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Spectroscopic signatures of gate-controlled superconducting phases
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We investigate the tunneling conductance of superconductor-insulator–normal metal (SIN) and
superconductor-insulator-superconductor (SIS) heterostructures with one superconducting side of the junction
that is electrically driven and can exhibit π pairing through a modification of the surface inversion asymmetric
couplings. In SIN tunneling we find that the variation of the electrically driven interactions generally brings an
increase of quasiparticles in the gap due to orbitally polarized depaired states, irrespective of the interband phase
rearrangement. The peak of SIN conductance at the gap edge varies with a trend that depends both on the strength
of the surface interactions as well as on the character of the gate-induced superconducting state. While this shift
can be also associated with thermal effects in the SIN configuration, for the SIS geometry at low temperature
the electric field does not yield the characteristic matching peak at voltages related with the difference between
the gaps of the superconducting electrodes. This observation sets out a distinctive mark for spectroscopically
distinguishing thermal population effects from signatures that are mainly related to a variation of the electric
field. In SIS the electrostatic gating yields a variety of features with asymmetric peaks and broadening of the
conductance spectral weight. These findings indicate general qualitative trends for both SIN and SIS tunneling
spectroscopy which could serve for evaluating the impact of electric field on superconductors and the occurrence
of noncentrosymmetric orbital antiphase pairing.
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I. INTRODUCTION

Understanding the interplay of electricity and supercon-
ductivity is a fundamental problem that stands out for its
general relevance, the great impact it can have for access-
ing, controlling, or driving new phases of quantum matter,
and the enticing perspectives for the development of future
quantum technologies. Electric field effects have been suc-
cessfully employed to drive or control the superconducting
phase in materials with low to moderate carrier density [1–4],
in thin films [5–7] and interfaces [8], and down to the two-
dimensional limit [9–11]. In this context, to achieve a control
of the charge-carrier density by gating, the materials have to
be in a low-density regime and thin enough to avoid shielding
of the electric field. In fact, for superconductors with large
electron density the strong electric screening typically allows
small changes in the superconducting critical temperature
[12–15].

Recently, the discovery of unconventional gating effects in
metallic superconductors [16] has challenged the current view
of how electric field can affect superconductivity. In particu-
lar, the overall experimental observations which have been so
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far accumulated provide a variety of unexpected fingerprints
of the consequences of electrostatic gating on superconduc-
tors. The major findings demonstrate the following effects:
reduction or full suppression of the critical supercurrent in
nanowires [17–19] and Dayem bridges [20–23], manipulation
of superconducting phase in interferometric setups [22,24],
enhancement of phase fluctuations [25], increase of in-gap
quasiparticle population [18], and weak interrelation between
the critical magnetic field and the critical voltage associated
with the vanishing supercurrent transition [26]. Remarkably, a
suppression of the critical supercurrent has been also achieved
in fully suspended gate-controlled Ti nanotransistors [27] and
with ionic gating [28], thus posing bounds on the role of
charge injections or electron leakage within the observed phe-
nomena.

The emerging experimental scenario is definitely opening
fundamental challenges about the coupling of static electric
field and superconductivity. Indeed, the impact of electro-
static gating on the metallic superconductor points to different
channels of interaction. One possibility is that the applica-
tion of large electrostatic gating may cause the injection of
highly energetic quasiparticles. In this framework, the in-
duced excitations in the superconductor, with energies that are
greater than the superconducting gap, would mainly lead to
thermally driven population imbalances and nonequilibrium
effects which substantially may end up in a suppression of
the amplitude of the superconducting order parameter. Along
this line, the increase of the quasiparticle in-gap spectral
weight in the tunneling conductance has been indeed recently
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FIG. 1. (a) Illustration of the superconducting slab embedded into an electrostatic field generated by gates with voltages VG1 and VG2 . For
the multilayered superconducting thin film, due to the screening on the Thomas-Fermi atomic length, one can distinguish the surface layers
(blue), where the electric field fully penetrates and affects the electronic structure, from the inner layers (yellow), that are not directly influenced
by electric-field-induced interactions. On the top surface layer we show a representative pattern of the chiral textures in the Brillouin zone due
to the electric-field-induced orbital Rashba couplings. (b) Schematic illustration of the superconducting phase diagram which is obtained
by applying an electric field through the modification of the induced intraorbital (αOR) and interorbital (λ) polarizing interactions at the
surface layers of the superconducting thin film. Within the phase diagram, there occurs a conventional spin-singlet superconducting state with
orbitally polarized surface states that is labeled as 0-SC (c). Otherwise, the electric field generates π pairing with the superconducting order
parameter having a π -phase shift among different bands at the Fermi level. Here, we consider a three-band modeling with �a, �b, and �c

the corresponding spin-singlet order parameters. πz-SC stands for an inhomogeneous superconducting phase along the confining direction of
the thin film (z) with layers having zero interband phase shift alternating with layers marked by π pairing (e). Finally, N indicates the normal
metal state configuration with strong orbitally polarized depaired states at the Fermi level. An overall schematic illustration of the 0-, π -, and
πz-SC phases is reported in (c)–(e) with the layer- and band-dependent superconducting order parameters determined by iterative computation
on the lowest energy state. Schematic of the (f) SIN and (g) SIS junction with one side subjected to electrostatic gating. The colored surface
on the gated superconductor sketches the penetration of the electrostatic field.

interpreted as an evidence of high-energy injection of quasi-
particles into the superconductor [18,19].

Another scenario places its roots in the fundamental in-
teraction between an electrostatic potential and the electronic
states on the surface of the superconductor through the modi-
fication of the strength of the inversion asymmetric interaction
[29]. The electric field breaks inversion symmetry on the
surface and can lead to orbital polarization of the electronic
states through orbital Rashba couplings that, however, are
active only in the spatial region where the electrostatic field
can penetrate the metal, i.e., of the order of the Thomas-Fermi
length [30]. In this context, it has been indeed recently rec-
ognized that an analog of the spin Rashba coupling [31,32]
at the surface of low-dimensional electron systems or non-
centrosymmetric materials arises due to the coupling between
the atomic orbital angular momentum L and the crystal wave
vector k [29,33–35]. Materials having configurations close to
the Fermi level with nonvanishing atomic angular momentum,
an intrinsic crystalline potential, or an applied electric field,
breaking spatial inversion or mirror symmetry, yield nonlocal
odd-parity matrix elements among atomic orbitals contribut-
ing to the Bloch states. The resulting orbital Rashba effect
[29,33–35], in analogy with the spin Rashba effect, refers to
an orbital-angular-momentum-dependent energy splitting in
the Brillouin zone that yields chiral orbital texture [29,35–38].
The orbital Rashba effects and the resulting orbitally polarized
textures have been investigated in various materials, including
elemental noble metal surfaces [37], surface alloys [39,40],
topological surface states [41], bulk ferroelectrics [42], oxide
surface [43], and interfaces.

The essential consequence of such orbital polarizing ef-
fects is that the electric field is able to break the interband
superconducting phase rigidity or fully suppress the amplitude
of the order parameter [29]. Then, two main consequences

are in place as schematically depicted in the phase diagram
of Fig. 1. The gating can rearrange the band-dependent su-
perconducting phases with a π shift [i.e., resulting in a π

or πz phase depending on the spatial homogeneity of the
π pairing; Figs. 1(d) and 1(e)], or it can completely sup-
press the amplitude of the order parameter by increasing the
population of depaired orbitally polarized quasiparticles until
reaching the normal phase N . Both phases (i.e., the π states
and the normal metal with strong orbitally polarized Fermi
surfaces) can be in principle marked by a vanishing super-
current; however, the underlying mechanism that leads to the
supercurrent suppression is fundamentally different. In fact,
for the π states the supercurrent suppression is due to the
superconducting phase frustration of different bands (i.e., it
mainly arises from the interference of the phases of the super-
conducting order parameters at the Fermi level), while for the
electrically induced normal metal phase it is essentially due to
a suppression of the amplitude of the superconducting order
parameter. Remarkably, the application of a magnetic field can
help to discern between the two scenarios concerning the way
the electric field impacts on the amplitude and phase of the
superconductor [26]. In this context, the weak dependence of
the critical magnetic fields on the critical voltages and vice
versa seem to be mostly compatible with a scenario with the
electrostatic gating driving the transition from a conventional
superconducting phase to a superconducting state with π pair-
ing [29] where the interband phase frustration is responsible
for the vanishing of the supercurrent.

It is interesting to point out that π pairing is also expected
to occur in unconventional superconductors in the absence of
external perturbations as indicated, for instance, by the re-
cent observations in iron-based materials [44] or theoretically
proposed at oxide interfaces [45,46]. Hence, the addressed
problem has a wider framework and our results can have a

043042-2



SPECTROSCOPIC SIGNATURES OF GATE-CONTROLLED … PHYSICAL REVIEW RESEARCH 3, 043042 (2021)

more general application. Indeed, they can provide insight
into the tunneling spectroscopy of superconducting thin films
where the interband phase reconstruction already manifests in
the absence of an applied electric field and the application of
other drives can affect the orbital polarization of the electronic
state on the surface and further reconstruct the superconduct-
ing phase.

Starting from this physical outlook it is relevant to con-
sider whether spectroscopically one can assess the nature of
the gate-driven superconducting phases and search for fin-
gerprints which can be employed to understand the way the
electric field affects the superconductivity. For this purpose,
we explore the tunneling conductance of superconductor-
insulator–normal metal (SIN) and superconductor-insulator-
superconductor (SIS) heterostructures with one superconduct-
ing side of the junction being subjected to the electrostatic
gating. Our strategy is to evaluate the tunneling conductance
for SIN and SIS configurations in the phase space spanned
by the electric field through the variation of the interactions
at the surface layers of the superconductor moving within
different types of π -paired configurations. The key target is to
track the evolution of the tunneling conductance in all phases
that are obtained within the scenario of an electrostatically
triggered orbital polarization at the surface [Fig. 1(b)] and
extract the main spectral signatures. In this way one can
get a significant insight into the spectroscopic response that
can result when considering the gate-driven superconducting
transitions. Starting from the SIN tunneling spectroscopy the
electric field is shown to yield an increase of spectral weight
in the gap, due to the orbitally polarized depaired states, and
this trend is observed independently of the allowed interband
phase rearrangements. The voltage position of conductance
peak near the gap edge varies with a tendency that is sen-
sitive to the amplitude of the orbital Rashba interactions as
well as the character of the gate-driven superconducting state.
While this shift can be also associated with thermal effects,
for the SIS geometry at low temperature the electric field
does not yield the characteristic matching peak for voltages
that correspond to the difference between the gaps of the su-
perconductors. This observation thus represents a distinctive
mark for spectroscopically disentangling the thermal popu-
lation effects from signatures that are mainly related to a
variation of the electric field. Apart from such a feature, in
SIS configurations the electric field yields a variety of marks
with asymmetric redistribution of the spectral weight of the
main conductance peak. These characteristics when tracked
as a function of the electric field indicate distinct trends for
both SIN and SIS configurations with characteristic tunneling
behavior in gate-controlled superconducting phases.

The paper is organized as follows. In Sec. II we present
the model and the methodology for the tunneling conductance
analysis. Section III is devoted to the main results by focusing
on the SIN and SIS tunneling spectroscopy. In Sec. IV we
provide the discussion on the resulting effects and the con-
cluding remarks. In the Appendixes we provide details of the
profile of the electrostatic potential close to the surface of the
superconductor. Additionally, we present the basic elements
for the derivation of the tight-binding model in the presence
of an electrostatic potential at the surface and the tempera-
ture dependence of orbital-dependent superconducting order

parameters obtained by self-consistently solving the gap equa-
tions.

II. MODEL AND METHODOLOGY

In this section we present the model and the methodology
which have been employed in order to evaluate the tunneling
conductance for the examined SIN and SIS geometries. To
achieve the goal, we need determine the density of states
of the superconducting side of the junction that is subjected
to the electrostatic gating. For this part of the heterostructure,
the superconductor is considered to have a slab geometry with
nz layers [Fig. 1(a)] and we assume a conventional s-wave
spin-singlet pairing.

Before going into the details of the results for the SIN and
SIS conductance we deepen the discussion about the main
aspects of the model that has been used to describe the effects
of the applied electric field. Concerning the inclusion of the
gate voltage in the employed model Hamiltonian, there are
three relevant working hypotheses.

First, we are considering a metallic superconductor (i.e.,
with a high density of charge carriers and thus large Fermi
surface). In this context, the electrostatic potential in the inner
layers of the superconductor is vanishing due to screening
effects for distances from the surface that are greater than the
Thomas-Fermi length λTF (typically of few unit cells along
the out-of-plane ẑ direction). The second aspect concerns
the character of the gate voltage. We assume to insert the
layered superconducting system in a capacitorlike structure
(open circuit configuration) that fixes the value of the gate
voltage to be opposite at the two sides of the layered su-
perconductor [see Fig. 1(a)]. Then, a final point refers to
the investigated electrical regime. We deal with stationary
conditions, i.e., constant-in-time electrostatic gating. Hence,
the reference Maxwell equation to be considered is the one
for the scalar electrostatic potential. Basically, within the
capacitor configuration we have ∇2V (r) = 0 in the region be-
tween the plates and the surface of the superconductor, while
∇2V (r) − k2

TFV (r) = ρ(r)/(4πε0) inside the superconductor,
with kTF = λ−1

TF being the inverse of the Thomas-Fermi length,
and ρ(r) the induced charge at the surface.

Taking into account the above assumptions, one can deter-
mine the profile of the electrostatic potential near the surface
of the superconductor. Since the screening effects in a metal
lead to an exponential decaying of the electric field within
a distance of the order of a few unit cells, the effects of the
electrostatic potential V (z) are confined at the surface layers
of the slab. Hence, without loss of generality and due to the
geometry (i.e., the thin film has a dimension in the xy plane
that is larger than the thickness along the z direction) and
symmetry of the problem, the electrostatic potential can be
taken as only dependent on the z coordinate and exponentially
vanishing inside the superconductor. The solution of the elec-
trostatic equation for this configuration can be handled and is
reported in the Appendix. To proceed further and construct the
tight-binding model for the layered superconductor, one has
to evaluate the matrix elements of V (z) for the selected mul-
tiorbital Wannier basis having nonvanishing atomic angular
momentum L. For this purpose, we take a 3×3 sector which
is suitable for p or d (e.g., t2g multiplet of the d manifold in
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cubic and/or tetragonal symmetry) states with L = 1, being
a description that can be effectively applied to a large class
of materials. In this manifold the electrostatic potential has
diagonal and off-diagonal elements. The diagonal terms renor-
malize the chemical potential while the off-diagonal ones lead
to the orbital Rashba coupling. In the employed model, we are
neglecting the modification of the chemical potential at the
surface layer because the correction to the electron density is
substantially affecting only the surface layer and is negligible
for a metallic system (see Appendix A), with also a minor
impact on the superconducting order parameter [30]. In turn,
the off-diagonal terms lead to orbital Rashba couplings. In
Appendix B we provide the main steps for the derivation of
the orbital Rashba interaction at the surface.

Hence, since the applied electric field on the surface of
the superconductor is parallel to the out-of-plane ẑ direc-
tion and thus the electrostatic potential close to the surface,
at the linear order in z, it can be described by a potential
Vs = −Esz with Es being constant in amplitude (assuming the
electric charge e is the unit). Taking into account the steps for
the derivation of the tight-binding model (see Appendix B)
[26,29,33–35], the matrix elements of Vs in the Bloch ba-
sis can yield intralayer (αOR ∼ Es) and interlayer (λ ∼
Es) inversion asymmetric interactions, whose ratio depends
on the interatomic distances and distortions occurring at
the surface layers [29]. For convenience one can indicate
as (a, b, c) the (yz, xz, xy) d orbitals. Then, after intro-
ducing the creation d†

α,σ (k, iz ) and annihilation dα,σ (k, iz )
operators with momentum k, spin (σ = [↑,↓]), orbital
(α = (a, b, c)), and layer iz, one can construct a spinorial
basis 	†(k, iz ) = (	†

↑(k, iz ), 	↓(−k, iz )) with 	†
σ (k, iz ) =

(d†
a,σ (k, iz ), d†

b,σ (k, iz ), d†
c,σ (k, iz )). In this representation, the

Hamiltonian can be generally expressed in a compact way as
[26,29]

H = 1

N

∑
k,iz, jz

	†(k, iz )Ĥ (k)	(k, jz ), (1)

with

Ĥ (k) =
∑

α={a,b,c}
[τzεα (k) + �α (iz )τx] ⊗ (L̂2 − 2L̂2

α )]δiz, jz

+αORτz ⊗ (sin kyL̂x − sin kxL̂y)[δiz, jz (δiz,1 + δiz,nz )]

+ t⊥,ατz ⊗ (L̂2 − 2L̂2
α )δiz, jz±1

+ λ[(L̂x + L̂y)(δiz,1δ jz,2 + δiz,nzδ jz,nz−1) + H.c.], (2)

where the orbital angular momentum operators L̂ have

components L̂x =
⎡
⎣0 0 0

0 0 i
0 −i 0

⎤
⎦, L̂y =

⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦, L̂z =

⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦ within the (yz, xz, xy) subspace, τi (i = x, y, z)

are the Pauli matrices for the electron-hole sector, and δi, j is
the Kronecker delta function. Due to the anisotropy and direc-
tionality of the d orbitals, the kinetic energy for the in-plane
electron itinerancy is expressed by εa(k) = −2t||[η cos(kx ) +
cos(ky)], εb(k) = −2t||[cos(kx ) + η cos(ky)], and εc(k) =
−2t||[cos(kx ) + cos(ky)], with η being a term that takes into

account deviations from the ideal cubic symmetry. Other long-
range terms or processes involving interorbital hoppings that
are activated by distortions do not change the quality of the
addressed phenomenology [29]. We assume that the layer-
dependent spin-singlet order parameter (OP) is nonvanishing
only for electrons belonging to the same band. Here, we
have neglected the pair-hopping term of the form Vαβ (k, iz ) =
Jαβd†

α,↑(k, iz )d†
α,↓(−k, iz )dβ,↑(k, iz )dβ,↓(−k, iz ). In the early

works on two-band superconductivity [47–49], the pair-
hopping term has been included to remove the degeneracy
among the configurations with different phase difference be-
tween the intraorbital superconducting order parameters in
systems without single-particle orbital hybridization. For the
examined model, we have interorbital mixing and the 0 and
π phases are separated in energy (see, for instance, Fig. 3 in
Ref. [29]), with the 0 configuration being the ground state in
the absence of an applied electric field even without the pair-
hopping Vαβ terms. In this respect, the inclusion of the term
Vαβ would further stabilize the 0 state in the phase diagram
and one would need a slightly larger interlayer orbital Rashba
coupling to induce the transition from the 0 to the π phase.
Thus, since for the study of the tunneling conductance we
have investigated all the regimes in the phase diagram, we do
not expect qualitative changes in the results.

Concerning the evaluation of the superconducting or-
der parameters, �α (iz ) = 1

N

∑
k g 〈dα,↑(k, iz )dα,↓(−k, iz )〉, we

performed it by computing the trace of the pairing operator
P̂α,iz

k = dα,↑(k, iz )dα,↓(−k, iz ) over all the eigenstates |n, k〉
of the Hamiltonian associated to negative energies En,k < 0
at zero temperature (or to all energy configurations at fi-
nite temperature weighted by the Fermi function). Since the
eigenstates |n, k〉 depend on �α (iz ) and the orbital Rashba
interactions couple the momentum with the local angular
momentum, the gap equations of the orbital-dependent order
parameters are strongly coupled between each other. To make
evident this dependence one can express the gap equation in
the following way:

�β (iz ) = 1

N

∑
k,n

g 〈n, k; �α (iz )|dβ,↑(k, iz )dβ,↓(−k, iz )|n, k;

�α (iz )〉 f (En,k, T ),

with f (En,k, T ) = 1
exp(En,k/kBT )+1 the Fermi-Dirac distribution

at given temperature T . In this framework, we have com-
puted self-consistently the order parameters for each orbital
character as a function of the temperature (see Appendix B).
Since the deviation from the canonical BCS behavior does
not alter the qualitative outcome of the analysis, in order to
have a uniform comparison of the various regimes, we have
determined the conductances by taking the BCS profile for
the temperature dependence.

Here, N = nx × ny sets the dimension of the layer in terms
of the linear lengths nx and ny, while translation invariance is
taken in the xy plane and nz is the number of layers along the
z axis (Fig. 1). We notice that g is not modified by the electric
field. This is physically plausible because due to screening ef-
fects the electric field cannot induce an inversion asymmetric
potential inside the thin film on distances from the surface that
go beyond the Thomas-Fermi length.
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For completeness, we point out that the ground state of
the investigated model Hamiltonian cannot sustain a time-
dependent phase dynamics under the applied voltage. In order
to get a nontrivial time dependence of the Josephson phase it
is crucial to have two superconducting condensates separated
by an insulator that is thin enough to keep an energy differ-
ence of the Cooper pairs as given by the applied voltage. In
turn, for the examined superconducting multilayered system,
we have only one superconducting condensate. The voltage
difference across the surface layers does not lead to an energy
difference among the Cooper pairs in neighbor layers as they
are not isolated and they are in good electrical contact since
we are dealing with a metallic system. Although there is an
inhomogeneous electrostatic potential at the surface compared
to the inner layers, both the single-particle states and the
Cooper pairs are not localized in the corresponding regions of
the superconductor. Additionally, there is no phase difference
between the superconducting order parameters at the top and
bottom surface layers (or among those at the surface layers
and the neighbor inner layers) because such phase difference
would be associated to a nonequilibrium state with a current
flowing across the slab. Such flow would then lead to charge
imbalance across the superconductor which is energetically
unfavorable and prevented by the electrical screening in the
metallic superconductor. According to these observations, it
is useful to remark that this regime for the phase in the su-
perconducting system can be broken if the superconducting
materials are marked by inhomogeneities in the region where
the electric field penetrates that yield isolated islands or clus-
ters separated by insulating barriers, i.e., spatially distributed
effective weak links near the surface of the superconductor.

Concerning the model Hamiltonian in Eq. (2), we also
observe that it has only one term that is not compatible
with the charge conjugation transformation involved in the
time-reversal-symmetry operation. This term is the interlayer
orbital Rashba interaction which changes sign under a com-
plex conjugation transformation. Such an aspect, however, has
an impact only on the phase of the superconducting order
parameter. This consequence has been taken fully into account
by allowing a complex value for the orbital-dependent order
parameters in the self-consistent simulation of the supercon-
ducting order parameter. Moreover, since this is an interlayer
orbital-dependent charge transfer that is activated by the elec-
trostatic gating only at the surface of the superconductor, it
does not affect the structure of the s-wave pairing in the inner
layers which keeps its form of zero momentum with electron
pairs having opposite spin at k and −k close to the Fermi
surface. We observe that the electric field is a surface per-
turbation and does not influence at all the pairing interaction
in the inner layers of the superconductor; thus the employed
conventional form of the superconducting order parameter is
a physically valid assumption for the examined model. For
completeness, we also point out that a kind of pair density
wave along the z direction (i.e., πz phase) can be achieved
in the strong-coupling regime of orbital Rashba interactions
[29]. The occurrence of this type of pair density reflects the
fact that, due to the electrostatic potential, a reconstruction
of the order parameter can occur along the z direction. This
outcome does not imply a variation in the structure of the
in-plane pairing.

FIG. 2. Thermal evolution of the normalized tunneling conduc-
tance, Gsn(V ), for the SIN junction evaluated in the configuration
with vanishing external electrostatic gating (i.e., for αOR = λ = 0
within the implemented modeling) for several temperatures T below
the superconducting critical temperature Tc. �0 is the amplitude of
the lowest energy excitation for the zero-electric-field state assuming
a uniform profile over the layers of the superconducting order pa-
rameter. The computation has been performed for a superconducting
electrode with nz = 6 layers. For the temperature dependence of the
superconducting order parameter we employ the phenomenological
BCS expression �(T ) = �0

√
cos(πT/2Tc ) [50].

To proceed further, we consider representative profiles of
the superconducting order parameters for the various bands
including the states with π pairing [Figs. 1(c)–(e)] and cor-
respondingly determine the layer-dependent density of states
by computing the energy spectra and the eigenvectors of the
Hamiltonian.

Tunneling spectroscopy in junctions or in scanning tunnel-
ing experiments is an important probe of the density of states
(DOS) of target materials. The current across the junction at a
finite applied bias V is generally expressed as a convolution
of the DOS of the normal metal electrode, Nn(E ), that of
the material upon examination, Ns(E ), and the Fermi-Dirac
function f (E ),

I (V ) =
∫

Nn(E )Ns(E + eV )[ f (E ) − f (E + eV )]dE , (3)

while the conductance is given by G(V ) = dI (V )
dV . For our

purposes we assume that the normal metal in the SIN con-
figuration has a constant density of states in the range of
investigated voltages while the nongated superconducting
electrode in the SIS configuration is described by a conven-
tional BCS-type density of states.

The presence of the Fermi-Dirac distribution in the ex-
pression of the SIN tunneling conductance limits the energy
resolution (i.e., ∼kBT ), with the thermal smearing that often
precludes the detection of features with low intensity and
small energy separation in the density of states. Indeed, the in-
spection of the DOS for the superconducting electrode shows
that there are more fringes and spectral features at energies
that are smaller than the thermal smearing. In Fig. 2 we report
the thermal evolution of the SIN tunneling conductance by
assuming that the superconducting electrode is described by
the tight-binding model Hamiltonian of Eq. (2). Here, we take
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a representative case with nz = 6; the analysis with a larger
number of layers does not affect the overall spectroscopic
outcome. Additionally, we assume that the superconducting
order parameter is spatially uniform and independent of the
orbital index. This position has two main motivations. It
is substantially consistent with the typical profiles that are
obtained by fully minimizing the free energy with layer-
dependent superconducting order parameters, as explicitly
depicted in Figs. 1(c)–(e). Additionally, in order to single
out the spectroscopic fingerprints that uniquely arise from the
modification of the electric field, through the orbital Rashba
interactions, it is convenient to neglect the small amplitude
differences between the superconducting order parameters in
different bands. This strategy is quite neat because it helps in
clarifying the impact of the electric field without mixing with
other effects related to pairing amplitude variation. Indeed, the
presence of the multigap structure of superconductors leads
to other features in the tunneling conductance, and its spec-
troscopy detection is an intricate problem that stands alone
even without the application of the electric field [51].

Furthermore, for the junction’s electrode subjected to the
electrostatic gating, we explicitly compute the density of
states for a multilayered superconductor as described by the
model Hamiltonian in Eq. (1). Here, the analysis of the elec-
tronic energy states and the corresponding eigenfunctions is
performed within the whole Brillouin zone and, then, by eval-
uating the momentum integration of the Bogoliubov energies,
taking into account the band and layer dependence of the
superconducting order parameters [Figs. 1(c)–(e)].

The outcome in Fig. 2 sets the reference for our analysis
for the configuration with vanishing electric field. As expected
the conductance has a peak at voltages Vmax ∼ �0 and the po-
sition of Vmax moves to values of ∼1.5�0 while approaching
Tc. Furthermore, there is a full gap at low temperature that fills
up uniformly from zero to one as the temperature reaches the
critical temperature.

Replacing the normal electrode with a superconducting one
in the SIS geometry, one can overcome the thermal broad-
ening issues by exploiting the nonlinearities of the density
of states of the probing superconducting electrode. Indeed,
it is well known that the SIS spectroscopy can lead to a
significant enhancement of the resolution of the tunneling
spectroscopy. To set the reference we consider an SIS het-
erostructure where one side of the junction, labeled as S2,
is described by a conventional BCS-type density of states in-
cluding the Dynes phenomenological parameter �, NS2 (E ) =
N0Re[ E+i�√

(E+i�)2−�2
2

]. The parameter � is usually employed

to quantify the consequences of the pair-breaking processes,
while N0 is the value of the density of states at the Fermi level
in the normal metal phase.

In Fig. 3 we show the SIS tunnel conductance for the
case of zero applied gating (i.e., αOR = λ = 0). The outcome
describes the typical profile of the SIS tunnel current and
conductance. Here, we assume that the gap amplitude of
the electrically gated superconductor (S) is �S = �0 while
that of the conventional electrode (S2) is �S2 = 2.5�0. The
current profile exhibits the typical peak when the applied
voltage matches the difference of the gaps, V− = �S2 − �S

(1.5�0), and the rapid increase at the sum of the gaps,

FIG. 3. (a) Normalized tunneling current Iss(V ) and (b) conduc-
tance Gss(V ) for an SIS2 junction in the absence of an applied
electric field (i.e., for αOR = λ = 0) as a function of temperature.
For S2 we are considering a conventional BCS superconductor with
�S2 = 2.5�0. The vertical gray lines mark the position of the bias
voltage V− = �S2 − �S and V+ = �S + �S2 at zero temperature,
with �S = �0. In the insets we show a zoom in the voltage bias
region where the matching peaks occur.

V+ = �S + �S2 (3.5�0). The peak at V− becomes visible
and more pronounced with reduced temperatures T/Tc get-
ting above about 0.5. This structure in the current profile
gives a nonmonotonous behavior for the conductance with
a change of sign close to V−. Furthermore, the rapid upturn
of the current corresponds to a peak in the conductance that
moves to lower voltages while increasing the temperature
upon reaching Tc. We notice that for voltages above V+ there
are small-amplitude oscillations in the conductance that re-
flect the intrinsic features of the electronic structure in the
layered superconducting thin film described by the Hamilto-
nian in Eq. (1).

III. RESULTS

In this section we present the evolution of the SIN and SIS
tunneling conductance due to the application of an electro-
static gating onto one superconducting electrode constituting
the junction. The gating can drive the superconducting state,
resulting in 0, π , or πz configurations with orbitally polarized
surface states (Fig. 1). Since the amplitude of the micro-
scopic parameters directly affected by the electric field is
generally proportional to Es with a factor that depends on
materials characteristics, we have taken different trajectories
in the phase space spanned by αOR and λ. The focus is on the
low-temperature regime because it can allow to single out the
consequences of the electrostatic gating and distinguish from
the canonical thermal effects in conventional junctions.

A. SIN conductance

Let us start by considering the SIN tunneling conductance
for two representative trajectories in the phase space assuming
that a variation of Es allows us to move along a path with λ that
is smaller [Figs. 4(a)–(c)] or greater [Figs. 4(d)–(f)] than αOR,
respectively. The range of variation for αOR and λ is taken
from 0 to 5�0, with �0 setting the superconducting gap in
absence of external perturbations. This is an energy range for
the electrostatic gating that is suitable for the experimental
observations and also microscopically consistent for covering
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FIG. 4. Tunneling conductance Gsn(V ), normalized to the normal one Gnn(V ), for an SIN junction at low temperature (t = T/Tc = 0.2),
for the 0-SC, π -SC, and πz-SC phases along two given representative trajectories in the parameters space corresponding to the values of the
intralayer (αOR) and interlayer (λ) orbital Rashba coupling that have been employed for the computation: (a)–(c) trajectory with λ < αOR,
(d)–(f) path with λ > αOR. The gated superconductor has a layered geometry with nz = 6 layers.

the allowed phase transitions from 0- to π -paired states. We
remind that λ and αOR depend on Es in such a way that larger
amplitudes for Es would typically lead to a normal phase with
significant orbital polarization at the Fermi level. The strategy
we follow is to explore the response of the three different
phases (i.e., 0-SC, π -SC, and πz-SC) that can be achieved in
a multiband superconductor upon the application of an elec-
trostatic gating independently of their stability in the phase
diagram. This general approach allows us to get a complete
view of the behavior of the tunneling conductance for each
superconducting state in the whole phase space. Beginning
from the 0-SC state we find that the application of the electric
field generally leads to a filling up of the gap [Figs. 4(a)
and 4(d)]. Depending on the ratio between λ and αOR there
can be a high (λ > αOR) or low (λ < αOR) rate of increase
of the quasiparticle in-gap population. This result clearly in-
dicates that the surface interlayer coupling λ is a source of
depairing by orbitally polarizing the electronic configurations
at the Fermi level. This is expected indeed because the λ term
acts as an effective orbital current and can locally break the
time-reversal symmetry. Here, we notice that in the regime
of large λ [Fig. 4(d)] the filling of the gap is accompanied
by the formation of a bump at voltages that are below the
gap edge of the order of ∼0.5�0. Since the impact of the
electrically driven couplings is primarily on the surface, we
argue that such a feature mostly originates from significant
surface reconstruction of the in-gap electronic states.

Another remarkable spectroscopic aspect of the electrically
driven SIN junction refers to the evolution of the maximum of
conductance. Starting from the case at zero applied electric
field we observe that the peak tends to move to voltages
larger than �0 while approaching the boundaries of the ex-
plored phase space. This shift is generally accompanied by

a suppression of the amplitude of the conductance peak. A
close inspection of the evolution indicates a nonmonotonous
behavior of the voltage position (Vmax) of the conductance
peak. In fact, in the regime of λ and αOR being compara-
ble to �0, corresponding to the A-C path, with λ > αOR in
Fig. 4(d), Vmax tends to decrease to lower voltage intensity.
The overall trend keeps being nonmonotonous also along the
D-E path. Although the inward shift is typically small, this is
a qualitative distinctive mark that can be also experimentally
detectable.

Let us now move to the π -paired phase. In this context, we
deal with two possible configurations with uniform (π -SC) or
spatially inhomogeneous (πz-SC) order parameters along the
z direction of the superconducting thin film [Figs. 1(d) and
1(e)]. For the uniform π -SC case the tunneling conductance
exhibits similar features of those found for the 0-SC case. In-
deed, the increase of the electric field amplitude along the two
identified trajectories in the (λ, αOR) phase space generally
yields growing in-gap conductance contributions [Figs. 4(b)
and 4(e)]. Furthermore, the in-gap bump obtained approach-
ing the point F in the λ > αOR path [Fig. 4(e)] is robust as
it occurs in the π -SC state too. When considering the evo-
lution of the maximum of conductance, some differences are
encountered with respect to the 0-SC configuration. Indeed,
we find that the peak moves monotonously to high voltages
irrespective of the type of trajectory in the phase space. In
particular, we find that for the path with λ > αOR the maxi-
mum can shift up to V ∼ 1.5�0. Thus, in the uniform π -SC
phase the conductance peak is suppressed and can move to
large voltage amplitudes. The shift is particularly pronounced
for the trajectory with λ > αOR.

Finally, we study the SIN conductance for a supercon-
ducting electrode that is marked by πz pairing. In this
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configuration, we have that 0-SC and π -SC coexist in the
thin film as they occur in different layers along the confining
direction. More specifically, for the analyzed layered super-
conductor the top and bottom surface layers have no interband
phase shift, while the remaining layers are marked by π pair-
ing. Hence, apart from the intrinsic interband phase shift at
the Fermi level, the superconducting order parameter exhibits
an amplitude spatial modulation with a sign change when
moving along the z direction. This is similar to unconventional
pairing with spatial modulation of the amplitude as for the
case of the Larkin-Ovchinnikov state [52]; such variation is
expected to result in nodal excitations or to generally bring
an effective suppression of the superconducting gap. This
is indeed obtained when considering the limit of vanishing
electric field. The zero-bias conductance in that case is large,
indicating a substantial contribution of in-gap electronic states
near the Fermi level. Then, a variation of the orbital Rashba
couplings drives an increase of the in-gap conductance which,
however, is of the same order of magnitude of that observed
in the uniform 0-SC and π -SC phases. The evolution of the
peak in the conductance also shows a trend with an increase
of the voltage and a suppression of the amplitude as one moves
along the two selected trajectories. In particular, the shift
of the conductance maximum is amplified when proceeding
along the path corresponding to λ > αOR reaching a value of
Vmax ∼ 1.5�0.

At this point it is instructive to compare the profile of
the conductance as a function of the applied electrostatic
gating (Fig. 4) with that obtained by varying the temperature
(Fig. 2). In Fig. 2 we have shown the canonical temperature
dependence of an SIN junction for a conventional BCS super-
conductor. The thermal effects induce a filling up of the in-gap
conductance with a suppression of the maximum amplitude
and a shift of its peak position at high voltages while ap-
proaching the superconducting transition temperature Tc. We
notice that the increase of the conductance is quite uniform
within the gap while the zero-bias amplitude approaches its
normal value close to Tc. On the other hand, it is unexpected
that at given temperature the application of an electrostatic
gating leads to a similar qualitative trend when compared to
the thermal drive. This implies that the SIN tunneling con-
ductance with the superconducting electrode subjected to an
external electric field can yield outcomes which in principle
are difficult to distinguish from thermal effects. In particular,
the analogies are evident for the π phases. Instead, the non-
monotonous evolution of the maximum of the conductance
upon the application of an electrostatic gating for the 0-SC
case represents a mark of unique electric effects in SIN tun-
neling detection, although such consequence is expected only
in the regime of small electric field amplitudes.

B. SIS conductance

Having shown that the SIN tunneling conductance cannot
directly provide distinctive features to disentangle the role of
electrostatic gating from thermal effects, we discuss the major
differences that can be extracted once considering the SIS
spectroscopic response.

As for the SIN tunneling, the strategy is to search for
clear-cut fingerprints which might be used to assess the nature

of electrically driven superconducting phases by exploring the
0-SC, π -SC, and πz-SC states. In Sec. II we have shown that,
for SIS2 heterostructures with inequivalent superconducting
electrodes, a maximum in the conductance is expected to
occur at voltage positions that correspond to the difference
and sum of the superconducting gaps, with the former being
pronounced only above an effective temperature. Hence, it is
relevant to ask about the impact of the electric field in the
energy range where the matching peak and the characteristic
conductance features manifest. Furthermore, taking a temper-
ature where the lowest voltage matching peak is vanishing
and not detectable, it is also worth evaluating whether the
electric field can induce it, thus mimicking thermal effects as
in SIN tunneling spectroscopy, or bring substantially different
consequences.

In Figs. 5(a) and 5(d) we present the evolution of the
SIS2 conductance for the 0-SC phase assuming that �S = �0

and �S2 = 2.5�0. This choice is convenient for having well-
separated characteristic voltages at the sum and difference
of the superconducting gaps. At zero applied electric field
the SIS tunneling conductance is basically marked by a main
peak at V+ = 3.5�0 with satellite features at higher voltages
oscillating around the normal-state value. The variation of
the surface orbital Rashba couplings along the paths with λ

greater or smaller than αOR leads to distinct trends for the main
peak. Indeed, for the trajectory with λ < αOR [Fig. 5(a)] we
observe a reduction of the intensity of the main conductance
peak at V+ that evolves into a dip accompanied by two peaks
at voltages below and above V+. On the other hand, when
considering the λ > αOR [Fig. 5(d)] we have that the reduction
of the spectral weight of the peak at V+ is accompanied by a
downward shift of the conductance structures at low voltage
bias. The result is a changeover from a single peak at V+
into two structures, staying at V+ and another one developing
at V∗ ∼ 3�0. The presence of the conductance peak at V∗ is
connected with the bump structure developing in the DOS of
the superconductor subjected to the electric field, at voltages
inside the gap of the order of 0.5 �0 (Fig. 6). We argue that
the substantial filling up of the gap when λ is larger than αOR

is the source of the peak formation in the SIS conductance
at lower voltages with respect to V+. Furthermore, for this
regime of coupling there is also a significant spectral weight
redistribution at high voltages above V+.

Let us now move to the π -paired phases. As reported in
Figs. 5(b) and 5(e), for the uniform π -SC case, we observe
that the SIS conductance exhibits a profile having strong
similarity with that of the 0-SC phase. Indeed, the variation
of the electrically driven surface couplings suppresses the
main peak at V+ which evolves into multiple structures with a
broad distribution with respect to the case without an applied
electrostatic gating. The width of the conductance spectra is
generally larger for the λ > αOR trajectory, thus confirming
the dominant role of the λ coupling in yielding nonstandard
spectroscopic features. However, in this regime, differently
from the 0-SC case [Fig. 5(d)], we find that the distribution
of the spectral weight keeps being symmetric around V+.

Finally, we discuss the SIS spectroscopic behavior as-
suming that one superconducting electrode is in the πz

superconducting phase [Figs. 5(c) and 5(f)]. As we have
understood from the SIN tunneling conductance, the πz-SC
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FIG. 5. Superconducting tunneling conductance Gss(V ), normalized to the normal state configuration, for an SIS2 junction at low temper-
ature (t = T/Tc = 0.2), for 0-SC, π -SC, and πz-SC phases along two given representative trajectories in the parameter space corresponding
to the values of the intralayer (αOR) and interlayer (λ) orbital Rashba coupling that have been used for the computation: (a)–(c) path with
λ < αOR, (d)–(f) trajectory with λ > αOR. For S2 we are considering a BCS-type superconductor with �S2 = 2.5�0. The vertical gray lines
mark the position of V− = �S2 − �S , V2 = �S2 , and V+ = �S + �S2 , with �S = �0. The gated superconductor S has a layered geometry with
nz = 6 layers.

phase is associated with a significant spectral weight in the
gap. Then, already in the regime of small λ and αOR, a non-
vanishing conductance structure is obtained at voltage bias of
V2 = �S2 . The resulting shoulder in the conductance spectra
extends down to about 2�0 while moving along the trajec-
tories in the phase space from A to F [Figs. 5(c) and 5(f)].
We also notice that the changeover of the conductance is
not equivalent when comparing the paths with λ < αOR or
λ > αOR. In the former, the maximum of the conductance
stays at V+ while for the case with λ > αOR the peak at V+
becomes broad and flat.

A relevant outcome of the above analysis is that although
the main peak of the SIS conductance gets modified there are
no traces of other structures emerging at a voltage bias that
matches the difference of the superconducting gaps in the two
electrodes. Furthermore, by a comparative inspection of the
SIS tunneling conductance we can state that the main con-
ductance peak gets generally suppressed by the application
of an electrostatic gating, resulting in a spectral redistribution
with asymmetric features and broad structures whose profile
is sensitive to microscopic details and to the character of the
electrically induced superconducting phases.

The observed features are directly linked to the modifi-
cation of the DOS in the superconductor within the various
induced phases (Fig. 6). The quasiparticle peak at the gap
edge typically shifts to high energies and gets suppressed in
amplitude. The trajectory with λ < αOR leads to an in-gap
structure below the gap edge that moves inwards within the
gap accompanied with a slight increase of spectral weight as
the strength of the electrostatic gating grows. In this regime,

the main differences between the 0, π , and πz phases occur
close to zero energy. In fact, the πz configuration shows an
enhanced filling up of the spectral weight in the gap due to
the spatial sign change of the order parameter along the z
direction of the superconducting slab. As a consequence, one
observes a nonvanishing conductance already around V2 =
�S2 [Figs. 5(c)–(f)] even for small values of αOR and λ. On
the other hand, when considering the trajectory with λ > αOR

the suppression of the peak at the gap edge is generally more
pronounced as well as the increase of the in-gap spectral
weight. When considering the π and πz phases the peak at
E ∼ �0 loses its spectral weight and develops into multiple
structures both at higher energies and inside the gap.

IV. DISCUSSION AND CONCLUSIONS

In conclusion we have unveiled the main spectroscopic
features that would arise in SIN and SIS junctions with one
electrode being a conventional superconductor subjected to
an electrostatic gating that can drive the formation of orbital
antiphase paired phases by means of strong orbital Rashba
effects at the surface. Our theoretical analysis reveals a com-
plete set of distinctive marks for spectroscopically accessing
the electrically induced superconducting phases and suggests
an experimental way to disentangle thermal population unbal-
ance from effects that are mainly due to the variation of the
electric field strength.

The analysis has been performed in a way to track the gen-
eral evolution of the driven superconducting phases moving
from the regimes of weak to strong gating amplitude. This
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FIG. 6. Zero-temperature density of states of layered superconductor (with nz = 6 layers) subjected to an electric field through the
modulation of the surface orbital Rashba couplings. For clarity the superconducting DOS (Ns(E )) is scaled to the normal-state one (Nn(E )).
The DOS from B to F are shifted along the vertical axis by 2. We investigate two representative paths in the [λ, αOR] parameter space with (a)
λ < αOR (tr1) and (e) λ > αOR (tr2), respectively. Evolution of the density of states for the trajectory tr1 in the (b) 0-SC, (c) π -SC, and (d)
πz-SC phases, respectively. The behavior of the density of states for the trajectory tr2 is depicted for the (f) 0-SC, (g) π -SC, and (h) πz-SC
phases, respectively. In-gap structures are more pronounced for the path tr2. The suppression and shift of the peak at the gap edge is generally
observed with an amplitude that depends on the character of the superconducting phase.

approach is particularly useful in a system where the electro-
static field can lead to different types of transitions of the type
0-π or 0-π -πz [26,29]. Here, the transitions are substantially
accompanied by a phase rearrangement rather than an ampli-
tude reconstruction of the band-dependent order parameters.
In this scenario, our results demonstrate that, since both SIN
and SIS conductances share similar qualitative characteristics
in the spectra while moving in the electric parameters phase
space, we expect to observe smooth changeover across the
transitions which would be substantially manifest by a vari-
ation of the spectral weight in the conductance. This is an
important outcome of the study because it tells that there will
not be dramatic reconstructions of the conductance. On the
contrary, one needs to track changes of the states in the gap or
close to the conductance peak to identify the character of the
electrically reconstructed superconducting states in the super-
conducting thin film. In particular, depending on whether the
interlayer orbital current processes are more relevant than the
intralayer ones, the conductance both for the SIN and SIS can
exhibit more pronounced features in the conductance. This
is, for instance, the case of the shift to high voltages of the
conductance maximum in the SIN configuration for the πz

phase compared with the 0-SC configuration which instead
has a nonmonotonic behavior.

Another relevant concluding observation refers to the role
of the thermal effects. We have demonstrated that the SIN
conductance exhibits variations associated to a change of
the electric field amplitude that can share wide similarities

to those due to an increase of the temperature in the ab-
sence of an external electrical perturbation. This implies a
difficulty to disentangle the two effects especially when the
gating can also lead to heating or a thermal gradient in the
device. For this reason, we propose to combine the SIN
with SIS tunneling probes. Our analysis indeed shows that
at low temperature the electric field would not lead to the
characteristic matching peak which is instead observed due
to thermal excitations in conventional SIS junctions with dif-
ferent gap amplitudes. Finally, for the SIS configuration we
have found that the application of an orbital polarizing electric
field leads to a peculiar reconstruction of the main conduc-
tance peak with multiple structures whose profile is intricately
tied to the character of the gate-driven superconducting
states.
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FIG. 7. Behavior of the orbital-dependent superconducting order parameter �α (α = a, b, c), calculated with an iteratively self-consistent
approach, for a system with nz = 6 layers, t⊥ = 1.5t , orbital Rashba coupling αOR = 0.2t . (a)–(c) We report the superconducting order
parameter at T = 0 as a function of the interlayer orbital Rashba coupling λ focusing on the evolution of the first three layers from the
top surface (i.e., iz = 1, 2, 3). The other corresponding layers starting from the bottom surface have the same amplitude. For the selected
parameters we have a transition from the conventional (0-SC) to the π phase (π -SC) for λ = 0.2t . The dots indicate the values of λ for which
the orbital-dependent superconducting OP has been evaluated as a function of the temperature in panels (d)–(i). (d)–(f) We show the behavior
of �(T/Tc ) for the layers iz = 1, 2, 3, also marked in the insets, at λ = 0.1t . In this regime, the superconductor exhibits a conventional SC
phase (0-SC), with all �α having the same sign. (g), (h) The evolution �(T/Tc ) is plotted for λ = 0.3 t , being an interaction amplitude that
stabilizes an orbital antiphase π -pairing state (π -SC), with a superconducting order parameter of a given orbital character having a π shift in
the phase with respect to the other ones. In panels (f) and (h) the gray lines indicate the temperature dependence of the canonical BCS gap
as given by the phenomenological expression �(T ) = �0 cos(

√
πT/Tc ). Here, �0 is the value of �α (iz, λ) at T = 0. For the c band in (f) to

mimic the BCS profile for the smaller gap we assume an effective lower critical temperature. In all panels δ0 is the value of �a(λ = 0) at the
surface layer and it is used as a reference scale.

APPENDIX A: ELECTROSTATIC POTENTIAL
CLOSE TO THE SURFACE

Concerning the charge reconstruction, in order to get an
estimate of the induced electron density at the surface of
the metal, we assume the electric field to be uniform in the
xy plane and the induced charge to have a peaked distri-
bution, delta function, at the surface along the z direction,
i.e., ρ(r) = ρSδ(z). Then, for the electric field generated
by the capacitor plates at a distance LC and the thin
superconducting film of thickness d placed inside the ca-
pacitor at equal distances from the two plates, there are two

regions along the z direction with inequivalent profile of the
electrostatic potential V (z). In region I, for −LC/2 < z <

−d/2 or d/2 < z < LC/2, we have V (z) = (VG
LC

)z − VG
2 or

V (z) = (VG
LC

)z + VG
2 , while for region II inside the supercon-

ductor we have V (z) = VII,m[1 + tanh(−λTF(z + d/2)] with
VII,m = − (d+LC )VG

2L for −d/2 < z < 0 and V (z) = VII,p[1 −
tanh(−λTF(z − d/2)] with VII,p = (d+LC )VG

2L for 0 < z < d/2.
By integrating the Poisson equation close to the surface, i.e.,
at z = −d/2, one can obtain the expression for the induced in-
plane charge density, ρS = 4πε0[VG/LC + λTFsech(2λTFd )2].
For typical amplitudes of the applied voltages for the devices
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realized in Ref. [17] and related works, i.e., VG ∼ 50V with
split gates placed at a distance LC ∼ 100 nm, we have that
the variation of the electron density in the unit cell is of
the order of δn = 0.05 (assuming that the thickness d = 50
nm, the in-plane unit cell size is Ac = 4 Å2, and λTF = 4 Å).
Such induced charge for a metal having an average density
at the Fermi energy of ne ∼ 1.0 per unit cell implies that the
overall charge reconstruction due to the electrical gating is
typically of the order of a few percent. Since this variation
is confined at the surface, in turn, it has also a small impact on
the superconducting order parameter both at the surface and
in the inner layers.

Similar conclusions on the negligible impact of the charge
reconstruction in BCS metallic superconductors have been
demonstrated in Refs. [30,53].

APPENDIX B: ELECTROSTATIC POTENTIAL AND
ORBITAL RASHBA COUPLING AT THE SURFACE

The external electric field on the surface of the super-
conductor is parallel to the out-of-plane ẑ direction and thus
the previously derived electrostatic potential close to the sur-
face, at the linear order in z, can be described by a potential
Vs = −Esz with Es being constant in amplitude (assuming the
electric charge e is the unit). Hence, to construct the model
Hamiltonian one has to consider a Bloch state representation
and explicitly evaluate the matrix elements of the electrostatic
potential Vs. Since the translational symmetry is broken along
the ẑ direction due to the finite thickness of the thin film and
the presence of the electric field, the out-of-plane momentum,
kz, is not a good quantum number. Thus, a representation with
a Bloch wave function associated to each layer is the most
appropriate one to evaluate the effects of the electric field and
the way it enters in the tight-binding model. One can use the
index iz to label different Bloch wave functions along the ẑ
direction as follows:

ψk,β (r, iz ) = 1√
N

∑
ν

exp[ik · Rν,iz ]φβ (r − Rν,iz ), (B1)

with the Bravais vector Rν,iz identifying the position of the
atoms in the xy plane for the layer labeled by iz, β indi-
cating the atomic Wannier orbitals, and N the total number
of atomic sites. A central aspect in the derivation is that the
atomic Wannier functions φβ (r − Rν,iz ) span a manifold with
nonvanishing angular momentum L, e.g., p or d states.

The intralayer matrix elements of the electrostatic potential
can be then expressed as

A||
l,m = cψ 〈ψk,l (r, iz )|(−Esz)|ψk,m(r, iz )〉

= cψ (−Es)
1

N

∑
ν,γ

exp[ik · (Rν,iz − Rγ ,iz )]

×
∫

d3rφ∗
l (r − Rν,iz ) z φm(r − Rγ ,iz ), (B2)

with l and m spanning the orbital space, and cψ the normaliza-
tion factor of the Bloch state. Since the Wannier orbitals are
significantly localized around the atomic position, the domi-
nant terms are for nearest-neighbor atoms. When evaluating
those contributions in Eq. (B2) for l �= m we obtain matrix

FIG. 8. Behavior of the orbital-dependent superconducting order
parameter �α (α = a, b, c), calculated with an iteratively self-
consistent approach, for a system with nz = 6 layers and for a set of
parameters such that the superconductor is in the πz phase, namely,
t⊥ = 0.9t , orbital Rashba coupling αOR = 2.0t , and interlayer OR
coupling λ = 0.6t . (a) We report the superconducting order parame-
ter at T = 0 as a function of the layer index iz. (b)–(d) We show the
behavior of �(T/Tc ) for the layers iz = 1, 2, 3, also marked in the in-
sets. In panel (d), the gray lines indicate the temperature dependence
of the canonical BCS gap as given by the phenomenological expres-
sion �(T ) = �0 cos(

√
πT/Tc ), where �0 is the value of �α (iz, λ)

at T = 0. In all panels �00
a (1) is the value of �a(αOR = 0, λ = 0) at

the surface layers and it is used as a reference scale in this figure.

elements that involve the Lx and Ly orbital angular momentum
components and that are odd parity under in-plane spatial
inversion [29]. The resulting term yields the intralayer orbital
Rashba coupling as in Eq. (2). A similar derivation can be
made for the interlayer orbital Rashba term. The form of the
interlayer term is due to the structure of the matrix elements
of the electrostatic potential between Wannier functions in
neighbor layers along the ẑ direction. By evaluating these ma-
trix elements [29], it turns out that the electric field can induce
an orbital polarization on nearest-neighbor atoms in adjacent
layers only if one allows for displacements and/or distortions
of the atoms in the plane with respect to the high-symmetry
positions. A detailed derivation of the interaction is presented
in Ref. [29].

APPENDIX C: TEMPERATURE DEPENDENCE OF
THE SUPERCONDUCTING ORDER PARAMETERS

We have computed self-consistently the order parameters
for each orbital component as a function of the temperature
in order to compare it with the canonical BCS behavior and
assess the possible consequences or deviations concerning
the presented results. The outcome is reported in Fig. 7 for
various representative cases in the phase space. As one can
observe, the orbital dependence of the order parameters man-
ifests in two aspects. The crystal field splitting and the orbital
anisotropy of the kinetic energy can introduce an amplitude
imbalance of the superconducting order parameters in the
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0-SC phase at zero temperature with �c being smaller than
�a and �b [Figs. 7(a)–(c)]. This asymmetry evolves in tem-
perature with the smaller gap typically having a suppression at
temperatures in proximity of the superconducting transition Tc

[Figs. 7(d)–(f)]. As shown in Fig. 7, this behavior is substan-
tially independent of the layer position. The resulting behavior
in the 0-SC phase indicates that all the superconducting order
parameters deviate from the canonical BCS profile [gray dot-
ted line in Fig. 7(f)]. Moreover, the interlayer orbital Rashba
coupling modifies the tail of the small superconducting order
parameter close to the critical temperature when considering
the π phase [Figs. 7(g)–(i)]. In turn, for λ values stabilizing
the π phase, we have that the temperature dependence of the
superconducting order parameters follows quite well the BCS

behavior [Fig. 7(i)]. A similar trend is also obtained for the πz

phase (Fig. 8), where a good degree of matching with the BCS
profile is obtained [Fig. 8(d)]. On the basis of these results, we
conclude that the tunneling conductance evaluated by means
of the BCS profile is suitable in the π and πz phases for fully
reproducing the temperature dependence of the multiorbital
superconducting order parameters. On the other hand, for the
0-SC configuration one can expect that quantitative changes
might occur, especially close to the critical transition. We
argue that, although these outcomes are directly related to
a specific microscopic model, the inequivalent temperature
dependence of the 0 and π phases can manifest in a different
evolution of the main conductance peaks for the SIN and SIS
spectra in the corresponding phases.

[1] K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura,
T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Electric-field-
induced superconductivity in an insulator, Nat. Mater. 7, 855
(2008).

[2] K. Ueno, S. Nakamura, H. Shimotani, H. T. Yuan, N. Kimura,
T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Discovery
of superconductivity in KTaO3 by electrostatic carrier doping,
Nat. Nanotechnol. 6, 408 (2011).

[3] J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and
Y. Iwasa, Superconducting dome in a gate tuned band insulator,
Science 338, 1193 (2012).

[4] A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J.
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