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Non-Markovian temperature sensing
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We investigate the sensing performance of a single-qubit quantum thermometer within a non-Markovian
dynamical framework. By employing an exactly numerical hierarchical equations of the motion method, we go
beyond traditional paradigms of the Born-Markov theory, the pure dephasing mechanism, and the weak-coupling
approximation, which were commonly used in many previous studies of quantum thermometry. We find (i) the
non-Markovian characteristics may boost the estimation efficiency, (ii) the sensitivity of quantum thermometry
can be effectively optimized by engineering the proportions of different coupling operators in the whole
sensor-reservoir interaction Hamiltonian, and (iii) a threshold, above which the strong sensor-reservoir coupling
can significantly enhance the sensing precision in the long-encoding-time regime. Our results may have certain
applications for high-resolution quantum thermometry.
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I. INTRODUCTION

Temperature is the most fundamental cornerstone in the
theory of both classical and quantum thermodynamics. How
to measure the temperature of a quantum reservoir with a
high sensitivity has recently attracted much attention [1–6].
Quantum thermometry pursues a highly precise measuring
of temperature, which can surpass the standard bound set
by classical statistics, with the help of coherence, quantum
squeezing, entanglement, or other quantum resources. In a
typical thermometry scheme, a two-level system [7–9] or a
harmonic oscillator [10–12], working as the quantum sensor,
is coupled to the quantum reservoir of interest. Due to the
sensor-reservoir interaction, the information about the reser-
voir’s temperature is encoded into the state of the sensor.
Then, by measuring a certain sensor’s observables, the knowl-
edge about the temperature can be obtained. A highly sensitive
quantum thermometer has wide applications in the fields of
physics, biology, and material science.

Roughly speaking, there are two totally different quan-
tum thermometers in the present existent temperature sensing
schemes: the fully thermalized thermometer [4,10,11,13–16]
and the partly thermalized thermometer [6–9,17–21]. If the
sensor-reservoir interaction is weak and the encoding time
is sufficiently long, one can regard the sensor as being com-
pletely thermalized, namely, the sensor evolves to its thermal
equilibrium state which is independent of the encoding time.
In many previous treatments [4,13,22], such a thermal equi-
librium state is approximately expressed as a canonical Gibbs
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state at the same temperature as the reservoir. In this case,
the temperature can be readout directly from the canonical
Gibbs state, and the corresponding temperature uncertainty
is related to the heat capacity of the sensor [13,22,23]. On
the other scenario, if the sensor-reservoir interaction is too
strong, resulting in the so-called bound state effect [24–26],
or the encoding time is short, the sensor cannot be completely
thermalized, which implies the state of the sensor is unstable
in the time domain. In this situation, to obtain the information
of temperature, one needs to monitor the time evolution of the
sensor’s reduced density matrix. In comparison with the fully
thermalized thermometer, the partly thermalized thermometer
may have certain advantages because the quantum coherence
can be utilized as the quantum resource to boost the sensing
performance, which means the maximum precision is gener-
ally achieved out of the thermal equilibrium regime [9,17,19].

However, many previous studies of the partly thermalized
thermometer restricted their attentions to the Born-Markov
approximation [7,8,21], the weak-sensor-reservoir-coupling
regime [27], or the pure dephasing encoding mechanism
[6,17,19]. Such treatments can provide an analytical result
as well as a intuitionistic picture, but inevitably ignore cer-
tain important physical phenomena. For example, as reported
in Refs. [28–31], the authors demonstrated that the non-
Markovian effect can severely influence the performance of
quantum sensing; and the authors of Refs. [9,29,32] reported
that the pure dephasing mechanism is not the optimal sensor-
reservoir encoding scenario. Thus, to obtain a global view and
more physical insights into the quantum thermometry, going
beyond the above traditional paradigms is highly desirable.

To address these concerns, we employe the hierarchical
equations of motion (HEOM) approach [33–40], which is a
nonperturbatively numerical method, to investigate the effect
of the reservoir’s characteristic, as well as the form of the
sensor-reservoir coupling operator on the performance of a
single-qubit quantum thermometer in both partly and fully
thermalized situations.
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This paper is organized as follows. In Sec. II, we briefly
outline some basic formalism about the quantum parameter
estimation. In Sec. III, we employe the HEOM method to
investigate the sensitivity of a single-qubit quantum thermom-
etry. The conclusion of this paper is drawn in Sec. IV. In
the two Appendixes, we provide some additional materials
about the HEOM method, the Born-Markov master equation
approach, as well as the variational polaron transformation.
Throughout the paper, we set h̄ = kB = 1 for the sake of
simplicity.

II. QUANTUM PARAMETER ESTIMATION

In this section, we would like to recall some basic concepts
as well as some important formalism in quantum parameter
estimation theory. Generally speaking, to sense a physical
quantity λ labeling on a quantum system, one first needs
a quantum sensor, which is initially prepared in a suitable
input state �in, and coupled to the sensor to the system of
interest. Due to the sensor-system interaction, the message
about λ can be encoded into the output state of the sensor
via a λ-dependent mapping �out = Mλ(�in ) = �λ. Such an
encoding process can be realized by a unitary rotation [41–43]
or a nonunitary reduced dynamics [29–31].

As long as the output state �λ is obtained, the informa-
tion about λ can be extracted by measuring the sensor’s
observable. More specifically speaking, one can construct a
measurement operator Ô and calculate the expected value
Ō ≡ Tr(�λÔ) as well as the variance Ǒ2 ≡ O2 − Ō2. Then,
the sensing precision with respect to {�λ, Ô} can be eval-
uated via the standard error propagation formula [44,45]
δ2λ(Ô) = Ǒ2/|∂λŌ|2. Running over all the possible measure-
ment schemes, one can find the optimal measurement operator
Ôopt corresponding to the ultimate sensing precision. The ulti-
mate sensing precision is constrained by the famous quantum
Cramér-Rao bound [23,46]

δ2λ � δ2λ(Ôopt ) = F−1
λ , (1)

where Fλ ≡ Tr(ς̂2�λ) with ς̂ determined by ∂λ�λ = 1
2 (ς̂�λ +

�λς̂ ) is the quantum Fisher information (QFI) [23]. Specifi-
cally, if the output state �λ is a two-dimensional density matrix
described in the Bloch representation, namely, �λ = 1

2 (12 +
r · σ̂ ) with r being the Bloch vector and σ̂ ≡ (σ̂x, σ̂y, σ̂z ) being
the vector of Pauli matrices, the QFI can be easily calculated
via [23,47]

Fλ = |∂λr|2 + (r · ∂λr)2

1 − |r|2 . (2)

When �λ is a pure state, Eq. (2) further reduces to Fλ = |∂λr|2.
Physically speaking, the error propagation formula tells us
how to extract the message about λ from the output state
�λ with respect to the given measurement operator Ô, while
Fλ fully quantifies the most statistical information about λ

contained in the output state �λ. There is no general way
to find the optimal measurement scheme saturating the best
attainable precision determined by the QFI. In this sense, how
to construct the optimal measurement scheme is of importance
in the research of quantum sensing.

FIG. 1. Schematic diagram of our quantum thermometry scheme
in which a two-level system is used to as the sensor estimate the
temperature of a bosonic reservoir.

III. OUR SCHEME

In this section, we propose our scheme and analyze its
sensing efficiency. A two-level system or a qubit, acting as
the quantum sensor, is employed to estimate the temperature
of a bosonic reservoir (see Fig. 1). The total Hamiltonian of
the sensor plus the finite-temperature reservoir is described as
follows:

Ĥ = Ĥs +
∑

k

ωkb̂†
kb̂k + Ŝ ⊗

∑
k

gk (b̂†
k + b̂k ), (3)

where Ĥs = 1
2εσ̂z + 1

2
σ̂x is the Hamiltonian of the sensor
with ε being the bias and 
 being the tunneling parameter,
operators b̂k and b̂†

k are annihilation and creation operators of
the kth bosonic mode with frequency ωk , respectively. The
parameter gk labels the coupling strength between the sensor
and the kth bosonic mode. Generally, it is very convenient to
encode the frequency dependence of the interaction strengths
in the so-called spectral density, which is defined by J (ω) ≡∑

k g2
kδ(ω − ωk ). In this paper, we consider an Ohmic spectral

density with a Drude-type cutoff

J (ω) = 2

π

χωωc

ω2 + ω2
c

, (4)

where χ qualifies the sensor-reservoir coupling strength and
ωc denotes the cutoff frequency.

In our scheme, we consider a general coupling operator,
i.e., Ŝ has the form of [48]

Ŝ = σ̂θ ≡ sin θσ̂z + cos θσ̂x. (5)

By varying the coupling angle θ , all the directions on the
x-z plane of the Bloch sphere can be taken into account. In
Refs. [49–52], sin θσ̂z is named as the diagonal coupling term,
while cos θσ̂x is called the off-diagonal coupling operator.
However, such a naming convention may lead to misunder-
standing when the diagonal and the off-diagonal terms are
included in both Ĥs and Ŝ at the same time. To avoid such
a problem, in this paper, we prefer to use the z-type and
x-type coupling terms to indicate sin θσ̂z and cos θσ̂x in Ŝ ,
respectively. Due to the rotational symmetry of σ̂θ , we restrict
our study to 0 � θ < π . If θ = π/2, a more z-type coupling
operator is included in Ŝ; when θ = 0, only the x-type cou-
pling is considered [49]. As demonstrated in Refs. [49,50,53],
the authors demonstrated the x-type coupling term plays a
positive role in restraining coherence and can lead to a much
richer ground-state phase diagram in the spin-boson systems.
These results inspire us to explore the effect of z-type and
x-type coupling on sensitivity of quantum thermometry.
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To realize our sensing scheme, we assume the whole
sensor-reservoir system is initially prepared in a product state

�sb(0) =�s(0) ⊗ �G
b

=|ψs(0)〉〈ψs(0)| ⊗ exp(−βĤb)

Trb[exp(−βĤb)]
,

(6)

where |ψs(0)〉 = cos α|e〉 + sin αe−iϕ |g〉 with |e, g〉 being the
eigenstates of the Pauli z-operator and Ĥb = ∑

k ωkb̂†
kb̂k de-

notes the Hamiltonian of the reservoir. The parameter β ≡
T −1 denotes the inverse temperature and is the quantity of
interest to be estimated in this paper.

During the purely numerical calculations to the QFI, one
needs to handle the first-order derivative to the parameter β,
say ∂βr in Eq. (2). In this paper, the first-order derivative for
an arbitrary β-dependent function fβ is numerically done by
adopting the following finite difference method:

∂β fβ � − fβ+2δ + 8 fβ+δ − 8 fβ−δ + fβ−2δ

12δ
. (7)

We set δ/β = 10−6, which provides a very good accuracy.

A. Non-Markovian temperature sensing

In this subsection, we first investigate the dynamical be-
havior of QFI within an exact non-Markovian framework.
Depending on the characteristic of the reservoir spectral den-
sity, quantum reservoirs can be roughly classified into two
different categories: the fast reservoir ωc > max{ε,
} and
the slow reservoir ωc � max{ε,
} [52,54,55]. An interesting
question arises here: what is the influence of the reservoir’s
characteristic on the sensing performance? In this subsection,
we try to address this question.

We first consider the so-called deep fast-reservoir regime,
i.e., ωc � max{ε,
}, in which the reservoir is memoryless
(see Fig. 6 in Appendix A and Refs. [52,54–56] for more
details). In this regime, the dynamical behavior of QFI from
the HEOM approach is displayed by the magenta triangles
in Fig. 2. One can see the QFI gradually increases from its
initial value Fβ (0) = 0 to the maximum value. Then, the QFI
begins to decrease and eventually tends to a steady value
in the long-encoding-time limit. Such behavior of Fβ (t ) is
physically reasonable because the whole temperature-sensing
process includes the following three steps. First, no mes-
sage about the temperature is contained in the initial state
of the sensor, resulting in Fβ (0) = 0 at the beginning. Then,
the sensor-reservoir interaction, which generates the temper-
ature’s information in �s(t ) with the evolution of encoding
time, leads to the increase of QFI. Finally, in the long-time
limit, the value of Fβ (t ) remains unchanged because, in this
step, the message about the temperature is completely from
the steady-state reduced density matrix �s(∞), which is in-
dependent of the encoding time. The above result means there
exists an optimal encoding time which can maximize the value
of QFI. The appearance of maximal QFI can be understood as
the physical result of the interplay between the encoding and
the decoherence [29–31,57]. In Fig. 3, we plot the maximal
QFI, maxt Fβ , as a function of the coupling angle θ . One
can see the maximal QFI is quite sensitive to the coupling
angle. Using our above results, one can design the most
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FIG. 2. The dynamics QFI with different cutoff frequencies:
ωc = 0.5
 (blue rectangles), ωc = 0.8
 (red circles), ωc = 4
 (pur-
ple rhombuses), and ωc = 10
 (magenta triangles). The inset figure
depicts the steady-state QFI in the long-time regime. Parameters are
chosen as α = π/4, ϕ = π/2, ε = 0.5
, β
 = 0.06, θ = 0, and
χ = 0.06
 with 
 = 1cm−1.

efficient sensor-reservoir interaction Hamiltonian to obtain
the maximum precision estimation by adjusting the weight
of the x-type coupling operator in the whole sensor-reservoir
interaction Hamiltonian.

Next, we consider the slow-reservoir regime, for ex-
ample, the blue rectangles with ωc = 0.5
 in Fig. 2, in
which the reservoir-induced decoherence should be strongly
non-Markovian [52,54,55]. In this situation, we find the dy-
namics of QFI presented by the HEOM method exhibits a
collapse-and-revival phenomenon resulting in multiple local
maximums, which is completely different from that of the
fast reservoir case. A similar result was also reported in
Refs. [28,29] and can be regarded as evidence of the in-
formation’s backflow from the reservoir back to the sensor.

0 /2
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FIG. 3. The maximum QFI with respect to the optimal encoding
time versus the coupling angle for different cutoff frequencies: ωc =
0.5
 (blue rectangles), ωc = 0.8
 (red circles), ωc = 4
 (purple
rhombuses), and ωc = 10
 (magenta triangles). Other parameters
are the same as those of Fig. 2.
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Moreover, we also display the maximum QFI with respect
to the optimal encoding time versus the coupling angle in
Fig. 3. Multiple local-most-efficient coupling angles are re-
vealed (see the the blue rectangles in Fig. 3). Additionally,
we find the maximal QFI in the slow-reservoir regime can be
much larger than that of the fast-reservoir case for the entire
range of 0 � θ < π . This result suggests the non-Markovian
effect, generated by the characteristics of slow reservoir, may
be used to improve the estimation precision.

B. Breakdown of the canonical statistics

In this subsection, we shall discuss the feature of
steady-state QFI in the long-encoding-time regime. If the
sensor-reservoir coupling is weak, the long-time steady
state of a fully thermalized thermometer can be de-
scribed by the canonical Gibbs state, namely, �s(∞) � �G

s =
exp(−βĤs )/Tr[exp(−βĤs )]. In such an approximate treat-
ment, by diagonalizing Ĥs, one can easily find the ratio of
�gg(∞)/�ee(∞) is a monotonously and exponentially increas-
ing function

�gg(∞)

�ee(∞)
� �G

gg

�G
ee

= eβ�, (8)

where � = √
ε2 + 
2 shall be regarded as the sensor’s Rabi

frequency. And the corresponding QFI with respect to the
canonical Gibbs state is given by

FG
β = �2

2 + 2 cosh(β�)
. (9)

From the above expression, one can easily find FG
β (�) is not

a monotonic function. With a fixed temperature, FG
β (�) is a

increasing function for � ∈ [0,�∗) with �∗ being determined
by ∂�FG

β (�) = 0; while, for � ∈ [�∗,∞), FG
β (�) monoton-

ically decreases. The above analysis means the steady-state
behaviors of the population ratio and the QFI strongly depend
on the sensor’s Rabi frequency �.

However, as demonstrated in many previous articles
[54,58–60], in the deep slow-reservoir regime, which gener-
ally induces a strongly non-Markovian effect, the reservoir-
induced decoherence can give rise to a drastic frequency
renormalization, namely, � → �̃. The renormalized fre-
quency �̃ is smaller than the original frequency � and
their deviation becomes larger as the increase of the sensor-
reservoir coupling [54,58–61]. This result can be qualitatively
understood by performing a polaron transformation. Mak-
ing use of the polaron transformation, as displayed in
Appendix B, the sensor’s Rabi frequency is renormalized as

�̃P =
√

ε̃2 + η2
̃2, (10)

where ε̃ = ε sin θ + 
 cos θ , 
̃ = 
 sin θ − ε cos θ , and η is
the renormalized factor, whose explicit expression is given
by Eq. (B8), induced by the polaron transformation. In Ta-
ble I, we display the frequency renormalization within the
framework of polaron transformation theory �̃P/� versus
the sensor-reservoir coupling strength χ . It is clear to see
a larger χ leads to a smaller �̃P/�. Such a frequency
renormalization phenomenon is responsible for the so-called

TABLE I. The frequency renormalization �̃P and �̃H versus
the sensor-reservoir coupling strength χ . Parameters are chosen as
α = π/4, ϕ = π/2, θ = 2π/3, ε = 2
, β
 = 0.95, ωc = 0.8
,
and 
 = 0.1cm−1.

χ/
 0 0.1 0.2 0.3 0.4 0.5

�̃P/� 1.000 0.968 0.932 0.890 0.837 0.741
�̃H/� 1.000 0.834 0.818 0.794 0.766 0.734

localized-delocalized transition in the well-known spin-boson
model [58,59].

Thus, the most simple and straightforward correction to
the previous assumption of canonical statistics is replacing
the original Rabi frequency � by a smaller renormalized
frequency �̃. Under such treatment, one can see the frequency
shift � → �̃ shall lead to a smaller value of �gg(∞)/�ee(∞)
[see Figs. 4(a) and 5(a)] compared with that of the canonical
Gibbs state case, which implies the breakdown of canonical
statistics [62–64]. Moreover, if � > �∗, the frequency renor-
malization results in a larger QFI in comparison with that
of the canonical statistics [see Fig. 4(b)]. On the contrary, if
� < �∗, the frequency renormalization in turn diminishes the
sensing precision [see Fig. 5(b)].

The above analytical analysis is completely based on the
polaron transformation, which only provides a qualitative
interpretation as well as a pictorial illustration. To obtain
a quantitative result, we display the steady-state population
ratio and the QFI as functions of the coupling strength from
the HEOM and the Born-Markov master equation methods
(see Appendix A for details) in Figs. 4(c) and 4(d) and
Figs. 5(c) and 5(d). As a result of neglecting the higher-order

�a� �b�

0 0.12 0.24
2

2.2

2.4

2.6

2.8
�c�

0 0.05 0.1
10

16

22
�d�

FIG. 4. Schematic diagram of the influence of frequency renor-
malization � → �̃ on (a) the steady-state population ratio and (b) the
QFI. (c) The steady-state population ratio �gg(∞)/�ee(∞) is plotted
as a function of the sensor-reservoir coupling strength χ . (d) The
steady-state QFI versus χ . The red five-point stars are the numeri-
cal results obtained by the HEOM method, the blue rectangles are
the steady-state solutions from the Born-Markov master equation
approach, while the blue solid lines represent the results from the
canonical Gibbs state. Parameters are chosen as α = π/4, ϕ = π/2,
ε = 0.5
, β
 = 5, and ωc = 0.5
 with 
 = 50cm−1. Here, �∗ �
24cm−1 and � � 56cm−1.
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FIG. 5. The same with Fig. 4, but β
 = 1 and 
 = 10 cm−1.
Here, �∗ � 24 cm−1 and � � 11 cm−1.

terms of the sensor-reservior interaction, the steady-state
solutions from the Born-Markov master equation approach
coincide with the canonical statistics, i.e., the steady-state
population ratio and the QFI are independent of the cou-
pling strength. In sharp contrast to this, one can see the
numerical results obtained by the HEOM method are in good
agreement with our previous discussions about the frequency
renormalization within the framework of the polaron trans-
formation. In Table I, we also display the renormalized Rabi
frequency predicted by the HEOM method, namely �̃H ≡
β−1 ln[�gg(∞)/�ee(∞)], as the function of the coupling
strength χ . It is clear to see the evolutionary trend of �̃H/�

in qualitative agreement with that of �̃P/�. These results
demonstrate, in the strong-coupling regime, the noncanonical
distribution occurs, which plays a complicated role in the
quantum thermometry. The result presented by the red stars in
Figs. 4(c) and 4(d) and Figs. 5(c) and 5(d) cannot be predicted
by using the Gorini-Kossakowski-Sudarshan-Lindblad mas-
ter equation formula or other common perturbative methods,
where the effect of frequency shift is generally washed out
[65,66].

Therefore, we uncover a threshold � = �∗, above such
critical Rabi frequency, i.e., � > �∗, the sensing precision
can be effectively enhanced by strengthening the sensor-
reservoir coupling. In this sense, the sensitivity of quantum
thermometry can be improved by engineering the sensor’s
bare frequency. Here, we concentrate the frequency renormal-
ization mechanism on the slow-reservoir regime, the reason
is twofold. First, in the deep fast-reservoir regime, the de-
coherence is Markovian which means the canonical statistics
assumption is valid with no need for corrections. Second, as
ωc/ max{ε,
} → ∞, the renormalized factor η approaches
to 1 accordingly, resulting in the disappearance of frequency
shift phenomenon in the deep-reservoir regime. Our result
is consistent with that of Ref. [10], in which the authors
found the sensing precision of a Brownian thermometer can
be improved by increasing the coupling at low temperature.
Their result can be easily understood by using our threshold
mechanism: the critical Rabi frequency �∗ approaches to zero
in the low-temperature limit, which means the condition � >

�∗ becomes very easy to be satisfied. Thus, as long as the

Brownian sensor has a finite bare frequency, i.e., � > 0, the
sensor-reservoir can boost the thermometric precision without
doubt. Of course, it is worth mentioning that our scenario is
totally different from that found in Ref. [10]. Their quantum
thermometry is based on the Caldeira-Leggett Hamiltonian,
namely, the sensor in Ref. [10] is a continuous-variable sys-
tem, rather than the discrete-variable sensor (qubit) in this
paper.

IV. CONCLUSION

In summary, going beyond the usual assumptions of the
Born-Markov theory, the pure dephasing mechanism and the
weak-coupling approximation, we propose a single-qubit ther-
mometer scheme and analyze its sensing performance with
the help of the HEOM approach. We find, when the en-
coding time is short and the sensor is partly thermalized,
the non-Markovian effect induced by the slow reservoir’s
characteristics may enhance the efficiency of the quantum
thermometry. By optimizing the encoding time, we investigate
the relation between the maximal QFI and the sensor-reservoir
coupling angle. It is revealed that the performance of our
quantum thermometry can be further boosted by modulat-
ing the weight of the x-type coupling operator in the whole
sensor-reservoir Hamiltonian. Moreover, in the slow-reservoir
regime, by strengthening the sensor-reservoir coupling, we
find the noncanonical feature appears in the sensor’s steady
state and the corresponding QFI obtained by the HEOM
method can be larger than the value predicated by the canoni-
cal Gibbs state as well as the Born-Markov master equation
approach, under suitable conditions. A possible threshold
mechanism, which is based on the frequency renormalization
appearing in the strongly non-Markovian regime, is proposed
to explain the above result in the long-encoding-time limit.
Finally, due to the generality of the qubit-based quantum
thermometer, we expect our results to be of interest for certain
potential applications in the researches of quantum metrology
and quantum sensing.
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APPENDIX A: HEOM

The HEOM method is a purely numerical technique, which
exactly maps the Schrödinger equation or quantum Liouville
equation to a set of ordinary differential equations by intro-
ducing auxiliary density matrices. These ordinary differential
equations can be treated numerically by the Runge-Kutta al-
gorithm. Without invoking the Born-Markov, weak-coupling
and rotating-wave approximations, the HEOM can provide
a rigorous numerical dynamics for an open quantum system
[33–40].
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To realize the above HEOM method, it is generally re-
quired that the reservoir correlation function C(t ), which is
defined by

C(t ) = Trb(eitĤb B̂e−it Ĥb B̂)

=
∫ ∞

0
dωJ (ω)

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
,

(A1)

can be expressed as a sum of exponential functions
[33–40,67]. Here, B̂ ≡ ∑

k gk (b̂†
k + b̂k ). Fortunately, for the

Ohmic spectral density considered in this paper, the reservoir
correlation function satisfies such requirement. Substituting
Eq. (4) into Eq. (A1), one can find

C(t ) =
ε∑

�=0

ζ�e−υ�t , (A2)

where υ� = ωcδ0� + 2�π (1 − δ0�)β−1 denotes the �th Mat-
subara frequency and

ζ� = 4χωc

β

υ�

υ2
� − ω2

c

(1 − δ0�)

+
[
χωc cot

(
βωc

2

)
− iχωc

]
δ0�, (A3)

are the expansion coefficients. Here, we set a truncation pa-
rameter ε to ensure the above series remain finite. With the
help of the Eq. (A2), the hierarchical equations can be con-
structed following detailed exposition in Refs. [39,40]. The
HEOM reads

d

dt
�
ν (t ) = (L̂s − 
ν · 
μ)�
ν (t )

+ �̂

ε∑
�=0

�̂
ν+
e�
(t ) +

ε∑
�=0

ν��̂��̂
ν−
e�
(t ), (A4)

where 
ν = (ν0, ν1, ν2, . . . , νε ) is a (ε + 1)-dimensional index,

e� = (0, 0, 0, . . . , 1�, . . . , 0) and 
μ = (υ0, υ1, υ2, . . . , υε ) are
(ε + 1)-dimensional vectors. The superoperators L̂s, �̂, and
�̂� are defined as L̂s ≡ −iĤ×

s , �̂ ≡ −iŜ×, and

�̂� = −i[Re(ζ�)Ŝ× + iIm(ζ�)Ŝ◦], (A5)

where ô×
1 ô2 ≡ ô1ô2 − ô2ô1 and ô◦

1ô2 ≡ ô1ô2 + ô2ô1.
In numerical simulations, the initial states of the auxiliary

operators are given by

�
ν=
0(0) = �s(0); �
ν �=
0(0) = 
0, (A6)

where 
0 = (0, 0, 0, . . . , 0) is a (ε + 1)-dimensional zero vec-
tor. In this paper, we constantly increasing the number of the
differential equations as well as the value of ε until the final
result converges.

As a benchmark, we also employe the most common Born-
Markov master equation to compute the reduced dynamics of
the sensor. As displayed in Ref. [66], the Born-Markov master
equation reads

d

dt
�s(t ) = (L̂s − Ŝ×ϒ̂× + Ŝ×�̂◦)�s(t ), (A7)

where

ϒ̂ ≡
∫ ∞

0
dtCR(t )Ŝ (−t ),

and

�̂ ≡ −i
∫ ∞

0
dtCI(t )Ŝ (−t ).

Here, Ŝ (t ) ≡ eitĤs Ŝe−it Ĥs and CR(I)(t ) denotes the real (imag-
inary) part of the correlation function. By neglecting the
imaginary Lamb-shift terms [66], the master equation given
by Eq. (A7) can be further simplified, which shall be very
convenient for numerical simulations in practice.

To verify the feasibility of the HEOM method, we here
make a comparison between the purely numerical result ob-
tained by the numerical HEOM method and that of the
Born-Markov master equation approach. In Fig. 6, we display
the evolution of population difference

〈σ̂z(t )〉 ≡ Tr
[
σ̂ze

−iĤt�s(0) ⊗ �G
b eiĤt

]
. (A8)

Good agreement is found between results from the two differ-
ent approaches in the deep fast-reservoir regime, see Fig. 6(a).
On the contrary, a relatively large deviation is found in the
deep slow-reservoir regime, see Figs. 6(d) and 6(e). Moreover,
we observe that such a deviation becomes more and more
evident as ωc/
 approaches to zero with fixed ε = 0.5
.
This result is physically reasonable because the reservoir is
memoryless in the deep fast-reservoir regime. While, with the
decrease of ωc/
, the non-Markovianity becomes nonnegli-
gible [56], which means the results from the Born-Marovian
master equation method are unreliable. Our result is consistent
with that of Ref. [52] in which only the z-type coupling term
is taken into consideration.

APPENDIX B: VARIATIONAL POLARON
TRANSFORMATION

To obtain the explicit expression of �̃P, we first need a
rotation matrix R̂ ≡ exp(− i

2φσ̂y) with φ = arctan(cot θ ) to
diagonalize Ŝ . By doing so, the original Hamiltonian Ĥ can
be transformed into Ĥ ′ = R̂†ĤR̂, where

Ĥ ′ = 1

2
ε̃σ̂z + 1

2

̃σ̂x + Ĥb + σ̂z ⊗

∑
k

g̃k (b̂†
k + b̂k ), (B1)

with g̃k = sin(θ + φ)gk . For the special scope 0 � θ < π

considered in this paper, g̃k coincidentally reduces to gk .
Employing such rotation, Ĥ ′ now has the standard form of
well-known spin-boson model.

Next, we apply the variational polaron transformation to
Ĥ ′ as Ĥ ′′ = exp(P̂ )Ĥ ′ exp(−P̂ ). Here, the polaron generator
P̂ is given by [54]

P̂ = σ̂z

∑
k

ξk

ωk
(b̂†

k − b̂k ), (B2)

where ξk = gkS(ωk ) with

S(ωk ) =
[

1 + η2
̃2

ωk�̃P
coth

(
1

2
βωk

)
tanh

(
1

2
β�̃P

)]−1

,

(B3)
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FIG. 6. The dynamics of population difference 〈σ̂z(t )〉 with different cutoff frequencies: (a) ωc = 30
 (the deep fast-reservoir regime),
(b) ωc = 20
, (c) ωc = 10
, (d) ωc = 0.07
, and (e) ωc = 0.05
 (the deep slow-reservoir regime). The red circles are numerical results
predicted by the HEOM method, while the blue solid lines are from the Born-Markovian master equation approach. Other parameters are
chosen as α = π/4, ϕ = π/2, ε = 0.5
, χ = 0.06
, β
 = 0.25, θ = 3π/8, and 
 = 1 cm−1.

being self-consistently determined by minimizing the Bo-
goliubov upper bound for the free energy [54]. The ex-
pression of Ĥ ′′ can be written as Ĥ ′′ = Ĥ ′′

s + Ĥb + Ĥ ′′
sb,

where Ĥ ′′
s denotes the transformed Hamiltonian of the

sensor

Ĥ ′′
s = 1

2
ε̃σ̂z + 1

2
η
̃σ̂x +

∑
k

ξk

ωk
(ξk − 2gk ). (B4)

The last term in the above expression is an energy shift
induced by the polaron transformation, which has no influ-
ence on the sensing accuracy in the assumption of canonical
statistics. From the expression of Ĥ ′′

s , one can immediately
find the Rabi frequency is �̃2

P = ε̃2 + η2
̃2, which recovers
Eq. (10) in the main text. The transformed sensor-reservoir
interaction Hamiltonian Ĥ ′′

sb can be written as Ĥ ′′
sb = σ̂xB̂x +

σ̂yB̂y + σ̂zB̂z, where

B̂x = 1

2

̃( cosh �̂ − η), B̂y = i

2

̃ sinh �̂, (B5)

B̂z =
∑

k

(gk − ξk )(b̂†
k + b̂k ), (B6)

with

�̂ ≡
∑

k

2ξk

ωk
(b̂†

k − b̂k ), (B7)

and

η ≡ Tr
(
�G

b cosh �̂
)

= exp

[
− 2

∫ ∞

0
dω

J (ω)

ω2
S(ω)2 coth

(
1

2
βω

)]
. (B8)
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