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Simplifying topological entanglements by entropic competition of slip-links
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Topological entanglements are abundant, and often detrimental, in polymeric systems in biology and materials
science. Here we theoretically investigate the topological simplification of knots by diffusing slip-links (SLs),
which may represent biological or synthetic molecules, such as structural maintenance of chromosome proteins
or cyclodextrins in slide-ring gels. We find that SLs entropically compete with knots and can localize them,
greatly facilitating their downstream simplification by transient strand-crossing. We further show that the
efficiency of knot localization depends strongly on the topology of the SL network, and, informed by our findings,
we discuss potential strategies to control the topology of biological and synthetic materials.
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I. INTRODUCTION

Knots and topological entanglements are often found in
physical and biological systems [1–4]. Their uncontrolled
formation and proliferation reduces the space of accessible
configurations of generic polymer chains, in turn potentially
affecting their mechanical [5] or biological [6–8] func-
tions. Entanglements are so inevitable and detrimental in the
genome of living organisms that a specific class of highly
conserved proteins—known as topoisomerases—has evolved
to resolve them [9].

While it is typical to treat abundant topological constraints
at the mean-field level—for instance in the tube model of
polymer melts [10]—exact and scaling results can be obtained
via theories that replace entanglements with slip-links (SLs),
which enforce contacts between polymer segments while al-
lowing them to slide past each other [11–15]. Because of
this physically appealing analogy, systems of polymers with
slip-links have been theoretically and numerically explored
in the field of statistical and polymer physics, for instance to
estimate the size of knots [16,17] and the effective tube size
in polymer melts [18].

Beyond the theoretical appeal of these systems, actual ex-
amples in which SLs affect the conformation of polymers
can be found in nature and materials science. For instance,
the family of structural maintenance of chromosome (SMC)
proteins act as SLs on the genome, and, depending on the
condition and organism, they can either actively move [19–22]
or passively diffuse [23–26], in turn extruding loops. These
proteins are key for the organization of the genome in vivo
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[27–29], for the structure of sister chromatids [29,30], and to
regulate chromatid decatenation and cell division [31]. Ad-
ditionally, it was recently suggested that they cooperate with
topoisomerases to keep the genome topologically simple and
entanglement-free [32]. While the structural role of SMC pro-
teins is now widely explored, the mechanisms through which
they regulate genome topology are far less understood or in-
vestigated. At the same time, SLs can be realized in synthetic
and supramolecular chemistry using cyclodextrins [33] and
are employed for instance to make molecular machines [34]
and slide-ring gels [35]. In these cases, the benefit of using
SLs is that they effectively act as mobile cross-links, thus
imposing strong, yet plastic, topological constraints on the
polymeric substrates. Thanks to this peculiar feature, gels of
polyrotaxanes display toughness and self-healing abilities far
superior to those of traditionally cross-linked materials [36].
As in biological systems, also the SL-mediated topological
regulation of synthetic slide-ring gels is only starting to be
investigated [37].

In this work, we study the interplay between SLs and
topological entanglements formed by knots tied on a ring
polymer (see Fig. 1). While our setup is inspired by the ex-
isting framework of entropic competition [16,17,38–41], here
we consider SLs as real components of the system, modeling
the presence of (diffusing) SMC proteins or cyclodextrins. In
particular, we compute the loop size distribution and length
of knotted segments for a variety of SL network topologies,
and we show that diffusing SLs are able to localize knotted
segments purely by entropy, without any external energy input.
Importantly, and in marked contrast with previous works on
entropic competition, we show that the efficiency of entangle-
ment localization depends on the particular topology of the
SL network, and that including the action of topoisomerases
(modeled as transient strand-crossings) leads to extremely
fast and efficient simplification of complex knots. Our results
suggest an entropy-driven mechanism through which generic
SL-like molecules can regulate the topology of DNA or
synthetic polymers.
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FIG. 1. Entropic competition of SL and entanglements. (a) Our
setup is inspired by that of entropic competition [16]: a ring polymer
with total length L is tied in a knot and contains diffusing SLs. The
ring is forced to pass through two holes on a wall that separates the
two sides. Only the contour passing through the top hole is allowed
to slide, while the other is fixed. In the figure, the left-handed loop
has NSL = 2 SLs and is partitioned into 2NSL + 1 = 5 segments, of
which s1 and s3 are called peripheral loops; s2, s4, and s5 are called
internal loops; and s2 + s4 + s5 makes up the inner loop. The right-
hand side contains a 31 knot. (b) Snapshot from molecular dynamics
simulations of the system in (a).

II. MODEL AND METHODS

We prepare the initial configuration of our system by join-
ing two bead-spring polymer segments on either side of a
wall; typically, we consider configurations in which the two
polymer segments are either knotted or contain SLs. Since in
our model the polymer cannot cross the wall, itself, or the
SLs, the topology on each side is preserved throughout the
simulations (see below).

More specifically, we perform molecular dynamics sim-
ulations of bead-and-spring polymers made up of beads of
size σ . The simulation box is separated into two equally large
portions by an impenetrable wall, and each bead interacting
with the wall is subject to a repulsive force perpendicular to
the wall described by the potential:
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1
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finite-extension-nonlinear-elastic (FENE) bonds:
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where R0 = 1.5σ is the maximum extension of the bond;
interactions between beads are governed by the Weeks-
Chandler-Andersen (WCA) potential:
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where r is the distance between the bead centers and rc =
21/6σ . To account for the effect of stiffness (arising, for
instance, if the polymers represent chromatin fibres), we
introduced a Kratky-Porod potential acting on triplets of
neighboring beads:

Ubend = kBT lp

σ
(1 + cos θ ), (4)

where θ is the angle between consecutive bonds. The ini-
tial configurations are designed such that a polymer passes
through two holes in a wall, the size of which is small enough
to let just one monomer through at a time. In this way, the
polymer is divided into two segments, physically separated
by the wall. Additionally, we fix the position of one of the two
beads closest to the wall so that the segments can exchange
monomers only through the other hole. This setup is reminis-
cent of the one used to study entropic competition in Ref. [41].

Slip-links (SLs) are modeled as physical square handcuffs
and are allowed to slide diffusively along the polymer. The
setup is such that the polymer passes through two holes on the
wall, the size of which is small enough to let just one monomer
through each of them at any time (see Fig. 1). Specifically,
we consider SLs with side 4σ , held together by four FENE
bounds and opened in a “planar” arrangement [this is achieved
with the potential described by Eq. (4) and large enough lp].

To study the kinetics of topological simplification later in
this work, we allow a short (10 beads) segment to undergo
strand-crossings. This is achieved by setting to 0 the amplitude
of the (WCA) potential regulating the interaction between
the beads of this segment and each bead composing the rest
of the polymer, excluding the two immediately next to the
segment boundaries. In our slip-link versus knot simulations,
this segment is kept on the knot side by placing it next to the
fixed bead (wall).

Sampling of the system

To make sure that we are sampling our system ergodi-
cally and that we are avoiding kinetic traps that may exist in
MD simulations, we take snapshots of our system every 106

LAMMPS time steps (104τB), comparable to the decorrelation
time of a polymer of length up to at least 200 monomers.
Within this time also the SLs loaded onto the substrate have
traveled a significant amount of contour length [42], and so
we assume that each sampled configuration is independent of
others. Some of our results obtained with polymers of length
500 may thus display longer decorrelation times. In Fig. 2
we plot the radius of gyration Rg(t ) of a polymer and the
autocorrelation function GO(t ) of a scalar observable O of the
polymer as a function of time. These are estimated as

R2
g(t ) = 1

L

L∑
i=1

[ri(t ) − 〈r(t )〉]2, (5)

where ri is the position of the ith bead, L is the length of the
polymer, 〈r(t )〉 = 1

L

∑L
i=1 ri(t ), and

GO(t ) = 1

(T − t )σ 2
O

T −t∑
i=1

[O(i) − 〈O〉][O(i + t ) − 〈O〉], (6)

where T is the number of sampled configurations, and O(i)
is the value of O for the ith configuration, 〈O〉 = 1

T

∑T
i=1 O(i)

and σ 2
O = 1

T

∑T
i=1(O(i) − 〈O〉)2. By comparing Figs. 2(b) and

2(f), one can appreciate that the 500-bead-long chain displays
a slower decay of the autocorrelation of the length of side 2
[Gl2 (t )]. This autocorrelation appears to decay around 105 τB

while we sample the system every 104 τB time steps.
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FIG. 2. Conformational decorrelation time of a 100-bead long (left) and 500-bead long (right) polymer in the 2SLs vs 2SLs configuration.
(a),(c) Length of the two competing sides of the polymer as a function of time. (b),(d) Normalized autocorrelation function of the length of one
of the two competing sides (labeled as side 2). (e),(g) Radius of gyration in units of σ as a function of time. (f),(h) Mean-squared displacement
in units of σ 2 of a bead of the polymer as a function of time. �t = �t1 = 104τB; �t2 = 103τB.

III. COMPETITION OF SLs

We first study the competition between symmetric SL net-
works: we load up to three SLs on each side of the wall in
either a “round-table” (RT) configuration, realized by loading
the slip-links in series [16] [Figs. 3(a), 3(c) and 3(d)], or a
“necklace” (NC) configuration, characterized by nested loops
[16] [Fig. 3(b)]. The number of configurations of a ring of
length L containing NSL SLs in the RT configuration or two
SLs in the NC configuration, and grafted to an impenetrable
surface as in Fig. 3, scales as (see Appendix A)
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∫
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,

(7)

where si, i = 1, . . . , NSL are the lengths of the NSL peripheral
loops, si, i = NSL + 1, . . . , 2NSL + 1 are the lengths of the
other NSL + 1 segments (see Fig. 1; note that the wall is not
considered as a SL), ν is the universal metric exponent relating
the size of a polymer to its length, and μ is the nonuniversal
connectivity constant. By using known results for the statisti-
cal physics of polymer networks [16,43], α can be computed
as

α = −3ν + σ4, (8)

with σ4 = −0.46 the scaling exponent associated with four-
legged nodes [43]. The integration extends over all lengths
compatible with the given topology, and accounts for the
sliding entropy of the SLs. Since the two competing slip-link
networks in Fig. 3 are not interacting, the total number of

configurations can be factorized as the product of the number
of configurations on each side.

FIG. 3. Entropic competition between symmetric SL networks.
From top to bottom: (a) a single SL; (b) two SLs in a necklace config-
uration; (c) two SLs in a round-table configuration; (d) three SLs in a
round-table configuration. Note that we simulate two SL networks
with identical topology, one on each side of the wall. Each his-
togram collects information from 104 configurations sampled every
106 LAMMPS steps from 100 independent replicas. The black curves
are obtained solving Eq. (7) for the relevant SL network topology.
From left to right: increasing total length of the ring polymer [35,
100 beads in (a) and 100, 500 beads in (b)–(d)].
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FIG. 4. Entropic Competition between SLs and a Trefoil Knot. (a) Plot of the distribution of lengths of the side with the SLs, for different
SL number and topology. The plot shows that the RT configurations (solid lines) favor longer SL sides and hence tighter knots than NC
configurations (dashed lines). (b) Distribution of lengths of the side with the SLs for different substrate persistence lengths: the curves refer
to the case of a RT configuration with two SLs. The plot shows that stiffer substrates favor longer knotted sides. (c) Mean length (〈lSL〉) and
standard error of the SL side length as a function of SL number and topology. The solid and dashed lines are best linear fits with slopes 8.4(8)
for RT and 6.5(6) for NC. (d) Mean length (〈lSL〉) and standard error of the SL side length as a function of substrate persistence length lp.
The dashed line is the best linear fit with slope −1.09(5)lp. (e) Fraction of knots that have been compressed—i.e., confined within 20% of the
overall ring contour length—during the course of a simulation starting from a situation in which 80% of the contour length is on the knotted
side. Higher flexibility and RT configurations both favor knot localization. NC denotes necklace, RT denotes round-table, and SLs denotes
slip-links.

We employ Eq. (7) to derive semianalytically the distri-
bution of loop lengths for systems with up to three SLs on
each side. We then verify these predictions with molecular
dynamics (MD) simulations and report the results in Fig. 3.
Figure 3(a) shows that the distribution undergoes a unimodal-
bimodal transition for increasing ring sizes (we consider 35-
and 100-bead-long polymers). This transition can be viewed
as a pitchfork bifurcation (see Appendix B), and is analo-
gous to the symmetry-breaking behavior found with phantom
chains in [38,39].

We now turn to the case of two and three SLs on each
side [Figs. 3(b)–3(d)]. We find that the spontaneous symmetry
breaking is much more noticeable in the NC topology than
in the RT one [Figs. 3(b) and 3(c)]. Finally, the RT topol-
ogy displays a stable symmetric state for all polymer lengths
when NSL = 3 SLs are loaded on each side [Fig. 3(d)] with
a remarkable absence of symmetry breaking. The histograms
computed numerically in Figs. 3(b)–3(d) nicely match the
predicted distributions in most cases. The one exception is the
2 SL RT case, where a third peak seems to appear for large N
in the simulated distributions: it would be of interest to study
longer polymers to understand this case in more depth.

In light of these results, we argue that the network topology
arising from the loading of multiple SLs—either in series (RT)
or in parallel (NC)—profoundly affects the spatial organiza-
tion of the underlying DNA or synthetic polymer. Further, our
semianalytical results are in line with previous works, which
showed that nested SLs (NC topology) promote growth, or
extrusion, of the outer loop via a ratcheting process in which
the diffusive dynamics of the outer loop is rectified by the
entropic pressure of the inner ones [23].

IV. SLs VERSUS KNOTS

The results of the previous section suggest that entropic
competition of SLs can regulate the distribution of loop
lengths of an underlying polymer. We now ask whether this
entropic competition may also provide a mechanism for the
localization and topological simplification of entanglements

such as knots that may occur on biological or synthetic poly-
mers. To address this question, we now consider the case in
which the competing topologies are a SL network and a trefoil
(31) knot (as in Fig. 1), and we aim to identify the optimal
conditions to localize and simplify the knotted loop. It should
be noted that our calculations are performed in thermal equi-
librium, so we seek entropic and topological mechanisms that
bias the free energy towards a lower knotting probability. This
is different from previous works, which studied the effects of
energy-consuming mechanisms driving unknotting [32].

Since the semianalytical approach we used in the previous
sections cannot be easily extended to this setup [44], we
directly perform MD simulations of a 100-bead-long ring and
address how different factors such as SL number, topology,
and polymer persistence length affect the entropic competition
and, in turn, regulate the probability and efficiency of knot
localization.

First, we find a large difference between RT versus NC
configurations [Fig. 4(a)]: the larger sliding entropy and low
looping cost of the RT setup provide an entropic pressure that
outcompetes the ratcheting effect of the NC topology. This
result is unexpected, since it is known that NC configurations
promote asymmetric polymer conformations and the forma-
tion of large loops with respect to RT networks [see Figs. 3(b)
and 3(c) and Ref. [23]]. Nevertheless, the RT arrangement
appears to be more suited to overcoming the knot entropy.
Quantitatively, the entropic pressure of the RT configurations
is notable: already with three SLs the knotted side is localized
to a shorter contour length than the SL side [Fig. 4(a)].

Additionally, our simulations reveal that the bending rigid-
ity of the polymer substrate also plays an important role
[Fig. 4(b)]. Indeed, there are two potential and contrasting
enthalpic effects that the bending rigidity may have on the
entropic competition: on the one hand, the larger the stiffness,
the longer the contour length required to form a knot without
tight bends (this effect is particularly relevant for short loops);
on the other hand, bending rigidity enhances the formation
of large loops via diffusive loop extrusion [42]. Our simu-
lations show that—for two SLs in a RT arrangement and a
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FIG. 5. Standard deviation of the SL side length (σlSL ) in the
competition between SLs and a trefoil knot as a function of (a) SL
number and topology, and (b) the persistence length lp of the
substrate.

100-bead polymer ring—the former effect dominates: the
larger the persistence length, the larger the knotted side,
rendering the localization of entanglements less efficient
[Fig. 4(b)]. This result shows that the entropic pressure pro-
vided by the SLs can only provide localization if the polymer
substrate is sufficiently flexible.

More quantitatively, in Fig. 4(c) we show that the mean
length of the SL-side, 〈lSL〉, grows linearly as a function of
the number of SLs (in the range of NSL explored here) and
that the growth rate is faster for RT configurations. This linear
behavior can be predicted asymptotically, up to corrections, by
simplifying the scaling contribution of the SLs to account for
the sliding entropy exclusively, and by assuming the nonuni-
versal connectivity constant to be topology-dependent (see
Appendix B). At the same time, 〈lSL〉 appears to also decrease
linearly with polymer stiffness as ∼l0 − lp, with l0 a constant
[Fig. 4(d)]; this is expected, since the minimum number of
monomers required to tie a knot with a given topology in-
creases linearly with lp (e.g., in a freely jointed chain). In a
practical genomic or synthetic context, the results reported
in Figs. 4(a)–4(d) overall suggest that local SL density and
substrate flexibility may provide handles to tune the typical
size of knots. In vivo both of these parameters depend on
local DNA sequence and transcriptional activity, and we thus
speculate that knot and entanglement localization may be
achieved to a different extent in different genomic regions;
in particular, transcriptionally active genes (which are also
thought to be more flexible) may harbor smaller knots and
localized entanglements. At the same time, different synthetic
polymers having different stiffness and different arrangements
of cyclodextrins may be designed so that the resulting cross-
linked gels have tunable properties [36].

We conclude this section by showing, in Fig. 5, that also
the width of the distribution of lengths of the SL side is
affected by the SL number, topology, and by the persistence
length of the substrate. One can appreciate that as the number
of SLs increases, so do the minimum number of monomers
of the SL side and the entropic pressure exerted on the

knotted side; consequently, the distribution of lengths of the
SL side narrows. On the other hand, the minimum number of
monomers involved in the knotted portion of a polymer ring
increases with its persistence length, and thus the width of
the distribution of lengths of the SL side decreases for stiffer
substrates.

V. KINETICS OF TOPOLOGICAL SIMPLIFICATION

Another important aspect of the problem is how fast knots
can be localized, and eventually removed. To measure the
kinetics of knot localization, we perform MD simulations
in which the system is initialized far from equilibrium with
a large knot—occupying about 80% of the total contour
length—and we measure how long it takes for the system to
revert the situation and compress the knotted size to 20% of
the total contour length. Figure 4(e) shows that RT configura-
tions and flexible substrates are faster at localizing the knot,
on top of being more efficient in steady state, as discussed
before.

Finally, to address the question of whether diffusing SLs
can drive the topological simplification of knots and entan-
glements, we now include topoisomerase-mediated strand-
crossing reactions in our model as follows. We study a system
in which a short segment of the knotted side is allowed to
undergo strand-crossings. We then initialize the system with a
given knot (either a 7-crossings torus knot 71, a 10-crossings
torus knot 10124, or a twist knot 72) taking up 75% of the total
contour length on the right-hand side, and we load SLs in RT
arrangements on the other side. We chose to set only a short
segment close to the wall as crossable to model the presence of
a topoisomerase closely upstream of a SL-like SMC protein,
as suggested by recent experimental evidence [45,46] (note
that in this context, we view the wall in Fig. 1 as a SL itself).

With this setup, we observe that the more SLs are loaded
onto the substrate, the faster the rate of the topological simpli-
fication [see Fig. 6(a)]. The quantitative speedup is striking,
as, regardless of the topology of the knot, the rate grows ex-
ponentially with NSL [Fig. 6(b)]. An explanation of this is that
the mean length of the SL side scales linearly with the number
of SLs [Fig. 4(c)], so that the mean knotted length is 〈lK〉 =
L − 〈lSL〉 � L − kNSL. Since the probability of observing a
trivial knot on a polymer x segments long scales as P0(L) ∼
e−x/x0 [47,48], with x0 a model-specific parameter, we expect
P0(〈lK〉) ∼ e−〈lK〉/L0 ∼ eNSL/L0 . In other words, as the knot size
becomes smaller, its entropic cost increases sharply and it
becomes exponentially harder to prevent its simplification to
the unknot. (Note that this argument implicitly assumes that
simplification is slow with respect to localization.)

VI. CONCLUSIONS

In summary, in the context of a search for possible
mechanisms of topological regulation and simplification of
entanglements in DNA and other polymeric systems, here we
have investigated the interplay between the entropy of SL
networks and of knots.

In the case in which no knots are tied on the ring (the SL-
only case, Fig. 3), we provide semianalytical predictions for
the distribution of polymer lengths that compare well to MD
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FIG. 6. Kinetics of topological simplification. (a) Fraction of
10124 knots that have simplified to unknots during the course of
simulations of a polymer with N = 400 beads, starting from a sit-
uation in which 80% of the contour length is on the knotted side.
In this simulation, the 10 closest beads to the bead fixed at the
wall on the knotted side are used to allow strand-crossings to model
topoisomerase action to a slip link (SL). Loading more SLs increases
the pressure on the knot and hence the rate of unknotting. (b) For all
the knot topologies considered (71, 72, 10124), the simplification time
(the time it takes to simplify a knot to the unknot with unitary proba-
bility) shows an exponential decrease as a function of the number of
SLs. For the 10124, rates are computed by using the curves shown in
(a).

simulations. We then consider a setup in which an SL network
competes entropically with a trefoil knot, and we find that the
network can localize the knot efficiently by just relying on
its higher entropic pressure and in the absence of any motor
activity associated with the SLs (such an activity is known
to be absent in yeast cohesin [26] and cyclodextrins [36]).
We dissect the effects of the number of SLs, the topology
of the SL network, and the polymer flexibility on the knot
localization discovering that round-table (or “in series”) SL
arrangements are best suited to confining a knot. Additionally,
when the substrate is stiff, the enthalpic contribution from the
bending energy dominates and the knot swells, hampering
localization. Finally, we have also included topoisomerase
in the model, which is relevant to study topological simpli-
fication of the genomes of living cells [32] or self-healing
gels of polyrotaxanes with reversible bonds [49]. Strikingly,
we find that entropic pressure alone is sufficient to simplify
very complicated knots reliably and extremely fast, with the
simplification rate increasing exponentially with the number
of SLs.

We hope our findings may help unveil the mechanisms
of topological simplifications of DNA by means of SL-like
proteins such as SMC. Our results may also inform strategies
for regulating the topology of synthetic polymer networks, for
instance by using SLs to control the size of knots inside them,
which can in turn affect their material properties.
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APPENDIX A: EQUATIONS FOR SLs VERSUS SLs USING
DUPLANTIER SCALING FOR POLYMER NETWORKS

The number of configurations of an asymptotically long
monodisperse—i.e., where branches are equal in length—
polymer network of total length L and topology G in the dilute
regime scales as [43]

ZG (L) ∼ μLLγG−1, (A1)

where

γG − 1 = −νdL +
∑
M�1

nMσM (A2)

is a topology-dependent exponent: d is the dimension, L is the
number of loops, nM is the number of vertices of multiplicity
(i.e., the number of branches connected to the vertex), and M
and σM are the star polymer exponents.

If the network is grafted to a surface, Eq. (A1) changes
to [43]

ZS
G (L) ∼ μLLγ S

G−1, (A3)

where

γ S
G − 1 = −ν(dL + VS − 1 + LS ) +

∑
M�1

(
nMσM + nS

Mσ S
M

)
.

(A4)

nS
M is the number of surface vertices (those grafted to the

surface) of multiplicity M, VS = ∑
M�1 nS

M is the number of
surface vertices, LS = ∑

M�1 MnS
M is the number of branches

connected to the surface, and σ S
M are the surface star polymer

exponents.

1. Surface loop and surface round-table exponents

Let us call surface loop O a simple loop with a single
vertex grafted to a surface. A surface loop and the “surface”
round table (RT) and necklace (with two slip-links only, NC)
topologies we considered in our simulations (see Fig. 3) have
only one surface vertex of multiplicity 2: VS = 1 and LS = 2.
According to Duplantier [43],

σ S
2 = 2ν − 1, (A5)

hence

γ S
O − 1 = −dν − 1 (A6)

and

γ S
RT,NSL

− 1 = γRT,NSL − 2 = −dν(NSL + 1) + σ4NSL − 1,

(A7)
where NSL is the number of slip-links,

γ S
NC,2 = γ S

RT,2. (A8)

2. Surface round-table and necklace scaling
with the lengths of the loops

Analogously to what was predicted for the RT networks
without a surface [16], we assume that the partition function
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FIG. 7. Transition from unimodal to bimodal shape in the dis-
tribution of lengths of two slip-links competing with each other as
predicted by Eq. (B1). The black solid lines are the positions of
the stable points in the length distribution of one side of a polymer
loop loaded with two competing slip-links. Dashed lines represent
the unstable points.

of the surface RT networks with NSL slip-links scales as

ZRT,NSL (L) ∼

∼ μLA(s1, . . . , sNSL, L)

(
L −

NSL∑
i=1

si

)γ S
RT,NSL

−1

X
(

s1

L − ∑NSL
i=1 si

, . . . ,
sNSL

L − ∑NSL
i=1 si

)
, (A9)

where with si we indicate the lengths of the loops subtended
by the slip-links (slip-linked loops), and A(s1, . . . , sNSL , L)
accounts for the sliding entropy of the slip-links.

Round table

We now suppose the peripheral slip-linked loops are much
smaller than the internal loop, as we see in our simulations.
They contribute equally to Eq. (A9):

ZRT,NSL (L) ∼

∼ μLA(s1, . . . , sNSL, L)

(
L −

NSL∑
i=1

si

)γ S
RT,NSL

−1

×
NSL∏
i=1

(
si

L − ∑NSL
j=1 s j

)α

. (A10)

Furthermore, on the basis of this assumption, we require the
scaling contribution of the largest loop to be that of a surface
loop (without considering the sliding entropy; see [16] for the
case without surface). This sets α to

α = γ S
RT,NSL

− 1

NSL
− −dν − 1

NSL
= −dν + σ4, (A11)

which is the same loop closure factor for the RT topologies
without a surface. Finally,

ZRT,NSL (L) ∼

μLA(s1, . . . , sNSL, L)

(
L −

NSL∑
i=1

si

)−dν−1 NSL∏
i=1

s−dν+σ4
i . (A12)

3. Surface necklace with two SLs

In the case of the necklace topology with two slip-links, we
write

ZNC,2(L) ∼
∼ μLB(s1, s2, L)(L − s1 − s2)γ

S
NC,2−1

×
( s1

L − s1 − s2

)α1
( s2

L − s1 − s2

)α2

, (A13)

where we labeled as 1 the slip-linked loop grafted to the
wall, and where B(s1, s2, L) accounts for the sliding entropy.
This time, we cannot state α1 = α2 a priori. However, if we
require the scaling contribution of the internal loop (which
we assume to be the largest) to be that of a surface loop, and
the contribution of the sliding slip-linked loop to be the usual
closure factor [Eq. (A11)], the final result is

ZNC,2(L) ∼ μLB(s1, s2, L)(L − s1 − s2)−dν−1s−dν+σ4
1 s−dν+σ4

2 .

(A14)

Notice that the consistency of Eqs. (A12) and (A14) with
the hypothesis of the peripheral loops being small depends on
the form of the sliding entropy terms A and B. For the surface
necklace, this might be a point of discussion; nonetheless,
Eq. (A14) represents our simulated data reasonably well [see
Fig. 2(b) in the main text].

APPENDIX B: SCALING BEHAVIORS
FOR COMPETING SLs

In this Appendix, we list the formulas characterizing the
scaling of the number of configurations of our system for
different topologies.

The number of configurations of two slip-links competing
with each other [Fig. 3(a)] scales as

μL
∫ l−sm

2 −sm
3

sm
1

ds1
(
l − sm

2 − sm
3

) s−3ν+σ4
1

(l − s1)3ν+1

∫ L−l−sm
2 −sm

3

sm
1

ds1
(
L − l − sm

2 − sm
3

) s−3ν+σ4
1

(L − l − s1)3ν+1
, (B1)

where the coefficients sm
i account for the physical size of

the slip-links: they are the minimum size of the segments of
the slip-linked polymer; L and l are, respectively, the total
length and the length of one side of the polymer. Note that
the integrals account for the sliding entropy of the slip-links.

Figure 7 predicts the unimodal to bimodal transition seen
in the histograms of Fig. 3(a); it is obtained numerically from
Eq. (B1).

The number of configurations of two consecutive slip-
links competing with two consecutive slip-links [Fig. 3(c)]
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scales as

μL
∫ l−sm

2 −sm
3 −sm

4 −sm
5

sm
1

ds1

×
∫ l−s1−sm

3 −sm
4 −sm

5

sm
2

ds2
(
l − s1 − s2 − sm

3 − sm
4 − sm

5

)2 s−3ν+σ4
1 s−3ν+σ4

2

(l − s1 − s2)3ν+1

×
∫ L−l−sm

2 −sm
3 −sm

4 −sm
5

sm
1

ds1

∫ L−l−s1−sm
3 −sm

4 −sm
5

sm
2

ds2
(
L − l − s1 − s2 − sm

3 − sm
4 − sm

5

)2 s−3ν+σ4
1 s−3ν+σ4

2

(L − l − s1 − s2)3ν+1
. (B2)

Average length of the SL side

Let us call ZRT,τ (l, L, NSL) the number of configurations
of NSL SLs in the RT configuration competing with a knot of
topology τ , with given L and l , respectively, the total length
of the system and the length of the SL side. Let us simplify
the scaling of ZRT,NSL,τ (l, L) as

ZRT,τ (l, L, NSL) � Aμl
0lNSL lαμL−l

τ f (L − l, τ ), (B3)

where A is a constant amplitude, μ0 and μτ are the con-
nective constants of grafted knotted loops with topologies ø
(unknotted) and τ , α is the critical exponent (γ − 1) of the
unknotted surface loops, and f (L − l, τ ) is a function of the
topology and length of the knotted side. lNSL accounts for
the SLs, modeled as roots sliding along an unknotted loop.
If we define

FRT,τ (NSL, L) :=
∫ L

0
ZRT,τ (l, L, NSL)dl, (B4)

then, if μ0 �= μτ , by integrating by part and imposing the
boundary conditions,

FRT,τ (NSL + 1, L) � 1

a
(NSL + α + 1)FRT,τ (NSL, L)

+ AμL
τ

a
GRT,τ (L, NSL), (B5)

where

GRT,τ (L, NSL) =
∫ L

0
e−al lNSL+α+1 ∂

∂l
f (L − l, τ )dl (B6)

and a = ln μτ

μ0
. Finally,

〈l〉RT,τ (NSL, L) = FRT,τ (NSL + 1, L)

FRT,τ (NSL, L)

= 1

a
(NSL + α + 1) + AμL

τ

a

GRT,τ (L, NSL)

FRT,τ (NSL, L)
. (B7)

Note that in the integration we have neglected the physical
size of the SLs and the minimum number of monomers re-
quired to tie a knot of topology τ .

For loops and links (not grafted) on the cubic lattice, it
has been proven that μ0 � μτ [50–52]. It should be noted,
however, that there is numerical evidence that μ0 and μτ for
these systems coincide to the second decimal place [50–52].
The calculations of this section can be extended to the case
of two SLs in the NC configuration by replacing the sliding
entropy factor lNSL = l2 with lNSL−1 = l .
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