ) ∈ Fn→n′

d :
(1) Inequality (G, γ ) is scaled such that γ and all Gy,x are

integers with a greatest common factor of 1.
(2) Normalization constraints are added or subtracted

from all columns using Eq. (B5) such that Gy,x � 0 and the
smallest element in each column of G is zero.

4. Permutation symmetry

The input and output values x and y are merely labels for
a channel P ∈ Pn→n′

; therefore, swapping labels x ↔ x′ and
y ↔ y′ where x, x′ ∈ [n] and y, y′ ∈ [n′] does not affect Pn→n′

[38]. The relabeling operation is implemented using elements
from the set of doubly stochastic k × k permutation matrices
Sk . For example,

P′ = πYPπX , where P, P′ ∈ Pn→n′
, (B6)

πX ∈ Sn, and πY ∈ Sn′ . Note that permuting the rows or
columns of a matrix cannot change the rank of a matrix,
therefore, if V ∈ Vn→n′

d and V′ = πYVπX , then V′ ∈ Vn→n′
d . It

follows that this permutation symmetry holds for any channel
in the signaling polytope, P, P′ ∈ Cn→n′

d where P′ is a per-
mutation of P. Likewise, a facet inequality (G, γ ) ∈ Fn→n′

d

can be permuted into a new facet inequality (G′, γ ) ∈ Fn→n′
d

where G′ = πYGπX .

5. Generator facets

Permutation symmetry motivates the notion of a facet class
defined as a collection of facet inequalities formed by tak-
ing all permutations of a canonical facet (G�, γ ) ∈ Fn→n′

d
which we refer to as a generator facet. The canonical facet
is arbitrary thus we define the generator facet as the lexi-
cographic normal form [30,38] of the facet class. The set
of generator facets, denoted by Gn→n′

d := {(G�
i , γi )}r′

i=1, is the
subset of Fn→n′

d containing the generator facet of each facet
class bounding Cn→n′

d . Since the number of input and output
permutations scale as factorials of n and n′ respectively, the
set of generator facets is considerably smaller than Fn→n′

d and
therefore, provides a convenient simplification to Fn→n′

d . To
recover the complete set of facets from Gn→n′

d , we take all row

and column permutations of each generator facet (G�, γ ) ∈
Gn→n′

d . As a final remark, we note that Vn→n′
d can also be

reduced to a set of generator vertices, however, this set is not
required for our current discussion of signaling polytopes.

APPENDIX C: ADJACENCY DECOMPOSITION

This Appendix provides an overview of the adjaceny de-
composition technique [30]. In our work, we use an adjacency
decomposition algorithm to compute the generator facets of
the signaling polytope. Our implementation can be found in
our supporting software [32]. The adjacency decomposition
provides a few key advantages in the computation of signaling
dimension witnesses:

(1) The algorithm stores only the generator facets Gn→n′
d

instead of the complete set of facets Fn→n′
d . This considerably

reduces the required memory.
(2) New generator facets are derived in each iteration of

the computation, hence, the algorithm does not need to run to
completion to provide value.

(3) The algorithm can be widely parallelized [30].

1. Adjacency decomposition algorithm

The adjacency decomposition is an iterative algorithm
which requires as input the signaling polytope vertices Vn→n′

d

and a seed generator facet (G�
seed, γseed) ∈ Gn→n′

d . The algo-
rithm maintains a list of generator facets Glist where each
facet (G�, γ ) ∈ Glist is marked either as considered or uncon-
sidered. The generator facet is defined as the lexicographic
normal form of the facet class [30,38]. Before the algorithm
begins, (G�

seed, γseed) is added to Glist and marked as uncon-
sidered. In each iteration, the algorithm proceeds as follows
[30]:

(1) An unconsidered generator facet (G�, γ ) ∈ Glist is se-
lected.

(2) All facets adjacent to (G�, γ ) are computed.
(3) Each adjacent facet is converted into its lexicographic

normal form.
(4) Any new generator facets identified are marked as

unconsidered and added to Glist.
(5) Facet (G�, γ ) is marked as considered.
The procedure repeats until all facets in Glist are marked

as considered. If run to completion, then Glist = Gn→n′
d and all

generator facets of the signaling polytope Cn→n′
d are identified.

The algorithm is guaranteed to find all generator facets due to
the permutation symmetry of the signaling polytope. By this
symmetry, any representative of a given facet class has the
same fixed set of facet classes adjacent to it. For the permuta-
tion symmetry to hold for all facets in the signaling polytope,
there cannot be two disjoint sets of generator facets where the
members of one set do not lie adjacent to the members of the
other.

The inputs of the adjacency decomposition are easy to pro-
duce computationally. A seed facet can always be constructed
using the lifting rules for signaling polytopes [see Eqs. (6)
and (7)] and the signaling polytope vertices Vn→n′

d can be eas-
ily computed (see supporting software [32]). Note, however,
that the exponential growth of Vn→n′

d eventually hinders the
performance of the adjacency decomposition algorithm.
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2. Facet adjacency

A key step in the adjacency decomposition algorithm is to
compute the set of facets adjacent to a given facet (G, γ ). In
this section, we define facet adjacency and outline the method
used to compute the adjacent facets.

Lemma 2. Two facets (G1, γ1), (G2, γ2) ∈ Fn→n′
d are adja-

cent iff they share a ridge H defined as:
(1) H := F (G1, γ1) ∩ F (G2, γ2) ∩ Cn→n′

d ,
(2) where dim(H) = dim(Cn→n′

d ) − 2.
A ridge can be understood as a facet of the facet poly-

tope Cn→n′
d ∩ F (G, γ ). Therefore, to compute the ridges

of a given facet (G, γ ) ∈ Fn→n′
d we take the typical ap-

proach for computing facets. Namely, the set of vertices
{V ∈ Vn→n′

d | 〈G, V〉 = γ } is constructed and PORTA [39,40]
is used to compute the ridges of (G, γ ). A facet adjacent to
(G, γ ) is computed from each ridge using a rotation algorithm
described by Christof and Reinelt [30]. Given the signaling
polytope vertices Vn→n′

d , this procedure computes the com-
plete set of facets adjacent to (G, γ ).

APPENDIX D: TIGHT SIGNALING DIMENSION
WITNESSES

In this Appendix we discuss the general forms for each
of the signaling polytope facets in Table I. Each facet class
is described by a generator facet (see Appendix B 4) where
all permutations and input/output liftings of these generator
facets are also tight signaling dimension witnesses. To prove
that an inequality (G, γ ) is a facet of Cn→n′

d , both condi-
tions of Lemma 1 must hold. The proofs contained by this
Appendix verify Condition 2 of Lemma 1 by constructing
a set of dim(Cn→n′

d ) = n(n′ − 1) affinely independent {V ∈
Vn→n′

d | 〈G, V〉 = γ }. These enumerations are verified numer-
ically in our supporting software [32]. To assist with the
enumeration of affinely independent vertices, we introduce a
simple construction for affinely independent vectors with 0/1
elements.

Lemma 3. Consider an n-element binary vector �bk ∈
{0, 1}n with n0 null elements and n1 unit elements where
n0 + n1 = n. A set of n affinely independent vectors {�bk}n

k=1
is constructed as follows:

(1) Let �b1 be the binary vector where the first n0 elements
are null and the next n1 elements are unit values.

(2) For k ∈ [2, n0 + 1], �bk is derived from �b1 by swapping
the unit element at index (n0 + 1) with the null element at
index (k − 1).

(3) For k ∈ [n0 + 2, n], �bk is derived from �b1 by swapping
the null element at index n0 with the unit element at index k.

For example, when n = 5, n0 = 2, and n1 = 3 the enumer-
ation yields

{�b1 = [0, 0, 1, 1, 1], �b2 = [1, 0, 0, 1, 1],

�b3 = [0, 1, 0, 1, 1], �b4 = [0, 1, 1, 0, 1],

�b5 = [0, 1, 1, 1, 0]}. (D1)

Proof. To verify the affine independence of {�b}n
k=1 it is

sufficient to show the linear independence of {�b1 − �bk}n
k=2.

Note that each (�b1 − �bk ) has two nonzero elements, one of

which occurs at an index that is zero for all (�b1 − �bk′ ) where
k 	= k′. Therefore, the vectors in {�b1 − �bk}n

k=2 are linearly
independent and {�bk}n

k=1 is affinely independent. �

1. k-Guessing facets

Consider a guessing game with k correct answers out of
n′ possible answers. In this game, Alice has n = (n′

k

)
inputs

where each value x corresponds to a unique set of k correct
answers. Given an input x ∈ [n], Alice signals to Bob using a
message m ∈ [d] and Bob makes a guess y ∈ [n′]. A correct
guess scores 1 point while an incorrect guess scores 0 points.
This type of guessing game is described by Heinosaari et al.
[31,34] and used to test the communication performance of
a particular theory. In this work, we treat this k-guessing
game as a signaling dimension witness (Gn′,k

K , γ n′,k,d
K ) of the

signaling polytope Cn→n′
d where

γ n′,k,d
K =

(
n′

k

)
−
(

n′ − d

k

)
(D2)

and Gn′,k
K ∈ Rn′×(n′

k ) is a matrix with each column containing
a unique distribution of k unit elements and (n′ − k) null
elements. For example,

G6,2
K =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

⎞⎟⎟⎟⎟⎟⎠. (D3)

This general signaling dimension witness was identified by Frenkel and Weiner [23], who showed that given a channel
P ∈ Cn→n′

d , the bounds of this inequality are(
n′

k

)
−
(

n′ − d

k

)
� 〈Gn′,k

K , P〉 �
(

n′ − d

n′ − k

)
. (D4)

However, we only focus on the upper bound γ n′,k,d
K . We now show conditions for which (Gn′,k

K , γ n′,k,d
K ) ∈ Fn→n′

d .
Proposition 3. The inequality (Gn′,k

K , γ n′,k,d
K ) is a facet of Cn→n′

d with n = (n′
k

)
, n′ − 2 � k � 1, and d = n′ − k.
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Proof. To prove that (Gn′,k
K , γ n′,k,d

K ) is a facet of Cn→n′
d we construct a set of dim(Cn→n′

d ) = (n′ − 1)
(n′

k

)
affinely independent

vertices {V ∈ Vn→n′
d | γ n′,k,d

K = 〈Gn′,k
K , V〉}. Observe that separating the first row from the rest of Gn′,k

K results in a block matrix of
form,

Gn′,k
K =

[ �1 �0
G(n′−1),(k−1)

K G(n′−1),k
K

]
, e.g., G5,2

K =

⎡⎢⎢⎢⎣
1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎤⎥⎥⎥⎦ =
[ �1 �0

G4,1
K G4,2

K

]
,

(D5)

where �0 and �1 are row vectors containing zeros and
ones, and we refer to G(n′−1),(k−1)

K and G(n′−1),k
K as left

and right k-guessing blocks respectively. The left and
right k-guessing blocks suggest a recursive approach to
our construction of affinely independent vertices. Namely,
we construct

(n′
k

)
vertices by targeting the first row of

Gn′,k
K while Proposition 3 is recursively applied to enu-

merate the remaining vertices using the left and right
k-guessing blocks. The recursion requires two base cases to be
addressed:

(1) When d = 2 and n′ = k + d , the construction of
affinely independent vertices is described in Proposition 4.

(2) When k = 1, the construction of affinely independent
vertices is described in Proposition 5.

An iteration of this recursive construction proceeds as fol-
lows.

First, we construct an affinely independent vertex for each
of the

(n′
k

)
elements in the first row of Gn′,k

K . For each index
x′

1 in the �1 block, a vertex V1 is constructed by setting all
V1(1|x) = 1 where x 	= x′

1 and V1(y|x′
1) = 1 where y > 1 is the

smallest row index such that Gy,x′
1
= 1. The remaining rows

of V1 are filled to maximize the right k-guessing block. Then,
for each index x′

0 in the �0 block, a vertex V0 is constructed
by setting V0(1|x′

0) = 1 and all V0(1|x) = 1 where G1,x = 1.
The remaining (d − 1) rows of V0 are filled to maximize
the right k-guessing block. This procedure enumerates

(n′
k

)
affinely independent vertices.

Then, the remaining (n′ − 2)
(n′

k

)
vertices are found by in-

dividually targeting the left and right k-guessing blocks. To
construct a vertex VL using the left block G(n′−1),(k−1)

K , the first
row of VL is not used. The left block is then a (k − 1)-guessing
game with (n′ − 1) outputs where d = (n′ − 1) − (k − 1) =
n′ − k, hence, Proposition 3 holds and (n′ − 2)

(n′−1
k−1

)
affinely

independent vertices are enumerated using the described re-
cursive process. Note that for each vertex of form VL, the
remaining elements are filled to maximize the right k-guessing
block G(n′−1),k

K . Similarly, to construct a vertex VR using the
right block G(n′−1),k

K , we set all elements VR(1|x) = 1 where
Gn′,k

1,x = 1. The remaining (d − 1) rows of VR are filled by op-

timizing the G(n′−1),k
K block. Since d = n′ − k and (d − 1) =

(n′ − 1) − k, Proposition 3 holds, and recursively applying
this procedure constructs (n′ − 2)

(n′−1
k

)
vertices of form VR

using the right k-guessing block.
Finally, vertices of forms V0, V1, VL, and VR are

easily verified to be affinely independent. Summing these

vertices yields (n′ − 2)
(n′−1

k−1

)+ (n′ − 2)
(n′−1

k

)+ (n′
k

) = (n′ −
1)
(n′

k

)
affinely independent vertices, therefore, the k-guessing

signaling dimension witness is proven to be tight when n′ =
k + d . �

Proposition 4. The k-guessing game signaling dimension
witness (Gn′,k

K , γ n′,k,d
K ) is a tight bound for all signaling poly-

topes Cn→n′
d with n = (n′

k

)
, d = 2, and k = n′ − 2.

Proof. To prove the tightness we construct a set con-
taining (n′ − 1)

(n′
k

)
affinely independent vertices {V ∈

Vn→n′
2 | 〈Gn′,(n′−2)

K , V〉 = ( n′
n′−2

)− 1}. To help illustrate this

proof, we use the example of (G5,3
K , γ 5,3,2

K ), where

G5,3
K =

⎡⎢⎢⎢⎣
1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1

⎤⎥⎥⎥⎦, (D6)

and γ 5,3,2
K = (53)− 1. Since d = 2, we consider vertices V ∈

Vn→n′
d with rank(V) = 2 where each vertex uses two rows

y and y′ where y < y′. In general, each of the
(n′

2

)
two-row

selections from Gn′,(n′−2)
K have a unique column x0 containing

null elements both rows y and y′. Therefore, for each unique
pair y and y′, two affinely independent vertices V1 and V2 are
constructed by setting V1(y|x0) = 1 and V2(y′|x0) = 1 while
the remaining terms are arranged such that all unit elements
in row y and the remaining elements in row y′ are selected
to achieve the optimal score. Performing this procedure for
the first two rows of G5,3

K (y = 1 and y′ = 2) constructs the
vertices

V1 =

⎡⎢⎢⎢⎣
1 1 1 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦,

V2 =

⎡⎢⎢⎢⎣
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦, (D7)

where x0 = 10 in this example. Repeating this procedure for
each of the

(n′
2

)
row selections produces, 2

(n′
2

) = 2
(n′

k

)
affinely

independent vertices, one for each null element in Gn′,(n′−2)
K .
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The remaining vertices are constructed by selecting a target
row y ∈ [n′ − 1]. In the target row, for each x′ where Gy,x′ = 1
a vertex V3 is constructed by setting V3(y|x) = 1 for all x 	= x′
that satisfy Gy,x = 1. A secondary row y′ > y of V3 is chosen
where y′ is the smallest index satisfying Gy′,x′ = 1. We then
set V (y′|x′) = 1 while the remaining elements of V3 are set to
achieve the optimal score. For selected rows y and y′, the null
column at index x0 is set in the target row as V3(y|x0) = 1. For
example, consider G5,

K with the target row as y = 1 and x′ = 4
we construct the vertex

V3 =

⎡⎢⎢⎢⎣
1 1 1 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦. (D8)

Note that all secondary row indices y′ � y + 3 are required
to construct a vertex V3 for each unit element in the target row
y. Let �y = y′ − y, then

∑3
�y=1

(n′−1−�y
d+1−�y

)
vertices are con-

structed for target row y. For y = n′ − 2 and y = n′ − 1, the
sum terminates at �y = 2 and �y = 1 respectively because
the vertices are only affinely independent if the secondary row
has index y′ > y. Thus, this process produces

3∑
�y=1

(n′ − �y)

(
n′ − 1 − �y

d + 1 − �y

)
= (n′ − 3)

(
n′

d

)
, (D9)

affinely independent vertices where the identities l
m

( l
m

) =( l−1
m−1

)
and l+1−m

m

( l
m

) = ( l
m−1

)
are used to convert the binomial

coefficients to the form
(n′

d

) = (n′
k

)
. Combining the vertices of

form V1, V2, and V3 yields a set of 2
(n′

k

)+ (n′ − 3)
(n′

k

) =
(n′ − 1)

(n′
k

)
affinely independent vertices. Therefore, when

d = 2 and k = n′ − 2, [Gn′,(n′−2)
K ,

( n′
n′−2

)− 1] is a tight signal-

ing dimension witness of the C(n′
k )→n′

2 signaling polytope. �

2. Maximum likelihood facets

In this section, we discuss the conditions for which max-
imum likelihood games (see main text) are tight signaling
dimension witnesses. The maximum likelihood signaling di-
mension witness (Gn′

ML, d ) is a (k = 1)-guessing game where
Gn′

ML = Gn′,1
K . For simplicity, this section considers unlifted

forms of Gn′
ML is a n′ × n′ doubly stochastic matrix with 0/1

elements such as the n′ × n′ identity matrix. For any vertex
V ∈ Vn→n′

d , 〈
Gn′

ML, V
〉
� d, (D10)

is satisfied because rank(V) � d and Gn′
ML is doubly stochas-

tic. By the convexity of Cn→n′
d , inequality Eq. (D10) must hold

for all P ∈ Cn→n′
d . We now discuss the conditions for which

(Gn′
ML, d ) is a tight signaling dimension witness.
Proposition 5. The maximum likelihood (ML) signaling

dimension witness (Gn′
ML, d ) is a facet of all signaling poly-

topes Cn→n′
d with n = n′ and n′ > d > 1.

Proof. To prove that (Gn′
ML, d ) is a tight bound of Cn→n′

d we
construct a set of dim(Cn′→n′

d ) = n′(n′ − 1) affinely indepen-
dent vertices {V ∈ Vn→n′

d | 〈Gn′
ML, P〉 = d}. Taking Gn′

ML to be

the n′ × n′ identity matrix, a vertex V satisfies d = 〈Gn′
ML, V〉

when d unit elements of V lie along the diagonal. In this
case, (n′ − d ) unit elements of V can be freely distributed
in the remaining columns of the d selected rows. For sim-
plicity, we place all free elements in a single row with index
y ∈ [n′] which we refer to as the target row. In the target row,
we set V (y|y) = 1 while the off-diagonals, V (y|x 	= y) with
x ∈ [n′] contain (n′ − d ) unit elements and (d − 1) null ele-
ments. Lemma 3 describes a construction of (n′ − 1) affinely
independent vectors {�bk}k∈[n′−1] to set as the off-diagonals in
the target row. Then, for each x ∈ [n′] where V (y|x 	= y) = 0,
we set V (x|x) = 1. This procedure obtains the upper bound
in Eq. (D10) and constructs an affinely independent vertex
for each of the (n′ − 1) binary vectors in {�bk}k∈[n′−1]. For
example, targeting row y = 3 of G5

ML when d = 3 yields four
vertices,

V ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
1 0 0 0 0
0 0 0 0 0
0 1 1 0 1
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎣
1 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
0 0 0 0 0
0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(D11)

Repeating the procedure for each y ∈ [n′] results in n′(n′ −
1) affinely independent vertices. The vertices enumerated for
each target row y are affinely independent from all other target
rows because the free unit elements are only allowed in the
target row. As a final note, this procedure does not work in
the case where d = 1 because there are only n′ vertices in
Vn→n′

d or the case where d = n′ because only one vertex V =
Gn′

ML maximizes Eq. (D10). Since n′(n′ − 1) = dim(Cn′→n′
d )

affinely independent vertices are constructed, (Gn′
ML, d ) is

proven to be a tight bound of all signaling polytopes with
n′ > d > 1. �

3. Ambiguous guessing facets

In this section we discuss the conditions for which
ambiguous guessing games (see main text) are tight signal-
ing dimension witnesses. Consider the ambiguous guessing
signaling dimension witness (Gn′,d

? , γ n′,d
? ) where Gn′,d

? ∈
Rn′×(n′−1),

Gn′,d
? =

∑
x∈[n′−1]

(n′ − d )|x〉〈x| + |n′〉〈x|,

and γ n′,d
? = d (n′ − d ). (D12)

This signaling dimension witness is best considered as a
combination between a 1-guessing game for which a correct
answer provides (n′ − d ) points extended with an ambiguous
row for which 1 point is scored for choosing the ambiguous

043073-13



BRIAN DOOLITTLE AND ERIC CHITAMBAR PHYSICAL REVIEW RESEARCH 3, 043073 (2021)

output. For example, when n′ = 6 and d = 2 we have

Gn′,d
? =

[
(n′ − d )G(n′−1)

ML

�1

]
, e.g., G6,2

? =

⎡⎢⎢⎢⎢⎢⎣
4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 4
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦,

(D13)

where we refer to rows of the G(n′−1)
ML block as guessing

rows and �1 is a row vector of ones which we refer to as
the ambiguous row. Note that Gn′,d

? is a special case of the
ambiguous guessing game G(k) (see main text), and without
loss of generality, we express Gn′,d

? in a normal form where
all elements Gy,x are nonnegative integers. For any vertex
V ∈ Vn→n′

d , the inequality

〈Gn′,d
? , V〉 � d (n′ − d ) (D14)

is satisfied. We now prove the conditions for which inequality
(Gn′,d

? , γ n′,d
? ) is a facet of Cn→n′

d .
Proposition 6. The inequality (Gn′,d

? , γ n′,d
? ) is a facet of

Cn→n′
d when n = n′ − 1 and n′ − 2 � d � 2.

Proof. To prove that (Gn′,d
? , γ n′,d

? ) is a facet of Cn→n′
d we

construct a set of dim(C (n′−1)→n′
d ) = (n′ − 1)2 affinely in-

dependent vertices {V ∈ V (n′−1)→n′
d | d (n′ − d ) = 〈Gn′,d

? , V〉}.
Using Proposition D 2 we can easily enumerate (n′ − 1)(n′ −
2) affinely independent vertices that optimize the G(n′−1)

ML
block. The remaining vertices are constructed using the am-
biguous row and (d − 1) guessing rows. In these vertices, the
ambiguous row has (d − 1) null elements and (n′ − d ) unit
elements, hence, Lemma 3 can be used to (n′ − 1) affinely
independent arrangements of the ambiguous row. For each
of the (n′ − 1) arrangements, a vertex V? is constructed by
setting each V?(x|x) = 1 where x ∈ [n′ − 1] and V?(n′|x) =
0. Combining the (n′ − 1)(n′ − 2) vertices from the G(n′−1)

ML
block and the (n′ − 1) vertices from the ambiguous row, a
total of (n′ − 1)2 affinely independent vertices are found.
Therefore, (Gn′,d

? , γ n′,d
? ) is a tight signaling dimension witness

of C (n′−1)→n′
d . The upper bound n′ − 2 � d follows from the

fact that if d � (n′ − 1), then no optimal vertices would ever
use the ambiguous row resulting in an insufficient number of
vertices to justify the facet. �

a. Rescalings of ambiguous guessing facets

An ambiguous guessing facet (Gn′,d
? , γ n′,d

? ) as defined in
Proposition 6 can be rescaled to G′5,2

? ∈ Rn′×(n+1) by taking
a guessing row y where Gy,x = (n′ − d ) distributing the value
between between two columns such that G′

y,x = 1 and G′
y,x′ =

(n′ − d ) − 1 where x′ = n′ is a new column. This rescaling
is a nontrivial input lifting rule. The bound of the input-lifted
facet is the same as the unlifted version. For example, when

n′ = 5 and d = 2, the G5,2
? is rescaled along the fourth row as

G5,2
? =

⎡⎢⎢⎢⎣
3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3
1 1 1 1

⎤⎥⎥⎥⎦→ G′5,2
? =

⎡⎢⎢⎢⎣
3 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 1 2
1 1 1 1 0

⎤⎥⎥⎥⎦.

(D15)

This rescaling input lifting is a general trend observed in
our computed signaling polytope facets [32], however, it is
not clear how broadly this lifting rule applies or generalizes.

4. Antiguessing facets

Another special case of the k-guessing game is the an-
tiguessing game signaling dimension witness (Gn′

A, n′) where
Gn′

A = Gn′,(n′−1)
K . For any channel P ∈ Pn→n′

with n = n′ The
antiguessing signaling dimension witness 〈Gn′

A, P〉 � n′ is sat-
isfied; therefore, antiguessing games are not very useful for
witnessing signaling dimension. That said, the antiguessing
game is significant because it can be combined with a max-
imum likelihood game in block form to construct a facet of
the d = (n′ − 2) signaling polytope Cn→n′

(n′−2). We denote these

antiguessing facets by Gε,m′
A where the facet is constructed as

Gε,m′
A =

[
Gε

A 0̂
0̂ Gm′

ML

]
, e.g.,

G4,2
A =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 1 0 0
0 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦, (D16)

where Gε,m′
A ∈ Rn′×n′

, n′ = ε + m′, and 0̂ is a matrix block of
zeros. For channel P ∈ Cn′→n′

d ,

〈
Gε,m′

A , P
〉
� ε + d − 2 = γ ε,d

A . (D17)

This upper bound follows from the fact that no more than
two rows are required to score ε in the Gε

A block and the
remaining d − 2 rows score one point each against the Gm′

ML
block.

Proposition 7. The inequality (Gε,m′
A , γ ε,d

A ) is a facet of
Cn→n′

d , where n = n′, n′ − 2 � d � 2, and n′ − d + 1 � ε �
3.

Proof. To prove the tightness of the antiguessing signaling
dimension witness we show a row-by-row construction of
dim(Cn→n′

d ) = n′(n′ − 1) affinely independent vertices {V ∈
Vn→n′

d |〈Gε,m′
A , V〉 = γ ε,d

A }. For convenience, we refer to the
first ε rows of Gε,m′

A as antiguessing rows and the remaining
m′ rows as guessing rows. We treat antiguessing and guess-
ing rows individually because each admits its own vertex
construction. To help illustrate this proof, we draw upon the
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example where ε = m′ = d = 3,

G3,3
A =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦and γ 3,3 = 4. (D18)

For a target antiguessing row y ∈ [1, ε] we construct (n′ −
1) vertices where (ε − 1) vertices are constructed using the
Gε

A block and m′ vertices are constructed using the 0̂ block
in the top right. Note that a vertex achieves the upper bound
γ ε,d

A only if two or less antiguessing rows are used. A vertex
VA is constructed using the Gε,m′

A block by setting VA(y|x) =
1 for all x that satisfy Gε,m′

y,x = 1 and selecting a secondary
row y′ 	= y with y′ ∈ [1, ε] and setting VA(y′|x′) = 1 where x′

is the index of the null element in the target row Gε,m′
y,x′ = 0.

All remaining elements of VA are set so that the first (d −
2) diagonal elements of the Gm′

ML block are selected and any
remaining terms are set as unit elements in the target row. An
affinely independent vertex is constructed for each of the (ε −
1) choices of secondary row y′. For example, when targeting
row y = 1 we enumerate two vertices

VA ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 1 1
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 1 1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (D19)

For a target antiguessing row y, an additional m′ vertices
with form VA,0 are constructed using the 0̂ block in the
top right. If m′ > (d − 1), then we set the target row as
VA,0(y|x) = 1 where x ∈ [1, ε]. The remaining (d − 1) rows
are then used to maximize the Gm′

ML block. Using Lemma
3 a set of m′ affinely independent vectors {�bk}m′

k=1} with
(d − 1) null elements and (m′ − d + 1) unit elements can
be constructed and used in the 0̂ block of VA,0 by setting
VA,0(y|[ε + 1, n′]) = �bk . All remaining null elements in the
target row of VA,0 are then set along the diagonal of the Gm′

ML

block. Since there are m′ choices of �bk , that many affinely
independent vertices can be constructed. For example, when
targeting row y = 1 we enumerate three vertices,

VA,0 ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎢⎢⎣
1 1 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (D20)

If m′ = (d − 1), then a secondary antiguessing row y′ is
selected where the antiguessing rows are set as VA,0(y|x) = 1
and VA,0(y′|x′), where x, x′ ∈ [1, ε] and Gε,m′

y,x = 1 and Gε,m′
y,x′ =

0. The remainder of the procedure is the same as the m′ >

(d − 1) case. Note that in the m′ = (d − 1) case one of the
VA,0 vertices is redundant of a VA vertex. To reconcile this
conflict another vertex must be added which maximizes Gm′

ML
with V (y|x) = 1 for all x ∈ [1, ε] and V (x′|x′) = 1 for all
x′ ∈ [ε + 1, n′]. By this procedure (ε − 1) + m′ = (n′ − 1)
affinely independent vertices are constructed for each target
row y ∈ [1, ε]. Thus, ε(n′ − 1) affinely independent vertices
are constructed for the antiguessing rows of Gε,m′

A .
For a target guessing row y ∈ [ε + 1, n′] we construct (n′ −

1) vertices where ε are constructed using the 0̂ block in the
lower left and (m′ − 1) vertices using the Gm′

ML block. Starting
with the lower left 0̂ block we construct a vertex VML,0 for
each x ∈ [1, ε] by setting VML,0(y|x) = 1 and VML,0(y|y) = 1.
Of the remaining (d − 1) rows one is used to maximize the
Gε

A block and (d − 2) rows maximize the Gm′
ML block. Any

unspecified unit terms of VML,0 are set in the target row
y. Since there are ε values of x to consider, this procedure
produces ε affinely independent vertices. For example, when
targeting row y = 4 we enumerate three vertices,

VML,0 ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (D21)

Next, we use the Gm′
ML block to a vertex VML. If m′ >

(d − 1), then we set VML(1|x) = 1 for all x ∈ [1, ε] and use
the procedure in Proposition 5 to enumerate (m′ − 1) affinely
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independent vertices that optimize the Gm′
ML block in the target

row. If m′ = (d − 1), then two antiguessing rows are selected
to maximize the Gε

A block while the procedure in Proposition
5 is used for the remaining (d − 2) rows are used to construct
(m′ − 1) affinely independent vertices that optimize the Gm′

ML
block in the target row. For example, when targetinng row
y = 4 we enumerate two vertices,

VML ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (D22)

Each guessing row produces ε + (m′ − 1) = (n′ − 1)
affinely independent vertices, thus in total, we have m′(n′ − 1)
vertices enumerated for the guessing rows.

Combining the procedures for the guessing and antiguess-
ing rows, we construct a total of ε(n′ − 1) + m′(n′ − 1) =
n′(n′ − 1) affinely independent vertices. Therefore, we prove
that (Gε,m′

A , γ ε,d
A ) is a tight bound. We now address the bounds

on d and ε. The lower bound ε � 3 follows from the fact that
G2

A = G2
ML meaning the antiguessing game is indistinguish-

able from the maximum likelihood game. The upper bound
n′ − d + 1 � ε follows from the fact that m′ � (d − 1) must
be satisfied or n′(n′ − 1) affinely independent vertices cannot
be found because the entire diagonal of the Gm′

ML block must
be used by every vertex to satisfy 〈Gε,m′

A , V〉 = ε + d − 2. The
upper bound n′ − 2 � d results from the lower bound on ε and
the fact that d cannot be so large the n′ − d + 1 < 3. �

APPENDIX E: PROOF OF PROPOSITION 2

In this Appendix we prove the conditions for which the
ambiguous guessing game (Gn,n′

k,d , d ) is a facet of Cn→n′
d .

1. Proof of Proposition 2(i)

Proof. To prove Proposition 2(i), we consider the general
form of an ambiguous guessing signaling dimension witness
(Gn,n′

k,d , d ) where Gn,n′
k,d ∈ Rn′×n is row stochastic and contains

k = n′ guessing rows (see main text). Note that matrix Gn,n′
k,d is

row stochastic and therefore describes any input/output lifting
and permutation of the maximum likelihood game Gm′

ML = Im′

where min{n, n′} � m′ � 1. For example,⎡⎢⎢⎢⎣
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎣
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎦, and

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎦,

(E1)

are all instances of G5,5
5,d . By Proposition 5, (Gm′

ML, d ) is a facet

of Cm′→m′
d iff m′ > d > 1, that is, rank(Gm′

ML) > d . When the
trivial lifting rules [see Eqs. (6) and (7)] are applied to Gm′

ML,
the rank of the lifted matrix does not change. Therefore, any
signaling dimension witness (Gn,n′

n′,d , d ) with rank(Gn,n′
n′,d ) > d

is a facet of Cn→n′
d that has been lifted from Cm′→m′

d where
min{n, n′} � m′ > d . Conversely, if rank(Gn,n′

n′,d ) < d , then

〈Gn,n′
n′,d , V〉 < d for any V ∈ Vn→n′

d . Likewise, if rank(Gn,n′
n′,d ) =

d , then there are an insufficient number of affinely indepen-
dent vertices V ∈ Vn→n′

d which satisfy 〈Gn,n′
n′,d , V〉 = d because

d columns must have fixed values in V. Thus, we conclude
that when min{n, n′} > d > 1 (Gn,n′

n′,d , d ) is a tight bound of

Cn→n′
d iff rank(Gn,n′

n′,d ) > d . �
Remark Proposition 2(i) is significant because it allows

one to easily find a facet of any signaling polytope Cn→n′
d . This

enables the use of adjacency decomposition for any signaling
polytope (see Appendix C).

2. Proof of Proposition 2(ii)

Proof. To prove Proposition 2(ii), we consider the ambigu-
ous guessing game signaling dimension witnesses (Gn,n′

k,d , d )
with k guessing rows and (n′ − k) ambiguous rows (see main
text). Note that the ambiguous rows of Gn,n′

k,d span the entire
width of the matrix. For example,⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎥⎦,

×

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎥⎦, and

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤⎥⎥⎥⎥⎥⎥⎦, (E2)

are all instances of G4,6
4,2. Furthermore, any ambiguous guess-

ing facet described by Proposition 6 (Gn′,d
? , d (n′ − d )) of

C (n′−1)→n′
d can be converted into an inequality (G(n′−1),n′

(n′−1),d , d )
simply by dividing the inequality by (n′ − d ), hence, these
two matrices describe the same inequality. It follows that
any ambiguous guessing facet Gm′,d

? can be input lifted from
C (m′−1)→m′

d to C (m′−1)→n′
d where n′ � m′. Since the rank of the

(m′ − 1) guessing rows of Gm′,d
? is (m′ − 1) and input liftings

do not affect the matrix rank, any G(m′−1),n′
k,d with n′ > k �

(m′ − 1) with a similar rank for its guessing rows must be
a facet of C (m′−1)→n′

d . Finally, if the rank of the guessing rows
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of Gn,n′
k,d ) is less than n, then Gn,n′

k,d cannot be a facet of Cn→n′
d

because there is an insufficient number of affinely independent
vertices in {V ∈ Vn→n′

d | 〈Gn,n′
k,d , V〉 = d}. This is true because

Proposition 5 implies that we can enumerate (k − 1)n affinely
independent vertices using only guessing rows of Gn,n′

k,d . This
requires that the remaining (n′ − k)n affinely independent
vertices are enumerated using (d − 1) guessing rows and
one ambiguous row. However, as exemplified in the proof of
Proposition 6, this cannot be done unless there is a nonzero
element in each column of the k guessing rows of Gn,n′

k,d . Thus,

we conclude that for n′ > k � n and n > d Gn,n′
k,d is a facet of

Cn→n′
d iff the rank of the guessing rows is n. �

Remark In our proof, we do not consider input liftings of
Gm′,d

? because it results in matrices which deviate in form from
Gn,n′

k,d . Input lifting append an all-zero column to Gm′,d
? while

Gn,n′
k,d is defined to have a nonzero element in each column

of an ambiguous row ambiguous. Therefore, input liftings of
ambiguous guessing facets Gn′,d

? are incompatible with the
ambiguous guessing games Gn,n′

k,d described in the main text.

APPENDIX F: PROOF OF THEOREM 1

Our proofs to parts (i) and (ii) of Theorem 1 follow the
same approach. In both cases we want to show that the sig-
naling polytope Cn→n′

d is equivalent to some convex polytope
defined by certain signaling dimension witnesses. We estab-
lish this by showing that the extreme points of the latter are
also extreme points of the former; the converse has already
been shown in Eq. (9). Recall that the extreme points of Cn→n′

d

consist of all extreme points of Pn→n′
having rank no greater

than d . In other words, P is extremal in Cn→n′
d iff it is column

stochastic with 0/1 elements and at most d nonzero rows.
We rely heavily on the following general characterization

of extreme points.
Proposition 8. Let S ⊂ Rn′×n be some convex polytope in

Rn′×n. Then P is an extreme point of S iff there does not exist
some D ∈ Rn′×n such that P ± D ∈ S .

In our application of Proposition 8, we will refer to D ∈
Rn′×n as a “valid” perturbation of P if P ± D ∈ S; hence, if D
is a valid perturbation, then P cannot be extremal.

Some other terminology used in our proofs is the follow-
ing. For a channel P ∈ Pn→n′

, an element P(y|x) is called
nonextremal if it lies in the open interval (0,1). We say that
P(y|x) is a row maximizer if it attains the largest value in row
y of P. It is further called a unique row maximizer if there
are no other elements in row y having this value. Finally, we
define the maximum likelihood estimation (ML) sum

φ(P) :=
n′∑

x=1

‖ry‖∞, (F1)

where ry denotes row y of P and ‖ry‖∞ is its row maximizer.
Then the maximum likelihood estimation (ML) polytope can
be expressed as

Mn→n′
d = {P ∈ Pn→n′ | φ(P) � d}. (F2)

Note that φ is a convex function so that if φ(P) = d with
P =∑λ pλVλ for extreme points Vλ ∈ Mn→n′

d and nonneg-
ative numbers pλ, then necessarily φ(Vλ) = d for every λ.

1. Proof of Theorem 1(i)

The proof of Theorem 1(i) follows immediately from the
following lemma due to the convexity of the ML and signaling
polytopes.

Lemma 4. For arbitrary n and n′, the extreme points of
Mn→n′

n′−1 are extreme points of Cn→n′
n′−1 .

Proof. We first show the conclusion of Lemma 4 is true
for any extreme point V of Mn→n′

n′−1 having ML sum φ(V) <

n′ − 1. If V is not extremal in Pn→n′
, then V must have at

least one column x with two nonextremal elements V (y1|x)
and V (y2|x). However, we could then take two perturbations
V (y1|x) → V (y1|x) ± ε and V (y2|x) → V (y2|x) ∓ ε with ε

chosen sufficiently small so that the ML sum remains < n′ − 1
and the numbers remain nonnegative. Hence, by contradic-
tion, V must be extremal in Pn→n′

with rank clearly < n′ − 1.
Let us then consider an extremal point V of Mn→n′

n′−1 for
which φ(V) = n′ − 1. Since φ(V) = n′ − 1 is an integer and
V has n′ rows, then V must have at least two nonextremal
row maximizers (possibly in different columns). We will again
introduce perturbations, but care is needed to ensure that the
perturbations are valid; i.e., the perturbed channels must re-
main in Mn→n′

n′−1 . There are two cases to consider.
Case (a): Suppose that two nonextremal row maximiz-

ers occur in the same column: say V (y1|x) and V (y2|x) are
both row maximizers in column x. Since these values will
account for the contributions of rows y1 and y2 in the ML
sum, and since there are only n′ total rows in this sum, we
must have that all other row maximizers are +1. Hence, we in-
troduce perturbations V (y1|x) → V (y1|x) ± ε and V (y2|x) →
V (y2|x) ∓ ε. If V (y1|x) and V (y2|x) are unique row maxi-
mizers, then this perturbation is valid. However, if there are
columns x′, x′′ such that V (y1|x) = V (y1|x′) and/or V (y2|x) =
V (y2|x′′) (with possibly x′ = x′′), then we must also intro-
duce a corresponding perturbation V (y1|x′) → V (y1|x′) ± ε

and/or V (y2|x′′) → V (y2|x′′) ∓ ε. To preserve normalization
in columns x′ and/or x′′, we will have to introduce an off-
setting perturbation to some other row in x′ and/or x′′. This
can always be done since either x′ = x′′, or x′ and/or x′′ have
a nonextremal element in some other row which is not a row
maximizer (since all other row maximizers are +1).

Case (b): No column has two nonextremal row maximiz-
ers, and V has at least two nonextremal row maximizers that
belong to different columns. For each row y with a nonex-
tremal row maximizer, add perturbations ±εy to all the row
maximizers in that row. Since each column has at most one
row maximizer, a normalization-preserving perturbation ∓εy

can be added to another nonextremal element in any column
having a row maximizer in row y. Finally, choose the εy so
that

∑n′
y=1 εy = 0. �

2. Proof of Theorem 1(ii)

We now turn to the ambiguous polytopes An→n′
∩ :=

∩n′
k=nAn→n′

k,n−1. Recall that An→n′
k,n−1 is the polytope of channels

P ∈ Pn→n′
satisfying all signaling dimension witnesses of the
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form

〈Gn,n′
k,n−1, P〉 � n − 1, (F3)

with Gn,n′
k,n−1 having k guessing rows and (n′ − k) ambiguous

rows. In this case, all the elements in an ambiguous row are
equal to 1

n−d+1 = 1
2 .

To prove Theorem 1(ii) we apply the following lemma to
show that the extreme points of An→n′

∩ are the same as those of
Cn→n′

n−1 . Then by convexity of An→n′
∩ and Cn→n′

n−1 we must have
An→n′

∩ = Cn→n′
n−1 .

Lemma 5. For arbitrary n′ � n, the extreme points of
An→n′

∩ are extreme points of Cn→n′
n−1 .

Proof. We first argue that the conclusion of Lemma 5 is
true for any extreme point V of An→n′

∩ such that 〈Gn,n′
k,n−1, V〉 <

n − 1 for all Gn,n′
k,n−1 and all integers k ∈ [n, n′]. Analogous to

Lemma 4, if V has at least one column x with two nonextremal
elements V (y1|x) and V (y2|x), we can take two sufficiently
small perturbations V (y1|x) → V (y1|x) ± ε and V (y2|x) →
V (y2|x) ∓ ε and still satisfy all the constraints of Eq. (F3).
Hence, V must be an extreme element of Pn→n′

. In this case,
rank(V) < n − 1 since φ(P) < n − 1, and so V ∈ Cn→n′

n−1 .
It remains to prove the conclusion of Lemma 5 whenever

Eq. (F3) is tight for some An→n′
k,n−1. The lengthiest part of this

argument is when k = n′ and tightness in Eq. (F3) corresponds
to the ML sum equaling n − 1. In this case, Proposition 10 be-
low shows that V must be an extreme point of Cn→n′

n−1 . However,
before proving this result, we apply it to show that Lemma 5
holds whenever Eq. (F3) is tight for some other Gn,n′

k,n−1 with

k < n′. Specifically, we will perform a lifting technique on
any vertex V satisfying 〈Gn,n′

k,n−1, V〉 = n − 1 and reduce it to
the case of the ML sum equaling (n − 1).

Suppose that φ(V) < n − 1 yet there exists some Gn,n′
k,n−1

such that 〈Gn,n′
k,n−1, V〉 = n − 1. The matrix Gn,n′

k,n−1 identifies
(n′ − k) ambiguous rows, and suppose that y is an ambiguous
row such that 1

2‖ry‖1 > ‖ry‖∞, with ry being the yth row of V.
To be concrete, let us suppose without loss of generality that
the components of row ry are arranged in nonincreasing order
[i.e., V (y|xi ) � V (y|xi+1)], and let k be the smallest index such
that

1

2

[
−

k−1∑
i=1

V (y|xi ) +
n∑

i=k

V (y|xi )

]
� V (y|xk ). (F4)

By the assumption 1
2‖ry‖1 > ‖ry‖∞, we have k > 1. Also,

since k is the smallest integer satisfying Eq. (F4), we
have

1

2

[
−

k−2∑
i=1

V (y|xi ) +
n∑

i=k−1

V (y|xi )

]
> V (y|xk−1). (F5)

Subtracting V (y|xk−1) from both sides of this equation implies
that the LHS of Eq. (F4) is strictly positive. Hence, there exists
some λ ∈ (0, 1] such that

λV (y|xk ) = 1

2

[
−

k−1∑
i=1

V (y|xi ) +
n∑

i=k

V (y|xi )

]
. (F6)

Consider then the new matrix Ṽ formed from V by splitting
row y into k rows as follows:

ry →

⎡⎢⎢⎢⎢⎣
V (y|x1) 0 · · · 0 (1 − λ)V (y|xk ) V (y|xk+1) · · · V (y|xn)

0 V (y|x2) · · · 0 0 0 · · · 0
...

...
...

...

0 0 · · · V (y|xk−1) 0 0 · · · 0
0 0 · · · 0 λV (y|xk ) 0 · · · 0

⎤⎥⎥⎥⎥⎦. (F7)

Notice that we can obtain V from Ṽ by coarse-graining over
these rows. Moreover, this decomposition was constructed so
that

k∑
i=1

‖̃ryi‖∞ =
k−1∑
i=1

V (y|xi ) + λV (y|xk ) = ‖ry‖1, (F8)

where the r̃yi are the rows in Eq. (F7). Essentially this trans-
formation allows us to replace an ambiguous row with a
collection of guessing rows so that the overall guessing score
does not change.

We perform this row splitting process on all ambiguous
rows of V thereby obtaining a new matrix Ṽ such that φ(Ṽ) =
n − 1. If m is the total number of rows in Ṽ, then Ṽ will be
an element of An→m

∩ . We decompose Ṽ into a convex com-
bination of extremal points of An→m

∩ as Ṽ =∑λ pλṼλ. By
the convexity of φ, it follows that φ(Ṽλ) = n − 1, and we can
therefore apply Proposition 10 below on the channels Ṽλ to
conclude that they are extreme points of Cn→m

n−1 . Consequently,

each Ṽλ has only one nonzero element per row. Let R denote
the coarse-graining map such that V = RṼ, and apply

V = RṼ =
∑

λ

pλRṼλ. (F9)

However, by the assumption that V is extremal, this is only
possible if RṼλ is the same for every λ. As a result, any two
Ṽλ and Ṽλ′ can differ only in rows that coarse-grain into the
same rows by R. From this it follows that V can have no more
than one nonzero element per column and rank(V) � n − 1.
Hence, we have shown that the extreme points of An→n′

∩ are
indeed extreme points of the signaling polytope Cn→n′

n−1 .
To complete the proof of Lemma 5, we establish the case

when φ(V) = n − 1, as referenced above. We begin by prov-
ing the partial result provided by Proposition 9 and then use
this result to prove Proposition 10.

Proposition 9. If V is an extreme point of An→n′
∩ satisfying

φ(V) = n − 1, then each column of V must have at least one
unique row maximizer or it has only one nonzero element.
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Proof. Suppose on the contrary that some column x has
more than one nonzero element yet no unique row maximizer.
Let Sx ⊂ [n′] be the set of rows for which column x contains
a row maximizer. Since only one row maximizer per row
contributes to the ML sum, and the elements of column x sum
to one, we can satisfy φ(V) = n − 1 iff both conditions hold:

(i) each row y in Sx has only two nonzero elements V (y|x)
and V (y|xy) for some column xy 	= x;

(ii) every other nonzero element in V outside of column x
and the rows in Sx are unique row maximizers.

With this structure, we introduce three cases of valid per-
turbations.

Case (a): V (y1|x) and V (y2|x) are nonextremal elements in
column x with y1, y2 	∈ Sx. Then V (y1|x) → V (y1|x) ± ε and
V (y2|x) → V (y2|x) ∓ ε is a valid perturbation. Indeed, even if
we consider y1 or y2 as ambiguous rows, there is at most one
other element in each of these rows (property (i) above), and
so this perturbation would not violate any of the inequalities
in Eq. (F3).

Case (b): V (y1|x) and V (y2|x) are nonextremal elements in
column x with y1 ∈ Sx and y2 	∈ Sx. Then V (y1|x) = V (y1|xy1 )
for some other column xy1 	= x. By normalization, there will
be another element V (y3|xy1 ) in column xy1 that by property
(ii) is a unique row maximizer. Hence, we introduce perturba-
tions

V (y1|x) → V (y1|x) ± ε, V (y1|xy1 ) → V (y1|xy1 ) ± ε,

V (y2|x) → V (y2|x) ∓ ε, V (y3|xy1 ) → V (y3|xy1 ) ∓ ε.

(F10)

For clarity, the line spacing is chosen here so that elements
on the same vertical line correspond to elements in the same
row of V. By properties (i) and (ii), these perturbations do not
increase the ML sum, nor are they able to violate any of the
other inequalities in Eq. (F3).

Case (c): V (y1|x) and V (y2|x) are nonextremal elements
in column x with y1, y2 ∈ Sx. Then V (y1|x) = V (y1|xy1 )
and V (y2|x) = V (y2|xy2 ) for some other columns xy1 , xy2 	= x
(with possibly xy1 = xy2 ). By normalization, there will be
elements V (y3|xy1 ) and V (y4|xy2 ) in columns xy1 and xy2 re-
spectively that are unique row maximizers [again by property
(ii)]. Note this requires that y1, y2, y3, y4 are all distinct rows.
Hence, we introduce perturbations

V (y1|x) → V (y1|x) ± ε, V (y1|xy1 ) → V (y1|xy1 ) ± ε,

V (y2|x) → V (y2|x) ∓ ε, V (y2|xy2 ) → V (y2|xy2 ) ∓ ε,

V (y3|xy1 ) → V (y3|xy1 ) ∓ ε, V (y4|xy2 ) → V (y4|xy2 ) ± ε,

(F11)

Normalization is preserved under these perturbations and all
the inequalities in Eq. (F3) are satisfied.

As we have shown valid perturbations in all three cases
under the assumption that some column has nonextremal ele-
ments with no unique row maximizer, the proposition follows.

Proposition 10. If V is an extreme point of An→n′
∩ satisfy-

ing φ(V) = n − 1, then V is an extreme point of Cn→n′
d .

Proof. Suppose that V has some column x1 containing
more than one nonzero element (if no such column can be
found, then the proposition is proven). Let V (y1|x1) ∈ (0, 1)

denote a unique row maximizer, which is assured to exist by
Proposition 9. We again proceed by considering two cases.

Case (a): Column x1 contains only one row maximizer
V (y1|x1) and all other elements in the column are not row
maximizers. Then there must exist another column x′

1 that
also contains at least two nonzero elements. Indeed, if on
the contrary all other columns only had one nonzero element
each, then it would be impossible for φ(V) = n − 1. If x′

1
only contains row maximizers, then proceed to case (b) and
replace x1 with x′

1. Otherwise, x′
1 does not only contain row

maximizers; rather it has a unique row maximizer V (y3|x′
1) in

row y3 and a nonzero element V (y4|x′
1) in row y4 that is not a

row maximizer. Thus, we can introduce the valid perturbations

V (y1|x1) → V (y1|x1) ± ε, V (y2|x1) → V (y2|x1) ∓ ε,

V (y3|x′) → V (y3|x′
1) ∓ ε, V (y4|x′) → V (y4|x′

1) ∓ ε,

(F12)

where V (y2|x1) denotes another nonzero element in x1 (with
possibly y2 = y3, y4 and/or y3 = y1). It can be verified that all
inequalities in Eq. (F3) are preserved under these perturba-
tions.

Case (b): Column x1 only contains row maximizers, with
V (y2|x1) being another one in addition to V (y1|x1). If V (y2|x1)
is a unique row maximizer, then valid perturbations can be
made to both V (y1|x1) and V (y2|x1). However, suppose that
V (y2|x1) is a nonunique row maximizer, and let V (y2|x2) =
V (y2|x1) be another row maximizer in column x2. There can
be no other nonzero elements in row y2. Indeed, if there
were another column, say x3, such that V (y2|x3) > 0, then we
would have

1
2‖ry2‖1 � 1

2 [V (y2|x1) + V (y2|x2) + V (y2|x3)]

> V (y2|x2) = ‖ry2‖∞, (F13)

and so 〈
Gn,n′

n′−1,n−1, V
〉
> φ(V) = n − 1, (F14)

where the one ambiguous row in Gn,n′
n′−1,n−1 is y2. Hence, the

only nonzero elements in row y2 are V (y2|x1) and V (y2|x2).
Let V (y3|x2) be a unique row maximizer in column x2.

We must be able to find another column x3 with more than
one nonzero element, one of which is a unique row maximizer
and the other which is a nonunique row maximizer. For if this
were not the case, then any other column in V would either
have a unique row maximizer equaling one, or it would have at
least two elements, one being a unique row maximizer and the
others not being row maximizers. However, the latter possibil-
ity was covered in case (a) and was shown to be impossible for
an extremal V. For the former, if all the other n − 2 columns
outside of x1 and x2 contain unique row maximizers equaling
one, then they would collectively contribute an amount of
n − 2 to the ML sum. Since every element in column x1 is
a row maximizer, and V (y3|x2) is a row maximizer in column
x2, we would have φ(V) > (n − 2) + 1 + V (y3|x2) > n − 1.
Hence, there must exist another column x3 with a nonunique
row maximizer V (y5|x3) that is shared with column x4 (which
may be equivalent to either x1 or x2). Letting V (y4|x3) and
V (y6|x4) denote unique row maximizers in columns x3 and x4,
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respectively, we can perform the valid perturbations

V (y1|x1) → V (y1|x1) ± ε, V (y2|x1) → V (y2|x1) ∓ ε,

V (y2|x2) → V (y2|x2) ∓ ε, V (y3|x2) → V (y3|x2) ± ε,

V (y4|x3) → V (y4|x3) ± ε, V (y5|x3) → V (y5|x3) ∓ ε,

V (y5|x4) → V (y2|x2) ∓ ε, V (y6|x4) → V (y6|x4) ± ε.

(F15)

Note that y1, y2, y3, y4, y5, y6 are all distinct rows since each
row in V can have at most one pair of nonunique row
maximizers while rows y1, y3, y4, y6 contain unique row max-
imizers. This assures that the perturbations do not violate the
inequalities in Eq. (F3).

As cases (a) and (b) exhaust all possibilities, we see that V
can only have one nonzero element per column. From this the
conclusion of Proposition 10 follows. �

This completes the proof of Lemma 5. �

APPENDIX G: PROOF OF THEOREM 2

In this Appendix we analyze the Cn→4
2 signaling polytope

to prove the Theorem 2. To begin we define the polyhedron of
channels

C(G, γ ) := {P ∈ Pn→n′ | 〈G, P〉 =
n∑

x=1

n′∑
y=1

Gy,xP(y|x) � γ }

(G1)
for any signaling dimension witness (G, γ ) with G ∈ Rn′×n

and γ ∈ R. Since Cn→n′
d is a convex polytope, there exists a

finite number of polyhedra {C(Gm, γm)}r
m=1 such that

Cn→n′
d =

r⋂
m=1

C(Gm, γm). (G2)

Remark Without loss of generality, we can assume that the
matrices Gm contain nonnegative elements. Indeed, if Gy,x <

0 is the smallest element in column x of Gm, then we replace
each element in column x as Gy′,x → Gy′,x + Gy,x and shift
γ → γ + Gy,x. Hence, the smallest element in column x of
Gm becomes Gy,x = 0.

The proof of Theorem 2 is a consequence of Lemmas 6
and 7 below and our numerical results for the Cn→4

2 signaling
polytope [32] (see Table I). First, by Lemma 6 we can reduce
any signaling dimension witness (G, γ ) bounding Cn→4

2 to
a new signaling dimension witness (Ĝ, γ̂ ) having at most
2 nonzero elements in each column. The reduced inequality
(Ĝ, γ̂ ) satisfies Cn→4

2 ⊂ C(Ĝ, γ̂ ) ⊂ (G, γ ) and thus bounds
Cn→4

2 more tightly than (G, γ ). Next, we use Lemma 7 to
show that for any integer n a tight signaling dimension witness
of Cn→4

2 has at most six nonzero columns. The presence of

all-zero columns implies that this inequality is simply an input
lifting of a tight signaling dimension witness of C6→4

2 . There-
fore, the complete set of tight signaling dimension witnesses
bounding Cn→4

2 is the set of all input liftings and permutations
of the generator facets of C6→4

2 shown in Table I.
Lemma 6. If Cn→n′

d ⊂ C(G, γ ), then there exists a poly-
hedron C(Ĝ, γ̂ ) with Ĝ having at most (n′ − d ) nonzero
elements in each column and satisfying

Cn→n′
d ⊂ C(Ĝ, γ̂ ) ⊂ C(G, γ ). (G3)

Proof. Suppose Cn→n′
d ⊂ C(G, γ ) and consider an arbitrary

x ∈ [n]. For convenience, let us relabel the elements of the xth

column of G in nonincreasing order; i.e., Gy,x � Gy+1,x. Every
vertex V of Cn→n′

d will satisfy

γ �
∑
x′,y

Gy,x′V (y|x′)

=
∑

y

Gy,xV (y|x) +
∑

x′ 	=x,y

Gy,x′V (y|x′)

=
∑

y

Gy,xV (y|x) + f (G, V, x), (G4)

where f (G, V, x) :=∑x′ 	=x,y Gy,x′V (y|x′). A key observation
is

γ � Gd,x + f (G, V, x) for every vertex V of Cn→n′
d .

(G5)

We prove this observation using Eq. (G4). First con-
sider any vertex V such that V (y|x) = δd ′y with d ′ � d .
Then Eq. (G4) shows that γ � Gd ′,x + f (G, V, x) � Gd,x +
f (G, V, x), since we have labeled the elements in nonincreas-
ing order. However, consider a vertex V for which V (y|x) =
δd ′y with d ′ < d . Since vertices can be formed with d nonzero
rows, we can choose another vertex V′ that is identical to V in
all columns x′ 	= x, and yet for column x it satisfies V ′(y|x) =
δd ′′y with d � d ′′. Hence, applying Eq. (G4) to vertex V′ yields

γ � Gd ′′,x + f (V′, x) � Gd,x + f (G, V′, x)

= Gd,x + f (G, V, x), (G6)

where the last line follows from the fact that V and V′ only
differ in column x.

Having established Eq. (G5), we next form a new matrix Ĝ
which is obtained from G by replacing its xth column with

(Ĝy,x )T
y := (

d︷ ︸︸ ︷
0, 0 · · · , 0, Gd+1,x − Gd,x, · · · , Gn′,x − Gd,x )T .

(G7)
Letting γ̂ = γ − Gd,x, for any vertex V we have

∑
x′,y

Ĝy,x′V (y|x′) =
∑

y

Ĝy,xV (y|x) + f (G, V, x) =
{

f (G, V, x) if V (y|x) = δd ′y with d ′ � d,

Gd ′,x − Gd,x + f (G, V, x) if V (y|x) = δd ′y with d ′ > d,
� γ̂ , (G8)

where the last inequality follows from Eq. (G5) (in the first case) and Eq. (G4) (in the second case). Hence, we have that
Cn→n′

d ⊂ C(Ĝ, γ̂ ). Conversely, if P ∈ C(Ĝ, γ̂ ), then

γ − Gd,x �
∑
x′,y

Ĝy,x′P(y|x′) =
∑

y

Ĝy,xP(y|x) +
∑

x′ 	=x,y

Ĝy,x′P(y|x′)
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=
n′∑

y=d+1

(Gy,x − Gd,x )P(y|x) +
∑

x′ 	=x,y

Ĝy,x′P(y|x′)

= −Gd,x(1 −
d∑

y=1

P(y|x)) +
n′∑

y=d+1

Gy,xP(y|x) +
∑

x′ 	=x,y

Ĝy,x′P(y|x′)

� −Gd,x +
n′∑

y=1

Gy,xP(y|x) +
∑

x′ 	=x,y

Ĝy,x′P(y|x′)

= −Gd,x +
∑
x′,y

Gy,x′P(y|x′). (G9)

Therefore, P ∈ C(G, γ ) and so Cn→n′
d ⊂ C(Ĝ, γ̂ ) ⊂ C(G, γ ).

Note that if G has only nonnegative elements then so will Ĝ.�
Lemma 7. For any finite number of inputs n,

Cn→4
2 =

s⋂
m=1

C(Gm, γm), (G10)

with each Gm having at most six nonzero columns.
Proof. As a consequence of Lemma 6, we can always find

a complete set of polyhedra {C(Ĝm, γ̂m)}s
m=1 such that

Cn→4
2 =

s⋂
m=1

C(Ĝm, γ̂m),

such that each Ĝm has no more than positive elements in each
column and the rest being zero. Our goal is to show that the
number of such columns can be reduced to six. The key steps
in our reduction are given by the following two propositions.�

Proposition 11. Consider the matrices

Ĝ =

⎡⎢⎣a b · · · ·
c d · · · ·
0 0 · · · ·
0 0 · · · ·

⎤⎥⎦,

Ĝ′ =

⎡⎢⎣a − c b + c · · · ·
0 d + c · · · ·
0 0 · · · ·
0 0 · · · ·

⎤⎥⎦, a � c � 0, (G11)

which differ only in the first two columns. Then Cn→4
2 ∈

C(Ĝ, γ̂ ) iff Cn→4
2 ∈ C(Ĝ′, γ̂ ).

Proof. Every vertex V of Cn→4
2 will have support in only

two rows. If V has support in the first two rows, then its upper
left corner will have one of the forms (1 1

0 0), (1 0
0 1), (0 1

1 0),

(0 0
1 1). In each of these cases, 〈Ĝ, V〉 � γ̂ ⇔ 〈Ĝ′, V〉 � γ̂ .

The other possibility is that V has support in only one of
the first two rows. This leads to upper left corners of the form
(1 1
0 0), (0 0

1 1), (1 0
0 0), (0 1

0 0), (0 0
1 0), (0 0

0 1). Suppose now

that Cn→4
2 ∈ C(Ĝ, γ̂ ). If a vertex V of Cn→4

2 has form (1 0
0 0)

in the upper left corner, then nonnegativity of c implies that
〈Ĝ′, V〉 � γ̂ . A somewhat less trivial case is any vertex V1

having form (0 1
0 0) in the upper left corner. Here we need to

use the fact that there exists a vertex V2 with (1 1
0 0) in the

upper left corner but is identical to V1 in all other columns.

Hence, we have

γ̂ � 〈Ĝ, V2〉 = a + b + κ ⇒ 〈Ĝ′, V1〉
= b + c + κ � a + b + κ � γ̂ , (G12)

where κ is the contribution of the other columns to the inner
product, and we have used the assumption that a � c. Similar
reasoning shows that 〈Ĝ′, V〉 � γ̂ for all other vertices V.
Conversely, by an analogous case-by-case consideration, we
can establish that Cn→4

2 ∈ C(Ĝ′, γ̂ ) implies 〈Ĝ, V〉 � γ̂ for all
vertices V of Cn→4

2 . �
Proposition 12. Consider the matrices

Ĝ =

⎡⎢⎣a b · · · ·
0 0 · · · ·
0 0 · · · ·
0 0 · · · ·

⎤⎥⎦, Ĝ′ =

⎡⎢⎣a + b 0 · · · ·
0 0 · · · ·
0 0 · · · ·
0 0 · · · ·

⎤⎥⎦,

Ĝ′′ =

⎡⎢⎣0 a + b · · · ·
0 0 · · · ·
0 0 · · · ·
0 0 · · · ·

⎤⎥⎦, (G13)

which differ only in the first two columns. Then Cn→4
2 ∈

C(Ĝ, γ̂ ) iff Cn→4
2 ∈ C(Ĝ′, γ̂ ) ∩ C(Ĝ′′, γ̂ ). �

Proof. This proof considers the vertices of Cn→4
2 and ap-

plies the same reasoning as the proof of Proposition 11.
Continuing with the proof of Lemma 7, suppose that

Cn→4
2 ∈ C(Ĝm, γ̂m) with each column of Ĝm having no more

than two nonzero rows. We can group the columns into six
groups according to which two rows have zero (it may be that
a column has more than two zeros, in which case we just select
one group to place it in). By repeatedly applying Proposition
11, we can replace Ĝm with a matrix Ĝ′

m such that each group
has at most one column with two nonzero elements; the rest
of the columns in that group have at most just one nonzero
element. We then repeatedly apply Proposition 12 to remove
multiple columns with the same single nonzero row. In the
end, we arrive at the following:

Cn→4
2 ∈ C(Ĝm, γ̂m) ⇔ Cn→4

2 ∈
⋂

j

C(Ĝm, j, γ̂m), (G14)

where each Ĝm, j has at most ten nonzero columns corre-
sponding to the different ways that no more than two nonzero
elements can occupy a column. That is, up to a permutation of
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columns, each Ĝm, j will have the form

Ĝm, j =

⎡⎢⎣a1 b1 c1 0 0 0 g 0 0 0 0 · · ·
a2 0 0 d1 e1 0 0 h 0 0 0 · · ·
0 b2 0 d2 0 f1 0 0 i 0 0 · · ·
0 0 c2 0 e2 f2 0 0 0 j 0 · · ·

⎤⎥⎦. (G15)

The final step is to remove the block of diagonal elements [g, h, i, j]. To do this, observe that we absorb any of these diagonal
elements into an earlier column, provided that the row contains the largest element in that column. For example, if f2 > f1, then
we can replace Ĝm, j with

Ĝ′
m, j =

⎡⎢⎣a1 b1 c1 0 0 0 g 0 0 0 0 · · ·
a2 0 0 d1 e1 0 0 h 0 0 0 · · ·
0 b2 0 d2 0 f1 0 0 i 0 0 · · ·
0 0 c2 0 e2 f2 + j 0 0 0 0 0 · · ·

⎤⎥⎦, (G16)

and we can easily see that Cn→4
2 ∈ C(Ĝm, j, γ̂m) iff Cn→4

2 ∈ C(Ĝ′
m, j, γ̂m). By considering the maximum element in each of the first

six columns, we can perform this replacement for at least three of the four elements [g, h, i, j]. If we can do this for all four
elements, then the proof is complete. However, if we can only remove three of these elements, then we will obtain a matrix Ĝ′′

m, j
of the form (up to row/column permutations)

Ĝ′′
m, j =

⎡⎢⎣a1 b1 c1 0 0 0 g 0 0 0 0 · · ·
a2 0 0 d1 e1 0 0 0 0 0 0 · · ·
0 b2 0 d2 0 f1 0 0 0 0 0 · · ·
0 0 c2 0 e2 f2 0 0 0 0 0 · · ·

⎤⎥⎦, (G17)

with a1, b1, c2 not having the largest values in their respective columns. In this case, we construct the matrix

Ĝ′′′
m, j =

⎡⎢⎣a1 + g b1 + g c1 + g 0 0 0 0 0 0 0 0 · · ·
a2 + g 0 0 d1 e1 0 0 0 0 0 0 · · ·

0 b2 + g 0 d2 0 f1 0 0 0 0 0 · · ·
0 0 c2 + g 0 e2 f2 0 0 0 0 0 · · ·

⎤⎥⎦, (G18)

from which it can be verified that Cn→4
2 ⊂ C(Ĝ′′

m, j, γ̂m) iff

Cn→4
2 ⊂ C(Ĝ′′′

m, j, γ̂m + 2g). �

APPENDIX H: PROOF OF THEOREM 3

In this Appendix we provide two propositions that support
the proof of Theorem 3. Recall that a d-dimensional partial
replacer channel is a quantum channel having the form

Rμ(X ) = μX + (1 − μ)Tr[X ]σ, (H1)

where 1 � μ � 0, σ is some fixed density matrix, and X is a
quantum state on a d-dimensional Hilbert space. Note that the
partial erasure channel Eμ corresponds to σ being an erasure
flag |E〉〈E |, where |E〉 is orthogonal to {|1〉, · · · , |d〉}. We first
show that the lower bound of κ (Rμ) � �μd + (1 − μ)� [see
Eq. (17)] is not improved by any choice of states {ρx}x, POVM
{�y}y, or ambiguous guessing game Gn,n′

n′,d with k = n′.
Proposition 13. The maximum likelihood score for any

classical channel PRμ
generated using a partial replacer chan-

nel Rμ is bounded as

〈GML, PRμ
〉 � μd + (1 − μ), (H2)

where GML is any maximum likelihood facet satisfying Propo-
sition 2(i).

Proof. In this proof, we first consider the unlifted maxi-
mum likelihood Gn′

ML = In′ where n = n′ (see Appendix D 2),
and then generalize across all input/output liftings taking
Gn′

ML → GML ∈ Rm′×m where m′, m � n′. To begin we max-
imize 〈Gn′

ML, PRμ
〉 over the quantum states {ρx}x and POVM

{�y}y,

max
〈
Gn′

ML, PRμ

〉
= max

{ρx}x,{�y}y

∑
x=y

Tr[�yRμ(ρx )] (H3)

= max
{ρx}x,{�y}y

∑
x=y

μTr[�yρx] + (1 − μ)Tr[�yσ ] (H4)

� max
{�y}y

∑
y

μTr[�y] + (1 − μ)Tr[�yσ ] (H5)

= μd + (1 − μ), (H6)

where Eq. (H5) uses the fact that Tr[�yρx] � Tr[�y] for any
choice of �y and ρx while Eq. (H6) results from

∑
y Tr[�y] =

d and
∑

y Tr[�yσ ] = Tr[σ ] = 1. A simple example that
achieves this bound is the scenario where Alice sends orthogo-
nal states {|x〉〈x|}d

x=1 and Bob measures with a similar POVM
{|y〉〈y|}d

y=1, then

〈Gd
ML, PRμ

〉

=
d∑

y=x=1

Tr[|y〉〈y|Rμ(|x〉〈x|)] (H7)

= μ

d∑
y=1

Tr[|y〉〈y|y〉〈y|] + (1 − μ)
d∑

y=1

Tr[|y〉〈y|σ ] (H8)

= μd + (1 − μ). (H9)
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In general, the upper bound is achieved whenever �yρx =
�y for all x ∈ [n] and y ∈ [n′]. Note that this requires
rank(�y) = rank(ρx ) = 1 and �y||ρx.

To extend the bound 〈Gn′
ML, PRμ

〉 � μd + (1 − μ) to all
liftings of Gn′

ML, we make two observations. First, note that the
input lifting taking Gn′

ML → G′′
ML ∈ Rn′×m contains (m − n)

all-zero columns. These all-zero columns of G′′
ML do not

contribute to the inner product 〈G′′
ML, PRμ

〉, and therefore,
cannot increase the inner product beyond μd + (1 − μ). Sec-
ond, observe that the output lifting taking Gn′

ML → G′
ML ∈

R(n′+1)×n requires a new POVM {�′
y}n′+1

y=1 which must satisfy∑n′+1
y=1 �′

y = Id . Furthermore, one column x of G′
ML has two

nonzero elements in rows y and y′ where G′
y,x = G′

y′,x = 1. In
this case, two POVM elements �′

y and �′
y′ are both optimized

against the state ρx. However, the constraint Tr[�′
y′ρx] +

Tr[�′
yρx] � 1 holds for any choice of ρx and POVM. There-

fore, the inner product 〈G′
ML, PRμ

〉 � μd + (1 − μ). The
argument applied for the output lifting holds in general where
one or more columns x contain at least two nonzero elements.
Thus, the upper bound in Eq. (H6) holds for any input/output
lifting taking Gn′

ML → GML ∈ Rm′×m, where min{m, m′} � n′.
This concludes the proof. �

The upper bound on the maximum likelihood score from
Proposition 13 serves as a lower bound on the signaling di-
mension of the partial replacer channel κ (Rμ). This follows
from the fact that if PRμ

/∈ Mn→n′
r , then κ (Rμ) > r Further-

more, the integer nature of the signaling dimension implies
that κ (Rμ) � �μd + (1 − μ)�. We now turn to certify the
signaling dimension of the partial erasure channel.

Proposition 14. The signaling dimension of of a d-
dimensional partial erasure channel is

κ (Eμ) = min{d, �μd + 1�}. (H10)

Proof. Let the classical channel PEμ
be induced by the

partial erasure channel Eμ via Eq. (1) for any collection of
quantum states {ρx}x and POVM {�y}y. The transition proba-
bilities are then expressed

PEμ
(y|x) = μPidd (y|x) + (1 − μ)P|E〉(y), (H11)

where Pidd (y|x) = Tr[�yρx] and P|E〉(y) = Tr[�y|E〉〈E |].
Since the simulation protocol for partial replacer channels can
faithfully simulate PEμ

, the upper bound κ (Rμ) � �μd + 1�
holds (see the proof of Theorem 3 in the main text). Therefore,
min{d, �μd + 1�} � κ (Eμ). To establish a lower bound on
κ (Eμ) we consider the channel PEμ

∈ Pd→(d+1) generated by
the scenario where Alice sends the computational basis states
{|x〉〈x|}d

i=1 and Bob measures with the POVM {|y〉〈y|}d+1
y=1 ,

where |d + 1〉 = |E〉,

PEμ
=

d∑
x=1

d+1∑
y=1

Tr[|y〉〈y|Eμ(|x〉〈x|)]|y〉〈x| (H12)

=
d∑

x=1

d+1∑
y=1

(μTr[|y〉〈y|x〉〈x|]

+ (1 − μ)Tr[|y〉〈y|E〉〈E |])|y〉〈x| (H13)

= μ

d∑
x=1

|x〉〈x| + (1 − μ)
d∑

x=1

|E〉〈x|. (H14)

As demonstrated in Proposition 13, PEμ
achieves the max-

imum likelihood upper bound for partial replacer channels,
〈GML, PEμ

〉 = μd + (1 − μ). In fact, this bound also holds
for nonorthogonal quantum states {ρx}x∈[n], where n > d .

To improve the lower bound on κ (Eμ) beyond Proposi-
tion 13, we consider the ambiguous polytope A(n′−1)→n′

(n′−1),r with

ambiguous guessing facets Gn′,r
? that are tight signaling di-

mension witnesses of Cn→n′
r (see Appendix D 3). Our goal is

to find the smallest integer r such that PEμ
∈ A(n′−1)→n′

(n′−1),r , that

is, 〈Gn′,r
? , PEμ

〉 � r(n′ − r) is satisfied. Consider the erasure
channel PEμ

∈ Pd→(d+1) described by Eq. (H14). We find that
the inequality

r(n′ − r) � 〈Gn′,r
? , PEμ

〉 = (n′ − r)μd + (1 − μ)(n′ − 1)
(H15)

is violated if PEμ
/∈ A(n′−1)→n′

(n′−1),r for n′ − 2 � r � 2. Note that
in our example n′ = d + 1; however, this procedure holds for
any n′ > d . Rearranging inequality Eq. (H15) into the form

0 � r2 − r(μd + n′) + μdn′ + (1 − μ)(n′ − 1) (H16)

allows us to find the values of r for which inequality Eq. (H15)
is satisfied by solving for the zeros r± of the quadratic on the
RHS of Eq. (H16),

r± = 1
2 (μd + n′) ± 1

2

√
(n′ − μd )2 − 4(1 − μ)(n′ − 1).

(H17)
Since the parabola of Eq. (H16) is concave up, all integer

values of r ∈ [r−, r+] satisfy inequality Eq. (H15). Further-
more, the smallest integer for which the inequality is satisfied
is r = �r−�. Therefore, the signaling dimension is bounded as

κ (Eμ) � r = ⌈ 1
2 (μd + n′)

− 1
2

√
(n′ − μd )2 − 4(1 − μ)(n′ − 1)

⌉
.

(H18)

The value of r in Eq. (H18) satisfies the facet inequality
Eq. (H15) for all allowed values of n′, μ, and d . Note that n′
is a free parameter which we can choose as any integer n′ �
d + 1. In our example, PEμ

has n′ = (d + 1) which obtains
the lower bound κ (Eμ) � �μd + 1�. To see this, we substitute
n′ = (d + 1) into Eq. (H18) and perform some algebra,

r =
⌈

1

2
(μd + d + 1) − 1

2

√
(d (1 − μ) + 1)2 − 4d (1 − μ)

⌉
=
⌈

1

2
(μd + d + 1) − 1

2

√
(d (1 − μ) − 1)2

⌉
(H19)

=
⌈

1

2
(μd + d + 1) − 1

2
(d (1 − μ) − 1)

⌉
(H20)

=
⌈

1

2
(μd + 1) + 1

2
(μd + 1)

⌉
(H21)

= �μd + 1�. (H22)

Hence, κ (Eμ) � r = �μd + 1�. Additionally, substituting
n′ > d + 1 into Eq. (H18) results in a necessarily smaller
value or r therefore n′ = d + 1 is a maximum.

It is important to note that the lower bound κ (Eμ) � �μd +
1� only holds for r � n′ − 2 because Gn′,r

? is not a facet
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for signaling polytopes C (n′−1)→n′
r with r > n′ − 2. There-

fore, we must consider the edge case where r = n′ − 1 = n,
that is, the case where the trivial upper bound of Eq. (3)
is obtained. From Theorem 1 Condition (ii) we know that
Cn→n′

n−1 = ∩k = nn′An→n′
k,n−1. It follows for the edge case r = n′ −

1 = n that if a channel PEμ
/∈ A(n′−1)→n′

(n′−1),r , then κn→n′
(Eμ) =

min{n, n′} = (n′ − 1). Hence, κ (Eμ) is proven to be tight with
the upper bound. To illustrate this case we consider inequality
Eq. (H16) and substitute r = n′ − 2,

0 � (n′2 − 4n′ + 4) − (n′ − 2)(μd + n′) + μdn′

+ (1 − μ)(n′ − 1) (H23)

� −4n′ + 4 + 2μd + 2n′ + (1 − μ)n′ − (1 − μ). (H24)

Next, we substitute d = n′ − 1 into Eq. (H24) as this is the
edge case we wish to consider,

0 � −4n′ + 4 + 2μ(n′ − 1) + 2n′ + (1 − μ)n′ − (1 − μ)

(H25)

� n′(μ − 1) + 3 − μ (H26)

� 3 − n′ + μ(n′ − 1). (H27)

Rearranging inequality Eq. (H27), we find that it is satisfied
iff, n′−3

n′−1 � μ. Therefore, when μ > n′−3
n′−1 , inequality Eq. (H15)

is violated, and by Theorem 1(ii) we certify that κ (Eμ) = d .
Considering this edge case, we arrive at the conclusion that
κ (Eμ) � min{d, �μd + 1�}, which is exactly the upper bound
min{d, �μd + 1�} � κ (Eμ). That is, the signaling dimension
of the erasure channel is bounded tightly from above and
below from which it follows, κ (Eμ) = min{d, �μd + 1�}. �
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