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Thermality, causality, and the quantum-controlled Unruh-deWitt detector

Joshua Foo®" and Sho Onoe

Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics,
The University of Queensland, St. Lucia, Queensland 4072, Australia

Robert B. Mann'
Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
and Perimeter Institute, 31 Caroline Street, Waterloo, Ontario, Canada N2L 2Y5

Magdalena Zych ©#

Centre for Engineered Quantum Systems, School of Mathematics and Physics,
The University of Queensland, St. Lucia, Queensland 4072, Australia

® (Received 16 May 2020; revised 28 October 2020; accepted 17 September 2021; published 21 October 2021)

Particle detector models such as the Unruh—deWitt detector are widely used in relativistic quantum information
and field theory to probe the global features of spacetime and quantum fields. These detectors are typically
modeled as coupling locally to the field along a classical worldline. In this paper, we utilize a recent framework
that enables us to prepare the detector in a quantum-controlled superposition of trajectories and study its response
to a massless scalar field in finite-temperature Minkowski spacetime and an expanding de Sitter universe. Unlike
a detector on a classical path, which cannot distinguish these spacetimes, the superposed detector can do so by
acquiring nonlocal information about the geometric and causal structure of its environment, demonstrating its

capability as a probe of these global properties.
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I. INTRODUCTION

In quantum field theory (QFT), the physical nature of
phenomena such as particle production and long-range cor-
relations is grounded in an ability to couple local probes to
the field, which can subsequently perform measurements of it.
The study of measurements in QFT continues to be a fruitful
and ongoing research area, linking diverse subjects ranging
from causality [1], quantum optics, and quantum informa-
tion [2—4] to curved spacetime settings [5].

A simple and well-known approach for enacting mea-
surements of a quantum field is the Unruh—deWitt (UdW)
detector. The detector is typically modeled as an idealized
two-level system whose internal states couple to a massless
scalar field, which approximates the light-matter interaction
under the neglect of angular momentum exchange [6-8]. In
settings that involve arbitrary relativistic trajectories [9-12]
and curvature [13-16], the model is particularly useful be-
cause it provides operational meaning to the notion of a
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“particle,” through the excitations it experiences via the
interaction. Phenomena exemplifying this include the Un-
ruh and Gibbons-Hawking effects. The former predicts that
a uniformly accelerated detector in Minkowski spacetime
perceives the vacuum state to be thermal at the Unruh tem-
perature:

K

Ty = —,
U™ on

ey
whereas an identical detector traversing an inertial worldline
registers no particles [17], as expected for the vacuum state.
There is an analogous situation in the de Sitter universe, where
a detector on a geodesic path likewise detects the conformally
coupled vacuum state to be thermal at the same temperature
as in Eq. (1), where x now quantifies the expansion rate of
the universe [18]. Hence, according to a detector traversing
a classical worldline and fully characterized by its response
to quantum fields, flat and de Sitter spacetimes in the above
scenarios are operationally equivalent, i.e., both give rise to a
thermal bath at the finite temperature

K
T 2n

Contrary to the intuition that acceleration fully determines
the thermal response of the detector, it has been recently
demonstrated that a UdW detector traveling in a superposition
of accelerated trajectories in general does not yield a thermal
response [19,20]. In particular, even if the individual trajec-
tories have the same proper acceleration and therefore each
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of them would yield the same thermal state of the detector,
their superposition is sensitive to nonlocal field correlations
between the trajectories, which notably depend on the causal
relations between them. These correlations can perturb the
final detector state away from thermalization.

In this paper, we apply the superposed detector model
to the above scenarios: a thermal field state in Minkowski
spacetime and the conformally coupled vacuum state in an
expanding de Sitter spacetime. Our results show that a single
UdW detector in a quantum superposition of trajectories can
differentiate between these two spacetimes, which is impos-
sible for a single detector on a classical worldline [21-25]
and even for two detectors harvesting entanglement from the
field, in certain regimes [26-31]. We show, in particular, that
the response is sensitive to the causal relationship between the
paths in superposition, which is a signature of the geometric
structure of the background spacetime itself. Due to the differ-
ent spacetime geometries under consideration as well as the
thermalization processes investigated in this paper, our results
also show that the quantum-controlled UdW detector model
represents an accessible approach for probing the geometric
and causal features of spacetime and connects the research
in curved spacetime QFT with quantum information [32],
quantum control of quantum channels [33,34], and quantum
thermodynamics [35,36].

This paper is arranged as follows: In Sec. II, we intro-
duce the quantum-controlled detector model first devised in
Refs. [19,20]. In Sec. III we introduce the field-theoretic de-
tails needed for the spacetimes of interest. In Sec. IV, we
study the transition probability of the superposed detector in
the respective scenarios. In Sec. V, we analyze the transition
rate of the detector in these spacetimes, before offering some
conclusions in Sec. VI. Throughout this paper, we utilize
natural units, i = c = kg = G = 1.

II. DETECTORS IN SUPERPOSITION

In this paper, we employ the simplest formulation of the
UdW detector model, which is a pointlike, two-level system
initially prepared in its ground state |g) and interacting with a
real, massless scalar field ®[x(z)] pulled back to the worldline
X(7) and initially in the state |¢). Following Refs. [19,20],
we initialize the detector in an arbitrary superposition of tra-
jectories by introducing a control degree of freedom, whose
orthonormal states |i)¢ designate the individual paths that the
detector takes. The initial state of the combined system is thus

W)s = 1¢) ® I8) ® |¥), 3

where the control is prepared in the equal superposition of N
paths,

1 N
=— e 4
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When writing down the initial control superposition state, the
tacit assumption is that any phases acquired by the system dur-
ing the preparation of the superposition have been absorbed
into the basis states |i)c.

The Hamiltonian governing the interaction is given by

N
Hin () = AU(T)Zm(f)CD[Xi(f)] ® li)(ilc, &)
i=1
where A <« 1 is a weak coupling constant, n;(t) is a time-
dependent switching function that governs the interaction,
o(t) = o™ + H.c. is the interaction picture Pauli opera-
tor (where ot = |e)(g|) for the detector with energy gap Q2
between the energy eigenstates |g) and |e), and X;(7) is the
worldline of the ith path of the superposition. To leading order
in A, the state of the detector after evolving from the initial
time 7y to the final time tr, and conditioned upon the control
being measured in the state |¢) (chosen for simplicity but
without loss of generality), is given by

. 1-Pp O 4
pp = ( 0 PD> + O0M"), (6)
where the transition probability Pp is given by
N N
Pp = Z Piip + Z Pijp- @)
i=1 i#j

We have expressed the transition probability as a sum of two
contributions, given by

)LZ T i7a
Pip = m/ dT/ dt’ x (DX (T HOWIX(1), x(x)H], (8)
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respectively, where we have defined x;(7) = 1;(t)e ™" and
WY Ixi(1), X;(t)] = (Y| DI (z)IPIx; (DY) (10)

are two-point correlation (Wightman) functions pulled back
to the trajectories X;(t;) and X j(‘L'j/-) [8]. Importantly, Eq. (7)
contains Wightman functions evaluated locally along the in-
dividual trajectories (i = j) and nonlocally, between each
respective pair of trajectories (i # j). The P;;p terms in the
transition probability are equal to the nonlocal correlations be-
tween two detectors, each locally coupling to a quantum field
along individual classical paths X;(7;) and X;(7}). Specifically,
when one introduces a second detector, the reduced bipartite
density matrix to leading order in perturbation theory is given
by

1—Py—P5 0 0 M

0 Py Lap O \
Dap = o). (11
PAB 0 L, Py 0 + 0l (A1)
M* 0 0 0

The P;jp terms for a single superposed detector are equal
to the L4p terms in the two-detector scenario, these terms
quantifying in part the nonlocal field correlations along the
respective detector worldlines.

The other quantity of interest is the transition rate of the
detector, defined as a derivative of the transition probability
of the detector, Eq. (7), with respect to the proper time 7f.
The physical interpretation of this quantity is the difference
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between transition probabilities of the two ensembles of iden-
tically prepared detectors traversing a fixed superposition of
trajectories and measured at the proper times 77 and tr + 67
in the limit 8t — 0" [13,19]. To compute the transition
rate, we thus take the switching functions to be Gaussian,
n(r) = exp(—r2 /202), in the infinite-interaction-time limit
(0 — 00), taking 9 — —o00, and evaluate the derivative of
Eq. (7) with respect to tr, which yields the following expres-
sion:

w2
:W

i=1

Pp Re/ ds e SBWii(s)
0

Py o0 4 N
+ e ZRe/ ds e B[Wi(t, 7 —s)+ H.cl,
i#] 0
(12)

where s = 7 — t’. In this paper, we only consider scenarios
where the proper times of the paths in superposition are equal,
hence the simplification to a common proper time coordinate
in Eq. (12).

III. WIGHTMAN FUNCTIONS FOR THERMAL FIELDS,
DE SITTER SPACETIME, AND ACCELERATED
TRAJECTORIES

Equations (7) and (12) characterize the detector’s response
to the background scalar field as it traverses different re-
gions of spacetime. For our analysis, we require Wightman
functions pulled back to the individual trajectories of the su-
perposition, as well as nonlocal Wightman functions between
each respective pair of trajectories. For the former, these pos-
sess an identical form in all cases considered:

K2 1
1672 sinh®(ks/2 — ie)

Here, the meaning of « depends on the context (e.g., the
temperature of the thermal state of a field in Minkowski space-
time, or the expansion rate of de Sitter spacetime), while ¢ is
an infinitesimal regularization constant.

In Minkowski spacetime for a thermal field state with
temperature Ty = «(27r) ™", the nonlocal Wightman functions
evaluated between two trajectories separated by the constant
distance L are given by [37]

Wi (s) = lél(m[coth (%(L s+ ie))

Ws(s) = 13)

+ coth (g(L—G—s—ie))]. (14)

In the de Sitter universe, we parametrize the detector world-
lines with flat slicing coordinates [38], yielding the Wightman
function

(ic /47 )?
exp(k p)(kL/2)* — sinh®(ks/2 — ig)’
which is evaluated in the conformally coupled vacuum [8]
and p = t 4 t’. The trajectories are separated by the constant

comoving distance L. For two accelerated trajectories in par-
allel motion with proper acceleration x and separated by the

Was(p, s) = (15)

constant distance L (as measured by inertial observers), we
have [31]

WP(P, S) =

k* [Lk 5 . -
e [7 +ie —e P/ smh(;cs/2)1|

L -1
XH_I-HeWsinh(Ks/Z)} - 316

Thermality in QFT

In QFT, thermal states are those satisfying the Kubo-
Martin-Schwinger (KMS) condition [2,39]. This condition
provides a general definition for a thermal state in scenarios
where the usual Gibbs distribution may be problematic or dif-
ficult to rigorously define. For a KMS state with temperature
Txwms, the corresponding Wightman function will be periodic
in the imaginary time,

W(t —i/Tgms, T') = W(T', 1), a7

where we have utilized the shorthand W[x(7), X'(t)] =
W(z, t’). Operationally, a detector that thermalizes with the
field will satisfy the KMS detailed balance criterion, com-
monly stated in the form

PD(Q) — e_zﬂg/,(’ (18)
Pp(—£2)

where we have defined R(£2) as the excitation-to-deexcitation
ratio of the detector.

R(Q) =

IV. TRANSITION PROBABILITIES

A. Gaussian switching

Using the local and nonlocal Wightman functions, we
can calculate the transition probability of the detector in the
various superposition configurations of interest. The first ap-
proach we consider is a Gaussian switching function centered
at the temporal origin of each trajectory,

ni(t) = exp (—1%/207), (19)

where o; is a characteristic width for the interaction. Semi-
analytic results can be obtained for Pp, following a similar
approach to that of Ref. [31]. We assume a narrowband
interaction (o < «~!), which allows us to invoke the saddle-
point approximation to simplify the double integrals in
Eq. (7) [27,31]. This regime corresponds to low temperatures
(e.g., a slow expansion rate in de Sitter spacetime). We obtain
the following expressions for the transition probability of the
detector [19]:

PS5y 2—T”Re[coth <5(L + 2i029)>], (20)

2 kL 2

Ps To
Pis = Pp = — , 21
e (kL/2)? + sin®(B) @h
where we have defined

27,
73 == ) 22
57 sin2(B) @2)
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(Ka)\)ze_"zs22
To= . (23)

B =Kko’Q. (24

Note that Pg is the transition probability of a single
detector detecting thermal radiation at the temperature
k(2m)~[19,31].

Several noteworthy observations can be made. First, the
nonlocal terms in the transition probability for each scenario
vanish in the limit of infinite separation, L — oo, between the
superposed trajectories. This is a generic property of long-
range quantum correlations, which decay with distance. In
this limit, Pp reduces to half of that of a single detector
in all cases. Second, the presence of the interference term
enables the detector to distinguish the thermal bath from the
expanding de Sitter spacetime (Fig. 1), a distinction otherwise
inaccessible for a detector traversing a single, classical tra-
jectory. Furthermore, this difference is discernible for small
energy gaps and when L is smaller than the cosmologi-
cal horizon, Lygs = (o«)~!. This contrasts with results found
in entanglement-harvesting protocols utilizing two detectors
traveling on either of the individual trajectories and interacting
locally with the field [26-31]. Only when the two detectors
are separated by a distance larger than Lgs can the amount
of entanglement extracted from the field be used to differ-
entiate these spacetimes. Finally, the transition probability of
the detector accelerating along parallel trajectories is identical
to the geodesic de Sitter case. While the dynamics are qual-
itatively different—an inertial observer measures a constant
distance between the accelerated trajectories, whereas the de
Sitter trajectories diverge away from each other (Fig. 2)—the
similarity between them is the constancy of the length scale L
(recalling that it is a comoving distance in de Sitter space-
time). Note, however, that this result is obtained under the
specific assumption of a narrowband detector-field interaction
centered at T = 0.

B. Compact switching
Next, we consider an interaction with compact support,
with the switching function chosen to be

cos” (=41),

oj

T, —n0;/2<t<1+7w0;/2

(25)
0, elsewhere.

ni(t) = {
This allows us to study the causal relations between localized
spacetime regions within which the detector-field interaction
occurs [40,41].

Using these switching functions, Eq. (7) can be numeri-
cally integrated directly. In Fig. 3, we have plotted the value
of the interference terms, Zi oy Pij.p, in the transition proba-
bility and introduced a time delay between 7 and 7, (that is,
centering one interaction at t; = 0 while varying the central
proper time 7, along the other trajectory). For sufficiently
small Lk, the transition probability displays resonant behavior
at the lightlike overlaps of the interaction regions in all three
spacetimes. That is, when the interaction region n;(t) begins
to overlap with the lightlike extension of the other region
ni(t) (where 7; < 7;), the interference terms either amplify

- x10~*
0.0 2.0 4.0

UOZLIOY

0 20 40 60 80 100

FIG. 1. Contour plots of (Py — Pys)/A? for (a) (ok)~' = 4 and
(b) (ok)~! = 40. From both plots, we find that the difference in
the transition probability between the two spacetimes is largest at
small energy gaps. Notably, the interaction regions in the de Sitter
spacetime need not be spacelike (beyond the cosmological horizon)
in order for the two cases to be distinguished via the respective
transition probabilities.

L”’ ¢ >\

FIG. 2. Schematic diagrams of the detector trajectories in super-
position, with a time delay between the interaction times on the
respective branches. The diagram on the left depicts the thermal
bath scenario, whereas the diagram on the right depicts the diverging
geodesics in de Sitter spacetime. In the thermal bath, the interaction
regions can always be arranged so that there is some causal contact
between them; in the de Sitter case, they will inevitably become
spacelike once the interaction regions become separated by the cos-
mological horizon.
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FIG. 3. Plots of the interference term, ) , ”

Pij.p/A%, as a function of the energy gap €2/ and the center time of the switching function for

the second branch of the superposition, k7. In (a)—(c), L« = 1/2 is fixed; in (d)—(f), L« = 3/2 is fixed. The two different color densities used
in the plots contrast the regions where » , 2j Pijp/ 22 is positive and negative; this is highly sensitive to the detector energy gap and the causal

relationship between the interaction regions.

or inhibit transitions in the detector, depending on the energy
gap 2. Above a critical value of Lk (and accounting for the
interaction width o;) these resonances are highly suppressed
for the parallel accelerated trajectories because the interaction
regions are spacelike for all 7, 7, [see Fig. 3(f)], noting the
order-of-magnitude difference compared with the other cases.
In the de Sitter case, only the 7, > 0 resonances disappear
since the regions become causally disconnected only after
they cross the expansion-induced horizon of the other. This
contrasts with the thermal case, where the trajectories always
allow for causal contact for some configuration of the inter-
action regions (i.e., a larger Lk requires a larger time delay).
Finally, we note that our use of the terminology “causal” refers
to effects that dominate when the spacetime regions are in
partially or fully lightlike contact.

Since these causal resonances have the ability to suppress
the transitions experienced by the detector (i.e., the amount of
noise perceived by the detector), this suggests that preparing
two detectors, each in a superposition of paths and switch-
ing times, may enhance their ability to become entangled.
This is because bipartite detector entanglement is commonly
quantified by the concurrence, Cap, Which is effectively a com-
petition between the M term in Eq. (11) and the geometric
mean of the individual transition probabilities:

Cap := 2max[0, | M| — /PaPs]

(where P4 and Pp are the transition probabilities of the indi-
vidual detectors). Indeed, this is corroborated by the results
obtained by Henderson et al. [40], who found that the tem-

(26)

poral superposition of the switching times of two detectors
enabled the detectors to become entangled in regimes where
entanglement was not possible for detectors with classical
switching functions.

Finally, we note that even when the switching regions on
either branch of the superposition are outside the causal cone
of the other, there are still interference oscillations which
become suppressed as the time delay becomes very large.
This is a signature of the nonlocal correlations between the
quantum field degrees of freedom, which exist even between
spacelike- and timelike-separated spacetime regions.

V. DETECTOR TRANSITION RATES

Here, we present calculations for the detector transition
rate. For the detector superposed at two locations within the
thermal bath, both the local and nonlocal Wightman functions
satisfy the KMS criterion:

Ws(t — 2mijk, t') = Ws(t/, 7),

Wr(t — 2mi/k,t') = Wr (7, T). 27

Because of this property, we might expect that the detector
will exhibit a thermal response to the field. To determine
whether the detector does indeed thermalize at the tempera-
ture of the quantum field, we evaluate its transition rate. We

confirmed numerically that the result is given by
Py = 2 ! [1+sinc(QL)],  (28)
=— i ,
P 4m exp2n Qi) — 1
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FIG. 4. Transition rate of the detector superposed on two paths
separated by the constant distance L in a thermal bath in Minkowski
spacetime, as a function of the energy gap. The transition rate expe-
riences resonant oscillations as the energy gap is varied; when all of
the solid lines intersect, the response is half of that of a detector on a
single path.

where sinc(x) = sin(x)/x. Using the identity sinc(2L) =
sinc(—S$2L), we find that the detailed balance form of the KMS
criterion is indeed satisfied:

o) _ oz, (29)
Pp(—£2)

for a thermal field at temperature «(27)~"!, which confirms
the above conjecture.

In Fig. 4, we have plotted the transition rate of the detector
as a function of the energy gap. Upon introducing the superpo-
sition of paths, the transition rate oscillates with increasingly
negative energy gaps, with the frequency of these oscillations
increasing with the path separation. The interference term
vanishes at periodic values of the energy gap, indicating that
the response of the detector is both thermal and Planckian for
those values.

The time-translation-invariant thermal response of the de-
tector in the heat bath contrasts both the comoving de Sitter
superposition and the parallel acceleration superposition,
where the nonlocal Wightman functions are dependent on the
sum of the proper times between the two trajectories, i.e.,
they are time dependent. Note that the latter case is studied in
Ref. [19], so we focus here on the quantum-controlled detector
transition rate in de Sitter spacetime.

The time dependence of the nonlocal Wightman functions
indicates that the correlation structure of the quantum field
depends strongly on the different spacetime regions that the
detector probes along its trajectory. Moreover, the transition
rate will generally not satisfy the detailed balance criterion

PD(Q) _ 'ﬁii,D(Q) + 7:71']',0(9)
Pp(=)  Piup(=R)+ P;jp(—R)

since the interference terms are generally asymmetric in €.
This is intriguing because the paths would individually elicit
a thermal response in the detector at an identical temperature,
yet superposing the detector along those paths yields a non-
thermal response.

In Fig. 5 we have plotted the transition rate of a detector
superposed along two paths in the de Sitter universe sepa-

# e—ZJTQ/K (30)

— %1073
0.0 4.0 8.0
0.0
-4.0
-8.0
x1073

0 2 1 6 8 10

FIG. 5. Transition rate, /A2, of the detector in a superposition
of two geodesic paths in de Sitter spacetime, as a function of the
dimensionless proper time and expansion rate. The regions shaded
blue to light yellow correspond to positive transition rates, while the
regions shaded dark purple to white correspond to negative transition
rate. For sufficiently high expansion rates, these negative regions
vanish.

rated by a constant comoving distance, as a function of the
dimensionless expansion rate, «/€2, and the dimensionless
proper time at which the detector (ensemble) is measured,
Qt (tr = ). In the asymptotic past, the detector exhibits the
same thermal response that a single detector would experience
for all times. This can be seen from the past asymptotic form
of the nonlocal Wightman function, which approaches that of
a single detector as T — —o0:

lim_ Wes(p, 5) = Ws(s). 31

Near t = 0, the trajectories begin to bifurcate from each other,
and the transition rate dips before equilibrating towards that of
half of a single detector as T — 0.

Interestingly, for sufficiently slow expansion rates, near
the proper time origin the detector’s transition rate becomes
negative before becoming positive again as the superposed
paths recede away from each other. This region of negative
transition rate is consistent with the ensemble interpretation
mentioned previously; other investigations have also noted the
presence of such regions in a variety of spacetimes [13,42,43].
For our quantum-controlled detector, the regimes of negative
transition rate correspond to spacetime regions in which the
correlation structure between the two paths is strongly time
dependent, inducing stronger interference between the paths.
Finally, since the detector is switched on in the asymptotic
past and has an effectively constant transition rate until the
region of strong interference, an integral of the transition rate
with respect to the proper time will always yields a positive
result, as required by a physical meaning of this quantity as
a transition probability. (This remains true if one considers
smooth switching functions.)

In Fig. 6, we have plotted the transition rate for a detector in
a superposition of three geodesic paths, for negative [Fig. 6(a)]
and positive [Fig. 6(b)] energy gaps (we have assumed that the
control is prepared and measured in a balanced superposition

043056-6
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FIG. 6. (a) Transition rate of a detector with negative energy gap,
Q/k = —10, in a superposition of three geodesic paths, with the re-
spective separations L;; = 0.01 and L;3 = 20. The respective lines in
the plot show (i) the transition rate of the detector in a superposition
of comoving distance L;3, (ii) the transition rate of the detector in a
superposition of three comoving paths with separation L, L3, and
L3, and (iii) the transition rate of the detector in a superposition of
two paths separated by the comoving distance L;,. In the regions
where the structure of the field correlations changes rapidly due to
the diverging Euclidean distance between the superposed paths, the
total transition oscillates, eventually equilibrating to a third of that
experienced by a single detector. (b) The same setup for a detector
with a positive energy gap, 2/k = 0.5. The inset shows a zoomed-in
view of the transition rate near the origin of proper time.

with equal phases between the three basis states). We have
chosen a setup such that two of the paths have a small comov-
ing distance between them (Lj, < k') and are separated by
a large distance from the third trajectory (L3, Lp3 > k.
For negative gaps, the detector response is approximately time
independent and thermal, until the point at which the third
trajectory begins to recede from the first two. The second dip
occurs when the first two trajectories recede from each other,
after which the transition rate approaches that of one-third of a
single detector. For positive gaps, we observe similar regions
of behavior, where the aforementioned period of negative
transition rate is manifest.

VI. CONCLUSION

We have shown that by introducing a quantum-controlled
superposition of trajectories, a UdW detector gains informa-
tion about the field and the global structure of spacetime
through nonlocal correlation functions that would be other-
wise inaccessible to a single detector. In particular, such a
detector can discriminate between the thermal state of a field
in Minkowski spacetime and a vacuum state of an exponen-
tially expanding de Sitter universe, which is proven to be
impossible for a single detector traversing a classical trajec-
tory [18] and only achievable by examining the amount of
entanglement between two classically moving detectors when
their spatial separation is larger than the cosmological event
horizon [26-31]. The interference effects illustrate the rich
nonlocal features of quantum fields and how they depend
strongly on the dynamical properties of the trajectories tra-
versed by the detector in superposition. Because of this, one
would expect that such detectors can be utilized in the study
of foundational questions about causality in quantum theory
and the geometric structure of spacetime from the perspective
of relativistic and curved spacetime QFT.

Our quantum-controlled detector model represents a con-
crete physical realization of a “superposition” of quantum
channels (unitaries) acting on a quantum system [33,34],
so far studied in abstract quantum information and founda-
tions settings, for instance, quantum communication [44—46],
causality [47,48], and thermodynamics [49]. Furthermore, our
detector model can be applied to study the nature of time and
decoherence in gravitational interferometry setups, systems
which have received renewed interest as test beds of quantum-
gravitational physics [50-53]. Our study thus builds a direct
connection between these fields of research and relativistic
quantum field theory in curved spacetime. Finally, our here
studied quantum extension of a traditional detector model
also allows us to build a bottom-up approach for studying
the operational effects produced by quantum superpositions
of classical spacetime geometries [54—58].
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