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Compressed sensing for scanning tunnel microscopy imaging of defects and disorder
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Compressed sensing (CS) is a valuable technique for reconstructing measurements in numerous domains. CS
has not yet gained widespread adoption in scanning tunneling microscopy (STM), despite potentially offering the
advantages of lower acquisition time and enhanced tolerance to noise. Here we applied a simple CS framework,
using a weighted iterative thresholding algorithm for CS reconstruction, to representative high-resolution STM
images of superconducting surfaces and adsorbed molecules. We calculated reconstruction diagrams for a range
of scanning patterns, sampling densities, and noise intensities, evaluating reconstruction quality for the whole
image and chosen defects. Overall, we find that typical STM images can be satisfactorily reconstructed down
to 30% sampling—already a strong improvement. We furthermore outline limitations of this method, such as
sampling pattern artifacts, which become particularly pronounced for images with intrinsic long-range disorder,
and propose ways to mitigate some of them. Finally, we investigate compressibility of STM images as a
measure of intrinsic noise in the image and a precursor to CS reconstruction, enabling a priori estimation of
the effectiveness of CS reconstruction with minimal computational cost.
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I. INTRODUCTION

Scanning tunneling microscopy (STM) and spectroscopy
(STS) have become indispensable techniques for electronic,
structural, and magnetic characterization of surfaces with
atomic resolution. STM has enabled investigations of broken
symmetry and vortex interactions in superconductors [1,2],
band-structure mapping of quantum materials [3], and even
manipulation of single atoms [4–6].

However, small tunneling currents limit the rate of current
measurement to the millisecond timescale, so STM measure-
ments are characterized by comparatively long measurement
times [7]. This limitation becomes apparent in experiments
that seek to probe extended surface areas, seek rare events
such as low density defects, and want to strike a balance
between high-resolution measurements in real space and
energy resolution. In such cases, the ability to accurately
reconstruct the underlying periodic and defect structures of
nanoscale samples with reduced measurement times is highly
desirable.

Compressed sensing (CS) shows potential for meeting
this demand. CS is based on the notion that if a basis set
can be found where the signal is sparse (and as a corollary
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the signal is compressible in that basis), accurate recon-
struction is possible using fewer measurements than required
by the Shannon-Nyquist sampling theorem. CS has been
successfully employed for diverse applications, including
radio interferometry [8], nuclear magnetic resonance of pro-
tein structure [9,10], recovery of correlations of entangled
photon pairs [11,12], medical imaging [13,14], and many
more.

An image is compressible by virtue of its sparsity in a
transform domain. Most images in the natural world have a
sparse representation in a plane-wave or wavelet basis, in-
cluding those generated by scanning microscopies. Indeed,
CS has been successfully implemented in scanning electron
[15], atomic force [16], and piezoresponse force microscopy
[17], and quasiparticle interference imaging by STS [7,18].
However, a detailed understanding of the potential of CS for
STM has yet to be developed, particularly with respect to
imaging defects and disorder.

In this paper, we explore the parameter space of a simple
CS framework in the context of representative STM im-
ages from surfaces of superconductors and single molecule
layers (introduced in Sec. II). Our specific focus is to em-
phasize the quality of reconstruction around defects and as
a function of added noise. In Secs. III and IV, the basic
methodology of CS is laid out and the framework is described.
Using a soft weighted iterative thresholding (SWIT) algo-
rithm of practical computational complexity, we performed
reconstructions across variable noise perturbation intensities
and sampling densities. These reconstructions are evaluated
for structural similarity index measure (SSIM) and mean
squared error (MSE) and are used to build reconstruction
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FIG. 1. STM images of FeSe (a), molecular film of
TCNQ/Ag(111) (b), and that of C60/Ag(111) (c), with representative
defects magnified in each inset. (d) The distribution of normalized
constant-current STM height for each image.

diagrams in Sec. V. Our results reveal that accurate recon-
struction can be obtained at sampling densities as low as
20–30% for images with both point and extended nanoscale
defects—i.e., with up to fivefold compression. We also note
artifacts arising in the reconstructions and detail ways of
mitigating these deviations through proper algorithm con-
figuration. To effectively apply CS in practice, it is very
helpful to understand what types of images can be effec-
tively reconstructed. In Sec. V, we show that compressibility
is an effective measure of noise in the STM images and
a necessary, albeit not sufficient, criterion for effective CS
reconstruction.

II. EXPERIMENTAL DATA

We applied CS to representative STM images of a cleaved
100-surface of FeSe superconductor with Se vacancy defects
[19] [Fig. 1(a)] and two kinds of adsorbed molecular layers—
C60 on Ag(111) [Fig. 1(c)] and TCNQ (tetracyanoquin-
odimethane) on highly oriented pyrolitic graphite [Fig. 1(b)].
Each of the sample images have different sizes, lattice struc-
tures, and point or extended defects. Moreover, as seen in
Fig. 1(d), the images represent three kinds of intensity dis-
tribution, centered on low values corresponding to the atomic
lattice in the case of FeSe, a broader and more uniform distri-
bution in the case of TCNQ, and a distinctly bimodal distribu-
tion for C60, owing to a single atomic step of the underlying
substrate and therefore two distinct levels of intensity. Each
of these images were obtained at a similar spatial resolution
on the atomic scale, though they vary in their size. In terms
of pixels, TCNQ is 256 × 256, C60 is 512 × 512, and FeSe
is 1024 × 1024.

III. CS BASICS

Sparsity regularization is a common approach to impose
constraints on undefined optimization problems [20], which
gave rise to CS methodology in the mid-2000s [21,22]. CS
is designed to reconstruct a signal x ∈ Rn×1 from samples
y ∈ Rm×1, where typically m � n. Successful reconstruction
is possible when x has a sparse representation α ∈ Rn×1, i.e.,
in some basis the number of significant coefficients k in α is
small compared to n. A CS reconstruction algorithm computes
α. Once obtained, x is recovered using the basis transform
� ∈ Rn×n:

x = �α. (1)

The sampling process has a matrix representation � ∈ Rm×n

constructed by stacking each measurement vector:

�x = y (2)

Using Eq. (1) to substitute for x in Eq. (2) and setting A =
��, we have

Aα = y. (3)

CS provides a solution α for this undetermined system of
equations by minimizing the sparsity of α under the con-
straints of Eq. (3), expressed as

min‖α‖�0 s.t. Aα = y. (4)

While this approach provides an exact solution, �0 min-
imization is a combinatorial optimization problem that is
computationally expensive, and intractably so for large signals
[22]. Fortunately, the �1 norm can be substituted to convert
the problem into one of convex optimization, where for most
inputs, α is recovered exactly [22].

IV. FRAMEWORK

The CS framework can utilize a variety of (1) sampling
matrices �, (2) transform matrices �, and (3) reconstruction
algorithms. � should necessarily be chosen to ensure spar-
sity in the transform domain but it should also be incoherent
with �. Incoherence, which along with sparsity is a guiding
assumption underpinning CS, dictates that � should be spread
out (i.e., nonsparse) in the transform basis [23]. The algorithm
minimizes the sparsity in α while remaining correlated to the
measurements y [Eq. (3)]. In our implementation of a CS
framework, we use rotated line and Lissajous trajectories as
the sampling patterns, the discrete cosine transform (DCT)
as a basis transform, and a SWIT reconstruction algorithm.
The elements of this framework, with special regard to their
applicability for STM, are discussed in the following.

A. Transform matrix

STM images often exhibit a large amount of order and are
generally smooth (i.e., differentiable in the absence of noise).
As a result, the images lend themselves to sparsity in the
DCT basis (Fig. 2). The DCT transform matrix also has the
advantage of being maximally incoherent with point sampling
matrices [23] and has a fast matrix implementation [24]. This
transform has been utilized in previous applications of CS
[25–27] and has historically been used for JPEG compression

043040-2



COMPRESSED SENSING FOR SCANNING TUNNEL … PHYSICAL REVIEW RESEARCH 3, 043040 (2021)

FIG. 2. Discrete cosine transform of the STM images in Fig. 1,
correspondingly for (a) FeSe, (b) TCNQ, and (c) C60. (d) The inten-
sity of the diagonal coefficients for each DCT, as well as the diagonal
of the DCT for an array of random Gaussian noise, which reveals
sparsity of STM images.

[28]. The discrete wavelet transform is another commonly
used dictionary in CS, thought it works most efficiently with
dense sampling matrices with random entries like those used
for single-pixel imaging and is less incoherent than DCT for
point sampling matrices [24].

B. Sampling matrix

When scanning a surface, it is conventional to use a raster
scan, resulting in an evenly sampled grid of point measure-
ments. The speed of the probe and the sampling frequency
are set based on the demands of the experiment. While the
design of the sampling matrix � in other CS applications is
often flexible (programmable with a spatial light modulator
for optical CS applications, for instance [12]), we are con-
strained to sampling along the continuous path of the probe.
Here, since we are concerned with the algorithmic aspects of
the reconstruction, we chose to use pre-existing STM images
and resample them with the rotated line [Figs. 3(a) and 3(b)]
and smooth Lissajous [Figs. 3(d) and 3(e)] patterns which
make the methods more compatible with fast scanning. The
sampling can furthermore be randomized along the sampling
path, but we have not seen a significant impact from such
randomization.

C. Reconstruction algorithm

As noted, solving Eq. (4) is too expensive to solve with
traditional means. The most common approach for relaxing
this constraint is to instead minimize the L1 norm, allowing
for a family of problems that can be solved through convex
optimization algorithms such as LASSO and basis pursuit

FIG. 3. The path of the rotated line pattern is shown in (a), with
simulated start and end points denoted by green and red circles.
Despite sparse sampling of the image (b), very good CS reconstruc-
tion is achieved (c). The same process is also shown for Lissajous
trajectory (d)–(f). Reconstructions in this figure performed for 20%
sampling density and 100 iterations.

denoising. Greedy iterative algorithms, which seek a solu-
tion by making locally optimal decisions, offer an alternative
approach. While they tend to be less effective than convex
optimization methods [29], they have been shown to be just
as effective in certain cases and, importantly, offer reduced
computational complexity and robustness to noise. A subclass
of this family are the iterative thresholding [30] algorithms,
which have an iterative form of

αi = ηt (αi−1 + κAT (y − Aα)) (5)

The nonlinear thresholding function ηt performs elementwise
operations on a vector input and κ is a relaxation parameter
that allows the algorithm to converge. Two often implemented
variants of ηt are the hard [31] and soft [32] threshold
operators:

ηh
t (x) =

{
x, |x| > t
0, |x| � t,

ηs
t (x) =

{
sgn(x)(|x| − t ), |x| > t
0, |x| � t .

(6)

The threshold t can be fixed, which allows the sparsity of α to
vary. Alternatively, the desired sparsity of the solution can be
specified, allowing t to fluctuate as required in each iteration.
Studies applying CS to atomic force microscopy images show
better reconstruction using the soft variant [24], which can be
further improved by using a soft weighted operator [16] to
apply weights w ∈ Rn×1, where each weight wi is associated
with a coefficient αi:

ηws
t (x) =

{ 1
wi

sgn(x)(|wix| − t ), |wix| > t
0, |wix| � t .

(7)

By tuning the weights to model expected DCT dispersion,
weighted iterative thresholding algorithms tend to outperform
their nonweighted counterparts [16]. In our experiments, we
utilize ηws

t as part of a SWIT implemented in PYTHON [16] as
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follows:

α = 0
r = y
for i in Imax:

c = AT r
α = ηws

t (α + κc)
r = y − Aα

if ‖r‖�2 < ε‖y‖�2 :
break

For our reconstructions, we initialize α to 0 (though if prior
information is known about the image, α can be initialized to
an educated guess), and the stopping condition is defined by
the residual-measurement ratio. Unless otherwise noted, we
specify a 5% sparsity level, allowing the threshold t to fluc-
tuate. Based on recommendations in the literature [16,29,33],
we set κ = 0.6 and ε = 0.001. The initial weights of the soft
thresholding function ηws

t used in these reconstructions are
adopted from a Gaussian model of DCT structure in Ref. [16],
which was used to successfully reconstruct atomic force mi-
croscopy images. The maximum number of iterations Imax

was set to 100 due to computational considerations, though in
our experiment we found that reconstruction tends to improve
up to around 300 iterations—and sometimes many more—-
before plateauing.

D. Quality assessment

Using a CS framework composed of a DCT transform in
combination with the noted sampling patterns and implemen-
tation of the SWIT algorithm, we evaluated the algorithm
while systematically varying the noise intensity δ and sam-
pling density ρ to understand the limits of the reconstruction.
While iterative thresholding algorithms are noted for being
noise robust [34], little investigation has been carried out to
confirm this for reconstruction of STM images. To test this, we
generated 1/ f noise and added it to values along the simulated
measurement path so as to mimic varying noise levels during
measurement. The noise perturbation scale for each image
was normalized to range from 0.1–1 of the highest-peak full
width at half maximum (FWHM) in the intensity histogram of
the image [Fig. 1(d)]. Rotated line and Lissajous sampling pat-
terns were implemented across ρ from 0.02–0.5. The patterns
used here were generated using magni [33], a CS PYTHON

package for atomic force microscopy.
For each reconstruction in this δ-ρ parameter space, the

quality of the reconstructed image was evaluated for SSIM
and MSE. SSIM was calculated using the default implemen-
tation in SCIKIT-IMAGE [35], itself adapted from Ref. [36]. The
MSE is calculated in the standard way,

1

N

∑
(χ − x)2, (8)

where N is the number of pixels, x is the reconstructed image,
and χ is the base image.

FIG. 4. Reconstructed images for ten-, five-, and twofold un-
dersampling for TCNQ (a)–(c), C60 (d)–(f), and FeSe (g)–(i), with
magnified defects in insets. All reconstructions were performed for
100 iterations using the rotated line sampling pattern.

V. RESULTS

Our first observation is that CS is generally very good at
reconstructing STM images even at a sampling density as low
as 20% of the original image [Figs. 3(c), 3(f) and 4]. To as-
certain that this conclusion applies not only to spatial order in
the images but also to defect sites, we have identified defects
using scale-space methods for detection of protrusions (using
Laplacian of Gaussian filter [37]), and then built local masks,
comparing reconstruction in that local region. As seen in the
insets of Fig. 4, single vacancies in FeSe and extended defects
in the TCNQ film (missing molecules) do indeed reconstruct
well for the rotated line pattern. In fact, at 50% sampling
density, the reconstructed defects are nearly indistinguishable
from their unsampled counterparts.

The rotated line δ-ρ reconstruction diagrams (Fig. 5)
demonstrate our method’s robustness to moderate 1/ f noise.
All reconstructions have high SSIM above sampling density
ρ ≈ 30%, which only begins to degrade at noise perturbations
of 0.4 for TCNQ and 0.8 for FeSe. While high-noise distor-
tions are apparent in the reconstructions of TCNQ [Fig. 5(a)]
and FeSe [Fig. 5(c)], the simplicity of FeSe’s vacancies and
the regularity of its lattice likely lead to smoother SSIM falloff
at high noise. The transition for C60, in stark contrast, exhibits
a much smaller sensitivity to added noise [Fig. 5(e)]. C60 also
exhibits a sharp transition from low to high SSIM (poor to
good reconstruction) at sampling density around 30%, which
exceeds the transition point of the other samples by 10–20%.
Visual examination of the reconstructions reveals the presence
of sampling pattern artifacts at low SSIM which disappear af-
ter the transition line [Fig. 5(h)]. The reasons for this deviation
will be discussed further below.
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FIG. 5. Reconstruction diagrams for TCNQ, C60 and FeSe for the rotated line (d)–(f) and Lissajous (m)–(o) patterns, with relevant
reconstructions shown above and below the diagram for each sample. The diagram plots SSIM of the reconstructed image versus intensity
of noise perturbation intensity (δ) and sampling density (ρ). The parameters used for the reconstructions in the top row are marked by black
squares in the respective diagrams; the bottom row parameters are marked by white circles.

In contrast to the rotated line pattern, the Lissajous pattern
suffers from reduced sampling density toward the center of
the image and larger gaps throughout. This leads to sampling
artifacts [Figs. 5(k) and 5(q)] and difficulties in reconstructing
small-scale and centrally located image structures. As a result,
the rotated line achieves a higher peak SSIM than Lissajous,
though the reconstruction diagrams for the latter show greater
noise robustness in the moderate-to-high noise regime. Given
that CS is predicated on the principle of compression, we
explored the extent to which our CS results correlate to im-
age compressibility for typical STM images [Fig. 6(a)]. For
comparison, we included simulated images, a pseudorandom
image sampled from a uniform distribution [Fig. 6(b)], and
an image of an ordered lattice [Fig. 6(c)]. We evaluated com-
pressibility via a sequence of DCT transform, elimination of
select coefficients, a back-transform, and, finally, calculation
of MSE relative to the uncompressed image. The pseudo-
random image displays the highest MSE across compression
sizes [Fig. 6(a)], i.e., it is most incompressible, while the
ordered lattice is the most compressible and, correspondingly,
displays the slowest and fastest drop of MSE as a function
of compressed size. The STM images fall between these two
extremes. Intriguingly, there is a very significant difference
between individual experimental images, which actually goes
against the trend that may be inferred from the visual in-
spection of the original data in Fig. 1. C60, not TCNQ nor
FeSe, is the most compressible image, while FeSe is notably
less compressible than either TCNQ or C60. The difference
in compressibility stems from the signal-to-noise ratio that
characterizes these images. To ascertain that this is the case,
in Fig. 6(d) we plot compressibility of the TCNQ image as
a function of strength of added Gaussian noise (measured
as a fraction of the largest signal in the image). The com-

pressibility curve very clearly shifts up, traversing nearly the
whole range of compressibility in Fig. 6(a) and eventually
becoming equivalent to noise. We note that the STM images

FIG. 6. Compressibility of STM images (a), along with random
noise (b) and an ordered lattice (c) via DCT transform. The MSE
curves as a function of compressed size were normalized against the
peak value for each curve. Compressibility of TCNQ for varying
levels of Gaussian noise applied to TCNQ (d) (curves increase in
noise level from bottom to top). (e) Parametric plot of compression
error versus CS reconstruction error with added Gaussian noise as a
parameter. The curves were calculated for three values of compres-
sion (0.04, 0.1, and 0.2).
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FIG. 7. Reconstruction diagrams of CS reconstruction of TCNQ
[(a), (d)], C60 [(b), (e)], and FeSe [(c), (f)] calculated for rotated line
(top row) and Lissajous (bottom row) sampling patterns using MSE
quality metric. Insets show diagrams for defects. All reconstruction
diagrams have been normalized to their respective maximum MSE.

used here were all acquired on different days, with different
physical tips and different instrument conditions. The ability
to evaluate the STM image via compressibility appears to
be a valuable measure of the data quality and experimental
results.

We now show that compressibility also generally correlates
with the performance of CS. In Fig. 6(e), we parametrically
plot the normalized CS reconstruction error versus the nor-
malized DCT compression error, with noise as a parameter.
For fivefold compression (20% sampling, green curve), the
correlation is reasonably good, which confirms our notion.
However, for larger compressions at 10% and 4% sampling,
CS systematically produces higher errors than obtained by
DCT compression, which reduces the correlation between the
two techniques. We speculate that these deviations are partly
due to CS being sensitive to the compatibility of sampling
and transform matrices with each other and with the image,
and possibly due to finer details of the algorithm and its
hyperparameters.

A striking disparity, however, appears for C60, which is
the most compressible of the typical STM images [Fig. 6(a)]
but requires the highest sampling density to achieve a qual-
ity CS reconstruction [Fig. 5(e)]. Interestingly, C60 generally
performs the best with regard to both the SSIM (Fig. 5) and
MSE (Fig. 7) reconstruction diagrams, followed by TCNQ
and then FeSe. So, the best reconstruction here correlates to
the superior compressibility of the C60 image. But below the
transition line, C60 performs worst for both metrics. Resolving
this puzzle depends on an understanding of how and when
sampling pattern artifacts appear. We have found that artifacts,
including those in Fig. 5(h), can be removed by properly
configuring the SWIT algorithm. Small disturbances can be
removed by increasing the number of iterations, but more
prominent artifacts require increased iterations and/or spe-
cialized setup of the threshold function [Eq. (8)] as explained
below.

In each iteration of the SWIT, the threshold function
weights each coefficient using a DCT model [Fig. 8(a)] and,
based on a specified threshold ratio, keeps a certain number of

FIG. 8. (a) A wide-variance DCT weight model used to recon-
struct C60 for Lissajous (b) and rotated line (c) patterns using 300
iterations and a 1% threshold on the number of nonzero coefficients.
The low-frequency corner snippet of a low-variance model is shown
in the inset of (a), and the diagonal coefficients for both models and
each sample DCT are displayed in (d). Reconstructions using the
low-variance model are shown for Lissajous (e) and rotated line (f).

coefficients while setting the rest to 0. We show that setting the
threshold ratio to 1% instead of 5%, running for 300 iterations,
and minimizing the variance in the weight model, the artifacts
can be removed from C60. Reconstruction with the Lissajous
pattern was more responsive [Figs. 8(b) and 8(e)] to the wider
DCT-model variance used to compute Figs. 5 and 7, whereas
the rotated line reconstructions improved [Figs. 8(c) and 8(f)]
only with severely minimized variance [Fig. 8(a), inset] which
effectively imposed a very sharp cutoff of the low-pass filter
[Fig. 8(d)].

To determine the best thresholding function parameters,
we evaluated C60 and TCNQ via SSIM across a range of
threshold ratios and variances (Fig. 9). We see that SSIM
falls off for TCNQ at low threshold ratios for all variances
σ , and in the limit of low σ and threshold ratio—a trend
consistent for both sampling patterns. This behavior is ex-
pected, as reducing threshold ratio and decreasing σ are both
tantamount to applying an increasingly strong low-pass filter
[Fig. 8(d)]. Surprisingly, the filtering at low σ and threshold
ratio produces distinctly higher SSIM for the defect compared
to the global image, though visual inspection revels intense
lattice warping. In contrast to TCNQ, which has similar trends
in performance for both patterns, C60 is quite different. For
Lissajous, the SSIM falls off at threshold ratios around 20%
independently of σ . The rotated line maintains high SSIM at
low σ , though a transition line develops with increasing σ that
exponentially confines good SSIM to low threshold ratios.
While the global diagrams for C60 are seemingly immune
from SSIM degradation at low threshold ratio, the defect dia-
grams show a slight dip. Visual inspection of reconstructions
in this regime reveals heavy and unsatisfactory smoothing
which retains a resemblance of the step defect and an ac-
cordingly high SSIM. For the samples and patterns shown in
Fig. 9 though, overlapping high-SSIM regions across global
and defect diagrams provide guidance on the optimal param-
eter space for defect-lattice reconstruction and provide proof
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FIG. 9. SSIM evaluated for CS reconstructions of TCNQ [(a),
(c)] and C60 [(b), (d)] across varying levels of σ (the width of
the variance in the DCT weight model) and threshold ratio (the
relative number of of nonzero coefficients used by the reconstruc-
tion algorithm). The top and bottom rows, respectively, correspond
to reconstructions performed using Lissajous and rotated line sam-
pling patterns. All reconstructions performed with sampling density
ρ = 0.2.

of principle for effectively tuning the thresholding function
parameters.

To better understand the rather unexpected behavior of C60,
we refer back to its DCT [Fig. 2(c)]. TCNQ and FeSe exhibit
compact density at low frequencies (upper left corner) in DCT
[Figs. 2(a) and 2(b)], with clear peaks corresponding to or-
dered structure. For C60, the DCT is not only more spread out
at low frequencies but also reveals two vertical broad bands of
finite intensity. By filtering out the various parts of the DCT,
we have verified that the bands are produced by a combina-
tion of the step in the middle of the image and randomized
short-range orientations of individual C60 atoms [upper inset
of Fig. 9(d)]. Indeed, it is well known that C60 films are
orientationally disordered due to multiple energy-equivalent
orientations of the buckyball frame of the molecule [38].
Technically, the structure lacks long-range order in this case,
which we postulate leads to complex frequency-domain inter-
actions with sampling patterns and the thresholding function
that compromise the performance of the algorithm, particu-
larly at lower sampling density. As a corollary, the anomalies
in CS reconstruction can potentially reveal interesting proper-
ties of the image, such as the lack of long-range order.

In our studies, SSIM proved to be a faithful reconstruc-
tion quality metric in terms of capturing the influence of
unwanted artifacts. While MSE was able to capture general
trends, the metric lacks SSIM’s useful universal scale, mak-
ing cross comparison of images and phase diagrams more
difficult. Furthermore, MSE is not adept at capturing struc-
tural artifacts [39] and this flaw is displayed in reconstruction
diagrams created using the metric (Fig. 7). While they moder-
ately resemble those for SSIM (Fig. 5), these diagrams fail

to properly differentiate between good reconstructions and
those marred by artifacts. As a particularly harsh example, the
poorly reconstructed image of TCNQ at noise intensity and
sampling density both equal to 0.1 yields a poor SSIM but
an MSE closer to average. At the same parameters for FeSe,
the metrics show a reverse trend, though visual inspection of
the reconstruction here yields largely intact long-scale struc-
ture and perturbed small-scale structure, i.e., the lattice and
defects. This indicates that the right choice of quality metric
may be dependent on the feature of interest.

VI. CONCLUSIONS

Our results were attained by applying a simulated CS
approach to previously acquired data sets. Based on these
results, CS could be used dynamically with STM to dramat-
ically reduce measurement time for a given image size or
allow for a larger field of view if measurement time is held
constant. This allows for more efficient sampling of materials,
with greater extent and higher probability to locate regions
of interest. We show lesser but good reconstruction for mod-
erate noise which indicates the robustness and applicability
of this method for real-world STM data collection—benefits
which should readily extend to other scanning probe micro-
scopies. The added noise has a functional equivalence to dwell
time, and the effective noisy reconstruction suggests further
speed-ups as a byproduct of shorter required dwell times.
The outlined methodology is readily applicable to imaging of
periodic structures, but also to defects and imperfections. It is
clear that with proper thresholding initialization, satisfactory
reconstruction can be obtained without the presence of sam-
pling pattern artifacts. However, since the optimal parameters
are sensitive to differences between images and sampling pat-
terns, to properly set the weights it is advisable to inform the
model with prior imaging of a similar sample. Future studies
evaluating algorithm parameters across many images could
help determine the effectiveness and consistency of leveraging
prior knowledge for reconstruction.

We intentionally used a simple framework to set up a base-
line on which future improvements in CS reconstruction can
be made. It is important to note though, that CS is a highly
extensible framework open to more intelligent and in situ
approaches to determine the most effective sampling path and
select successful algorithm parameters and transform matri-
ces. Intriguingly, anomalies in CS reconstruction, such as the
ones we observed with C60 may signal interesting properties
of the material, such as the lack of long-range order or dy-
namic processes in the experiment, which can then be studied
with higher fidelity. The code and data used and developed in
this paper is available on Github [40].
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