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Strong Fulde-Ferrell Larkin-Ovchinnikov pairing fluctuations in polarized Fermi systems
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We calculate the pair susceptibility of an attractive spin-polarized Fermi gas in the normal phase, as a function
of the pair momentum. Close to unitarity, we find a strong enhancement of Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) pairing fluctuations over an extended region of the temperature-polarization phase diagram, which
manifests itself as a pronounced peak in the pair-momentum distribution at a finite pair momentum. This peak
should be amenable to experimental observation at achievable temperatures in a boxlike trapping potential, as a
fingerprint of FFLO pairing. Our calculations rest on a self-consistent t-matrix approach which, for the unitary
balanced Fermi gas, has been validated against experimental data for several thermodynamic quantities.
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I. INTRODUCTION

One of the main motivations that some time ago [1,2]
initiated a vibrant experimental and theoretical research ac-
tivity on ultracold polarized attractive Fermi gases [3], was
the search for exotic superfluid phases, like the FFLO phase
predicted many years before by Fulde and Ferrell [4] and
Larkin and Ovchinnikov [5] for superconductors in a strong
magnetic field. This phase is characterized by pairing at finite
center-of-mass momentum of the pairs, with spatially depen-
dent gap parameter �(r) = �Q0 eiQ0·r for the Fulde-Ferrell
(FF) and �(r) = �Q0 cos(Q0 · r) for the Larkin-Ovchinnikov
(LO) solutions. However, despite many efforts in ultracold
gases, some (indirect) evidence for the FFLO phase was
obtained so far in one dimension only [6]. In the mean-
time, substantial progress in the quest for the FFLO phase
was made in condensed-matter systems, producing solid ev-
idence of a FFLO phase in quasi-two-dimensional organic
superconductors [7–9], as well as quite robust evidence in
the iron-based multiband superconductor KFe2As2 [10]. In
addition, mounting evidence is emerging in cuprate super-
conductors [11–14] about the presence of “pair-density-wave”
ordering (corresponding to an LO solution in the absence of a
magnetic field), which competes with d-wave superconduc-
tivity and possibly explains the pseudogap phase observed
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in these systems as associated with strong pair-density-wave
fluctuations [14].

In the present work, we consider the normal (i.e., not su-
perfluid) phase of a polarized Fermi gas, and search for the
presence of FFLO pair fluctuations by calculating the pair
susceptibility vs pair momentum Q. Close to unitarity [15],
we find that the pair susceptibility is considerably enhanced at
a finite value Q0 of Q(= |Q|) over an extended region of the
temperature-polarization phase diagram, such that it should
be possible to observe this strong tendency towards FFLO
ordering at experimentally achievable temperatures (say, a
few percent of the Fermi temperature) in the normal phase.
To this end, we suggest that the projection technique intro-
duced some time ago to detect pair condensation in a strongly
interacting Fermi gas [16,17] could as well be used here to
measure a “projected” pair-momentum distribution, whereby
the occurrence of a pronounced peak at the same Q0 of the
pair susceptibility would provide unambiguous evidence for
strong FFLO pair fluctuations. We explicitly calculate this
projected pair-momentum distribution, and conclude that its
peak at a finite Q0 should most readily be observed with a
boxlike trapping potential [18–21].

The paper is organized as follows. Section II sets up
the temperature pair-pair response function, from which
the pair susceptibility of interest is obtained in the static
limit. Section III implements the calculation of this quantity
within the self-consistent t-matrix approach for a polar-
ized Fermi gas, and Sec. IV presents the corresponding
numerical results that reveal enhanced FFLO fluctuations.
Section V further suggests to test the presence of enhanced
FFLO fluctuations through the more experimentally acces-
sible “projected” pair-momentum distribution. Section VI
gives our conclusions. Appendix A defines in detail the
pair susceptibility, while Appendix B shows that within
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the fully self-consistent t-matrix approach there is no need
to introduce additional diagrammatic contributions for the
calculation of the pair susceptibility (as well as of the pro-
jected pair-momentum distribution). Finally, Appendix C
discusses in detail the projected pair-momentum distribution
and shows its calculation for harmonic and boxlike trapping
potentials.

II. PAIR SUSCEPTIBILITY

We consider a system of spin- 1
2 fermions of mass m mutu-

ally interacting through a contact interaction, as described by
the Hamiltonian (throughout, the reduced Planck constant h̄
and the Boltzmann constant kB are set equal to unity):

Ĥ =
∑

σ

∫
dr ψ̂†

σ (r)

(
−∇2

2m

)
ψ̂σ (r)

+ v0

∫
dr ψ̂

†
↑(r)ψ̂†

↓(r)ψ̂↓(r)ψ̂↑(r), (1)

where ψ̂σ (r) is a field operator with spin projection σ =
(↑,↓) and v0 the bare interaction strength (with v0 → 0−
when the contact interaction is regularized in terms of the
two-fermion scattering length aF [22]). Our aim is to calculate
the pair susceptibility χpair (Q), that describes the tendency of
the normal Fermi gas towards superfluid ordering with pair
center-of-mass momentum Q. This quantity can be obtained
as χpair (Q) = D(Q,�ν = 0) (cf. Appendix A), where

D(Q,�ν ) =
∫ 1/T

0
d (τ − τ ′)ei�ν (τ−τ ′ )

∫
d (r − r′)e−iQ·(r−r′ )

×D(r − r′, τ − τ ′) (2)

is the Fourier transform of the response function [23,24]

D(r − r′, τ − τ ′) = 〈Tτ [�̂(rτ )�̂†(r′τ ′)]〉 (3)

at the Matsubara frequency �ν = 2πνT (ν integer). Here,
〈· · · 〉 is a grand-canonical thermal average at temperature T ,
�̂(rτ ) ≡ eτ K̂�̂(r)e−τ K̂ the gap operator at imaginary time
τ with �̂(r) = v0ψ̂↑(r)ψ̂↓(r), and K̂ = Ĥ − ∑

σ μσ N̂σ (μσ

and N̂σ being the chemical potential and the number operator
for spin species σ , respectively).

III. SELF-CONSISTENT t-MATRIX APPROACH
FOR A POLARIZED FERMI GAS

The simplest physically meaningful approximation for
D(Q,�ν ) results by summing the series of ladder diagrams,
yielding D(Q,�ν ) = 
0(Q,�ν ) [24]. Here,


0(Q,�ν )

= −
{

m

4πaF
+

∫
dk

(2π )3

[
T

∑
n

G0
↑(k, ωn)

× G0
↓(Q − k,�ν − ωn) − m

k2

]}−1

(4)

is the bare pair propagator, where G0
σ (k, ωn) = (iωn −

k2/2m + μσ )−1 is the bare single-particle propagator with
fermionic Matsubara frequency ωn = π (2n + 1)T (n integer).

Within this approximation, the pair susceptibility χpair (Q) is
then identified with 
0(Q,�ν = 0), such that


0(Q,�ν = 0)−1 = 0 (5)

would correspond to a diverging χpair (Q). For Q = 0, the
condition (5) coincides with the standard BCS mean-field
equation for the superfluid critical temperature Tc (general-
ized here to the spin-imbalanced case), while for Q 
= 0, it
corresponds to the FFLO mean-field equation for Tc obtained
by setting �(Q) → 0 in the corresponding gap equation [cf.,
e.g., Eq. (51) of Ref. [25]].

To obtain meaningful results for Tc across the whole BCS-
BEC crossover, the chemical potentials entering 
0 need to
take into account the effects of pairing fluctuations in the
normal phase [26] (in the balanced case, a single chemical
potential μ↑ = μ↓ = μ survives). This is achieved by invert-
ing the density equations nσ = ∫

dk
(2π )3 T

∑
n Gσ (k, ωn)eiωn0+

in favor of the chemical potentials, where Gσ is the single-
particle propagator dressed by the t-matrix self-energy �σ ,
which is in turn constructed by convoluting the ladder series

0 with a bare G0

σ̄ [27] (σ̄ standing for the opposite of σ ).
Comparison with experimental data or quantum Monte

Carlo (QMC) results for several thermodynamic quantities
in the balanced case [28–33], as well as with recent QMC
calculations for the polarized case [34], shows, however, that
a more reliable diagrammatic approximation is obtained by
using a fully self-consistent t-matrix self-energy [35–37]

�σ (k, ωn)

= −
∫

dQ
(2π )3

T
∑

ν


(Q,�ν )Gσ̄ (Q− k,�ν − ωn), (6)

where 
(Q,�ν ) is defined by replacing G0
σ → Gσ on the

right-hand side of Eq. (4). By this approach, the pair suscepti-
bility of interest is correspondingly given by

χpair (Q) = 
(Q,�ν = 0), (7)

which retains two-particle diagrams consistent with the fully
self-consistent t-matrix self-energy (6) (cf. Appendix B). Our
calculations of the pair susceptibility will be based on Eq. (7)
and on the self-consistent solution of Eq. (6).

IV. NUMERICAL RESULTS

In the following, it will be useful to introduce the (effec-
tive) Fermi wave vector kF ≡ (3π2n)1/3 defined in terms of
the total density n = n↑ + n↓. The dimensionless coupling
(kFaF)−1 then drives the crossover from the BCS and BEC
regimes, which correspond to (kFaF)−1 � −1 and (kFaF)−1 �
+1, respectively, while the crossover region in between spans
across the unitarity limit (kFaF)−1 = 0. A dimensionless pair
susceptibility is then defined as χpair (Q)mkF.

Figure 1 reports our results for χpair (Q)mkF for two cou-
pling values in the crossover region, namely, unitarity (left
panels) and (kFaF)−1 = −0.5 (right panels). For each cou-
pling, two different polarizations are also considered. From
these results one sees that the pair susceptibility gets strongly
enhanced about a finite momentum Q0 as the temperature
is progressively lowered, thereby signaling the presence of
strong FFLO fluctuations in the normal phase. This peak at Q0
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FIG. 1. Pair susceptibility χpair (Q) [in units of 1/(mkF )] vs pair
momentum Q (in units of kF) at various temperatures. Left panels
refer to unitarity and polarizations (n↑ − n↓)/n = 0.40 (a) and 0.50
(c), while right panels refer to (kFaF )−1 = −0.5 and polarizations
0.25 (b) and 0.30 (d).

is rather well pronounced for temperatures T ≈ 0.05TF where
TF = k2

F/(2m), which are well within the current experimental
capabilities with ultracold Fermi gases.

To characterize location and strength of FFLO fluctuations
in the temperature-polarization phase diagram, a heat map
for the peak value of the dimensionless pair susceptibility
χpair (Q)mkF is presented in Fig. 2, for the same couplings
(kFaF)−1 = 0 (a) and −0.5 (b) considered in Fig. 1. Remark-
ably, for both couplings the region of the phase diagram
where the maximum of the pair susceptibility develops at a
finite momentum Q0 is quite sizable, reaching temperatures
as high as about 0.15TF and encompassing a wide range of
polarization. In Fig. 2, the strength of pairing fluctuations,
as quantified by the peak heights from Fig. 1, is indicated
by the color code and contour lines. Note that, in the region
where the peak of χpair (Q) occurs at Q0 = 0, the condition

(0, 0)−1 = 0 corresponding to a diverging χpair (0) can be
exactly satisfied (green line). This curve yields the transition
temperature Tc to a uniform polarized superfluid with pairing
at Q0 = 0 until it becomes reentrant. The reentrant part of the
curve (green dashed line) is instead expected to be superseded
by phase separation or by a FFLO superfluid phase [39].

When Q0 
= 0, on the other hand, the feedback of a diverg-
ing χpair (Q0) on Eq. (6) would yield a diverging self-energy
at finite temperatures for all frequencies and momenta (see

FIG. 2. Heat map for the peak value of the dimensionless pair
susceptibility χpair (Q)mkF in the temperature-polarization phase di-
agram, for couplings (kFaF )−1 = 0 (a) and −0.5 (b). Contour lines
for χpair (Q0)mkF are also shown. The red curve delimits the re-
gion where the peak of χpair (Q) occurs at Q0 
= 0, while the green
line corresponds to 
(0, 0)−1 = 0. Also reported in panel (a) are
the experimental data [38] for various phase transitions: uniform
normal–uniform superfluid (circles), uniform superfluid–phase sepa-
rated (triangles), and phase separated–uniform normal (squares).

Refs. [40–44] and [25] for a discussion of a similar phe-
nomenon in related approaches). Accordingly, within the
present approach the condition 
(Q0, 0)−1 = 0 (correspond-
ing to a second-order phase transition to the FFLO phase)
can be exactly satisfied only at T = 0. Recall, however, that,
in the superfluid phase, FFLO fluctuations would turn FFLO
ordering from long range into algebraic [45], in such a way
that determining the transition line by diagrammatic methods
would be an extremely difficult task (like for the Berezinskii-
Kosterlitz-Thouless transition in a 2D superfluid Fermi gas).
Nevertheless, this remark does not hinder our investigation,
which focuses rather on the effects of the FFLO fluctuations
in the normal phase than on the precise determination of the
second-order transition line. In this respect, the experimen-
tal results for the unitary Fermi gas [symbols in Fig. 2(a)]
indicate that at low temperature the transition between nor-
mal and superfluid phases becomes actually of first order
(with a phase separation between a balanced superfluid and
a normal polarized gas). Our calculations show that strong
FFLO pairing fluctuations are expected to occur immediately
at the right of this phase separation region found in the
experiments.

Figure 3 complements the results of Fig. 2, by reporting
for the same couplings the peak momentum Q0 as a function
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FIG. 3. Peak momentum Q0 (in units of kF) occurring in the pair
susceptibility χpair (Q) as a function of temperature T (in units of
TF), for the coupling values (kFaF)−1 = 0 (a) and −0.5 (b) and a
set of polarizations (n↑ − n↓)/n. For the same couplings, the insets
compare the dependence of Q0 on the polarization at the temperature
T = 0.02TF (full lines) against the function 1.2|kF↑ − kF↓|/kF (bro-
ken lines).

of temperature for a set of polarizations. Here, Q0 is seen
to acquire a finite value in a continuous way when entering
the FFLO fluctuation region and to further increase as the
temperature decreases (except for a slight decrease at the
lowest temperatures). Recall in this context that the mean-field
solution for the FF phase suggests that at low T (where sharp
Fermi surfaces develop) Q0 should scale with the mismatch
kF↑ − kF↓ between the corresponding Fermi wave vectors.
This expectation is confirmed by the comparison shown in
the insets of Fig. 3, between the polarization dependencies
of Q0 (obtained at the low temperature T = 0.02TF) and the
weak-coupling mean-field result 1.2(kF↑ − kF↓) for Q0 at the
T = 0 superfluid-normal transition [46].

V. PROPOSED EXPERIMENTAL TEST

One expects the pair susceptibility χpair (Q) to hardly
be measured in a direct way. Pragmatically, we then con-
sider a related quantity of more direct access to experiments
with ultracold gases, namely, the “projected” pair-momentum
distribution nproj

pair (Q). This quantity corresponds to the mo-
mentum distribution of the molecules formed after a rapid
sweep of the magnetic field to the BEC side of the crossover.
Measurements of the projected pair-momentum distribution
have already been successfully applied to detect condensation

FIG. 4. Projected pair-momentum distribution nproj
pair (Q) as a func-

tion of the pair momentum Q (in units of kF) for different
temperatures. The left panels show results at unitarity for polariza-
tions (n↑ − n↓)/n = 0.40 (a) and 0.50 (c), while the right panels
correspond to (kFaF )−1 = −0.5 and polarizations 0.25 (b) and 0.30
(d).

(or quasicondensation) of fermionic pairs across the BCS-
BEC crossover, both in three [16,17,21,47] and two [48]
dimensions, and were also proposed some time ago to detect
FFLO superfluidity in trapped Fermi gases [49]. On physical
grounds, we expect that, even in the normal phase, strong
FFLO pairing fluctuations should result into a peak of nproj

pair (Q)
at the same finite Q0 found for χpair (Q) [50].

To confirm this expectation, we have extended to the
normal phase the theoretical approach for the projected
pair-momentum distribution introduced in Ref. [56] for the
superfluid phase, borrowing also from the formalism recently
used in Ref. [57] to address pair correlations in the normal
phase of an attractive Fermi gas (cf. Appendix C). The re-
sults for nproj

pair (Q) are reported in Fig. 4 and show that, in the
strong FFLO pairing-fluctuation region, a pronounced peak
develops in nproj

pair (Q) at a finite momentum which matches
the corresponding peak momentum Q0 found in Fig. 1 for
χpair (Q). Focusing on unitarity, one sees that for polarization
(n↑ − n↓)/n = 0.40 the peak of nproj

pair (Q) is quite prominent,
over and above an underlying background, at T = 0.01TF

and remains visible up to T ≈ 0.05TF, which is well within
the range of temperatures currently attainable with ultracold
gases [58]. For the polarization (n↑ − n↓)/n = 0.50, the peak
is instead less prominent, on the borderline of experimental
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observability. For the unitary Fermi gas, we thus identify the
region from polarization (n↑ − n↓)/n = 0.50 down to polar-
ization ≈0.35 (below which phase separation is known to
occur), as the region where FFLO pairing fluctuation should
be sufficiently strong to be detected with projected pair-
momentum distribution experiments.

The results of Fig. 4 are for a uniform system and thus
correspond to an idealization of a Fermi gas trapped in a
boxlike potential. We have performed calculations also for
a realistic boxlike potential as the one used in Ref. [18],
confirming the observability of the predicted peak even in this
case. For a gas trapped in a harmonic potential, on the other
hand, we have verified that it would be hard to detect a peak
of nproj

pair (Q) at a finite Q0, due to the smearing produced by the
trap average. Results and details of our calculations for the
harmonic and realistic boxlike trapping potentials are reported
in Appendix C.

VI. CONCLUSIONS

We have uncovered the presence of strong FFLO fluc-
tuations in the normal phase of a polarized Fermi gas,
which could experimentally be observable even in a three-
dimensional unitary Fermi gas of most interest for the current
research in the field. These fluctuations are precursors of a
FFLO superfluid phase, which is competing with the phase
separation observed so far in experiments [1,38,59]. The
outcome of this competition in the T → 0 limit cannot be
established from the experimental data, since phase separation
could eventually either give way to a FFLO superfluid phase
or continue to suppress it entirely. Nevertheless, irrespective
of which one of these two scenarios would actually take place,
our investigation has shown that the effects of an underlying
FFLO superfluid phase are clearly visible, and should accord-
ingly be sought for, in the normal phase.
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APPENDIX A: PAIR SUSCEPTIBILITY

We consider a system of spin- 1
2 fermions of mass m mutu-

ally interacting through a contact interaction, as described by
the Hamiltonian (with the reduced Planck constant h̄ and the
Boltzmann constant kB set equal to unity):

Ĥ =
∑

σ

∫
dr ψ̂†

σ (r)

(
−∇2

2m

)
ψ̂σ (r)

+ v0

∫
dr ψ̂

†
↑(r)ψ̂†

↓(r)ψ̂↓(r)ψ̂↑(r). (A1)

Here, ψ̂σ (r) is a field operator with spin projection σ =
(↑,↓) and v0 is the bare interaction strength (v0 → 0− when
the contact interaction is regularized in terms of two-fermion
scattering length aF [22]).

To quantify the tendency of the normal Fermi gas towards
superfluid ordering with pair center-of-mass momentum Q,
we consider an associated pair susceptibility χpair (Q) defined

in the following way. We add to the Hamiltonian (A1) the
symmetry-breaking term

Ĥext = −
∫

dr η(r) ϕ̂(r), (A2)

where

ϕ̂(r) =
(

�̂(r) + �̂†(r)√
2

)
(A3)

and η(r) is a classical (real) field coupled to the gap opera-
tor �̂(r) = v0ψ̂↑(r)ψ̂↓(r) and its Hermitian conjugate �̂†(r).
Within linear-response theory, the pair susceptibility χpair (Q)
is then obtained as the Fourier transform

χpair (Q) =
∫

d (r − r′)e−iQ·(r−r′ )χpair (r − r′) (A4)

of the local functional derivative

χpair (r − r′) = δ〈ϕ̂(r)〉η
δη(r′)

∣∣∣∣
η=0

. (A5)

Here, 〈Â〉η = Tr{e−βK̂Â}
Tr{e−βK̂ } stands for the grand-canonical ther-

mal average of a generic operator Â, with the grand-
canonical Hamiltonian K̂ = Ĥ + Ĥext − ∑

σ μσ N̂σ contain-
ing the symmetry-breaking term (A2), and β = 1/T is the
inverse temperature.

When η(r) is kept finite (albeit small), the expression (A5)
implies that a weak probing field of the form η(r) =
η cos(Q0 · r) induces in the normal phase a gap parameter
�Q0(r) proportional to χpair (Q0) η cos(Q0 · r), thus signaling
that χpair (Q) quantifies the tendency towards FFLO pairing
[with rotational invariance implying that χpair (Q) is a function
of Q = |Q|]. Accordingly, when χpair (Q) is found to diverge at
a finite momentum Q0, a continuous transition develops from
the normal phase to a FFLO phase with pair momentum Q0.
[Recall in this respect that when the gap parameter �Q0(r) →
0 from the superfluid phase with η = 0, as expected for a
continuous phase transition, the FF and LO solutions become
degenerate, such that the transition point is the same for the
two phases [5].] More generally, evidence that χpair (Q) be-
comes strongly peaked about a finite value Q0 of Q can be
considered as indicating the presence of strong FFLO pairing
fluctuations in the normal phase.

The pair susceptibility (A5) can be related to an appropriate
temperature response function. This is achieved by calculating
the functional derivative in Eq. (A5) as

δ〈ϕ̂(r)〉η
δη(r′)

=
Tr

{
δe−βK̂

δη(r′ ) ϕ̂(r)
}

Tr{e−βK̂} − Tr{e−βK̂ ϕ̂(r)}
Tr{e−βK̂}

Tr
{

δe−βK̂

δη(r′ )

}
Tr{e−βK̂}

(A6)

with η still kept finite, and using the following operator iden-
tity

e(Â+δÂ)s = eÂs

[
1 +

∫ s

0
ds′ e−Âs′

δÂ e−Âs′ + · · ·
]

(A7)
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to linear order in δÂ. In our case, Â ↔ −K̂ and s ↔ β, such
that in Eq. (A6)

δe−βK̂

δη(r′)
= e−βK̂

∫ β

0
dτ ′eτ ′K̂ ϕ̂(r′)e−τ ′K̂ . (A8)

With the definition ϕ̂(r, τ ) = eτ K̂ ϕ̂(r)e−τ K̂ , Eq. (A6) becomes
eventually

δ〈ϕ̂(r)〉η
δη(r′)

=
∫ β

0
dτ ′ 〈ϕ̂(r′, τ ′)ϕ̂(r)〉η − β 〈ϕ̂(r)〉η 〈ϕ̂(r′)〉η.

(A9)
In the normal phase of interest 〈ϕ̂(r)〉η→0 = 0, such that
within linear response the local pair susceptibility (A5) can
be expressed in terms of the temperature response function

Dϕ (rτ, r′τ ′) = 〈Tτ [ϕ̂(rτ ) ϕ̂(r′τ ′)]〉η=0, (A10)

where Tτ is the imaginary-time operator [60]. One obtains

χpair (r − r′) =
∫ β

0
d (τ − τ ′)Dϕ (r − r′, τ − τ ′)

=
∫ β

0
d (τ − τ ′)D(r − r′, τ − τ ′)

= D(r − r′,�ν = 0), (A11)

where D(r − r′, τ − τ ′) is the function defined in Eq. (3)
of the main text and �ν = 2πν/β (ν integer) is a bosonic
Matsubara frequency [60]. To get Eq. (A11), homogeneity
and isotropy in space and homogeneity in imaginary time
have been exploited. In Fourier space, one further obtains that
χpair (Q) = D(Q,�ν = 0).

APPENDIX B: CONNECTION WITH MANY-BODY
DIAGRAMMATIC THEORY

The theoretical approach we are adopting requires us to
implement the calculation of D(Q,�ν = 0) in diagrammatic
terms. In this context, the simplest physically meaningful
approximation results by summing the series of ladder dia-
grams in the particle-particle channel, where all rungs contain
bare single-particle propagators. Through a careful handling
of the v0 → 0 limit [where the interaction strength v0 en-
ters the definition of the gap operator �̂(r)], one can show
that D(Q,�ν ) = 
0(Q,�ν ) with the bare pair propagator 
0

given by Eq. (4) of the main text (cf. also Ref. [24]).
One knows, however, that an improved description of

thermodynamic properties of a Fermi gas with attractive in-
teraction results (at least in the balanced case) within the fully
self-consistent t-matrix approximation [37], where the bare 
0

is replaced in the single-particle self-energy � by the dressed

 which contains the fully self-consistent single-particle prop-
agators G in the place of the bare G0. It is then natural to
replace 
0 with 
 also in the expression of χpair (Q), as was
done in Eq. (7) of the main text.

In this context, the question naturally arises about the
need to introduce additional diagrammatic contributions to the
temperature response function (A10) once the single-particle
self-energy � is taken within the fully self-consistent t-matrix
approximation. Specifically, we are referring to contributions

with the topology of the Aslamazov-Larkin (AL) and Maki-
Thompson (MT) diagrams, which, at the level of the fully
self-consistent t-matrix approximation for the single-particle
self-energy here adopted, would influence the (two-particle)
response functions through the particle-hole channel. For the
temperature response function (A10) of interest here, this
would be the case if it were calculated in the superfluid phase
below the critical temperature Tc, where there is no clear
distinction between particle-hole and particle-particle chan-
nels due to the particle-hole mixing characteristic of the BCS
(pairing) theory. However, since we are limiting ourselves to
the normal phase above Tc, we can readily adapt to the present
context the argument described in Appendix A of Ref. [57],
and show that above Tc the AL and MT contributions can-
not affect the temperature response function (A10) due to
its explicit spin structure and its ultimate particle-particle
character.

APPENDIX C: PROJECTED PAIR-MOMENTUM
DISTRIBUTION

We set up the formalism for the calculation of the “pro-
jected” pair-momentum distribution within the self-consistent
t-matrix approach, and implement it numerically for a homo-
geneous system as well as in the presence of harmonic and
boxlike trapping potentials.

1. Formalism and calculations for a homogeneous system

The projected pair-momentum distribution can be ob-
tained as follows in terms of the composite-boson propagator
GB(Q,�ν ) [56,61]:

nproj
pair (Q) = −T

∑
ν

GB(Q,�ν )ei�ν0+
. (C1)

Within the self-consistent t-matrix approach, GB(Q,�ν ) is, in
turn, given by [57]

GB(Q,�ν ) = −F2(Q,�ν ) − F1(Q,�ν )2 
(Q,�ν ), (C2)

where F j (Q,�ν ) ( j = 1, 2) are “form factors” defined as

F j (Q,�ν ) =
∫

dp
(2π )3

φproj(p + Q/2) j

× T
∑

n

G↑(p + Q, ωn + �ν )G↓(−p,−ωn).

(C3)

Here, φproj(p) is the molecular wave function onto which the
initial correlated pairs are projected during a magnetic sweep,
while Gσ (p, ωn) and 
(Q,�ν ) are the self-consistent single-
particle Green’s functions and the particle-particle (ladder)
propagator defined in the main text.

The analysis of Ref. [56] for projection experiments es-
tablished that projection onto molecules occurs at a coupling
(kFaF)−1

proj on the BEC side of the crossover, in order to opti-
mize the overlap between the initial pair correlations and the
molecular wave function. The specific value of the projection
coupling (kFaF)−1

proj depends on the experimental conditions
of the magnetic sweep, and it was estimated to be gener-
ally in the range 0.5 � (kFaF)−1

proj � 1.5 [56]. Accordingly,
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for the calculation of nproj
pair (Q) shown in Fig. 4 of the main

text we have considered a projection coupling (kFaF)−1
proj =

1 in the middle of the above range. In addition, following
again the procedure of Ref. [56], we have taken the molecular
wave function φproj(p) as the normalized two-body bound-
state wave function in vacuum at the projection coupling
(kFaF)−1

proj:

φproj(p) = k−3/2
F

√
8π (kFaF)−1

proj

(p/kF)2 + (kFaF)−2
proj

. (C4)

We have further verified that nproj
pair (Q) depends only weakly

on the projection coupling (kFaF)−1
proj. This is evident by com-

paring the results for nproj
pair (Q) shown in the three panels in

Fig. 5, which correspond to different values of the projection
coupling spanning the whole above range.

2. Calculations for a harmonic trapping potential

We next consider a trapped Fermi gas in a harmonic
potential, which can be described by a local-density ap-
proximation. Accordingly, wherever they appear, we re-
place the chemical potentials μσ of the two σ = (↑,↓)
components by the local chemical potentials μσ (r) = μ0σ −
V (r), where V (r) = mω2

0r2/2 is the harmonic trapping
potential with frequency ω0. By this replacement, the
single-particle propagators Gσ (k, ωn; r) and the composite-
boson propagator GB(Q,�n; r) become local functions of
the position r in the trap through the local chemical
potentials μσ (r).

For given particle numbers Nσ , the thermodynamic chem-
ical potentials μ0σ (which correspond to the local chemical
potentials at the trap center) are then obtained by inverting the
number equations

Nσ =
∫

dr
∫

dk
(2π )3

T
∑

n

Gσ (k, ωn; r)eiωn0+
; (C5)

while the total projected pair-momentum distribution Nproj
pair (Q)

is obtained in the trap by summing the local projected pair-
momentum distribution nproj

pair (Q; r) over r

Nproj
pair (Q) =

∫
dr nproj

pair (Q; r), (C6)

where

nproj
pair (Q; r) = − T

∑
ν

GB(Q,�ν ; r)ei�ν0+
. (C7)

To obtain an intensive quantity, one can then divide the to-
tal projected pair-momentum distribution of Eq. (C6) by the
volume N/(kt

F)3, where kt
F = √

2mEt
F is the (effective) trap

wave vector and Et
F = ω0(3N )1/3 is the (effective) trap Fermi

energy, and obtain the projected pair-momentum distribution

FIG. 5. Projected pair-momentum distribution npair
proj(Q) vs pair

momentum Q (in units of kF) at different temperatures (in units of
TF), for (kFaF )−1 = −0.5 and (n↑ − n↓)/n = 0.25. The panels cor-
respond to different values of the projection coupling (kFaF)−1

proj : 0.5
(a), 1.0 (b), and 1.5 (c).

in the harmonic trap:

npair,h
proj (Q) =

(
kt

F

)3

N
Nproj

pair (Q). (C8)

Figure 6 shows the results of npair,h
proj (Q) obtained for a har-

monic trap at unitarity and different temperatures, with global
polarization (N↑ − N↓)/N = 0.85 where N = N↑ + N↓. This
value corresponds to a local polarization (n↑ − n↓)/n � 0.40
at the trap center, which matches the value of the polarization
considered in Fig. 4(a) of the main text. Here, the coupling
parameter (kt

FaF)−1 and the pair momentum Q are expressed
in terms of the (effective) trap Fermi wave vector kt

F, and the
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FIG. 6. Projected pair-momentum distribution in a harmonic trap
npair,h

proj (Q) vs pair momentum Q (in units of kt
F) at unitarity and

different temperatures, for a global polarization (N↑ − N↓)/N = 0.85
[which corresponds to a local polarization (n↑ − n↓)/n � 0.40 at the
trap center].

temperature T is expressed in terms of the (effective) trap
Fermi temperature T t

F = Et
F.

By comparing the results of Fig. 6 for the trapped system
with the corresponding results shown in Fig. 4(a) in the main
text for the uniform system, one is led to conclude that the
effect of the harmonic trap is to strongly smear the peak at
finite Q which was clearly visible for the uniform system,
making it hard to be detected experimentally. This smearing
can be justified by extending to the trap the results reported
in the inset of Fig. 3(b) of the main text, whereby the local
value of the pair momentum Q0(r) at which nproj

pair (Q; r) is
peaked is bound to scale with |kF↑(r) − kF↓(r)|, which in turn
varies along the trap since both local densities and polarization
change with r. The net effect is that Eq. (C6) effectively aver-
ages over locally projected pair-momentum distributions with
different peak momenta Q0(r), thus smearing out the resulting
peak in the projected pair-momentum distribution npair,h

proj (Q)
for the harmonic trap with respect to the corresponding peak
that would be present for the uniform case.

3. Calculation for a realistic boxlike trapping potential

It is relevant to calculate the projected pair-momentum
distribution within a local-density approximation for a real-
istic boxlike trapping potential. To this end, we consider the
same kind of cylinder-shaped potential utilized in Ref. [18].
The trapping potential in cylindrical coordinates is given by
V (ρ, z)/EF(0) = (ρ/R)p + αz(z/L)2 [in units of the (effec-
tive) Fermi energy EF(0) = [3π2n(0)]2/3/(2m), where n(0)
is the total density at the trap center]. Here, V (ρ, z) is the
sum of a radial power-law potential (∼ρ p), which describes
the confinement of the ring beam, and of a weak axial har-
monic potential (with αz � 1), which is needed to obtain the
momentum distributions of atoms and pairs in a quarter period
time-of-flight expansion [18]. A hard-wall potential at z = ±L
is also included to describe the light sheets acting as the end
caps for the axial trapping. In Ref. [18] it was estimated that
p � 16 for the power-law exponent and αz � 0.05 for the
axial harmonic confinement parameter, while L � R.

FIG. 7. The projected pair-momentum distribution nproj,b
pair (Q) ob-

tained with a realistic boxlike trap is shown as a function of the
pair momentum Q (in units of kF(0) = [3π 2n(0)]1/3), at unitarity and
for T/TF(0) = 0.01. The calculations are done for various values
of the axial harmonic confinement parameter αz, with local polar-
ization (n↑ − n↓)/n = 0.40 at the trap center [which corresponds
to a global polarization (N↑ − N↓)/N � 0.47]. The corresponding
projected pair-momentum distribution for the uniform system is also
shown for comparison (black dotted line).

To perform a direct comparison with the uniform case,
the (intensive) projected pair-momentum distribution for the
boxlike trap is obtained as

nproj,b
pair (Q) = 1

V0

∫
dr nproj

pair (Q; r), (C9)

where the local nproj
pair (Q; r) is defined like in Eq. (C7) and

V0 = N/n(0) is the volume that would be occupied by the
N = N↑ + N↓ particles for a uniform system with density
equal to the density n(0) at the trap center. This is because,
for a completely uniform trap such that nproj

pair (Q; r) = nproj
pair (Q)

independent of r, the integration over r in Eq. (C9) would
cancel the volume V0 yielding nproj,b

pair (Q) = nproj
pair (Q).

Figure 7 shows the results for the projected pair-
momentum distribution in a boxlike trap with p = 16 and
L = R, corresponding to different values of the axial har-
monic confinement parameter αz � 0.05 like in Ref. [18].
For comparison, the corresponding result for the uniform
system is also shown [cf. Fig. 4(a) of the main text]. The
calculations are performed by taking the local temperature
and polarization at the trap center to coincide with those of
the uniform system. From this comparison one concludes
that the peak originating at finite momentum in the projected
pair-momentum distribution for a uniform system still appears
to be quite prominent even when the effects of a realistic
boxlike trapping potential are taken into account (and this is
especially true when the axial harmonic trapping potential is
kept sufficiently weak like in the experiment of Ref. [18]). The
favorable outcome of this specific test considerably reinforces
our expectation as discussed in the main text, that the presence
of strong FFLO fluctuations in the normal phase of a polarized
Fermi gas can be uncovered by measurements of the projected
pair-momentum distribution under realistic experimental con-
ditions.
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