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Toward simulating quantum field theories with controlled phonon-ion dynamics:
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Quantum field theories are the cornerstones of modern physics, providing relativistic and quantum mechanical
descriptions of physical systems at the most fundamental level. Simulating real-time dynamics within these
theories remains elusive in classical computing. This provides a unique opportunity for quantum simulators,
which hold the promise of revolutionizing our simulation capabilities. Trapped-ion systems are successful
quantum-simulator platforms for quantum many-body physics and can operate in digital, or gate-based, and
analog modes. Inspired by the progress in proposing and realizing quantum simulations of a number of relativistic
quantum field theories using trapped-ion systems, and by the hybrid analog-digital proposals for simulating
interacting boson-fermion models, we propose hybrid analog-digital quantum simulations of selected quantum
field theories, taking recent developments to the next level. On one hand, the semi-digital nature of this proposal
offers more flexibility in engineering generic model interactions compared with a fully-analog approach. On the
other hand, encoding the bosonic fields onto the phonon degrees of freedom of the trapped-ion system allows a
more efficient usage of simulator resources, and a more natural implementation of intrinsic quantum operations
in such platforms. This opens up ways for simulating complex dynamics of, e.g., Abelian and non-Abelian gauge
theories, by combining the benefits of digital and analog schemes.
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I. INTRODUCTION

Quantum field theories (QFTs) provide the underlying
quantum-mechanical descriptions of physical systems, from
relativistic gauge field theories of the Standard Model of
particle physics [1,2], to emergent low-energy models in
condensed-matter systems [3,4], to effective field theories
in hadronic and nuclear physics [5,6]. Classical simulation
methods have come a long way to describe phenomena emerg-
ing from these underlying theories, with notable examples
in the realm of lattice gauge theory (LGT) methods applied
in strong-interaction physics [7,8]. Nonetheless, there is a
need for new computational strategies to overcome the limi-
tations of the current methods, in order to achieve real-time
simulations of matter, and predictions for equilibrium and
out-of-equilibrium phenomena arising from strong-interaction
dynamics. Hamiltonian simulation of physical systems, natu-
rally enabled via mapping the problem to a quantum simulator
or a quantum computer, is an example of such a strategy,
with major advances reported in recent years in proposing
[9–52] and implementing [53–68] simulations of various field
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theories on the limited existing quantum hardware, and in
formulating suitable Hamiltonian descriptions of QFTs and
LGTs for resource-efficient and robust quantum simulations
[9,12,13,21,29,36,42–45,47–50,69–74]. The question we in-
vestigate here is complementary to the latter effort: Given a
Hamiltonian formulation, what are the efficient implemen-
tation strategies that maximally take advantage of available
hardware capacity and capability? We focus on trapped-ion
quantum simulators as one of the leading quantum-hardware
technologies. Nonetheless, applications of this strategy to
other platforms, such as superconducting circuits in cavity
QED [75], can be established analogously.

QFTs with bosonic fields are extremely common, from
scalar field theory descriptions of phase transitions in
condensed-matter systems or of the inflationary phase of the
early universe and the Higgs mechanism, to gauge field the-
ory descriptions of the fundamental forces of nature. Due
to their infinite-dimensional Hilbert space, even on a sin-
gle space-time point, a truncation must be imposed on the
various bosonic excitations to contain their dynamics on a
finite simulating hardware. Important work has emerged in
understanding, qualitatively or quantitatively, the impact of
this truncation, from the simple quantum harmonic oscillator
[76–78] to scalar field theory [13,29] and LGTs [47,50,74,79].
While quantities in the low-energy subspace of the truncated
theories exhibit exponential convergence to the exact values
in the full theory, as guaranteed by the Shannon-Nyquist
sampling theorem [29,77] in the case of scalar field theory,
observables in the high-energy sector or those obtained from
long-time expectation values exhibit a slow convergence to
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the exact values. In particular, as shown in Ref. [74] for the
case of the SU(2) LGT coupled to matter in 1+1 D, for a
certain threshold on the gauge-field cutoff quantities enter
a scaling region in which the dependence on the cutoff be-
comes exponential and systematically improvable. However,
for high-energy spectra and long-time dynamical quantities,
such a threshold is reached for a large value of the cutoff, in-
creasing the simulation-resource requirement needed to reach
a fixed accuracy.

The most common encoding of bosonic degrees of freedom
to qubits for digital quantum simulation is to convert their oc-
cupation number to a binary representation, the qubit-number
requirement of which is logarithmic in the cutoff on the high-
est excitation of the boson. Most importantly for near-term
applications, the number of entangling gates required to im-
plement the dynamics associated with boson-boson or boson-
fermion interactions grows polynomially with the system size,
as a large number of controlled operations must be introduced
on the state of the boson register, see e.g., Refs. [39,76,78].
This problem is particularly severe in the case of bosonic field
theories as, for example, a scalar field in a finite discretized
space represents quantum harmonic oscillators, or bosons,
associated with each momentum mode, the number of which
scales linearly with the volume of the reciprocal lattice. Each
harmonic oscillator then requires the allocation of dedicated
qubits and the implementation of associated entangling gates.
A cost analysis of this kind for a fully-digital implementa-
tion is made explicit in this paper and is contrasted with our
analog-digital protocol, to be introduced next.

A trapped-ion quantum simulator [80–82] can operate in
an analog mode, with which dynamics generated by the Ising
and Heisenberg spin Hamiltonians can be studied [32,83–
91], or a digital mode, with which universal computations
expressed in terms of single- and two-qubit gates can be
performed [54,92–105]. Typically in these systems, specific
pairs of internal states encode qubits, which are manipulated
via ion-laser or ion-microwave interactions. The collective
excitations of the motion of ions in the trap, i.e., the phonons,
are often used as mediators of the interactions among the
qubits, enabling the engineering of effective spin Hamiltoni-
ans or in turn entangling operations among two or more qubits
[82]. In recent years, promising progress has been reported in
controlling the phonon dynamics in a trapped-ion simulator,
leading to experimental demonstrations of phonon hopping,
phonon interference, and a phonon quantum walk in Paul traps
[106–110]. This opens up the possibility of taking advantage
of phonons, in addition to the qubits, as dynamical degrees
of freedom to encode and process information [111,112]. In
fact, there exist quantum-simulation proposals for an Abelian
LGT, i.e., the lattice Schwinger model, which take advan-
tage of the phonons in a fully-analog setting to encode the
gauge or fermion degrees of freedom [113], but they are not
experimentally feasible yet. A more viable option for near-
term applications is to combine the flexibility of gate-based
digital simulations with the versatility of both the controllable
spin and phonon degrees of freedom in a trapped-ion simu-
lator [14,114–116]. This idea has led to concrete gate-based
protocols for simulating interacting fermion-boson models,
such as the Holstein model of electron-phonon dynamics in
condensed-matter physics [116], as well as the first experi-

mental implementation of a one-site boson-fermion dynamics
[117] considering only a single excitation of the boson. In the
present paper, the ideas in these proposals are taken to the next
level to demonstrate that quantum simulation of relativistic
QFTs, including LGTs, can benefit from a similar hybrid
protocol.

This paper introduces a complete and enhanced set of
conventional as well as phonon-based gates, including but
not limited to those introduced in Ref. [116], and deploys
them to construct concrete circuits for the digitized time-
evolution operator within a Yukawa theory of scalar-fermion
interactions and the U (1) LGT coupled to matter. The gates
include single-spin (qubit) operations, and entangling spin-
spin, spin-phonon, and phonon-phonon operations. In order
to ensure efficient implementation of all these gates in one
experiment, normal modes of motion, local modes of motion,
or both types of modes should be controlled and manipulated.
The simulated theories considered are in 1+1 dimensions (D)
but the generalization to higher dimensions, and in particular
challenges involved in the case of higher-dimensional LGTs,
are briefly discussed. Numerical examples are provided to
supplement our proposals with concrete experimental param-
eters, and to demonstrate their feasibility within the current
technologies. Qualitative comparisons of the simulation cost
within digital and hybrid analog-digital simulations of the
same theories will be provided, along with a discussion of
the outlook of a hybrid approach for generalization to more
complex QFTs, including non-Abelian LGTs.

II. THE HYBRID ANALOG-DIGITAL BUILDING BLOCKS

The trapped-ion quantum simulator considered in this pa-
per consists of a number of ions confined in a radio-frequency
Paul trap [118]. The qubit is encoded in two stable internal
levels of the ion, which are separated in energy by an angular
frequency ω0 [119]. The confining potential is sufficiently
stronger along the transverse axes, x and y, of the trap so that
the ions form a linear crystal in the axial, z, direction [120].
With appropriate anharmonic axial confinement forces, the
ions can be arranged in an equally-spaced configuration for
individual laser-beam addressing [121,122]. The typical spac-
ing between adjacent ions is a few micrometers in present-day
trapped-ion simulators.

Given the long-range Coulomb force among the ions and
the common trapping potential applied, the motion of the ions
can be described in terms of a set of collective normal modes.
The displacement of the ions around an equilibrium position
can then be expressed in terms of phononic degrees of free-
dom, whose excitation energies are quantized in units of the
normal-mode frequencies. While such a normal-mode picture
is sufficient for simulating the dynamics of certain fermion-
boson field theories, switching to a local-mode picture is
required once the bosonic field exhibits nontrivial dynamics,
as is the case in the gauge-theory example considered. Local
modes can be addressed by making the trapping potential
tighter along the transverse directions, or conversely by re-
laxing the axial confinement to increase the spacing among
the ions, such that the displacement of any given ion from its
equilibrium position is much smaller than the distance among
the adjacent ions [123]. The local modes can be addressed
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as long as the laser excitation on individual ions happens
on timescales faster than the separation of the correspond-
ing normal modes, which defines the timescale for phonon
hopping [124]. In such a regime, the phonon hopping proba-
bility among the ion sites is small and the quanta of motion
are localized. The interactions associated with each of these
scenarios, along with the expanded gate-set for the hybrid
analog-digital computation of this paper, will be introduced
in the following.

A. Phonons as excitations of normal modes of motion

The free Hamiltonian of the trapped-ion system in the
absence of laser-ion interactions is

Hion = ω0

2

N∑
j=1

σ z
j +

3N∑
m=1

ωm

(
a†

mam + 1

2

)
. (1)

Here, σ is a Pauli operator acting on the space of the ions’
quasi-spin, i.e., the qubit, with the standard commutation
relations. a†

m (am) are the bosonic creation (annihilation) op-
erators for the normal modes of motion with the associated
frequencies ωm and the commutation relations [am, am′ ] =
[a†

m, am′ †] = 0 and [am, am′ †] = δm,m′ . We label the trans-
verse modes of motion along the x axis of the trap by indices
m = 1, 2, · · · , N , those along the y axis of the trap by indices
m = N + 1, N + 2, · · · , 2N , and the axial modes, i.e., those
along the z axis of the trap, by indices m = 2N + 1, 2N +
2, · · · , 3N . With the introduction of two counter-propagating
laser beams with wave-vector difference �k j , frequency dif-
ference (beatnote) �ω j ≡ ωL

j , and phase difference �φ j ≡
φ j , detuned from an excited internal level of the ion, the two-
photon Raman transition among the two states of the qubit can
be induced with a Rabi frequency � j at the location of ion
j. The beams are assumed to address the ions individually,
hence the subscript j. In an interaction picture that rotates
with the free Hamiltonian in Eq. (1), the interacting ion-laser
Hamiltonian can be written as [85]

H ′
ion-laser =

N∑
j=1

� j

2
ei

∑3N
m=1 ηm, j (ame−iωmt +a†

meiωmt )

× e−i(ωL
j −ω0 )t+iφ j σ+

j + H.c., (2)

where the condition |ωL
j − ω0| � ω0 is assumed. The prime

on H is to denote that this Hamiltonian is in the interaction
picture. Later on, we need to adopt a different interaction
picture rotating with shifted frequencies and so it is impor-
tant to bear in mind the origin of Eq. (2). Multiple beatnote
frequencies, amplitudes, and phases can be applied simulta-
neously, hence a sum over laser parameters can be introduced,
a possibility that we take advantage of later. The Lamb-

Dicke parameters ηm, j are defined as ηm, j =
√

(�k)2

2Mionωm
bm, j ,

where bm, j are the (normalized) normal-mode eigenvector
components between ion j and mode m, and Mion denotes
the mass of the ion. In the Lamb-Dicke regime in which

ηm, j 〈(am + a†
m)2〉1/2 � 1, transitions in the space of coupled

spin-phonon system take a simpler form, and can be realized
through quantum gates. �k j is assumed to be the same for
lasers addressing each ion j, i.e., �k j ≡ �k.

The carrier transition corresponds to H ′
ion-laser|O(η0 ) and is

obtained by setting ωL
j − ω0 = 0. With this setting, the Hamil-

tonian corresponding to ion j becomes

Hσ
j (φ j ) = � j

4

[
(eiφ j + e−iφ j )σ x

j + (eiφ j − e−iφ j )iσ y
j

]
. (3)

The superscript on Hσ
j denotes that this Hamiltonian only acts

on the qubit space with the noted σ operators. The single-spin
rotations of arbitrary angle θ j , to be denoted as Rσ

j (θ j, φ j ), can
be obtained by applying Hσ

j (φ j ) for time τσ
gate, to be deduced

from the relation

Rσ
j (θ j, φ j ) ≡ e−iθ j (cos φ jσ

x
j −sin φ jσ

y
j ) = e−iHσ

j (φ j )τσ
gate . (4)

For example, rotations around the x and y axes of the Bloch
sphere of the qubit j can be realized as

Rσ
j (θ j, 0) ≡ e−iθ jσ

x
j , (5)

Rσ
j

(
θ j,

3π

2

)
≡ e−iθ jσ

y
j , (6)

respectively. Rotations along the z axis of the Bloch sphere
Rz

j (θ j ) defined as

Rz
j (θ j ) ≡ e−iθ jσ

z
j (7)

can be implemented without the need for a quantum operation
using a classical phase shift on the controller for addressing
beam j. A useful gate in the circuits constructed in the follow-
ing sections is the phase gate Sj , which can be implemented
via S j = Rz

j (π/4).
The blue and red sideband transitions correspond to

H ′
ion-laser|O(η) and are obtained by setting ωL

j − ω0 = ωk and
−ωk, respectively. This setting leads to a coupled spin-phonon
Hamiltonian. In order to achieve a Hamiltonian proportional
to e.g., σ

y
j , beatnotes associated to blue and red sidebands can

be applied simultaneously with phases that add up to zero
[82,126]. With this setting, the Hamiltonian corresponding to
ion j becomes

Hσa
k, j (φk, j ) = −ηk, j� j

2
(eiφk, j ak + e−iφk, j a†

k ) σ
y
j , (8)

where φk, j = 1
2 (φr

k, j − φb
k, j ) = φr

k, j , with φ
r(b)
k, j denoting the

red (blue) sideband laser phase. In order to ensure only one set
of the phonon modes ak couples to the qubit in this setup, the
Raman beams can be set such that the wave-vector difference
�k is parallel to one of the principal axes of the trap. For
example, by setting �k = �k x̂, the beams only couple to
transverse normal modes along the x axis. If this condition
is not met and more than one set of modes are coupled, the
different frequencies of the modes can be addressed with
lower power to avoid simultaneous coupling to other sets of
modes. By applying multiple beatnote frequencies associated
with red and blue sideband transitions, corresponding to the
set {ωL

j } − ω0 = ±{ωk} for k ∈ {1, · · · , N}, and given the
flexibility to set the amplitude and phase associated with each
beatnote independently, the Hamiltonian

Hσa
{k}, j ({φk, j}) = −

∑
k

ηk, j�k, j

2
(eiφk, j ak + e−iφk, j a†

k ) σ
y
j , (9)
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can be implemented directly. Note that � j is promoted to
�k, j to reflect the freedom in the choice of mode-dependent
Rabi frequencies. The spin-phonon rotations of an arbitrary
set of angles {θk, j}, to be denoted as Rσa

{k}, j ({θk, j}, {φk, j}), can
be obtained by applying Hσa

{k}, j ({φk, j}) for time τσa
gate, to be

deduced from the relation

Rσa
{k}, j ({θk, j}, {φk, j}) ≡ e−i

∑
k θk, j (e

iφk, j ak+e−iφk, j a†
k )σ y

j

= e−iHσa
{k}, j ({φk, j})τσa

gate . (10)

In particular with a single-mode addressing, opportunely set-
ting laser-beam phases gives rise to couplings to different
phonon-operator combinations proportional to ak + a†

k and
ak − a†

k:

Rσa
k, j (θk, j, 0) ≡ e−iθk, j (ak+a†

k )σ y
j , (11)

Rσa
k, j

(
θk, j,

π

2

)
≡ eθk, j (ak−a†

k )σ y
j . (12)

Implementing simultaneous blue and red sideband tran-
sitions detuned from the normal mode frequencies will not
generate dynamical phonons as long as the lasers are ap-
plied for certain time durations. The spin-phonon couplings
in this process then effectively induce a spin-spin interaction,
which leads to the well-known Mølmer-Sørensen (MS) gate
[93–95,127]. The corresponding Hamiltonian between ions j
and j′ is

Hσσ
j, j′ = � j� j′

∑
m

ηm, jηm, j′
ωm(

ωL
j − ω0

)2 − ω2
m

σ x
j σ

x
j′ , (13)

Spin-spin rotations Rσσ
j, j′ (θ j, j′ ) of arbitrary angle θ j, j′ can be

obtained by applying Hσσ
j, j′ for time τσσ

gate given by the relation

Rσσ
j, j′ (θ j, j′ ) ≡ e−iθ j, j′ σ x

j σ
x
j′ = e−iHσσ

j, j′ τ
σσ
gate . (14)

In reality, designing high-fidelity two-qubit entangling gates
of this type requires complex pulse shaping techniques to
close all the mode trajectories in phase space, which is nec-
essary to eliminate any residual spin-phonon coupling, and to
leave the system in the same phonon state before and after the
gate operation, see e.g., Refs. [128–132].

B. Phonons as excitations of local modes of motion

In a linear Paul trap, the Coulomb energy is comparable
to the potential energy associated with the axial motion of
the ions. Namely, the parameter βz ≡ e2/(d3

0 Mionω
z2) � 1,

where ωz is the trap frequency along the axial axis of the trap,
d0 is the average spacing among the ions, and e is the electric
charge. As a result, the phonons are shared across the chain as
excitations of collective normal modes. The same parameter
is typically much smaller for the transverse motions of the
ions. In particular, if the trap is made extremely tight along the
transverse axes of the trap such that βx(y) � 1, the transverse
phonons describe the oscillation of a single ion, with a rela-
tively small coupling strength for hopping to the neighboring
ions that is ∝ e2/(d3

0 Mionω
x(y) ) = βx(y)ωx(y) [123]. For the

quantum simulation of QFTs that exhibit nontrivial boson-
field dynamics, it is necessary to adopt a local-mode picture.
Assuming that the transverse directions of the trap support

local phonon modes, the free Hamiltonian of the ion chain
can be written as

Hion = ω0

2

N∑
j=1

σ z
j +

N∑
j=1

ωx
j

(
ax

j
†ax

j + 1

2

)

+
2N∑

j=N+1

ω
y
j

(
ay

j
†
ay

j + 1

2

)
+

3N∑
m=2N+1

ωm

(
a†

mam + 1

2

)
,

(15)

where in the second and third terms, the subscript j on the
phonon operators is a local index corresponding to the quanta
of motion of the jth ion.

For the field theories considered in this paper, the sim-
ulated theory does not exhibit boson hopping and so the
phonon hopping in the simulator needs to be suppressed. In
a typical trapped-ion system with tens of Ytterbium ions,
ωx ∼ 2π × 5 MHz and d0 is of the order of a few microns.
Then βx ∼ 10−3 − 10−4 and βxωx ∼ 2π × 1 kHz, and hence
the dynamics associated with the phonon hopping can be
neglected compared with spin-phonon (with typical strength
∼100 kHz) and spin-spin dynamics (with typical strength
∼10 kHz). If further suppression of the phonon hopping is
desired to improve the accuracy of the simulated model, one
can either impose tighter trapping potential along the trans-
verse directions or spread out the ions further by reducing
the axial potential. Additionally, the nearest-neighbor hop-
ping can be actively blocked using techniques demonstrated
in Ref. [108,133] or by applying local optical tweezers to
vary the local confinement [134–137]. Another option, which
does not require additional blockade ions, is the use of a
mixed-species ion chain with a large mass ratio, in which the
modes for the different species separate by mode participation
[138]. In an alternating arrangement, phonon hopping will be
suppressed by the local-mode frequency difference between
neighboring ions of different species and the increased dis-
tance between the ions of the same species. Finally, we note
that the local-mode frequencies can be expressed as the com-
mon trap frequency plus additional local corrections. These
corrections scale similar to the hopping strength and are hence
suppressed by at least a factor of 10−3 compared with the trap
frequency in a typical trap described above. As a result, ωx

j in
Eq. (15) can be replaced with ωx to a first approximation.

The spin-phonon Hamiltonians in Eq. (8) can be obtained
similarly by expanding the ion-laser interaction Hamiltonian
in Eq. (2) using the local modes of motion. Then both the
spin σ j and the phonon operators (ax

j and ax
j
†) are representing

quantum operations at location j along the chain, with the
associated gate operation identified as

Rσa
j (θ j, φ j ) = Rσa

k, j (θk, j, φk, j )
∣∣
ak→ax

j ,ηk, j→η j ,θk, j→θ j ,φk, j→φ j
,

(16)

where the single-mode addressing limit of Eq. (10) is con-
sidered. On the other hand, in the limit of a tight transverse
direction where the hopping of the phonons along transverse
axes of the trap is suppressed, the spin-spin gate in Eq. (14)
can be still derived with high fidelity using the normal modes
of motion along the axial direction so to have sufficiently
strong all-to-all spin-spin couplings, given that βz � βx(y).
As will be shown, both types of gates, one based on local
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FIG. 1. The building blocks of the analog-digital circuits in a trapped-ion quantum simulator. The gates from left to right are defined in
Eqs. (4), (7), (10), (16), (14), and (18), respectively.

modes of motions and the other based on normal modes of
motion, can be employed in the simulation, exhibiting another
advantage of a hybrid analog-digital setting.

For the simulation of the lattice Schwinger model, the
bosons need to interact locally. Such an interaction will need
to be mapped to a local phonon-phonon interaction. To engi-
neer this new type of interaction in the trapped-ion simulator,
as proposed in Ref. [123], the ions can be placed near the
minima (or maxima) of a standing wave, which induces an
ac Stark shift corresponding to the Hamiltonian

H s.w.
j = F cos2(̃kx j ) = F cos2

[̃
η
(
ax

j + ax
j
†)]

= 2F (−η̃2 + η̃4)(ax
j
†ax

j ) + 2F η̃4
(
ax

j
†ax

j

)2 + · · · .

(17)

Here, k̃ = k̃ x̂ where k̃ is the wave vector of the standing-wave

beam and η̃ ≡ k̃x(0) =
√

k̃2

2Mionωx is the corresponding Lamb-
Dicke parameter. Note that the standing wave is only exciting
the local modes of motion along one direction based on the
choice of the wave vector. Equation (17) does not consider
higher-order terms in η̃2 that can be neglected in the regime

η̃ 〈(ax
j + ax†

j )
2〉1/2 � 1. It also neglects phonon nonconserv-

ing operators that rotate with at least the frequency ωx, and
can be adiabatically eliminated as long as F η̃2/ωx � 1 [123].

Analogous to the previous gates, phonon-phonon rotations
of arbitrary angles can be obtained by applying H s.w.

j for time
τ aa

gate, to be deduced from the relation

Raa
j (χ (1), χ (2) ) ≡ e−i[χ (1) (ax

j
†ax

j )+χ (2) (ax
j
†ax

j )2] = e−iH s.w.
j τ aa

gate . (18)

An important point to notice regarding this gate is that accord-
ing to Eq. (17), the relative size of the coefficients of the ax

j
†ax

j

and (ax
j
†ax

j )
2 terms, χ (1)/χ (2), is fixed to (−1 + η̃2)/̃η2, while

the overall strength of these terms can be tuned arbitrarily by
changing F via the standing-wave intensity, as long as the
condition F η̃2/ωx � 1 is not violated. The ratio constraint
may seem too limiting for simulating an arbitrary Hamilto-
nian containing both phonon terms. However, as shown in
Sec. IV, the desired ratio of the coefficients in the simulation
of the lattice Schwinger model can be engineered by appro-
priately choosing the laser frequencies, which amounts to
choosing a suitable interaction picture. Last but not least, if the
simulated theory requires site-dependent coefficients for the
phonon-phonon couplings, individual standing-wave beams
could replace the global beam in Eq. (17), at the expense of
added experimental complexity.

In the models studied in the following sections, the ob-
servables chosen are only fermionic, which circumvent the
need for the readout of motional-state occupations and require
only the measurement of spin states of the ions, that can be
carried out with high fidelity [139]. Nonetheless, detection of
phonon states of multiple modes and multiple occupations has
been demonstrated for both local and normal modes in recent
years, see for example Refs. [109,112,140], and is hence not
a limitation if bosonic expectation values are of interest. The
gates introduced in this section are summarized in Fig. 1.

III. A YUKAWA THEORY: SCALAR FIELDS COUPLED
TO (STAGGERED) FERMIONS

A scalar field theory coupled to fermions describes the
coupling of the Higgs boson to fermions of the Standard
Model through Yukawa interactions, and is responsible for
dynamical mass generation and fermion mixing in nature.
Non-perturbative studies of the Yukawa theory using lattice-
regularized Euclidean field-theory simulations have drawn
considerable interest [141–148] as they reveal important con-
nections to the cutoff scale of the Standard Model and
questions regarding quantum triviality [149]. In the context
of cosmology and the early universe, nonperturbative simula-
tions are required for studies of nonequilibrium and real-time
dynamics of this theory and its beyond-the-Standard-Model
cousins [150]. A scalar field theory coupled to (nonrelativis-
tic) fermions is also the effective field theory description of the
Yukawa interactions among the nucleons and pions, and enters
the quantum many-body description of nuclei [151–153]. It is
therefore highly relevant to investigate the prospects for quan-
tum simulation of such theories, including the suitability of
the hybrid analog-digital approach. In the following, we focus
on a simple case: a scalar field theory coupled to one flavor
of staggered fermions in 1+1 D and without the possibility of
self-interactions among the scalar fields. Later, we comment
on the applicability of this proposal for self-interacting scalar
fields and the higher-dimensional case, and will point out the
requisite extensions.

A. The Yukawa model

Consider a one-dimensional spatial lattice with N sites, lat-
tice spacing b, and with periodic boundary conditions (PBCs)
imposed on the fields [154]. The Hamiltonian of the lattice-
regularized Yukawa theory to be simulated with a trapped-ion
quantum simulator consists of

HYukawa = H (I )
Yukawa + H (II )

Yukawa + H (III )
Yukawa, (19)
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where the purely-fermionic Hamiltonian

H (I )
Yukawa =

N∑
j=1

[
i

2b
(ψ†

j ψ j+1 − ψ
†
j+1ψ j ) + mψ (−1) jψ

†
j ψ j

]
(20)

describes the hopping term and the mass term of one flavor of
staggered fermions with mass mψ . Note that PBCs impose the
identification ψN+1 ≡ ψ1. The free scalar-field Hamiltonian is

H (II )
Yukawa = b

N∑
j=1

[
�2

j

2
+ (∇ϕ j )2

2
+ m2

ϕ

2
ϕ2

j

]
, (21)

where � j is the conjugate momentum corresponding to the
scalar field ϕ j , i.e., [ϕ j, ϕ j′ ] = [� j,� j′ ] = 0 and [ϕ j,� j′ ] =
i(Nb)−1δ j, j′ . These fields can be quantized in the standard way
to obtain a representation in terms of the (bosonic) harmonic-
oscillator creation (d†

k ) and annihilation (dk) operators,

ϕ j = 1√
Nb

N/2−1∑
k=−N/2

1√
2εk

(d†
k e−i2πk j/N + dkei2πk j/N ), (22)

� j = i√
Nb

N/2−1∑
k=−N/2

√
εk

2
(d†

k e−i2πk j/N − dkei2πk j/N ), (23)

where k labels the corresponding momentum mode pk ≡
2πk/(Nb), and εk =

√
( 2πk

Nb )2 + m2
ϕ is the corresponding en-

ergy, with mϕ being the bare mass of the scalar field. Inputting
Eqs. (22) and (23) in Eq. (21), and using the commutation re-
lations of the bosonic operators: [dk, dk′ ] = [d†

k , d†
k′ ] = 0 and

[dk, d†
k′ ] = δk,k′ , one arrives at the well-known Hamiltonian

H (II )
Yukawa =

N/2−1∑
k=−N/2

εk

(
d†

k dk + 1

2

)
, (24)

describing the energy of N uncoupled quantum harmonic
oscillators. Finally, the interacting fermion scalar-field Hamil-
tonian is

H (III )
Yukawa = gb

N∑
j=1

ψ
†
j ϕ jψ j, (25)

where field ϕ must be realized as the collection of quantum
harmonic oscillators through Eq. (22).

B. The mapping to an analog-digital circuit

To map the Hamiltonian in Eq. (19) to the building blocks
of the analog-digital trapped-ion simulators introduced in
Sec. II, one may first transform the staggered fermionic
fields straightforwardly to the spin operators through a
Jordan-Wigner transformation: ψi = ∏

l< j (iσ
z
l )σ−

j and ψ
†
i =∏

l< j (−iσ z
l )σ+

j with σ±
j = 1

2 (σ x
j ± iσ y

j ). Additionally, the
harmonic oscillators can be mapped to the phonons associated
with the normal modes of the motion (in either the axial or
one of the transverse directions depending on the convenience
of the experimental setting). Explicitly, with the labeling rule
defined after Eq. (1), the mapping to the transverse normal
modes along the x direction reads: dk := ak+N/2+1 and d†

k :=

a†
k+N/2+1 for k = −N/2,−N/2 + 1, , · · · , N/2 − 1. To keep

the occupation of these modes unaffected while implement-
ing spin-spin entangling gates, the other set of transverse
modes or the axial modes can be addressed to implement
the MS gates. With the degrees of freedom in the simulated
theory being mapped to qubit and phonon degrees of free-
dom of the trapped-ion simulator as pictorially represented
in Fig. 2, what is left to identify are the gate operations that
implement e−iHYukawat . Given the digital setting of this pro-
posal, the time-evolution operator can be digitized using the
lowest-order Trotter-Suzuki expansion [155]. Higher-order
expansions [156,157], as well other state-of-the-art simulation
algorithms [158–166], can be similarly investigated within
the current approach, but will not be discussed further in this
paper.

To map the Hamiltonian in Eq. (19) to the Hamiltonians
associated with the gates introduced in the previous section, a
re-arrangement of the terms is performed such that HYukawa is
now broken down to

H (I )′
Yukawa = 1

4b

N∑
j=1

σ x
j σ

x
j+1, (26)

H (II )′
Yukawa = 1

4b

N∑
j=1

σ
y
j σ

y
j+1, (27)

H (III )′
Yukawa = mψ

2

N∑
j=1

(−1) jσ z
j + const., (28)

H (IV )′
Yukawa =

√
g2b

8N

N∑
j=1

(
I j + σ z

j

) N∑
m=1

1√
εm

(a†
me−i 2π j

N (m− N
2 −1)

+ amei 2π j
N (m− N

2 −1)) +
N∑

m=1

εm

(
a†

mam + 1

2

)
, (29)

where the mapping to spin and phonon degrees of freedom
has already been carried out. To generate the free scalar-
field Hamiltonian in Eq. (24) for generic mode-dependent
coefficients εk → εm=k+N/2+1, one can resort to a change
of interaction-picture Hamiltonian [116]. The gates obtained
so far are in an interaction picture derived using the free
Hamiltonian of the ion system in Eq. (1), containing the
harmonic-oscillator energy term with mode-independent and
experimentally-fixed coefficients. However, one can introduce
the term

∑
m ε̃m(a†

mam + 1
2 ) in the interacting Hamilto-

nian by appropriately choosing the rotating frame. ε̃m is
the properly rescaled εm accounting for the ratio of the
model time variable and the experimental gate time, see
the description after Eq. (35). In particular, setting the free
Hamiltonian to Hion − ∑

m ε̃m(a†
mam + 1

2 ), the Hamiltonian
in the interaction picture becomes H ′

ion-laser + ∑
m ε̃m(a†

mam +
1
2 ). Operationally, this implies adjusting the detuning of the
red and blue sideband transitions, in other words tuning the
laser frequency to ωL

j − ω0 = ±(ωk − ε̃k ), which would im-

plement the desired mode-dependent term ε̃k(a†
kak + 1

2 ) in the
evolution.

However, this is not the full picture yet, since the evolu-
tion of the Yukawa theory will be implemented in a digital
manner. In particular, there will be multiple sideband oper-
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FIG. 2. The degrees of freedom of the lattice-regularized scalar field theory coupled to staggered fermions in 1+1 D (top row) are mapped
to those in a linear trapped-ion quantum simulator (bottom row) with individual laser-beam addressing. This scheme involves only normal
modes of motion.

ations (when implementing spin-phonon gates) during each
step of the Trotter evolution, and these effectively implement
the phonon-energy term as well. Therefore, one must ensure
that this term will be induced with the correct coefficient.
As will be seen below, implementing the time evolution of

the Yukawa theory requires introducing an ancilla ion and
amounts to a total of N + 1 multi-mode spin-phonon gates
per Trotter step. This necessitates changing the free Hamil-
tonian to Hion − 1

(N+1)

∑
m ε̃m(a†

mam + 1
2 ), which leads to the

interaction-picture Hamiltonian

H ′′
ion-laser =

N∑
j=1

∑
L

�L
j

2

[
ei

∑
m ηm, j (ame

−i(ωm− ε̃m
(N+1) )t +a†

me
i(ωm− ε̃m

(N+1) )t
)e−i(ωL

j −ω0 )t+iφL
j σ+

j + H.c.
] + 1

(N + 1)

N∑
m=1

ε̃m

(
a†

mam + 1

2

)
, (30)

where
∑

L is introduced to denote the possibility of simultaneous application of N beatnote frequencies ωL
j ≡ ω0 ± (ωk −

1
N+1 ε̃k ) for all k ∈ {1, · · · , N} with their associated amplitude �L

j ≡ �k, j and phase φL
j ≡ φk, j , which is taken advantage of

in the application of spin-phonon gates in the following. It should be emphasized again that experimentally, the change in the
interaction picture corresponds to detuning each of the spin-phonon operations. Note that the (N + 1)th normal mode is not
affected by the chosen interaction picture, as its dynamics are irrelevant in simulating the scalar fields.

With these adjustments, the time evolution of the Yukawa theory for duration δt can now be correctly obtained considering

e−iH ′
Yukawaδt = e−iH (I )′

Yukawaδt e−iH (II )′
Yukawaδt e−iH (III )′

Yukawaδt e−iH (IV )′
Yukawaδt + O((δt )2), (31)

and upon expressing each evolution term as

e−iH (I )′
Yukawaδt =

N∏
j=1

Rσσ
j, j+1(θ j, j+1), (32)

e−iH (II )′
Yukawaδt =

N∏
j=1

S jS j+1Rσσ
j, j+1(θ j, j+1)S†

j S
†
j+1, (33)

with θ j, j+1 = δt
4b ,

e−iH (III )′
Yukawaδt =

N∏
j=1

Rz
j (θ j ), (34)

with θ j = 1
2 mψ (−1) jδt , and

e−iH (IV )′
Yukawaδt =

N∏
j=1

Rσ
j

(
π

4
, 0

)
Rσa

{m}, j ({θm, j}, {φm, j})Rσ
j

(
−π

4
, 0

)
Rσ

N+1

(
π

4
, 0

)
Rσa

{m},N+1({θm,N+1}, {φm, j})Rσ
N+1

(
−π

4
, 0

)
, (35)
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FIG. 3. The schematic of the analog-digital quantum circuit associated with the time evolution of a four-site Yukawa theory for a single
Trotter step, as expressed in Eqs. (32)–(35). The gate symbols are defined in Fig. 1.

with θm, j = θm,N+1 =
√

g2b
8Nεm

δt and φm, j = 2π j
N (m − N

2 − 1),
and with all values of m in the range {1, · · · , N}. Rσ

j (θ j, φ j )
is defined in Eq. (4) and its operation remains the same
despite the change in the interaction-picture Hamiltonian.
Rσa

{m}, j ({θm, j}, {φm, j}) is defined in Eq. (10) but must be
realized with red and blue sideband detunings ωL

j − ω0 =
±(ωk − 1

(N+1) ε̃k ) with ε̃kτ
σa
gate = εkδt , where τσa

gate is deter-
mined from Eq. (10) with the θm, j values specified above.
It should be noted that expectation values of observables
are invariant under the change in the interaction picture as
long as the time-dependent states are transformed accordingly.
For simple observables such as fermion and boson occupa-
tions, measurements in the original basis obtain the correct
expectation values as the corresponding operators commute
with the transformation [167,168]. Finally, Rσσ

j, j′ (θ j, j′ ), de-
fined in Eq. (14), can operate using transverse normal modes
other than those used in spin-phonon gates, or axial modes.
Note that an ancilla qubit, labeled as N + 1, is introduced in
Eq. (35) to effectively implement the interactions proportional
to I j in Eq. (29) [116]. This ancilla qubit is an extra ion
prepared in the spin-up state and can be used in all subsequent
Trotter steps. Note that the spin-phonon gate on the ancilla
ion only applies a phase to the evolution of the (N + 1)th
spin but does not impact the other spin degrees of freedom.
It affects the occupation of normal modes of motions though,
which influences the action of spin-phonon operations on the
other ions, as is required by the Hamiltonian evolution in the
target Yukawa theory. A schematic of the circuit for a single
Trotter step is shown in Fig. 3. We will study the benefits of
this hybrid proposal for the simulation of Yukawa theory in
Sec. V A.

The algorithm above can be generalized to a Yukawa the-
ory in higher dimensions. In d spatial dimensions, the number
of sites on the lattice is Nd , where N is the number of sites
along each Cartesian direction. The number of ions required
to fully encode the dynamics is Nd , plus a single ancilla
ion as introduced in the 1+1 D case. This is because the
number of normal modes of motion associated with each
of the transverse (or axial) directions will also grow as Nd

(considering the ancilla ion, as (N + 1)d ), which is more than
sufficient to encode the Nd momentum modes of the scalar
field in the harmonic oscillator basis. Each ion needs to couple

to all Nd phonon modes, which polynomially increases the
number of spin-phonon gates required to simulate the fermion
scalar-field interaction term. The more significant overhead in
terms of the entangling operations is caused by the encoding
of the fermionic hopping term, which in the Jordan-Wigner
transformation involves implementing a chain of Pauli opera-
tors, with the number of Pauli operators growing polynomially
with N . These operations can be performed through the known
decomposition into spin-spin gates, either in series or in par-
allel. The parallel implementation can be achieved either in
one go using a global MS-operation and shelving the ions
that do not participate in the coupling using individual beams
[169], or by more involved optical pulse-shaping methods as
demonstrated in Refs. [102,170,171].

Another important generalization of the Yukawa theory is
to incorporate self-interactions of the scalar fields, for exam-
ple through a quartic interaction Hamiltonian:

H (IV )
Yukawa = bdλ

∑
j

ϕ4
j . (36)

This term represents nonlocal interactions among quantum
harmonic oscillators in momentum space, requiring all-to-all
phonon-phonon couplings to be engineered in the trapped-ion
simulator. While inducing phonon-phonon coupling among
the normal modes is possible by taking advantage of the
intrinsic nonlinearity of the Coulomb interaction [172] or
through mediating the interaction via virtual spin degrees of
freedom, such an implementation will be more challenging
than the other set of gates introduced so far. The use of
the local phonon modes will not be optimal either, as the
phonon hopping is suppressed beyond nearest-neighbor sites,
and its strength cannot be made homogeneous across the sites
as required by Eq. (36). Searching for efficient and feasible
implementations of the Hamiltonian in Eq. (36) that are more
natural to a the trapped-ion simulator will be the subject of
future work.

The model considered in this paper is still of phe-
nomenological interest, for example in simulating lattice
effective field theory of nucleons coupled to pions. The self-
interactions of pions matter only at higher orders in the chiral
effective field theory of nuclear forces [152,153] and can be
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TABLE I. The parameters of the Yukawa theory considered in
the two examples of this section, each corresponding to different N
and � values as noted. The corresponding trap and gate parameters
are tabulated in the Appendix. t is the total evolution time and δt is
the duration of the Trotter-evolution segment.

Model parameters

b N � g mψ mϕ εm δt t

1 2 8 5
√

2 1 1 {3.297, 1} 0.25 5
1 4 1 5 1 1 {3.297, 1.862, 1, 1.862} 0.125 2.5

neglected at low energies. Besides the trivial incorporation
of multiple flavors of (nonrelativistic) fermions representing
spin and isospin components of a nucleon, and the (local)
self-interaction of fermions representing nucleons two- and
three-body contact interactions, the fermion scalar-field in-
teracting term in Eq. (25) must be promoted to a derivative
coupling in order to represent a pion-nucleon coupling. Such a
term can be implemented by representing the derivative of the
scalar field by a finite difference among the fields at adjacent
sites. This then amounts to multiple implementations of the
terms of the type in Eq. (25) that are added with appropriate
signs. Further, there are three different types of pions, each
requiring their own harmonic-oscillator representation (two of
which being electrically charged). These can either be realized
through the three sets of normal modes or by enlarging the ion
chain to create more normal modes of one type for encoding
of all the pionic degrees of freedom. As the building blocks of
this construct are identical to the ones for the simple Yukawa
model above, the explicit circuit will not be discussed further.

C. An example with realistic parameters

To demonstrate the viability of near-term experimental
implementations of the dynamics in this model with a trapped-
ion simulator, one can investigate the range of the gate
parameters required to observe interesting phenomena in this
model. While only small instances of the problem can be stud-
ied classically, as is evident from the examples considered,
the quantum simulator with tens of ions can still operate in
the same gate-parameter range and already push the limits of
classical capabilities, particularly given the native implemen-
tation of boson dynamics in the simulator. Later on in Sec. V,
we demonstrate the advantage of an analog-digital approach
by making a qualitative cost comparison with a fully-digital
implementation of the same model.

An interesting phenomenon in the Yukawa theory consid-
ered is the dynamical generation of mass even if the bare
fermion mass is set to zero originally. Such an effective mass
controls the rate of fermion generation throughout the evolu-
tion and depends on the boson accumulation on the lattice.
As Fig. 4 demonstrates for small lattice sizes N and small
boson occupation cutoffs �, such a nontrivial fermion, anti-
fermion, and boson occupation evolution can be revealed in
the Loschmidt echo, i.e., | 〈ψ (0)|ψ (t )〉 |2, where ψ (0) is the
state with no fermion, no antifermion, and no boson. After a
quench, this state evolves to a superposition of states with any
number of fermions and antifermions allowed by symmetries,

FIG. 4. The overlap between an initial state with no fermion,
no antifermion, and no boson, and the corresponding time-evolved
state, | 〈ψ (0)|ψ (t )〉 |2, (in blue) along with the average number of
bosons generated 〈Nd〉 ≡ 1

N 〈ψ (t )|∑N/2−1
k=−N/2 d†

k dk |ψ (t )〉, (in red) as a
function of time t using exact (solid curve) and Trotterized evolution
(unfilled points) for the Yukawa theory. The corresponding model
parameters are given in Table I. The time t is in units of lattice
spacing b, which is set to one.

and involving varying boson occupation whose average is
shown in the inset of the plots. The unfilled points represent
the same quantities evaluated using a Trotter expansion of the
evolution operator according to the split in the Hamiltonian
terms outlined in the previous section. The coarsest Trotter
digitization is chosen such that quantities can still be described
accurately in the time window specified.

The corresponding model parameters, shown in Table I,
give rise to gate rotation angles denoted in Table IV of the
Appendix along with associated experimental gate parameters
for the Rσa gate, including gate’s operation time, in Table V.
The gate time required is shorter (a few tens of microsec-
onds for reasonable experimental parameters) than that of the
spin-spin entangling gate (a few hundreds of microseconds),
which is a great improvement over fully-digital implementa-
tion that would have required multiple entangling spin-spin
gates, being an order of magnitude slower in general. We
will come back to gate-number scaling of the analog-digital
implementation compared with the fully-digital implemen-
tation in Sec. V. The spin-spin entangling gates required in
simulating the solely fermionic dynamics can be driven with
the rotation angles specified in Table IV using well-known
laser pulse-shaping techniques. The trap and laser character-
istics, including transverse normal modes of motion and the
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Lamb-Dicke parameter, are provided in Table VI. A final
technical detail regarding the experimental implementation is
that all normal-mode vectors must have nonzero components
so that all Rabi frequencies � j are finite when applying the
Rσa gate. To ensure that each ion in the simulation couples to
all of the phonon modes used, the total number of ions must
be even. Therefore, studying an N-site theory of the 1+1 D
Yukawa model, where the number of staggered sites N is even,
generally requires N + 2 ions: one ancilla, which is operated
on by the specified gates in Fig. 3, and one idle ion that is only
present to ensure that for any given mode, no ion is stationary
along the chain.

IV. U(1) LATTICE GAUGE THEORY COUPLED
TO (STAGGERED) FERMIONS IN 1+1 D

The Schwinger model, the theory of quantum electrody-
namics in 1+1 D, has long served as a testbed for simulation
methods (both classical and quantum) for strongly-interacting
gauge theories. It is qualitatively similar to quantum chro-
modynamics, the theory of the strong force in nature, as it
exhibits confinement, chiral-symmetry breaking, and a non-
trivial θ vacuum [173,174]. Being a low-dimensional and
Abelian theory, it is simpler than its higher-dimensional and
non-Abelian counterparts and its lattice-regularized form has
been the subject of valuable quantum-hardware implementa-
tion benchmarks in recent years [54–57,65,66]. Fully-analog
proposals for Hamiltonian simulation of the lattice Schwinger
model have been put forward using spin degrees of freedom
only [32], and both the spin and phonon degrees of freedom
[113], but they remain relatively challenging for hardware
implementation. Here, we propose a hybrid analog-digital
simulation of the lattice Schwinger model that brings the
simulation proposals involving the phonon degrees of freedom
a step closer to experimental realization.

A. The Schwinger model

The well-known Hamiltonian of the lattice Schwinger
model, introduced by Kogut and Susskind [173,174], can be
written in terms of a one-component staggered fermion ψ j

defined on site j (with odd and even sites corresponding to
matter and anti-matter fields, respectively), the gauge link Uj

and its conjugate field, the electric field Ej , both defined on the
link emanating from site j, and satisfying the commutation re-
lations [Ej, Ej′ ] = [Uj,Uj′ ] = 0 and [Ej,Uj′ ] = Ujδ j, j′ . The
Hamiltonian can be written as

HU (1) = H (I )
U (1) + H (II )

U (1) + H (III )
U (1) , (37)

where the gauge-matter interacting Hamiltonian, the stag-
gered fermion-mass Hamiltonian, and the electric-field
Hamiltonian are

H (I )
U (1) = i

2b

N∑
j=1

(ψ†
j U

†
j ψ j+1 − ψ jUjψ

†
j+1), (38)

H (II )
U (1) = m

N∑
j=1

(−1) jψ
†
j ψ j, (39)

H (III )
U (1) = g2b

2

N∑
j=1

E2
j , (40)

respectively. The Hilbert space of the theory is character-
ized by on-site quantum numbers n(g)

j and n( f )
j associated

with the discrete spectrum of a quantum rotor satisfy-
ing Ej |n(g)

j 〉 = n(g)
j |n(g)

j 〉 and Uj |n(g)
j 〉 = |n(g)

j + 1〉 with n(g)
j ∈

Z, along with fermionic occupations eigenstates satisfying
ψ j |n( f )

j 〉 = δn( f )
j ,1 |n( f )

j − 1〉 and ψ
†
j |n( f )

j 〉 = δn( f )
j ,0 |n( f )

j + 1〉
with n( f )

j ∈ {0, 1}. The physical states are those annihilated by

the Gauss’s law operator Gj = Ej − Ej−1 − ψ
†
j ψ j + 1

2 [1 −
(−1) j] at each site. In the following, it is assumed that the
simulation starts in a physical state and hence will remain
in the same sector, as long as the gauge-symmetry violations
arising from the digitization of the time-evolution operator, or
from hardware imperfections, remain small.

Unfortunately, a quantum rotor representing the gauge link
in the Schwinger model does not have the same algebra as
the phonon modes of the trapped-ion simulator for a direct
encoding. A highly-occupied boson model (HOBM) was pro-
posed in Ref. [113] to resolve this mismatch by considering
the following mappings: Uj → d j/

√
M and Ej → d†

j d j − M
for an integer M. This transformation keeps the commutation
relation between Ej and Uj intact, but modifies that between
the gauge links to [Uj,Uj′ ] = δ j, j′/M. Only in the limit M �
N , with N being the number of sites on the lattice, the HOBM
will recover the lattice Schwinger model, necessitating the
simulation involving the bosonic degrees of freedom to ini-
tiate in a state with a large number of bosons. Nonetheless,
the numerical simulations of Ref. [113] demonstrate that for
M ∼ N , a high level of accuracy is still achieved, particularly
in space- and time-averaged dynamical observables. Applying
the HOBM mapping as well as the Jordan-Wigner transfor-
mation, the spin-boson Hamiltonian of the lattice Schwinger
model can be written as

H ′
U (1) = H (I )′

U (1) + H (II )′
U (1) + H (III )′

U (1) , (41)

where

H (I )′
U (1) = 1

2b
√

M

N∑
j=1

(σ+
j d†

j σ
−
i+1 + σ+

i+1d jσ
−
j ) (42)

= 1

8b
√

M

N∑
j=1

[
σ x

j (d j + d†
j )σ x

j+1 + σ
y
j (d j + d†

j )σ y
j+1

+ iσ x
j (d j − d†

j )σ y
j+1 − iσ y

j (d j − d†
j )σ x

j+1

]
, (43)

H (II )′
U (1) = m

2

N∑
j=1

(−1) jσ z
j + const., (44)

H (III )′
U (1) = g2b

2

N∑
j=1

(d†
j d j − M )2 (45)

= g2b

2

N∑
j=1

[−2M(d†
j d j ) + (d†

j d j )
2] + const. (46)
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FIG. 5. The degrees of freedom of the lattice-regularized Schwinger model in the HOBM (top row) are mapped to those in a linear
trapped-ion quantum simulator involving local and normal modes of motion (bottom row).

The mapping of the degrees of freedom of the lattice
Schwinger model to those of the trapped-ion simulator is
depicted in Fig. 5.

B. The mapping to an analog-digital circuit

This Hamiltonian can be directly mapped to spin and
phonon degrees of freedom in the trapped-ion simulator. Not-
ing that the electric-field Hamiltonian in the HOBM, H (III )′

U (1) ,
consists of local self-interactions of the bosonic modes, it is

necessary to consider a tight trap in the transverse directions,
as introduced in Sec. II B, to take advantage of the local modes
of the motion. In particular, the boson encoding should be re-
alized by the mapping d j → ax

j , and the local self-interaction
of the phonons can be implemented by the standing-wave gate
introduced in Eq. (18)

The Trotterized evolution operator is e−iH ′
U (1)δt =

e−iH (I )′
U (1)δt e−iH (II )′

U (1) δt e−iH (III )′
U (1) δt + O((δt )2), where

e−iH (I )′
U (1)δt =

[
N∏

j=1

S jRσσ
j, j+1

(
π

4

)
Rσ

j

(
π

4
, 0

)
Rσa

j (θ j, 0)Rσ
j

(
−π

4
, 0

)
Rσσ

j, j+1

(
−π

4

)
S†

j

]

×
[

N∏
j=1

S2
j S j+1Rσσ

j, j+1

(
π

4

)
Rσ

j

(
π

4
, 0

)
Rσa

j (θ j, 0)Rσ
j

(
−π

4
, 0

)
Rσσ

j, j+1

(
−π

4

)
S†

j
2
S†

j+1

]

×
[

N∏
j=1

S jS j+1Rσσ
j, j+1

(
π

4

)
Rσ

j

(
π

4
, 0

)
Rσa

j

(
θ j,

π

2

)
Rσ

j

(
−π

4
, 0

)
Rσσ

j, j+1

(
−π

4

)
S†

j+1S†
j

]

×
[

N∏
j=1

S2
jRσσ

j, j+1

(
π

4

)
Rσ

j

(
π

4
, 0

)
Rσa

j

(
−θ j,

π

2

)
Rσ

j

(
−π

4
, 0

)
Rσσ

j, j+1

(
−π

4

)
S†

j
2

]
, (47)

where each square bracket corresponds to the time evolution
of each of the four terms in Eq. (43) and θ j = 1

8b
√

M
δt ,

e−iH (II )′
U (1) δt =

N∏
j=1

Rz
j (θ

′
j ), (48)

with θ ′
j = 1

2 (−1) jmδt , and with the gates defined in Secs. II A,
and

e−iH (III )′
U (1) δt =

N∏
j=1

Raa
j (χ (1), χ (2) ), (49)

with χ (1) = −g2bMδt and χ (2) = 1
2 g2bδt , and with the gates

defined in Secs. II B. The schematic of the corresponding
circuit is shown in Fig. 6. Note that the MS gate Rσσ

j, j+1 in
Eq. (47) can be implemented using the normal modes of the
motion along the axial direction, as the phonons involved in
its implementation are virtual and not contributing to the dy-
namics of gauge fields in the simulated theory. Furthermore,
the ratio χ (1)/χ (2) in Eq. (49) is fixed in the gate design
as mentioned before, and one must ensure that χ (1)/χ (2) =
(−1 + η̃2)/̃η2 = −2M, with the standing-wave Lamb-Dicke
parameter η̃ defined in Sec. II B. As typically η̃2 � 1, the
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FIG. 6. The schematic of the analog-digital quantum circuit associated with the time evolution of a four-site Schwinger model for a single
Trotter step, as expressed in Eqs. (47)–(49). The fermion-gauge interaction block must be repeated four times with various phases for the
spin-phonon gates and single-spin rotations, see Eq. (47). The gate symbols are defined in Fig. 1.

requirement M � N is guaranteed, but the careful tuning of
η̃ in experiment is required as the thermodynamic limit of
the HOBM (N → ∞) is taken. If the necessary variation in
η̃ is not feasible in a given experimental setup, one can adjust
the detuning of the laser beatnotes, as explained in Sec. III,
to effectively shift the free Hamiltonian of the trapped-ion
system by a term proportional to

∑
j ax

j
†ax

j in a suitable
rotating frame. In this way, the corresponding term in the
interaction-picture Hamiltonian, i.e., the first term in brackets
in Eq. (46), can take an arbitrary coefficient, hence relaxing
the condition on the ratio of ax

j
†ax

j and (ax
j
†ax

j )
2 terms. This

will amount to changing the frequency associated with red
and blue sideband transitions involved in the operation of
Rσa

j (θ j, φ j ) accordingly, as detailed before for the case of the
Yukawa theory.

Simulating QED in higher dimensions requires engineer-
ing the magnetic Hamiltonian, that is the sum of the product
of gauge links along the elementary plaquette in each two-
dimensional plane in coordinate system. In the HOBM of
QED, the gauge links on these higher-dimensional lattices
can still be mapped to the local modes of motion in a linear
chain of ions. However, engineering the magnetic Hamil-
tonian requires achieving four-body interactions among the
phonons pinned to four adjacent ions, which will be chal-
lenging given the experimental setup explained in this work.
This is because the nearest-neighbor phonon hopping needs
to be simultaneously suppressed to simulate the electric-field
Hamiltonian accurately. Analog and digital simulations with
quantum simulators are proposed for QED in 2+1 D with pure
gauge interactions, using both the HOBM or other models
[49,175–177]. Future work will investigate the design of an
analog-digital simulation approach for this problem.

C. An example with realistic parameters

Similar to the case of the Yukawa theory, near-term experi-
mental implementations of the Schwinger model with realistic
analog-digital gate parameters will be viable for small to
intermediate systems and can be scaled up straightforwardly
similar to what is expected for digital implementations. It
is therefore useful to consider small instances of the prob-
lem that can be simulated classically to obtain the range
of expected parameters in experiment for which interesting
phenomena in the model can be observed. Among many
interesting features of the Schwinger model are the fermion-
antifermion pair creation and the string-breaking dynamics.
These quantities can be evaluated from expectation values of
fermionic or bosonic observables in a state evolved from a
trivial initial state, |ψ (0)〉, such as the vacuum of the model
in the limit g → ∞, i.e., a state with no fermion, no an-
tifermion, and M bosons. Denoting the time-evolved state at
time t as |ψ (t )〉, we simply consider the Loschmidt echo,
i.e., | 〈ψ (0)|ψ (t )〉 |2. |ψ (t )〉 involves a superposition of states
with any number of fermions and antifermions allowed by
symmetries, and involving varying boson occupation whose
average is shown in the inset of the plots in Fig. 7. The
coarsest Trotter digitization is chosen such that quantities can
still be described accurately in the time window specified, and
the corresponding values are marked with unfilled points. �

denotes the cutoff on the excitations of the bosons above the
M bosons in the initial state. It is notable that the boson cutoff
effects are significant even for such a small lattice, motivating
further the need for mapping a larger bosonic Hilbert space to
the quantum simulator, which is done naturally in the analog-
digital proposal of this work using the local phonon modes in
the trap.
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FIG. 7. The overlap between an initial state with no fermion,
no antifermion, and M bosons, and the corresponding time-evolved
state, | 〈ψ (0)|ψ (t )〉 |2, (in blue) along with the average number of
phonons generated, 〈Nd〉 ≡ 1

N 〈ψ (t )|∑N
j=1 d†

j d j |ψ (t )〉, (in red) as a
function of time using exact (solid curve) and Trotterized evolution
(unfilled points) for the Schwinger model within HOBM. The cor-
responding model parameters are given in Table II. The time t is in
units of lattice spacing b, which is set to one.

The parameters of the Schwinger model within the HOBM
for the examples of this section are given in Table II. Since
the trap is in the tight-binding regime along the transverse di-
rections, the local-mode frequencies at the location of each ion
are equal to a good approximation, simplifying the parameters
of the gates applied to each ion. For the phonon-phonon gate,
it is ensured that the parameter F η̃2/ωx is small by choosing
η̃ and F appropriately. Furthermore, to generate a specific
value of the ratio of the phonon terms ax†ax and (ax†ax )2 as

TABLE II. The parameters of the Schwinger model within the
HOBM considered in the examples of this section. The correspond-
ing trap and gate parameters are tabulated in the Appendix. t is the
total evolution time and δt is the duration of the Trotter-evolution
segment.

Model parameters

b N � g m M δt t

1 8 2 0.35 1 10 0.125 5
4

required by the HOBM, the red and blue sideband transitions
in the spin-spin and spin-phonon gates must be implemented
with a frequency shift −δωx, corresponding to the necessary
modification to the interaction-picture Hamiltonian. The shift
value, along with other relevant trap parameters, are tabulated
in Table X of the Appendix. As noted in Tables VIII and IX,
the spin-phonon gate time is similar to what was obtained for
the Yukawa theory. The phonon-phonon gate time needs to be
∼100 microseconds to prevent the need for a large value of the
standing wave amplitude. Last but not least, the Lamb-Dicke
parameters associated with the Raman beams as well as the
standing-wave beam must satisfy η

√
M � 1 and η̃

√
M � 1,

respectively. This is because the system must be prepared in
a state with phonon occupation M according to the HOBM.
These conditions are satisfied with the realistic experimental
parameters chosen.

V. A QUALITATIVE COST ANALYSIS

In this section, our hybrid analog-digital approach will
be compared with the fully-digital realization of the Yukawa
theory and the Schwinger model. In the long term, when
fault-tolerant digital quantum computation will be a reality,
the non-Clifford gate (T gate) count determines the cost of
the simulation. In the near-term and particularly over the next
decade, however, quantum computations will be limited by
the slow and error-prone application of entangling (CNOT)
gates. In the analog-digital protocol of this work, while the
hardware-specific spin-phonon gate is an entangling gate in
the combined Hilbert space of the phonons and qubits, its
operation is governed by dynamics that occur at O(η), where
η is the Lamb-Dicke parameter introduced in Sec. II. This
is in contrast to the entangling spin-spin operation that is
the core of the CNOT implementation in a trapped-ion dig-
ital computer, which is governed by dynamics that occur at
O(η2). Since η � 1 in the Lamb-Dicke regime in which ex-
periments operate, the spin-spin gates are one or two orders
of magnitude slower than single-spin and spin-phonon gates.
Phonon-phonon self-interaction gates based on standing-wave
beams are governed by O (̃η4) dynamics but their strength
can be compensated by laser power, as demonstrated by the
examples studied before. Without experimental realizations,
the fidelity of this new set of gates cannot be accurately
predicted. Nonetheless, the qualitative expectations for the
gate times as described here can provide a rough guidance to
the relative performance of the simulator in an analog-digital
mode compared with a fully-digital mode.

A. The Yukawa theory

Since the implementation of the dynamics associated with
the fermionic hopping and mass is the same in both digital
and analog-digital circuits, here we focus on implementing
dynamics involving the scalar field, namely evolution with the
free scalar-field Hamiltonian as well as the fermion scalar-
field interacting Hamiltonian.

In the analog-digital protocol, the time evolution of the free
scalar-field Hamiltonian H (II )

Yukawa in Eq. (24) is implemented at
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no cost since it amounts to adjusting laser beatnote frequen-
cies in the sideband operations, as explained in Sec. III B.
In the fully-digital implementation, the exact circuit design
depends on the mapping of the scalar fields to qubit registers.
The field basis [13], the harmonic-oscillator basis [29], and
the single-particle basis [44] are among the representations
considered in literature to perform such a mapping, each
with their own benefits and disadvantages. Here, we give a
qualitative CNOT-gate count (or in turn MS entangling-gate
count) in the harmonic-oscillator basis, as it is the represen-
tation closely related to what is considered in Sec. III. In
this basis, the occupation number of each harmonic oscillator
corresponding to each momentum mode is truncated at some
cutoff value � and is expressed in a binary representation,
which is then mapped to log � qubit registers. The evolution
operator e−iH (II )

Yukawaδt = e−i
∑

k εk (d†
k dk+ 1

2 )δt can then be realized
by a number of single-qubit rotations around the z axis of the
qubits’ Bloch sphere (see e.g., Ref. [39] for a similar example
of implementing the time evolution of the electric-field Hamil-
tonian in the lattice Schwinger model). This step, therefore,
can be considered cost-free in both digital and analog-digital
implementations.

Next, the time evolution with the fermion scalar-field
Hamiltonian H (III )

Yukawa in Eq. (25) is implemented with a single
ancilla qubit and with O(N (N + 1)) spin-phonon gates, which
are considered to be cost-free compared with the entangling
spin-spin gates. In a fully-digital implementation, e−iH (III )

Yukawaδt

can be implemented by writing H (III )
Yukawa as

H (III )
Yukawa =

√
g2b

2N

∑
j

∑
k

√
1

εk
cos

(
2πk j

N

)
ψ

†
j ψ j (dk + d†

k )

+
√

g2b

2N

∑
j

∑
k

√
1

εk
sin

(
2πk j

N

)
ψ

†
j ψ j i(dk − d†

k ).

(50)

The implementation of these terms follows the procedure
explained in Ref. [39] in the case of realizing the dynamics
of fermion-gauge interaction term in the Schwinger model.
First, Eq. (50) indicates that the operations proportional to
A ≡ (dk + d†

k ) and B ≡ i(dk − d†
k ) operators are only per-

formed if the fermion occupies a given site, necessitating
a controlled operation on the qubit register of the fermion.
The A and B operators are two near-diagonal matrices whose
exponential can be implemented using the shift operators,
that are realized using quantum Fourier transform circuits and
single-qubit rotations in the Fourier space. As a reminder,
for a binary number with log � digits, each quantum Fourier
transform requires O((log �)2 + log �) CNOT operations.
Relating A and B operators to the shift operators requires a pe-
riodic wrapping of the matrices, i.e., identifying the least and
most values of harmonic-oscillator occupation. This unphysi-
cal modification can subsequently be removed by application
of appropriate log �-controlled operations, amounting to
O(log �) additional CNOT gates [39]. Putting everything
together, including the controlled operations required on the
fermionic register, and taking into account all the terms in the
lattice sums in Eq. (50), the time evolution operator e−iH (III )

Yukawaδt

can be implemented using O(N2(log �)2) CNOT operations.
Therefore, assuming that spin-phonon gates of the hybrid
scheme are free compared with spin-spin entangling gates,
the digital approach is inferior to the hybrid approach. Even
if the spin-phonon gate performs comparably to the spin-spin
(CNOT) gate, the digital scheme require O((log �)2) more
entangling operations which can be significant when � � 1.

Such an advantage is at the core of the power of the
hybrid approach: Phonons are represented naturally and as
many phonon excitations as permitted in the dynamics can
be generated without the need to cut their spectrum off. Of
course, an excessive number of phonons in the system can lead
to Kerr cross-coupling [172] and loss of coherence in the sim-
ulator, and therefore a balance should be established between
accuracy of the simulated theory given a truncated boson
spectrum and the experimental error in the simulator. For this
reason, experimental benchmarks are necessary in confirm-
ing these qualitative theoretical expectations. A summary of
the entangling-gate count of both schemes for evolving each
term in the Hamiltonian of the Yukawa theory is provided in
Table III.

B. The Schwinger model

Except for the time evolution of the fermion mass term,
both the fermion-gauge field interaction and the electric-field
term (the boson self-interactions in the HOBM) are imple-
mented differently in the hybrid and fully-digital schemes.

The circuit in Fig. 6 reveals that the time evolution of the
interacting fermion-boson field in the HOBM requires O(N )
spin-spin gates and O(N ) spin-phonon gates, with the latter
expected to be not too costly. In the fully-digital scheme,

e−iH (I )′
U (1)δt with the Hamiltonian in Eq. (43) can be imple-

mented following the circuit construction described earlier in
the case of fermion scalar-field interactions of the Yukawa
theory. The only differences are that now the bosons are
defined locally, and associated with each site (link) there
is one such boson (as opposed to N bosons associate with
all momentum modes in the Yukawa theory), and that the
fermions correspond to nearest-neighbor sites (as opposed to
a local fermion occupation operator in the corresponding term
in the Yukawa theory). As a result, the total entangling-gate
count of the digital-circuit implementation of this evolution
operator is O(N (log �)2), where � denotes the cutoff on the
boson excitations [translating to the electric-field excitations
in the original U(1) theory]. Therefore, the hybrid imple-
mentation will save a factor of O((log �)2) in CNOT count
compared with the digital implementation assuming again that
the spin-phonon gate performs at a much higher fidelity than
the spin-spin gate.

Time evolving the electric-field term, that is Eq. (46),
requires N standing-wave gates, which can be counted to
be comparable to O(N ) entangling gates. The same term in
the fully-digital computation requires either free Z-rotations
(for evolving the d†

j d j term similar to what was discussed
for the free scalar Hamiltonian in the Yukawa theory) or
O(N log �(log � − 1)) CNOT gates [for evolving the (d†

j d j )2

term]. This latter count can be understood by noting that
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TABLE III. The scaling of the spin-spin gate count per Trotter step as a function of the lattice size N and the cutoff on the boson (phonon)
excitations � for the Yukawa theory and the Schwinger model (within HOBM) assuming analog-digital and fully-digital implementations. The
spin-phonon and phonon-phonon gate counts are not denoted in the table for the analog-digital approach but have been discussed in the text.

Yukawa theory

Fermion hopping Fermion mass Free scalar fields Fermion scalar-field interaction
Analog-digital O(N ) O(1) O(1) O(1)
Digital O(N ) O(1) O(1) O(N2(log �)2)

Schwinger model

Fermion-gauge interaction Fermion mass Electric-field term
Analog-digital O(N ) O(1) O(1)a

Digital O(N (log �)2) O(1) O(N (log �)2)

aO(N ) standing-wave phonon-phonon gates which are expected to have comparable fidelity to the spin-spin gates.

the application of d†
j d j phase depends on the occupation of

the d excitation itself. In summary, the analog-digital imple-
mentation requires O((log �)2) fewer entangling operations
(assuming that the standing-wave gate can perform compara-
bly to the spin-spin gate). A summary of the entangling-gate
count of both schemes for evolving each term in the Hamilto-
nian of the HOBM is provided in Table III.

VI. CONCLUSION AND OUTLOOK

Our paper combines the benefits of analog and digital
trapped-ion simulators to enable both short- and long-term
simulations of quantum field theories involving bosonic fields
with sizable Hilbert spaces. Among the models considered are
the Yukawa theory, i.e., scalar fields coupled to fermions in
1+1 D and the lattice Schwinger model within the highly-
occupied bosonic model. By introducing a set of known
and new gates, including spin, spin-spin, spin-phonon, and
phonon-phonon gates, the Trotterized evolution in each of
these models is expressed as a quantum circuit. Small in-
stances of the models with realistic experimental parameters
for near-term proof-of-principle demonstrations of nontrivial
dynamics are identified. Experiments with 20 ions using a
set of normal or local modes, each occupied with only up
to two phonon excitations, already push the limits of what
is possible on a classical computer. Most importantly, higher
cutoffs on the bosonic excitations can be imposed in the model
as the bosons are naturally represented by the phonons in
the ion trap, leading to an O(N log �) [O(log �)] reduc-
tion in the number of qubits and at least an O((N2 log �)2)
[O((log �)2)] reduction in the number of the entangling spin-
spin gates compared with a fully-digital simulation in the
Yukawa theory (Schwinger model). Here, � is the cutoff
on the boson-field excitation and N is the number of lattice
sites in the simulated theory. These scalings assume that the
spin-phonon gate has a higher fidelity compared with the
spin-spin gate, while the phonon-phonon gate performs with
a fidelity comparable to that of a spin-spin gate. Experimental
implementations will test these theoretical expectations in the
coming years and establish the analog-digital mode of the sim-
ulator as a more powerful paradigm than either of fully-analog

and digital schemes in enabling simulations of interacting
fermionic-bosonic field theories of phenomenological inter-
est.

A number of promising theoretical and experimental di-
rections may result from extensions of this work to other
quantum simulators and more complex strongly-interacting
field theories. These include the following:

(i) It is important to investigate whether the experimental
imperfections and nonideal gate fidelities are more significant
in an analog-digital compared to a fully-digital setting. This
is a rather crucial question when it comes to gauge-theory
simulations, as local gauge invariance imposed on an initial
state needs to be efficiently retained throughout the evolution,
or the simulated physics will be fundamentally different than
the desired gauge theory. Recent ideas in protecting gauge
invariance in the simulation [178–181] can be investigated in
the context of analog-digital simulations as well. We expect
the dominant sources of error in our scheme to be related to
the heating rate [182], which causes both motional dephasing
and errors due to the increases in phonon population [81].
Typical ion traps have a heating rate of tens to hundreds
of quanta per second in the center-of-mass mode, and much
smaller values in the higher-order modes. A heating rate of
10 quanta/s corresponds to a motional coherence times of
tens of milliseconds [111], which would limit our simula-
tion to tens of Trotter steps in the examples studied here.
This can be mitigated by going to a cryogenic trap, which
has been shown to decrease the heating rate by two orders
of magnitude [183]. In the case of the Schwinger model,
effects outside the Lamb-Dicke regime also play a role, as
spin-phonon gates will have to be applied sequentially while
other spectator phonon modes have significant average mo-
tional occupations 〈n〉 ∼ 5 − 10. The relative variation of
the Rabi frequency of the jth ion associated to the spin-
phonon gate on the kth normal mode due to other spectator

modes can be estimated as ∼
√∑

p �=k η4
p, jnp(np + 1) [81],

where np is the average phonon population in the spectator
mode p. Assuming conservatively that ηp, j ∼ η/

√
N , N = 10,

and np ∼ 10, we can estimate the upper bound of this error
contribution to be of the order of a few percents. This esti-
mate is conservative since the equation assumes the spectator
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modes to be in a thermal state with average phonon number
np, which will not be the case during the Schwinger model
simulation.

(ii) The motional modes of a trapped-ion chain are rou-
tinely initialized to better than 〈n〉 = 0.1 where 〈n〉 denotes
the average phonon occupation. In simulations involving the
motional modes, initialization errors are usually not the limit-
ing factor since they are much smaller than the ones associated
with motional heating. Moreover, in our scheme, phonon-
phonon interactions are only turned on momentarily during
the evolution. So possible many-body effects, such as Bose-
Einstein condensation of phonons, do not pose an obstacle
to the state initialization. It will be interesting to consider
efficient state-preparation strategies for QFTs when bosonic
fields can be encoded into bosonic registers. Besides the re-
duction in the number of qubits and entangling gates required
for the preparation routine in an analog-digital mode, one can
envision more efficient state-preparation protocols as well,
such that nontrivial initial states involving entangled boson
and fermion modes can be achieved more straightforwardly.
This direction is, however, less developed and requires addi-
tional investigation.

(iii) A highly desirable capability, that was not required
for the current work given the nature of the models studied, is
the engineering of nonlocal phonon-phonon couplings. Such
a capability would allow the simulations of a self-interacting
scalar field theory, as well as the plaquette (magnetic) in-
teractions in lattice gauge theories in higher dimensions,
in an analog-digital fashion. It will be worth exploring
the possibility of taking advantage of the virtual spins to
mediate the phonon interactions in this context, inspired
by the Mølmer-Sørensen scheme, in which spin-spin in-
teractions are mediated by the virtual phonons. Promising
experimental demonstrations in circuit-QED have emerged
[184] and similar ideas may be applicable to the trapped-ion
systems.

(iv) To make progress toward the goal of simulating quan-
tum chromodynamics, one must develop feasible simulation
proposals for non-Abelian gauge theories. The SU(2) LGT
coupled to fermions is a valuable non-Abelian gauge theory
that has become the focus of intense studies in recent years
[18,19,21,22,52,58,59,68,73,74]. Its prepotential formulation
in terms of Schwinger bosons [71] appears the most suitable
representation to potentially take advantage of the analog-
digital setup presented here. Basically, despite the U(1) theory
in 1+1 D which has only an approximate representation in
terms of bosonic degrees of freedom, the SU(2) LGT in any
dimension has an exact mapping to bosons. The complication
is that each link on the lattice is a collection of four sets of
oscillators and the physical degrees of freedom are those made
up of gauge-invariant combinations of these bosonic operators
(along with the fermionic operators). The Hamiltonian matrix
elements retain the knowledge of the SU(2) algebra and hence
contain nontrivial factors [71]. Ongoing progress in develop-
ing fully-digital algorithms for this theory, nonetheless, will
be beneficial in developing the analog-digital counterparts.
Here, complications associated with the nonlocal phonon-

phonon interactions in the trapped-ion simulator must be dealt
with as well.

(v) Finally, the bosonic modes are common in a range of
quantum simulators. A notable example is a circuit-QED plat-
form in which cavity photons are coupled to superconducting
qubits [185,186]. The physics of photon-qubit effective in-
teractions is very similar to that of phonon-ion interactions
in an ion trap. For example, cavity photons can be taken
advantage of to induce nonlocal couplings among the qubits
[187]. One can envision encoding the dynamics of scalar or
gauge fields in the photon modes and that of fermions in the
superconducting qubits, hence devising photon-based gates as
discussed in this work. Nonetheless, the degree of control and
the feasibility of experimental realizations must be examined
carefully before the potential of an analog-digital scheme can
be evaluated in such platforms.
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APPENDIX A: DETAILS OF THE NUMERICAL EXAMPLES

This Appendix supplements the numerical examples pro-
vided in Secs. III C and IV C of the main text.

1. Yukawa theory

This section contains the numerical values for the gate
rotation angles (Table IV) and gate parameters (Table V)
required in implementing the examples studied in Sec. III C.
The relevant trap and laser parameters for a realistic near-term
experiment are also provided (Table VI).

2. Schwinger model

This section contains the numerical values for the gate
rotation angles (Table VII) and gate parameters (Tables VIII
and IX) required in implementing the examples studied in
Sec. IV C. The relevant trap and laser parameters for a realistic
near-term experiment are also provided (Table X).
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TABLE IV. The gate angles associated with the circuit implementation of the Trotterized dynamics in the Yukawa theory as specified in
Eqs. (32)–(35). The values are associated with the model parameters given in Table I of the main text.

Gate angles

Nion θ j, j+1 θ j θm, j = θm,N+1 φm, j

2+1 {0.0625, 0.0625} {−0.125, 0.125} {{0.344, 0.344, 0.344}, {0.625, 0.625, 0.625}} {{−π,−2π}, {0, 0}}
4+1 {0.0312, 0.0312, 0.0312, 0.0312} {−0.0625, 0.0625, −0.0625, 0.0625} {{0.061, 0.061, 0.061, 0.061}}, {{−π, −2π, −3π, −4π, −5π},

{0.081, 0.081, 0.081, 0.081}, {−π/2, −π, −3π/2, −2π, −5π/2},
{0.110, 0.110, 0.110, 0.110}, {0, 0, 0, 0, 0}, {π/2, π, 3π/2, 2π, 5π/2}}
{0.081, 0.081, 0.081, 0.081}}

TABLE V. The spin-phonon gate parameters associated with the gate rotation angles specified in Table IV for the examples studied in
Sec. III C.

Implementing Rσa
{m}, j ({θm, j}, {φm, j})

Nion ηm, j
Ψm, j

2π
[kHz] τ σa

gate [ms]

2 + 1 (m = 1, 3, j = 1, 2, 3) 20 × 10−3

{{−0.039, −0.039, −0.039}, {{98.6, 98.6, 98.6},
{0.028, −0.057, 0.028}} {−248.4, 124.2, −248.4}}

4 + 2 (m = 1, · · · , 4, j = 1, · · · , 5) 10 × 10−3

{{−0.028,−0.028, −0.028, −0.028, −0.028}, {{69.7, 69.7, 69.7, 69.7, 69.7},
{−0.042, −0.023, −0.008, 0.008, 0.023}, {61.8, 109.5, 336.3, −336.3, −109.5},

{0.038,−0.009, −0.029, −0.029, −0.009}, {−91.7, 380.6, 120.8, 120.8, 380.6},
{0.025, −0.038, −0.0196, 0.0196, 0.038}} {−102.3, 67.4, 131.8, −131.8, −67.4}}

TABLE VI. The characteristics of the ion trap and the lasers relevant for the examples studied in Sec. III C and the associated gate
parameters in Table V.

Normal-mode spectrum and interaction-picture shift

Nion η 1
2π

ωm [kHz] 1
2π

ε̃m
N+1 [kHz]

2+1 0.068 {4000, 3938.3, 3850.2} {2.2, 0, 0.7}
4+2 0.068 {4000, 3938.3, 3849.4, 3735.5, 3596.4, 3430.7} {1.3, 0.7, 0.4, 0.7, 0, 0}

TABLE VII. The gate rotation angles associated with the circuit implementation of the Trotterized dynamics in the Yukawa theory as
specified in Eqs. (47)-(49). The values are associated with the model parameters given in Table II of the main text.

Gate angles

θ j θ ′
j χ (1) χ (2)

0.008 for all j {−0.0625, 0.0625, −0.0625, 0.0625, −0.0625, 0.0625, −0.0625, 0.0625} −0.153 0.008

TABLE VIII. The spin-phonon gate parameters associated with the gate rotation angles specified in Table VII for the examples studied in
Sec. IV C. The required φ angles are already noted in the relevant circuit expression in Eq. (47).

Implementing Rσa
j (θ j, φ)

Ψ j/2π [kHz] τ σa
gate [ms]

−43.9 for all j 10−3

TABLE IX. The phonon-phonon gate parameters associated with the gate rotation angles specified in Table VII for the examples studied
in Sec. IV C.

Implementing Raa
j (χ (1), χ (2) )

F/2π [kHz] η̃ η̃
√

M F η̃2/ωx τ aa
gate [ms]

1949.6 0.05 0.16 0.001 50 × 10−3
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TABLE X. The characteristics of the ion trap and lasers relevant for the examples studied in Sec. IV C and the associated gate parameters
in Tables VIII and IX.

Local-mode properties and interaction-picture shift

Nion
1

2π
ωx [kHz] η j ≡ η η

√
M 1

2π
δωx [kHz]

8 6000 0.056 0.18 9.2
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