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Theory of cross quantum capacitance
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Impressive progress in the control of atomically thin crystals is now enabling the realization of gated structures
in which two electrodes are separated by atomic scale distances. The electrical capacitance of these structures
is determined by phenomena that are not relevant in capacitors with larger electrode separation. With the aim
to analyze these phenomena, we use linear-response theory to develop a systematic description of capacitance
for two coupled electron liquids, accounting for the wave nature of electrons, as well as for the effect of both
intra- and interlayer Coulomb interactions. Our theory leads to a general expression for the electrical capacitance
in terms of both intra- and interlayer electronic polarizabilities. The intralayer polarizability is directly related
to the conventional expression for the quantum capacitance, whereas the interlayer polarizability term accounts
for interaction-induced correlations between charges hosted by opposite capacitor plates. We refer to this latter
term—which has not been considered earlier—as to the cross quantum capacitance. We discuss the implications
of the general expression for the capacitance, show that it leads to established results when the effect of
interlayer correlations is negligible, and that the intra- and interlayer polarizabilities play a comparable role for
capacitors with very small electrode separation (i.e., cross quantum capacitance effects can be large and cannot
be neglected). Using two different approaches, we calculate the capacitance in specific cases, and find that the
interlayer polarizability can be either positive or negative, so that—depending on the regime considered—the
cross quantum capacitance can either increase or decrease the total capacitance. We conclude by showing
that the cross quantum capacitance term can lead to a nonmonotonic evolution of the total capacitance with
increasing separation between the capacitor plates, which would represent an unambiguous manifestation of the
cross quantum capacitance if observed experimentally.
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I. INTRODUCTION

The electrical capacitance describes the accumulation of
charge on conductors in response to an applied potential dif-
ference and plays a key role in determining the electronic
properties of many nanostructures [1–4]. It is long known that
the capacitance of nanostructures differs from the so-called
geometrical capacitance calculated using the equations of
classical electromagnetism, which assume that all conducting
electrodes are ideal metals and have an infinite density of
states [5]. Indeed, the geometrical capacitance neglects all
material specific properties, that in practice determine how
much charge can be accumulated. To account for material
dependent properties, a variety of phenomena and mecha-
nisms have been considered by theory when analyzing the
capacitance measured in experiments [2–4,6–8].

In the majority of cases, the capacitance is calculated
theoretically starting from the energy of the system as a func-
tion of accumulated charge density n and taking the second
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derivative, using the relation [9]

1

C
= 1

e2

d2E (n)

dn2
, (1)

exactly valid for the geometrical capacitance in classical
electromagnetism. However, as the energy of virtually all
electronic systems of interest cannot be calculated exactly,
approximations are needed and the results depend on which
contributions to E (n) are considered. Most past theoretical
work has followed one of two distinct approaches.

In the first approach, material properties are analyzed first
to determine the specific behavior of the two conductors used
as capacitor plates, which is then taken into account when
calculating the electrostatic energy. For instance, in capacitors
formed by conductors separated by a distance smaller than
the interparticle separation in the electrodes, it may happen
that positive and negative charges on opposite plates spon-
taneously bind to form neutral excitons [10]. Charging the
capacitor requires overcoming the repulsion between excitons
that interact through dipolar forces, i.e., much more weakly
than unpaired charges. As a result, the energy needed to accu-
mulate a given exciton density is smaller than that needed to
accumulate the same density of unpaired positive and negative
charges, resulting in a capacitance larger than the geometrical
one. Similarly, materials forming the electrodes may exhibit
a spontaneous modulation of the charge density—such as in
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a Wigner crystal—causing the electrostatic energy to differ
from that of a classical capacitor, in which the electron density
is uniform [11]. The energy considered in the calculation of
the capacitance in this first approach, therefore, is due to the
Coulomb interaction of a classical distribution of charges on
opposite plates, and the result deviates from the geometrical
capacitance because this distribution can be nonuniform. In
most cases, the capacitance is found to be larger than the
geometrical capacitance [10–13].

The second approach that is followed frequently relies
on the concept of quantum capacitance [14]. In this case,
a system of interest is used as plate of a capacitor and the
other plate is considered to play no role in the calculation
of the total energy (as if it was an ideal metal in the sense
of classical electrostatics). The energy E (n) used to extract
the capacitance is then the sum of the classical electrostatic
energy (i.e., the energy stored in the electric field inside the
capacitor) and the change in the energy of the system of inter-
est, upon varying n [14]. In the simplest case, the dominant
energy term is the increase in kinetic energy of the added
electrons. It is straightforward to show that this term gives a
contribution—the quantum capacitance—proportional to the
density of states, which adds in series to the geometrical
capacitance, so that the total capacitance is reduced [5]. The
situation can be richer if interactions play an important role,
since then the quantum capacitance is proportional to the
electronic compressibility of the system of interest [15]. Some
past experiments, for instance, have been interpreted in terms
of negative compressibility due to exchange interaction, re-
sulting in a capacitance larger than the geometrical one [6,8].

The differences between these two approaches are striking.
In the first one, deviations from the geometrical capacitance
are determined by the energy associated to interactions be-
tween charges on the two capacitor plates. They are calculated
considering the electrostatic interaction of a classical charge
distribution, treating charge carriers as localized particles,
neglecting important aspects of the physics associated to the
wave nature of electrons. In the second approach, instead, de-
viations from the geometrical capacitance due to interactions
between charges on the two plates are entirely disregarded.
In this case, it is the wave nature of the electrons that plays
a central role, which is why interesting physics in the system
of interest is associated to the finite density of states and to
the effect of exchange interactions. It seems obvious that in
capacitors whose plates are separated by very short distances,
both the effect of interplate interactions and the wave nature
of electrons should be considered simultaneously. However,
the difference in the theoretical approaches followed in the
past—as well as in the methods used to implement them—
make it difficult to identify a suitable formalism for a proper
theoretical description.

Here we propose a first systematic theoretical treatment
of electrical capacitance that can account simultaneously for
interaction-induced correlations between charges on oppo-
site plates and the wave nature of electrons. In contrast
to the common approaches outlined above, we use linear-
response theory and obtain the capacitance from suitably
defined charge susceptibilities, in a way similar to what was
done for Wigner crystals [11,16]. We employ the machinery of
many-body theory to express these susceptibilities in terms of

charge polarizabilities that describe the effects of both intra-
and interplate interactions, and show that these polarizabilities
are the fundamental quantities determining the capacitance.
We obtain a general expression for the quantum capacitance
that reduces to the known one [derived from Eq. (1)] in ap-
propriate limits, but that is also valid in the presence of strong
interplate interactions, in which case it contains an additional
contribution that we refer to as the cross quantum capacitance.
Our calculations show that the conventional and the cross
quantum capacitances contribute on equal footing when the
plate separation is very small. Through a perturbative analysis,
we predict a nonmonotonic evolution of the total capacitance
upon increasing separation between the plates, whose obser-
vation would provide the ultimate experimental evidence for
the presence of a cross quantum capacitance term.

We emphasize that—although the influence of interlayer
correlations to the quantum capacitance has not been con-
sidered before—there is little doubt that these interactions
play an important role on different physical phenomena when
two electronic systems are brought into sufficiently close
proximity. Coulomb drag effects in transport provide a clear
example, to which considerable experimental and theoretical
efforts have been devoted [17]. Particularly relevant for our
paper here is the theoretical study of interlayer correlations in
homogeneous electron-electron and electron-hole double lay-
ers [18,19], using the Singwi–Tosi–Land–Sjölander (STLS)
local-field theory for the dielectric function [20,21]. These
studies—that mostly focused on the correlation energy, pair
distribution functions and plasmon excitations—emphasize
the role of screening and imply that the screening of charges
on one plate by the polarization of the other plate may become
as important as the intraplate screening in atomically-thin
capacitors. Indeed, cross-screening effects were beautifully
demonstrated in experiments on graphene/h-BN/metal struc-
tures, in which the dispersion of acoustic plasmon in graphene
was found to depend on the h-BN thickness [22]. As we
will discuss in this paper, the relevance of the conventional
quantum capacitance term and the cross quantum capacitance
that we introduce is directly related to the interplay of intra-
and interlayer screening processes.

Finally, we mention that the work presented in this pa-
per is motivated by recent experiments on ionic liquid gated
monolayer transition metal dichalchogenides [23], in which
the evolution of the capacitance measured as a function of
electron density exhibits large quantum capacitance effects
that seemingly cannot be reconciled with existing theory.
In these devices, the ions at the surface of the ionic liquid
act as one of the capacitor plates and the charge (electrons
or holes) accumulated on the monolayers form the other
plate. As the ions are in direct contact with the mono-
layer, the separation between the two plates is only a few
Angströms. The geometrical capacitance is therefore enor-
mous (∼50 μF/cm2)—vastly facilitating the observation of
quantum capacitance phenomena—and interplate interactions
are as large as intraplate ones—enhancing the role of cross
quantum capacitance effects. Although the use of ionic liquids
for gating makes these systems difficult to model realistically
[24–27] (and indeed it is not the aim of this paper to model
them specifically), all qualitative aspects of ionic gated tran-
sition metal dichalcogenide monolayers appear to be ideal to
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FIG. 1. The ideal quantum capacitor. The infinite 2D plates la-
beled “1” and “2” carry opposite excess charges with an average
density n in response to the applied voltage U . Quantum tunneling
between the plates is forbidden.

maximize the effect of interaction-induced interlayer correla-
tions. That is why we believe that the physical phenomena
that we are discussing here are certainly observable experi-
mentally.

This paper is structured as follows. We define our system in
Sec. II, recall basic notions about the capacitance (Sec. II A),
present the linear-response calculation (Sec. II B), and discuss
various implications (Sec. II C). These include, in particu-
lar, the failure of random phase approximation (RPA). In
Sec. II D, we discuss the relation between the quantum capac-
itance and electronic screening. Approximations are proposed
in Sec. III, in particular a diagrammatic approach that goes be-
yond RPA. We study the cases of symmetric and asymmetric
capacitors. Appendices A to F complement the information
given in the main text. A brief account of some of the results
presented here has already been given as Supporting Informa-
tion in Ref. [23].

II. QUANTUM CAPACITANCE AND POLARIZABILITIES

We consider a system composed of two infinite two-
dimensional metallic plates separated by a distance d (Fig. 1).
For simplicity, we assume in the main text a uniform
background with constant permittivity ε1 = ε2 = ε (the gen-
eralization is presented in Appendix B). The plates may be
different with arbitrary electronic dispersions, but we shall
take parabolic dispersions for illustrations. With the appli-
cation of a bias voltage U (we reserve the symbol V for
the Coulomb interaction) opposite charges are brought to the
plates, maintaining overall charge neutrality. We assume that
the state of the biased system is characterized by average
excess charge densities of opposite signs in the two plates,
ρ1 = −|e|n and ρ2 = +|e|n. The specific capacitance C (ca-
pacitance per unit area) is defined as

|e|n = CU (2)

in the limit of vanishing U . In Sec. II B, we rely on this
definition to evaluate the capacitance as the linear response
of the system to the applied bias.

A. Capacitance and electronic energy

In order to put our approach in perspective, we discuss here
the more popular definition of the linear capacitance given by
Eq. (1) in the limit n → 0. Equations (1) and (2) are equivalent
[28], but dictate very different analytical methods for comput-
ing the capacitance. With the former, one has to model the
various contributions to the energy, which is typically done by

separating kinetic, exchange, and correlation terms [9]. With
the latter, one has instead to model response functions.

The Hamiltonian of the capacitor is H1 + H2 + H12 + H ′,
where H1 and H2 collect the kinetic and Coulomb ener-
gies in both plates, H12 is the Coulomb interaction between
charges on opposite plates, and H ′ is the energy due to the
applied voltage. In the capacitor geometry, the Coulomb in-
teraction is |e|/(2εq) for two charges on the same plate and
−|e|e−qd/(2εq) for two charges on different plates, where q
is the two-dimensional wave vector (see Appendix A). The
electrostatic (Hartree) contribution to the energy per unit sur-
face S is then readily evaluated to be

EH = 1

S

∫
d2rd2r′

[
1

2

ρ1(r)ρ1(r′)
4πε|r − r′| + 1

2

ρ2(r)ρ2(r′)
4πε|r − r′|

+ ρ1(r)ρ2(r′)

4πε
√

|r − r′|2 + d2

]

= lim
q→0

n2e2

2εq

(
1

2
+ 1

2
− e−qd

)
= n2e2

2ε
d. (3)

The diverging repulsions between charges on both plates (with
the factors of 1/2 avoiding double-counting) are canceled by
a diverging attraction between charges on opposite plates,
leaving a finite Hartree energy and the so-called geometrical
capacitance

1

CG
= 1

CH
= d

ε
. (4)

The leftover electrostatic energy can be regarded as the
classical energy of the electric field (E = −|e|n/εẑ, with
z the coordinate perpendicular to the plates) given by
1
S (ε/2)

∫
d3r|E|2 = e2n2d/(2ε). This observation empha-

sizes that the geometrical capacitance results from charge
conservation and is not altered by the dynamical screening
of the Coulomb potential inside and in-between the plates.
As the capacitances add in series in Eq. (1), the geometrical
capacitance easily dominates when the plates are separated
by a large distance. Otherwise, the kinetic and interaction
energies of the excess charges also contribute various terms.

In this paper, we use the denomination “quantum capac-
itance” for the sum of all contributions but the geometrical
one. In the literature, though, “quantum capacitance” often
refers to just the bare kinetic energy [5], or to the quasiparticle
energy [7]. For clarity, we will call “kinetic capacitance” the
term associated with the kinetic energy. For a parabolic dis-
persion with mass m in two dimensions, the kinetic energy at
zero temperature is π h̄2n2/(2m) and the kinetic capacitance is
Ckin = me2/(π h̄2). The “cross quantum capacitance” effects
of interest here originate from nonclassical interplate correla-
tions. Specifically, if we collect all contributions to the energy,
the total capacitance may be decomposed as

1

C
= 1

CH
+ 1

Ckin,1
+ 1

Ckin,2
+ 1

Cxc,1
+ 1

Cxc,2
+ 1

Cxc
. (5)

The Cxc,α’s relate to the exchange [29] and correlation ener-
gies of the two isolated plates, which for the homogeneous
electron gas have been evaluated by quantum Monte Carlo
[30,31]. The remaining term Cxc contains everything not
counted in the other terms and is due to the interplate
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interaction. This includes energetic contributions that can be
interpreted as exchange and correlation effects among charges
in different plates, but it also includes terms that can be
regarded as modifications of the bare kinetic and intraplate
exchange-correlation energies due to the interplate interac-
tion. We underline that for an isolated plate the partition of the
total electronic energy into kinetic and exchange-correlation
terms is to some degree arbitrary—although one can always
define the various contributions by some partition—and that
the situation worsens when the capacitor is formed. Therefore,
Eq. (5) must be understood as a definition of Cxc, which shows
that the difficulty of calculating this term is the same as the
difficulty of calculating the exact capacitance. Since there is
no obvious way to model Cxc, this term is generally neglected
and thus cross quantum capacitance effects are missed.

B. Capacitance and charge susceptibilities

We now move on to discuss the capacitance calculated
within linear-response theory. We model the effect of an ap-
plied voltage by opposite shifts of the chemical potentials in
the two plates: if plate 1 is brought to a uniform potential
−U/2 and plate 2 to +U/2, this energy is [32]

H ′ = −|e|U
2

[∫
d2r1 n̂1(r1) +

∫
d2r2 n̂2(r2)

]
, (6)

where n̂α (rα ) is the number-density (not charge-density) op-
erator in the plate α (our sign convention is ρ̂1 = −|e|n̂1 and
ρ̂2 = +|e|n̂2, such that n̂1 is an electron density while n̂2 is
a positive-charge density akin to a hole density). Standard
linear-response theory [33] in H ′ yields the average density
induced in plate 1 as

〈δn̂1(q)〉 = −|e|U
2

[χn̂1n̂1 (q) + χn̂1n̂2 (q)], (7)

where χn̂α n̂β
(q) is the static susceptibility corresponding to

the retarded correlation function of the operators n̂α (q) and
n̂β (−q). The excess charge density is −|e|〈δn̂1(q = 0)〉 and
the capacitance defined by Eq. (2) follows as

C = −e2

2
[χ11(0) + χ12(0)]. (8)

We denote simply by χαβ (q) the static susceptibilities, i.e.,

χαβ (q) =
∫ ∞

−∞
dt

(
− i

h̄

)
θ (t )〈[n̂α (q, t ), n̂β (−q, 0)]〉, (9)

where the average is taken with respect to H1 + H2 + H12

without H ′. Considering the density induced in plate 2 rather
than plate 1, the resulting capacitance is given by

C = −e2

2
[χ22(0) + χ21(0)]. (10)

A consistent approximation for the susceptibilities must
ensure that χ11(0) + χ12(0) = χ22(0) + χ21(0), meaning that
precisely opposite charges are induced in both plates.

Many-body theory provides a Dyson equation for the
single-particle Green’s function, whereby the interaction ef-
fects are incorporated in the self-energy [21,33]. Similarly,
the theory of the charge response and screening expresses the
susceptibility χ in terms of another function, the polarizability

. The relation between χ and 
 is

χ = −
 − 
V χ, (11)

where V is the Coulomb interaction. The distinction be-
tween susceptibility and polarizability may be understood
as a separation between classical electrostatic effects and
quantum mechanical effects, a notion that we elaborate in
Appendix C. This separation is crucial in the problem of the
quantum capacitor, as it allows us to split the many-body
formula for the capacitance into geometrical and quantum
terms.

For this purpose, Eq. (11) must be generalized to the
specific geometry of the capacitor, taking into account the
three-dimensional nature of the problem with a nonlo-
cal screening along the z direction. This is presented in
Appendix A and leads to the same relation as (11), now
between the 2 × 2 matrices χ defined in Eq. (9), the ma-
trix V with elements V11 = V22 = e2/(2εq) and V12 = V21 =
−e2e−qd/(2εq), and the matrix 
αβ giving the polarizability
tensor. Since diagrammatic perturbation theory provides a
recipe for evaluating directly the polarizabilities 
αβ (q) as
the sum of irreducible diagrams in the expansion of χαβ (q),
Eq. (11) is a viable alternative to Eq. (9) for computing the
susceptibilities (Appendix D).

Solving Eq. (11) for χ , we deduce the combinations of susceptibilities entering the formula for the capacitance:

χ11 + χ12 = −
11 − 
12 − (V22 − V12)(
11
22 − 
12
21)

1 + V11
11 + V22
22 + V12
21 + V21
12 + (V11V22 − V12V21)(
11
22 − 
12
21)
, (12a)

χ22 + χ21 = −
22 − 
21 − (V11 − V21)(
11
22 − 
12
21)

1 + V11
11 + V22
22 + V12
21 + V21
12 + (V11V22 − V12V21)(
11
22 − 
12
21)
. (12b)

The expressions (12a) and (12b) are equal in the limit q →
0 (the polarizabilities are finite at q = 0), which proves the
consistency of Eqs. (8) and (10). Note that the relation χ11 +
χ12 = χ22 + χ21 in the limit q → 0 does not imply or require

11 + 
12 = 
22 + 
21 in the same limit.

Equation (12) can also be expressed in terms of the
screened Coulomb potentials. The usual many-body equation

for the screened potential W has the form [33]

W = V − V 
W (13)

and is confirmed for the capacitor geometry in
Appendix A. Eliminating the singular matrix elements of
V between Eqs. (11) and (13), we find representations of
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the susceptibilities in which every quantity is regular in the
long-wavelength limit:

χ11 + χ12 = −(
11 + 
12)(1 − W11
11 − W21
12)

+ (
22 + 
21)(W12
11 + W22
12), (14a)

χ22 + χ21 = −(
22 + 
21)(1 − W22
22 − W12
21)

+ (
11 + 
12)(W21
22 + W11
21). (14b)

We solve Eq. (13) for W , insert the bare interaction V , and
take the limit q → 0 to get

W (0) =
[ 1 + e2
22

d
ε

−(
1 + e2
12

d
ε

)
−(

1 + e2
21
d
ε

)
1 + e2
11

d
ε

]

11 + 
22−
12−
21 + e2(
11
22−
12
21) d

ε

,

(15)

where the polarizabilities are evaluated at q = 0. This repre-
sentation of the screened Coulomb potential will be used in
Sec. II D 2 to define screening lengths. Substitution of this
formula into Eqs. (14) shows that both expressions are indeed
equal and yields a general formula for the linear capacitance:

1

C
= 1

CG
+ 1

e2


11 + 
22 − 
12 − 
21


11
22 − 
12
21
. (16)

This is our main result. We show in Appendix B that it holds
unchanged in the general case ε1 �= ε �= ε2.

Equation (16) shows that the total capacitance C is given
by the in-series addition of the conventional geometrical ca-
pacitance (the first term on the right-hand side) and of one
additional term that is the quantum capacitance

1

CQ
= 1

e2


11 + 
22


11
22 − 
12
21
− 1

e2


12 + 
21


11
22 − 
12
21
.

(17)
The quantum capacitance depends exclusively on the intra-
and the interlayer polarizabilities. It differs from the
conventional expression, which does not include the effect of
interlayer correlations. The difference is what we refer to as
cross quantum capacitance. We can separate the contributions
of the conventional quantum capacitance and of the cross
quantum capacitance in different ways, for instance as shown
by the two terms in Eq. (17). This illustrates explicitly how the
cross quantum capacitance gives an additional contribution
that adds in series to the conventional quantum capacitance,
and that vanishes when interlayer correlations are ignored (the
first term on the right-hand side of Eq. (17) does indeed reduce
to the known expression for the quantum capacitance when

12 = 
21 = 0). However, separating the quantum capaci-
tance contributions as in Eq. (17) can be misleading in some
cases, because interlayer correlations can also influence the
intralayer polarizabilities 
11 and 
22.

For this reason, in the rest of the paper we analyze the
total capacitance and the quantum capacitance [as given by
Eq. (16)], without singling out the cross quantum capacitance
contribution. We will refer to cross quantum capacitance ef-
fects whenever we discuss phenomena that originate from
interaction-induced interlayer correlations. We will first ana-
lyze the equation formally in different cases (Sec. II C), and
then discuss different model calculations providing explicit
expressions for the polarizabilities and hence for the quantum

capacitance (Sec. III). Our main goal is to gain physical in-
tuition about the cross quantum capacitance effects described
by Eq. (16). Key questions concern the magnitude and the sign
of the interlayer polarizabilities: if 
12 ≈ 
11 and/or 
21 ≈

22, large quantitative effects can be expected, increasing or
reducing the quantum capacitance relative to the case in which
interlayer correlations are disregarded, depending on the sign.

C. Quantum and cross quantum capacitances

To start gaining intuition, in this section we discuss some
implications and various limits of Eq. (16), starting with the
RPA, which allows us to recover the known results. We then
study how weak interplate effects correct the quantum capac-
itance, point out that for symmetric capacitors, the intra- and
interplate polarizabilities must be treated on the same footing,
and argue that the quantum capacitance must be discontinuous
at a transition where the total capacitance is equal to the
geometrical one.

1. Random-phase approximation and kinetic capacitance

At the RPA level, all Coulomb effects but the classical
Hartree terms responsible for CG are ignored. The intraplate
polarizabilities 
αα reduce (at zero temperature) to the Fermi-
level DOS να in each plate and the interplate polarizabilities
vanish identically (Appendix D). Inserting 
0

αβ = δαβνα in
Eq. (16) yields

1

C0
= 1

GG
+ 1

e2ν1
+ 1

e2ν2
. (18)

Hence the linear-response theory applied with the RPA
susceptibilities reproduces the least accurate of the approxi-
mations based on the electronic energy for the capacitance,
which only counts the unrenormalized kinetic energies and the
classical Hartree term. We conclude that the RPA confirms the
ability of Eq. (16) to reproduce known results, but is too crude
to capture any of the interplate phenomena giving rise to cross
quantum capacitance effects.

2. Corrections beyond RPA

If the interplate polarizabilities are small compared to the
intraplate ones, as expected for instance when the distance
between the capacitor plates is sufficiently large, the quantum
capacitance may be expanded as

1

CQ
≈ 1

e2

(
1


11
+ 1


22

)(
1 − 
12 + 
21


11 + 
22

)
. (19)

This expression results from a Taylor expansion of Eq. (16),
but it can also be obtained by writing 1/CQ = 1/CQ,1(1 +
CQ,1/CQ,2), where 1/CQ,1 and 1/CQ,2 are the two terms in
the right-hand side of Eq. (17), and then neglecting 
12
21

relative to 
11
22 in the expression of CQ,1. The first factor
corresponds to a renormalized RPA result, where the noninter-
acting polarizabilities να are replaced by the fully interacting
polarizabilities 
αα . The second factor is the correction due
to interplate correlations. This correction enhances (reduces)
the quantum capacitance if the interplate polarizabilities are
positive (negative). The approximate expressions derived in
Sec. III show that both cases are possible. Equation (19)
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furthermore shows that cross quantum capacitance effects can
be understood as a multiplicative correction to the conven-
tional quantum capacitance, an interesting observation given
the analysis of the experimental result presented in Ref. [23].

The expression of the quantum capacitance is particularly
simple if the two plates are identical,

CQ = e2

2
(
11 + 
12) (identical plates), (20)

an exact formula that does not require 
12 to be small.
The first term may be interpreted as the kinetic capacitance
renormalized by intra- (as well as inter-) plate interactions.
Indeed, the polarizabilities entering Eq. (16) are properties of
the capacitor, such that 
αα is in general different from the
polarizability of the isolated plate α, owing to the correlated
motion of the charges in both plates. The second term in
Eq. (20) describes the cross quantum capacitance effect. This
expression makes it very clear that if 
12 becomes compa-
rable to 
11, cross quantum capacitance effects become very
large.

3. Strong interplate effects, phase transitions

As the intraplate and interplate polarizabilities contribute
on equal footings to CQ, one can expect large cross quantum
effects for ultrathin capacitors, since in this regime the inter-
plate Coulomb correlations become important [18,19], such
that 
11 and 
12 must have similar magnitudes. This means
that an interpretation of capacitance data only in terms of
intraplate DOS or thermodynamic compressibility is bound to
fail.

A value 
12 ≈ 
11 in Eq. (20) means a factor two in-
crease of CQ relative to its value in the absence of interplate
correlations. This is certainly not a small effect—in systems
like batteries, a factor of two increase in the charge stored is
a major step—but it remains nevertheless an effect of quan-
titative rather than qualitative nature. On the other hand, a
qualitative change must occur when 
12 is large and negative,
approaching −
11, such that CQ approaches zero. In fact,
because the thermodynamic stability of the capacitor requires
that the total capacitance C = (1/CG + 1/CQ)−1 is positive,
CQ is not allowed to continuously cross zero: It is forbidden
to take values in the range extending from zero to −CG. Either
CQ is positive, in which case C < CG, or negative and smaller
than −CG, in which case C > CG. We can distinguish two
kinds of transitions from a regime where C < CG to a regime
where C > CG, depending on whether the total capacitance is
continuous or not at the transition.

A discontinuous jump of C at C = CG is associated with
a finite discontinuity of CQ at the transition. This behavior
was found in a numerical Hartree-Fock study of electron-hole
bilayers with Dirac-like dispersion in a strong magnetic field
[34]. This phenomenology was not observed, however, in
the experiments that have reported C > CG [6,8]. In those
experiments, where the control parameter is the electronic
density, C crosses smoothly from values C < CG at high den-
sity to values C > CG at low density. This means that CQ has
an infinite discontinuity at the transition, jumping from +∞
on the high-density side to −∞ on the low-density side. In
the context of the one-plate approaches, where the second

plate is treated classically, C = CG signals a divergence and
sign change of the charge susceptibility, a behavior that is
normally associated with an electronic phase transition. In-
deed, in the regime where this phenomenon is observed, a
two-dimensional electron gas is expected to undergo various
magnetic and localization phase transitions with decreasing
density [31].

Within many-body theory, the occurrence of an order-
ing phase transition coincides with a divergence of the
susceptibility associated with the observable that orders. A
charge-density wave (CDW), for instance, is a static charge or-
der that implies a divergence of the charge susceptibility χ (Q)
at the ordering wave-vector Q. In bulk systems, this happens
whenever 1 + 
(Q)V (Q) = 0 [see Eq. (11)]. Fulfilling this
condition does not require a singular behavior of 
(q = 0).
It follows that in a direct transition from the homogeneous
paramagnetic state into a CDW state like a Wigner crystal—
where calculations indeed suggest that C > CG [10,11]—we
do not necessarily expect the long-wavelength polarizability
to diverge and, therefore, we do not expect the quantum capac-
itance to diverge either. Such a transition without divergence
of CQ would be characterized by a discontinuity of C. On
the contrary, we expect a capacitance continuously crossing
the value C = CG at a transition to a homogeneous magnetic
phase. Such a transition is characterized by a diverging spin
susceptibility at q = 0 and in the paramagnetic state, the
spin susceptibility is proportional to the polarizability, such
that we expect the quantum capacitance to diverge in that
case.

The above considerations valid for bulk systems illustrate
the concept, but the capacitor geometry offers additional pos-
sibilities, for instance a divergence of 
12(q = 0) associated
with the formation of a liquid phase of interplate bound pairs.
Preliminary works suggest that the ground-state phase dia-
gram of the ideal capacitor may be rich [35]. Thus the exact
sequence of phase transitions as a function of decreasing den-
sity in the ultrathin capacitor may hold surprises, especially if
the equilibrium densities in the two plates are incommensu-
rate. More work is needed in order to explore these questions,
starting from a generalization of Eq. (16) to situations where
the charges in the plates break spin-rotation symmetry.

D. Quantum capacitance and electronic screening

The polarizability is closely related to the phenomenon of
screening, as illustrated for instance in Eq. (15). We explore
this connection further in this section. First, we relate the sign
of the interplate polarizabilities to the behavior of screening
charges in the capacitor. In a second part, we introduce a
number of screening lengths and relate them to the quantum
capacitance.

1. Interplate polarizability and screening charges

The different contributions to the capacitance add up in
series [see, e.g., Eq. (5)]. Here, we discuss an alternative
point-of-view, where one adds up charges rather than in-
verse capacitances. This allows us to split the capacitor
response into “external” charges and screening charges, and
furthermore to distinguish intraplate from interplate screening
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FIG. 2. According to classical electrostatics, a potential difference U applied across the capacitor yields an excess charge (ε/d )U on the
plates (left). If the plates have finite polarizability, screening charges oppose to the charges induced by the potential difference and the net
amount of excess charge is less for the same U : This is equivalent to a classical capacitor of increased thickness (middle). The “negative” cross
screening contributes screening charges that have the same sign as the intraplate screening charges: this further reduces the net excess charge,
increases the quantum capacitance length, and reduces the quantum capacitance.

charges. In this way, we can relate the sign of the interplate
polarizability to the sign of interplate screening charges.

We express the total excess density on the plates as n =
nG − nintra − ninter. nG represents the charge one would have
if all quantum capacitance effects were absent, i.e., |e|nG =
CGU . This charge is reduced by intraplate screening, which
means that a density nintra of opposite-sign charges is attracted
to the plate in response to the “external” charge |e|nG. We de-
fine nintra such that nG − nintra gives the total charge one would
have if interplate quantum effects were absent (
12 = 
21 =
0). Finally, the capacitor charge is further modified by a den-
sity ninter of screening charges displaced by interplate correla-
tions. Equation (2) shows that n/nG = C/CG, which, together
with Eq. (16) and the definitions of nintra and ninter, gives

nintra

nG
=

1

11

+ 1

22

e2d
ε

+ 1

11

+ 1

22

(21a)

ninter

nG
= −
12−
21+
12
21

(
1


11
+ 1


22

)
(

e2d
ε

+ 1

11

+ 1

22

)[
ε

e2d
(
11+
22−
12−
21 )+
11
22−
12
21

] .

(21b)

nintra drops from the value nG when the polarizabilities
are small to zero when they are large. As discussed in
Appendix C, the limit 
 → ∞ corresponds to the limit of
classical electrostatics, where indeed nintra = 0 and n = nG.
Depending on the sign of the interplate polarizabilities, ninter

can be positive or negative. In the following, we will use
for brevity the expressions “positive cross screening” and
“negative cross screening”. In these mnemonics, “positive”
and “negative” refer to the effect that the screening has on
the total capacitance—a positive/negative cross screening
increases/decreases the total capacitance. Microscopically, a
positive cross screening counteracts the intraplate screening
(ninter < 0), thus enhancing the final density and raising the to-
tal capacitance. On the contrary, a negative cross screening re-
inforces the intraplate screening and reduces the density, thus
lowering the total capacitance (see also Fig. 2). In the regime
of weak interplate effects (
12 
 
11, 
21 
 
22), we have

ninter

nG
= −
12 + 
21


11
22

e2d
ε(

e2d
ε

+ 1

11

+ 1

22

)2 + O(
12
21).

Hence the “positive” screening behavior is characterized—
with our sign convention—by a positive total interplate
polarizability. This is consistent with Eq. (20), where a
positive 
12 enhances the quantum capacitance. The study of
Eq. (21) for a symmetric capacitor confirms that the sign of
ninter is opposite to the sign of 
12 and reveals that its mag-
nitude can be a sizable fraction of nintra if 
12 is comparable
to 
11.

2. Quantum capacitance and screening lengths

As the phenomenon of dielectric screening is often char-
acterized by a screening length, we provide here a slightly
different perspective on the quantum capacitance in terms of
these lengths. This representation will be used in Sec. III A,
in order to build a quantum capacitance model that takes the
screening length as one of its parameters.

By analogy with the geometrical capacitance, it is con-
venient to characterize the quantum capacitance by a length
defined such that

1

C
= d

ε
+ dQ

ε
. (22)

dQ has been coined quantum capacitance length [13,34]. Its
expression in terms of the macroscopic polarizabilities is

dQ = ε

e2


11 + 
22 − 
12 − 
21


11
22 − 
12
21
. (23)

In the RPA (
αβ → 
0
αβ = δαβνα), the length dQ becomes

d0
Q = (�TF

1 + �TF
2 )/2, where the Thomas-Fermi lengths are de-

fined in the usual way (for two-dimensional systems):

1

�TF
α

= e2

2ε
να. (24)

Equation (22) may also be recast as

1

C
= 1

CG
+ 1

Ckin,1
+ 1

Ckin,2
+ dQ − 1

2

(
�TF

1 + �TF
2

)
ε

. (25)

We have pulled out the kinetic capacitances proportional to
the bare DOS, Ckin,α = e2να , and corrected with the Thomas-
Fermi lengths defined in Eq. (24). This form provides a
connection with Eq. (5). Apart from CG, the linear-response
approach does not lead to a splitting of the capacitance in
terms that can be associated with distinct contributions to the
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electronic energy. Equation (25) nevertheless shows that the
exchange-correlation terms may be interpreted as a correction
to the quantum capacitance length with respect to the average
of the Thomas-Fermi lengths. As it misses these corrections
in the long-wavelength limit, the RPA predicts a capacitance
lacking exchange and correlation effects.

The Thomas-Fermi lengths characterize the behavior of
the screened Coulomb potential when the screening is treated
in the Thomas-Fermi approximation. In tree dimensions, the
bare potential ∼1/q2 becomes 1/(q2 + �−2

TF ), corresponding
in real space to a short-range Yukawa potential ∼e−r/�TF/r.
In two dimensions, V (q) = e2/(2εq) becomes W (q) =
e2/[2ε(q + �−1

TF )] and in real space W (r) crosses over from
1/r to 1/r3 at the distance �TF [14,36]. Hence �TF measures
both the strength—i.e., the spatial average W (q = 0)—and
the range—the behavior at large distance—of the screened
potential. For more general screening models, it may be neces-
sary to consider two “screening lengths”: one for the strength
(q = 0) and one for the range (r → ∞). In the following, we
relate the exact quantum capacitance length dQ to screening
lengths of the former kind, defined from the q = 0 value of
the Coulomb potential screened by the capacitor, Eq. (15).

Each matrix element of the screened Coulomb potential is
parametrized by a length according to

�αβ = 2ε

e2
Wαβ (0). (26)

The intraplate lengths �αα belong to the capacitor—they de-
pend on d—but they approach properties of the isolated plates
when d increases. Taking the limit d → ∞ in Eq. (15), one
finds that �αα approaches

1

�α

≡ lim
d→∞

1

�αα

= e2

2ε
lim

d→∞

αα. (27)

This is the generalization of Eq. (24), which uses the exact
polarizability of the isolated plate rather than the RPA value.
Eliminating the polarizabilities from Eq. (23) in favor of the
lengths �αβ by means of Eqs. (15) and (26), we arrive at

dQ = �

1 − �/d
, � = 1

2
(�11 + �22 + �12 + �21). (28)

Note that �αβ has the sign of Wαβ , such that �12 and �21

are negative in the usual conditions of an attractive interplate
interaction. Combined with Eqs. (22) and (4), Eq. (28) leads
to the remarkably simple, yet exact result

C = CG(1 − �/d ). (29)

This relation proves that the quantum correction to the geo-
metrical capacitance is entirely determined by the strength of
the screened Coulomb potential.

Because � is a combination of screening lengths with
different signs, its interpretation is not straightforward. We
just mention a few limiting cases. Thermodynamic sta-
bility (C > 0) and the assumption that CQ > 0 (dQ > 0)
constrain the values of � to the interval 0 < � < d . The
limit of classical electrostatics (infinite polarizabilities, see
Appendix C) implies W (0) = 0, in which case all �αβ van-
ish and � approaches zero. The RPA gives �RPA = (�TF

1 +
�TF

2 )/[2 + (�TF
1 + �TF

2 )/d], which is consistent with Eq. (18).
For identical plates, one finds the expression � = d/[1 +

e2(
11 + 
12)d/(2ε)], which shows that � approaches d
(vanishing total capacitance) when 
12 approaches −
11,
consistently with Eq. (20).

III. MODELS AND APPROXIMATIONS

Evaluating exactly the interplate polarizabilities falls in the
same class of difficulty as solving the problem of interact-
ing fermions in two dimensions, which as of now requires
a numerical approach like quantum Monte Carlo (QMC).
While this calculation has been performed for isolated two-
dimensional electron gases [30,31], the case of two gases
coupled by the long-range Coulomb interaction is challenging
and has not been treated so far. The STLS method—easier
than QMC but not exact—would allow one to gain useful
insights. This approach was applied to bilayer systems in the
past [18,19], but not to calculate the quantum capacitance.

Here we propose two approximations that do not rely on
numerics. They allow us to predict general trends that will
have to be checked by future exact calculations. Directly
modeling 
12 and 
21 is perilous, because this quantity has
no classical analog and intuition is lacking. Note that the
interplate exchange interaction—which in general contributes
to 
12 and can be treated exactly at the Hartree-Fock level—
requires overlap of the wave functions centered on opposite
plates and is therefore absent for the system of Fig. 1, where
tunneling is forbidden. Consequently, the physics contained in

12 involves genuine correlations beyond exchange.

The first approximation applies to capacitors with identical
plates in a regime where interplate correlations are weak.
We express 
12 in terms of a screening length, for which
intuition is available and modeling is possible. We find that

12 is positive in that case, and that the quantum capacitance
increases upon reducing the equilibrium density in the plates.

The second approximation targets capacitors with dissim-
ilar plates, i.e., hosting electrons with different masses at
different equilibrium densities. We use the many-body di-
agrammatic perturbation theory and evaluate the important
diagrams approximately. When the limit of identical plates is
taken, this approximation confirms that 
12 is positive and
agrees qualitatively with the first approximation. Otherwise,
it shows that 
12 is generally negative, reducing the quantum
capacitance. There is a competition between two antagonistic
mechanisms, which in certain parameter regimes leads to a
nonmonotonic dependence of the cross quantum capacitance
on capacitor thickness, with the surprising consequence that
the total capacitance may actually grow with making the ca-
pacitor thicker.

A. Symmetric capacitor

In order to get a first hint at the sign of 
12, we consider the
simplest setup, in which the plates of the capacitor in Fig. 1
are two ideal (disorder free) and identical electron gases. This
system has only two parameters that define two fundamen-
tal length scales, the interparticle distance d1 in the plates,
related to the equilibrium density through πd2

1 = 1/n1, and
the interplate distance d . A third length scale is the effective
two-dimensional Bohr radius a1 = 2πε h̄2/(m1e2), which sets
the strength of the Coulomb interaction.
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FIG. 3. Parameter regimes for the ideal symmetric capacitor,
with a1 the effective Bohr radius, d1 the interparticle distance, and
d the interplate separation. Green indicates the RPA regime, purple
the localized-dipole regime, and orange the domain of validity of
Eq. (31), which is limited by the condition Ckin,1 > CG (d > a1). The
dashed line shows the direction of the horizontal axis in Fig. 4.

If d1 � a1, the electrons form at low temperature Wigner
crystals in the plates. Since the densities are commensurate,
the two Wigner crystals align in a staggered fashion in order
to minimize the energy [37]. If furthermore d 
 d1 (purple
region in Fig. 3), the extra opposite charges induced in the
plates by a finite bias are expected to bind and form an ordered
array of dipoles with 1/r3 repulsion. The electrostatic energy
of such an array is lower than that of an equivalent density
of delocalized charges, and correspondingly the capacitance
exceeds the geometrical capacitance, with a dependence on
density estimated to be C/CG = (0.76 d/d1)−1 [10]. The
general formula Eqs. (8) and (16) remain applicable in
this case, although modeling the uniform susceptibilities or
polarizabilities is difficult. The approximations that we will
present in this section assume uniform densities on the plates
and cannot reach a highly inhomogeneous regime such as a
Wigner crystal.

In the opposite limit of high-density and weakly-coupled
plates (d1 
 a1 and d � d1, green region in Fig. 3), the RPA
becomes accurate and the capacitance is independent of den-
sity, as given by Eq. (18). The orange region in Fig. 3 depicts
a domain where the density is large enough for the electrons
to remain delocalized, and the capacitor thick enough for
the interplate effects to be weak. This last condition requires
Ckin,1 > CG, which is equivalent to d > a1, such that the or-
ange region lies below the diagonal of the diagram. Here we
focus on this domain and we model the quantum capacitance
to study how CQ departs from the RPA result upon approach-
ing the limit of localized dipoles.

We consider a regime where cross screening is weak
compared to intraplate screening, |
12| 
 
11, and the
renormalized kinetic capacitance C∗

kin,1 ≡ e2
11 is large com-
pared to the geometrical capacitance. Under these conditions,

Eqs. (26) and (15) show that 
11 is determined at lead-
ing order by the screening length �11, according to 
11 =
2ε/(e2�11). By solving Eq. (26) for 
12 and substituting the
leading-order expression of 
11, we find that 
12 is deter-
mined by �11 as well:


12 ≈ ε

e2d

(√
1 + 2d

�11
− 1

)
. (30)

This model of cross polarizability has the expected properties.

12 drops at large d , as �11 approaches �1 [Eq. (27)], which
is independent of d . It is furthermore smaller than 
11, as
required by our assumptions. Clearly 
12 > 0, which means
that cross screening increases the capacitance.

We now use the approximation �11 ≈ �1. In doing so, we
assume that 
11 is dominantly a property of the isolated
plates, thus neglecting interplate contributions to 
11 that may
be of the same order as 
12. We expect this approximation
to fail when d � �1. The quantum capacitance follows from
Eq. (20):

CQ ≈ ε

�1

[
1 + �1

2d

(√
1 + 2d

�1
− 1

)]
. (31)

The condition C∗
kin,1 > CG becomes d > �1/2, which sets

the regime of validity of Eq. (31). Hence, in this regime,
positive cross screening effects can increase the quantum
capacitance by as much as a factor of

√
2. This ∼40% en-

hancement, reached when d = �1/2, could easily be detected
experimentally.

Having seen that 
12 is positive and can have a significant
effect on the capacitance, we turn to the density dependence,
which requires modeling the density dependence of �1. In
the RPA, the value of �1 is �TF

1 = 2ε/(e2ν1), which for a
parabolic band is simply �TF

1 = a1. The RPA screening length
is reliable only at high density, where exchange and corre-
lation effects disappear [21]. The STLS theory provides a
way to address the departure from this limiting value. In this
theory, the susceptibility is expressed in terms of a local-field
factor G(q), which captures the effect of exchange and cor-
relation on the static screening at different wavelengths (see
Appendix E). The function G(q) is determined by a self-
consistency condition that can be solved numerically. Ap-
proximate expressions have been proposed, based on the
observation that G(q) is related to the pair distribution func-
tion. The Hubbard approximation, in particular, uses the
exchange-only form of the pair distribution function and
reads 1/G(q) = 2

√
1 + (kF/q)2, where the factor 2 is for

the spin degeneracy [21,38,39]. Local-field factor and polar-
izability are two interchangeable ways of representing the
susceptibility and they are related by 
(q) = −χ0(q)/[1 +
V (q)G(q)χ0(q)]. By using the Hubbard approximation for
G, we thus obtain a density-dependent approximation for

 and �1. We evaluate the screened interaction as W (0) =
limq→0 V (q)/[1 + V (q)
(q)] after substituting the expres-
sion of 
(q) in terms of G(q), using the noninteracting
susceptibility χ0(0) = −ν1 and kF = √

2πn1, and we define
the screening length like in Eq. (26) as �1 = 2εW (0)/e2. The
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FIG. 4. Quantum capacitance (red) and total capacitance (blue)
normalized to the geometrical capacitance, versus dimensionless
density for a model of symmetric capacitor, Eqs. (31) and (32)
with d = 2a1. The dotted line shows the RPA value and the dashed
line shows the quantum capacitance without interplate effects. The
dashed-blue line on the left is the asymptotic result of Ref. [10].

result is

�1 ≈ a1 − d1

2
√

2
= a1 − 1√

8πn1
. (32)

Hence Coulomb interaction reduces �1 relative to the RPA
value.

In Fig. 4, we plot CQ/CG and C/CG versus d/d1 for a
capacitor thickness d = 2a1. This value of d/a1 corresponds
to the dashed line in Fig. 3 and ensures that the condition
d > �1/2 is met at all densities. The quantum capacitance
(solid-red curve) is larger than the RPA value (dotted line) and
increases with reducing density, i.e., the system behaves more
and more classically until �1 vanishes when d1 = 2

√
2a1. The

dashed line is the result obtained with 
12 = 0, which is
lower than the quantum capacitance by a density-dependent
factor of ∼15–30% for this choice of the thickness. The total
capacitance C (blue line) is smaller than CG and approaches
this value as CQ diverges. For comparison, the figure also
shows the total capacitance obtained in Ref. [10] in the regime
of dilute localized dipoles.

We conclude that, in the symmetric capacitor with homo-
geneous electron densities, the effect of 
12 is to increase the
quantum capacitance and thereby the total capacitance. Note
that the assumptions of our model imply CQ � CG, such that
C ≈ CG in this regime and the cross quantum capacitance cor-
rection, although significant for CQ, is small for C. Stronger
cross quantum capacitance effects on C may be expected in
the ultrathin limit, where CQ 
 CG and C ≈ CQ. In this limit,
however, the interplate correction to 
11 must be taken into
account and modeling is more challenging.

Our model is not smoothly connected to the localized
regime, in which C � CG and CQ is large and negative. As
discussed in Sec. II C 3, we expect that the passage from
C < CG to C > CG is associated with a phase transition, where
either CQ diverges and C is continuous, or CQ changes sign
without diverging and C is discontinuous. In the model, CQ

diverges at the density n∗
1 = 1/(8πa2

1), where the screening
length vanishes within the Hubbard approximation to the
STLS theory [Eq. (32)]. The density n∗

1 is similar to the den-
sity nFM

1 = 1/(2π3a2
1) at which Hartree-Fock theory predicts

the two-dimensional electron gas to enter the ferromagnetic
state [40]. Both n∗

1 and nFM
1 are much larger than the density

at which Wigner crystallization is expected in the isolated
plates, i.e., nWC

1 = 1/(4πr2
s a2

1) with rs ≈ 31 [31]. If the first
instability occurring in the capacitor when reducing density
is indeed towards a homogeneous ferromagnetic state, this
would imply that at least two distinct phase transitions take
place to connect our model to the regime in which a descrip-
tion based on localized electrons is appropriate.

B. Dissimilar plates: Diagrammatic approach

The model discussed in the previous section leads to a
positive 
12 for identical plates, but does not offer an intuitive
picture of the physical mechanism causing this behavior. In
order to better understand the origin of 
12, one has to identify
the microscopic processes that contribute to the interplate
polarizability. Diagrammatic perturbation theory provides a
recipe for calculating the polarizability order by order in the
interplate interaction and is therefore a logical route to follow.
This approach allows us to relax the assumption of identical
plates and to investigate the sign of 
12 for plates that have
different densities and/or different carrier masses. It further-
more allows us to approach the limit of ultrathin capacitors,
that is beyond the scope of the previously discussed model.
To be analytically tractable, the diagrammatic theory requires
approximations, not only in the selection of diagrams, but also
in their evaluation. We expect that the results are nevertheless
qualitatively correct because—when applied to symmetric ca-
pacitors in the appropriate regime—the diagrammatic result
predicts orders of magnitude and trends similar to those found
with the model of Sec III A.

The diagrammatic analysis shows that two interplate po-
larization mechanisms can be identified. The first mechanism
results from Coulomb correlations that amount to an ef-
fective repulsion between same-sign charges on opposite
plates. These correlations lead to a “negative” cross screen-
ing that reinforces the intraplate screening and reduces the
capacitance as sketched in Fig. 2. The second mechanism in-
volves Coulomb correlations that produce another—density-
dependent—effective interaction, that becomes attractive and
leads to “positive” cross screening when the equilibrium den-
sities in the plates are equal or nearly equal. The analysis
shows that the first process dominates and 
12 is negative in
most of the five-dimensional parameter space defined by the
capacitor thickness d , the carrier densities n1 and n2, and the
carrier masses m1 and m2. 
12 is positive only in a narrow
slice where n1 and n2 are very close to one another, which is
the optimal condition for the condensation of all carriers into
bound pairs.

The details of the diagrammatic calculation are reported
in Appendix D. Here, we only briefly outline the main steps.
There are two diagrams contributing to 
12 at leading (sec-
ond) order in the interplate interaction V12. They describe
polarization processes in the particle-hole [Fig. 5(a)] and
particle-particle channels [Fig. 5(b)], respectively. Similar
processes are identified at all subsequent orders, forming two
geometric series. An approximate evaluation of these series is
performed, where, first, the bare long-range interaction V12 is
replaced by the short-range screened interaction W12, which is
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FIG. 5. Lowest-order interplate polarizability diagrams in (a) the
particle-hole and (b) the particle-particle channels.

furthermore approximated by its value at q = ω = 0. The two
series of diagrams then lead to emerging effective interactions
in the particle-hole and particle-particle channels, that are also
replaced by their long-wavelength static values. The resulting
expressions can be fully evaluated for parabolic bands at zero
temperature and give, up to second order in the screened
interaction:


12 ≈ ν1ν2
μW 2

12

π h̄2

{
−m1 + m2

m1 − m2
ln

(m1

m2

)

+ ln

[
1

πd2

n1(1 + m2/m1) + n2(1 + m1/m2)

(n1 − n2)2

]}
.

(33)

να is the DOS in plate α, which has equilibrium density nα

and mass mα , and μ = m1m2/(m1 + m2) is the reduced mass.
The first term is the contribution of the particle-hole chan-
nel. This term is negative and varies with varying capacitor
thickness via the screened interaction W12. The second term
is the contribution from the particle-particle channel. It has a
peculiar dependence on densities and thickness, which relates
to the existence of an interlayer bound state. The singular
behavior ∼ ln(1/d2) results from a simplified treatment of
the bound-state energy (see Appendix D). This second term
can be positive or negative, such that the particle-hole and
particle-particle channels compete to set the final sign of 
12.

To analyze Eq. (33), it is convenient to introduce
four dimensionless variables. To this end, we measure all
lengths in units of the effective Bohr radius in plate 1,
a1 = 2πε h̄2/(m1e2). The parameter x = d/a1 represents the
capacitor thickness, while the parameter y = (8πn1a2

1)1/2 rep-
resents the density in plate 1 (the factor 8π is introduced for
convenience in order to simplify the formulas.) The difference
between the plates is quantified by the parameters u = m2/m1

and v = (n2/n1)1/2.
Because W12 depends on 
12 and 
21, a self-consistent

loop must be solved. If we start the loop with 
12 = 
21 =
0, we have W12 = W21 at the first iteration and the prop-
erty 
12 = 
21 continues to hold until self-consistency. We
restrict here to this type of solution. For the diagonal po-
larizabilities, we use the approximation 
αα ≈ 2ε/(e2�αα )
introduced previously with �αα ≈ �TF

α − 1/
√

8πnα . Since
�TF

1 = a1, these approximations take the form �11/a1 ≈ 1 −
1/y and �22/a1 = 1/u − 1/vy. The conditions �11 > 0 and
�22 > 0 require y > max(1, u/v). In terms of the introduced
dimensionless variables, these approximations lead to the fol-
lowing expressions for the polarizabilities:


11

ν1
= y

y − 1
,


22

ν1
= uy

y − u/v
(34a)


12

ν1
= 
21

ν1
= (W12ν1)2 u2

1 + u

{
u + 1

u − 1
ln

(
1

u

)

+ ln

[
8(u + 1)(u + v2)

u(1 − v2)2(xy)2

]}
, (34b)

W12ν1 = 1 + 2x 
12
ν1

uy(y−1+y/u−1/v+2xy)
(y−1)(y−u/v) − 2 
12

ν1
− 2x

(

12
ν1

)2 . (34c)

It should be noted that—as we have restricted Eq. (33) to
the leading order in W12—these coupled equations cannot be
trusted if W12 grows during self-consistency. This only occurs
in a narrow parameter range, where 
12 is large and positive.
We show below that 
12 is negative in most of the parameter
space, such that W12 decreases during the self-consistent loop.
In Appendix F, we apply these equations to identical plates
and show that they provide results for the quantum capaci-
tance that are consistent with those presented in Sec III A. This
gives us confidence in the simplifications made for evaluating
the diagrams and in the ability of Eq. (34) to qualitatively
describe capacitors with dissimilar plates.

The sign of 
12 is the sign of the term inside the curly
braces in Eq. (34b). By regrouping the logarithms, we readily
find that the condition for a negative 
12 is

u
2u

1−u
(u + 1)(u + v2)

(1 − v2)2
< 1

8 (xy)2 ≡ (d/d1)2, (35)

where we have used the interparticle distance dα = 1/
√

πnα .
The right side of the inequality compares the density in plate 1
with the capacitor thickness. We see that the ratio d/d1 is one
of the keys that controls the sign of the cross polarizability:

12 > 0 and increase of the quantum capacitance is more
likely when this ratio is small, i.e., when the thickness is
small compared with interparticle distance—provided that the
left side of the inequality is not smaller. The left side of the
inequality only depends on the asymmetry of the capacitor
regarding mass and density imbalance between the plates
[41]. This term is large for plates with similar equilibrium
densities, v = d1/d2 ≈ 1, such that the inequality cannot be
met, 
12 > 0, and interplate effects increase the quantum
capacitance relative to the RPA value. This is consistent with
the findings of Sec. III A (see discussion in Appendix F).

In order to reach the negative cross screening regime with

12 < 0, we need to maximize the right side—density and/or
thickness must be large—and minimize the left side—v must
be far from unity. As the amplitude of 
12 scales like 1/x2, in
maximizing the right side without loosing interplate effects, it
is better to keep x small and rather increase y. This is a regime
of ultrathin capacitors with not too low densities. For large y,
the amplitude of 
12 approaches 1/[(u + 1)(2x + 1 + 1/u)2],
independent of v, such that one can freely choose v away from
unity. In summary, the diagrammatic result suggests that the
conditions for a negative interplate polarizability are high and
different equilibrium densities in the two capacitor plates, and
a minimal separation between the plates.

The previous analysis may leave the reader with the im-
pression that 
12 < 0 requires fine tuning. This is not the
case. We show now that, on the contrary, it is the property

12 > 0 that requires fine tuning. In terms of our dimension-
less variables, the five-dimensional parameter space reduces
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FIG. 6. Interplate polarizability as given by Eq. (34) vs y (dimen-
sionless density of plate 1), x (dimensionless capacitor thickness), u
(carriers mass imbalance), and v (carriers density imbalance). 
12

is plotted versus y at x = 1 in panels (a), (c), and (e) and vs x at
y = 3 in panels (b), (d), and (f). Panels (a) and (b) correspond to
u = 0.1, (c) and (d) to u = 1, (e) and (f) to u = 10. The numbers on
the curves show the value of v (v = 1 means v = 1.001). The curve
for v = 1/50 in (a) starts at y = 5, because the physical parameter
range is bounded by the condition y > max(1, u/v).

to the four dimensions (x, y, u, v). Figure 6 shows the be-
havior of 
12 in this four-dimensional space. The variation
with y (density) is visible in the first column [(a), (c), (e)], the
variation with x (thickness) in the second column [(b), (d),
(f)], the variation with u (mass imbalance) in the different
lines [(a), (b); (c), (d); (e), (f)], and the variation with v

(density imbalance) in the different curves in each panel. The
main message of the figure is that, as soon as the densities
in both plates differ (the numbers on the curves depart from
unity), 
12 turns negative, irrespective of the mass imbalance,
density and thickness. The figure also shows that the interplate
polarizability is generally larger at higher density and for
carriers of equal masses.

Rather interestingly, the strong suppression of 
12 with
increasing capacitor thickness [Figs. 6(b), 6(d), and 6(f)]
makes it possible to have a situation where the detrimental
effect of 
12 on the total capacitance drops faster with in-

FIG. 7. Total (C, blue), geometrical (CG, black), and quantum
(CQ, red) capacitances in units of the kinetic capacitance of plate
1 vs capacitor thickness for y = 20, u = 1, and v = 100. The RPA
value of the quantum capacitance (CQ,0, dotted-red) and the total
capacitance without cross screening (C′, dashed-blue) are shown
for comparison. y = (8πn1a2

1 )1/2 measures the density with a1 the
effective Bohr radius, u = m2/m1 the ratio of carrier masses, and
v = (n2/n1)1/2 the ratio of carrier densities. We used the nonself
consistent model in this figure for simplicity. The self-consistent
solution shows a similar but slightly weaker effect.

creasing d than the geometrical capacitance, such that the
total capacitance actually increases with increasing d . Fig-
ure 7 shows the evolution of the various capacitances versus
thickness in such a case, where the total capacitance has a non-
monotonic dependence on thickness. In dimensionless units,
the geometrical capacitance is 1/(2x) and the noninteract-
ing (RPA) value of the quantum capacitance is 1/(1 + 1/u).
The figure also shows the total capacitance C′ calculated
without cross screening, which gives 1/[2x + 1 + 1/u − (1 +
1/v)/y]. Experimentally, a capacitance increasing with in-
creasing d—everything else being equal—would be a clear
demonstration of cross quantum capacitance, since all other
known contributions to the capacitance are either independent
of d or decrease with increasing d .

To conclude, we briefly return to Fig. 2, where an interpre-
tation of the cross quantum capacitance in terms of screening
charges is illustrated. The excess charge is the superposition
of what would be given by the laws of classical electrostatics
and an opposite screening charge. The screening charge is
divided into intraplate and interplate terms. The diagrammatic
approach underlines that the interplate term has its roots in
nonclassical correlations induced by the Coulomb interaction
between charges in different plates. A vivid illustration of
this is that 
12 is of second order in the interplate inter-
action: It follows that the sign of 
12 does not depend on
whether the bare charges attract or repel between the plates.
One possibility is that the screening charges in one plate tend
to drag opposite-sign charges on the other plate. In Fig. 2,
this is represented as blue charges accumulating in front of
opposite orange charges. The net effect is a reinforcement of
the screening and a decrease of the total charge. This effec-
tive attraction between opposite-sign charges results from the
particle-hole polarization diagrams. In the other case—when
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the particle-particle polarization diagrams win—the screening
charges in one plate drag same-sign charges on the other plate,
opposing to the intralayer screening, such that the capacitance
is enhanced. Similar considerations apply to the physics of
Coulomb drag in transport, and it would be interesting to
investigate in more details the connection between this phe-
nomenon and the cross quantum capacitance.

IV. SUMMARY AND CONCLUSIONS

Experimental progress in controlling matter at the atomic
scale is now allowing investigations of the electrical capaci-
tance of nanostructures in which two conductors are separated
by atomically thin insulators, whose geometrical capacitance
is extremely large. Since different contributions to the total
capacitance add in series, such a large geometrical capacitance
very strongly enhances the experimental sensitivity to all
other contributions. Additionally, atomically thin insulators
facilitate reaching the regime in which the average distance
between charges on one of the capacitor plates is comparable
to the distance between charges on opposite plates. In this
regime, interaction-induced correlations between charges on
opposite plates cannot be neglected.

Virtually all past theoretical studies of the capacitance of
nanostructures have discussed specific phenomena, and fol-
lowed dedicated approaches suitable to their description. The
effect of interactions between charges on opposite plates, for
instance, has been considered in a series of different papers,
but it was analyzed in cases in which it was appropriate to
neglect the wave nature of electrons. Other work focusing on
quantum capacitance analyzed phenomena originating from
the finite density of states and intraplate interaction effects, but
completely disregarded correlations between charges on the
two opposite capacitor plates. In the structures that are becom-
ing available for experimental investigations, however, both
interplate correlations and the wave nature of electrons need to
be considered simultaneously to enable a suitable description.

Our paper develops a general theoretical framework that
accounts for the wave nature of electrons, and for both
inter- and intralayer interaction effects. We have used linear-
response theory to derive a formula of general validity, in
which the total capacitance is expressed as the series con-
nection of the conventional geometrical capacitance and of
a second term, which depends exclusively on the intraplate
and on the interplate electron polarizabilities. This term
describes both the conventional quantum capacitance contri-
bution, which is associated to the intraplate polarizability, and
interplate correlations, which lead to a new effect that we refer
to as cross quantum capacitance. The formula reduces to the
established expression for quantum capacitance in known lim-
its when interplate correlations can be neglected. In capacitors
with small electrode separation, however, interplate correla-
tions cannot be neglected, and the cross quantum capacitance
can become as important as the conventional quantum capac-
itance in determining the total capacitance.

As the origin of the cross quantum capacitance is rooted
in interaction-induced quantum correlations between charges
on opposite plates, the phenomenon has no classical analog
and it is difficult to develop an intuition. Even the sign of
the effect cannot be easily determined a priori. To gain un-

derstanding, we have calculated the interplate polarizability
using two models, based on different approximations. De-
spite being based on very different theoretical approaches,
the two models lead to consistent behavior when applied to
the same parameter regime, which gives us confidence in the
validity of our results. We find that the sign of the interplate
polarizability can be either positive or negative. In our calcu-
lations, a positive sign—corresponding to an enhancement of
the total capacitance relative to the case in which interplate
correlations are not included—is found for symmetric elec-
trodes (same electron density and effective mass); a negative
sign—which reduces the total capacitance—is common in
all other cases. Our calculations further allow us to iden-
tify a specific signature of the cross quantum capacitance,
namely a nonmonotonic dependence of the total capacitance
on the separation of the capacitor plates that—if observed
experimentally—would provide the ultimate evidence for the
relevance of the phenomenon.

Detailed experimental studies of the capacitance of struc-
tures in which the effects discussed here can dominate are
only starting now, and first work indeed indicates that these
effects can be very large. This is the case of ionic liq-
uid gated semiconducting transition metal dichalcogenide
monolayers, whose extremely large geometrical capacitance
(≈50 μF/cm2) makes the contribution related to the finite
density of states dominate the total capacitance [23,42,43]. A
quantitative analysis suggests that this contribution cannot be
described in terms of the usual quantum capacitance, which
motivated us to introduce the notion of cross quantum capac-
itance analyzed in detail in this paper. Similar considerations
can be made for earlier work on ionic gated graphene mono
and multilayers [42,44].

Clearly, ionic gated devices cannot be directly treated
with our theory, which assumes both capacitor plates to be
described by a quantum electron liquid, and further theoretical
work may be needed. However, the basic concept of cross
quantum capacitance that we have developed here remains
valid. Based on the magnitude of the effects observed in
the experiments [23], we conclude that the influence of the
cross quantum capacitance on the total capacitance can be
very large. Indeed, in the configuration of those experiments,
it was inferred that the cross quantum capacitance term
suppresses the total capacitance by factor of 2-to-3, i.e.,
the cross quantum capacitance can give a dominating
contribution. Other candidate systems for which the theory
developed here—or some straightforward variation of it—can
be applied and a large cross quantum capacitance effect
can be envisioned are conducting 2D materials separated by
atomically thin insulators, such as few layer hBN crystals, in
which the small thickness of the dielectric results in a very
large geometrical capacitance.

To conclude, we note that understanding these phenomena
is not only of fundamental interest, but it has great relevance
for technology. Indeed, similar effects likely play a role in
ionic batteries and limit the total amount of charge that can be
stored. In that context, finding how to increase the capacitance
by a factor of 2-to-3 would represent a technological break-
through. That is why developing a much better understanding
of the physics determining the total capacitance of structures
in which charges on opposite plates are separated by atomic
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distances is extremely important also for future technological
developments.
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APPENDIX A: NONLOCAL SCREENING
IN A DOUBLE-LAYER SYSTEM

In this Appendix, we study the full three-dimensional di-
electric response of a capacitor with two main goals. The first
is to justify the two-dimensional approach used in Sec. II B
and the second is to prepare the tools for the extension of our
results to the more general case with ε1 �= ε �= ε2.

1. Dielectric function

The capacitor is invariant by translation in the (x, y) plane
and has axial symmetry in the three-dimensional space. The
symmetry of the problem commands to work in the reciprocal
space of two-dimensional wave vectors q for the in-plane
coordinates and in real space for the z direction. We consider
an arbitrary test charge distribution ρext (q, z), to which the
capacitor responds with an induced charge ρind(q, z). The
dielectric function is defined as

ρtot (q, z) = ρext (q, z) + ρind(q, z)

≡
∫ ∞

−∞
dz′ ε−1(q, z, z′)ρext (q, z′). (A1)

In order to derive an expression for ε−1, we need to express
ρind explicitly in terms of ρext. Within linear response, the
induced charge is proportional to the potential Vext of the
external charge, the coefficient of proportionality being the
charge susceptibility:

ρind(q, z) =
∫ ∞

−∞
dz′ χρρ (q, z, z′)Vext (q, z′). (A2)

Because the mobile charges are confined to the capacitor
plates, the susceptibility has the structure

χρρ (q, z, z′)

= χ11(q)δ(z)δ(z′) + χ12(q)δ(z)δ(z′ − d )

+χ21(q)δ(z − d )δ(z′) + χ22(q)δ(z − d )δ(z′ − d ), (A3)

where the plates 1 and 2 have coordinates z = 0 and z = d ,
respectively. Note that the χαβ in Eq. (A3) are still charge
susceptibilities at this stage; they will be reinterpreted as
number-density correlation functions below, consistently with
Eq. (9). We now relate Vext (q, z) to ρext (q, z) using the
three-dimensional Poisson equation Vext (k) = ρext (k)/(εk2).
By Fourier transforming along kz, we find

Vext (q, z) =
∫ ∞

−∞

dkz

2π
eikzz ρext (q, kz )

ε(q2 + k2
z )

=
∫ ∞

−∞
dz′ ρext (q, z′)

∫ ∞

−∞

dkz

2π

eikz (z−z′ )

ε(q2 + k2
z )

= 1

2εq

∫ ∞

−∞
dz′ ρext (q, z′)e−q|z−z′ |. (A4)

This relation allows one to write ρind(q, z) in a form consis-
tent with Eq. (A1) and to deduce the dielectric function by
identification:

ε−1(q, z, z′)

= δ(z − z′) + 1

2εq
[χ11(q)δ(z)e−q|z′ | + χ12(q)δ(z)e−q|z′−d|

+ χ21(q)δ(z − d )e−q|z′ | + χ22(q)δ(z − d )e−q|z′−d|].
(A5)

The nonlocality of the dielectric response is here manifested
by the fact that the dielectric function depends on z and z′
separately, unlike the vacuum permittivity [first term in the
right-hand side of Eq. (A5)], which depends on z − z′.

2. Screening of a point charge

Consider a point charge Q located on the z axis at coordi-
nate zQ. The density and potential for this charge are

ρ(q, z) = Qδ(z − zQ), V (Q, zQ; q, z) = Q
e−q|z−zQ|

2εq
,

(A6)
as it follows from Eq. (A4). For two identical elemen-
tary charges in the same plate (z = zQ) and two opposite
charges in different plates (|z − zQ| = d), we recover the
potential energies e2/(2εq) and −e2e−qd/(2εq), respec-
tively, entering the calculation of the geometrical capacitance
in Eq. (3). It is tempting but incorrect to compute the
screened potential W (q, z) as

∫ ∞
−∞ dz′ ε−1(q, z, z′)V (q, z′). In

the homogeneous three-dimensional case, we indeed have
W (q, qz ) = V (q, qz )/ε(q, qz ), but here, due to inhomogeneity
along z, the screened potential must be computed from the
screened charge using Poisson’s equation (A4):

W (q, z) = 1

2εq

∫ ∞

−∞
dz′ ρtot (q, z′)e−q|z−z′ |. (A7)

Equation (A1) with ρext (q, z) = Qδ(z − zQ) gives ρtot (q, z) =
Qε−1(q, z, zQ). Making use of Eq. (A5), we then get

W (Q, zQ; q, z)

= V (Q, zQ; q, z) + Q

(2εq)2
[χ11(q)e−q|zQ|e−q|z|

+ χ12(q)e−q|zQ−d|e−q|z| + χ21(q)e−q|zQ|e−q|z−d|

+ χ22(q)e−q|zQ−d|e−q|z−d|]. (A8)

This expression gives the potential generated at height z by a
charge Q located at height zQ and screened by the capacitor
plates characterized by the susceptibilities χαβ .

3. Reduction to two dimensions

The particular choice Q = −e and zQ = 0 in Eq. (A8)
represents an electron in plate 1, such that −eW (−e, 0; q, 0)
and +eW (−e, 0; q, d ) give the potential energies of a negative
test charge in plate 1 and a positive test charge in plate 2,
respectively, in the presence of a screened electron in plate
1. Conversely, Q = +e and zQ = d describes the potential
generated by a screened hole in plate 2. We now collect these
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various situations in a 2 × 2 matrix equation involving in-
traplate and interplate potentials. We consider energies rather
than potentials and thus define (e = |e|)

V11 = −eV (−e, 0; q, 0), V12 = −eV (+e, d; q, 0)

V21 = +eV (−e, 0; q, d ), V22 = +eV (+e, d; q, d ).

Analogous definitions hold for the screened counterparts Wαβ .
For convenience, we also reinterpret χαβ as density-density
rather than charge-charge correlation functions, i.e., χ11 →
e2χ11, χ12 → −e2χ12, etc. For instance, Eq. (A8) gives
for W11:

−eW (−e, 0; q, 0)︸ ︷︷ ︸
W11

= −eV (−e, 0; q, 0)︸ ︷︷ ︸
V11

+ e2

2εq︸︷︷︸
V11

χ11
e2

2εq︸︷︷︸
V11

− e2

2εq︸︷︷︸
V11

χ12
e2e−qd

2εq︸ ︷︷ ︸
−V21

−e2e−qd

2εq︸ ︷︷ ︸
−V12

χ21
e2

2εq︸︷︷︸
V11

+ e2e−qd

2εq︸ ︷︷ ︸
−V12

χ22
e2e−qd

2εq︸ ︷︷ ︸
−V21

.

It is then straightforward to check that the four cases are recast
in the matrix equation(

W11 W12

W21 W22

)
=

(
V11 V12

V21 V22

)

+
(

V11 V12

V21 V22

)(
χ11 χ12

χ21 χ22

)(
V11 V12

V21 V22

)
.

(A9)

It is useful to stress here that, while the bare interaction obeys
V12 = V21, in general W12 �= W21. This is somewhat counter-
intuitive, but obvious from the definition: W12 is the potential
energy of an unscreened electron in plate 1 in the field of a
screened hole in plate 2, while W21 is the potential energy of
a bare hole in plate 2 in the field of a screened electron in
plate 1. If the screening properties differ in the two plates,
so do W12 and W21, as Eq. (15) explicitly shows. We denote
W , V , and χ the matrices displayed in Eq. (A9), which has
the same formal structure as the usual diagrammatic equa-
tion describing screening [33], W = V + V χV . Following the
standard practice, we separate the reducible and irreducible
contributions to the susceptibility. To this end, we introduce
the polarizability matrix 
, which is defined by Eq. (11). We
then check that Eq. (A9) is equivalent to Eq. (13). This justi-
fies the two-dimensional 2 × 2 formulation used in Sec. II B.

4. Metallic screening and neutrality

A conductor in contact with an infinite reservoir of mobile
charges screens a test charge perfectly over long distances
[21]. This means that the displaced charge cancels the test
charge and the total charge given by

∫ ∞
−∞ dz ρtot (q = 0, z)

vanishes. The dielectric function Eq. (A5) enforces this neu-
trality property. For a test charge at any height, ρext (q, z) =
Qδ(z − zQ), the total charge is Q

∫ ∞
−∞ dz ε−1(q, z, zQ). Per-

forming the z integration in Eq. (A5), inserting the χαβ that
solve Eq. (11) and the Coulomb potentials before taking the
limit q → 0, we check that the total charge indeed vanishes.

By linearity, any distribution of charges is perfectly screened
by the capacitor over long distances. We stress that the inter-
plate polarizabilities are not required for a perfect screening:
setting 
12 = 
21 = 0 in the above calculation does not
break the neutrality.

APPENDIX B: NONUNIFORM DIELECTRIC
BACKGROUND

We generalize here our results to the case ε1 �= ε �= ε2 (see
Fig. 1). The Coulomb potential in a system composed of three
different dielectric media has been worked out in Ref. [45].
The intra- and interplate potential energies read in this case:

V11 = e2

q

(ε + ε2)eqd + (ε − ε2)e−qd

�
, (B1a)

V22 = e2

q

(ε + ε1)eqd + (ε − ε1)e−qd

�
, (B1b)

V12 = V21 = −e2

q

2ε

�
, (B1c)

� = (ε1 + ε)(ε + ε2)eqd + (ε1 − ε)(ε − ε2)e−qd . (B1d)

The Hartree energy in Eq. (3) is limq→0 n2(V11/2 +
V22/2 + V12) and remains unchanged, hence the geometrical
capacitance Eq. (4) remains the same as well. We also find
that the expressions Eq. (15) for the screened interaction and
Eq. (16) for the capacitance remain unchanged, as may have
been anticipated, since the quantum capacitance in Eq. (16)
does not depend explicitly on ε.

We now generalize the analysis of Appendix A. For a
nonuniform dielectric constant ε(z), the displacement field
is D = ε(z)(−∇V ) and the Gauss law ∇ · D = ρ yields the
Poisson equation −∇ · [ε(z)∇V ] = ρ. In reciprocal space,
this reads∫ ∞

−∞

dkz
′

2π
ε(kz − kz

′)(q2 + kzkz
′)V (q, kz

′) = ρ(q, kz ). (B2)

Introducing the inverse kernel Iq(kz, kz
′) defined by∫ ∞

−∞

dkz
′

2π
ε(kz − kz

′)(q2 + kzkz
′)Iq(kz

′, kz
′′) = 2πδ(kz − kz

′′),

(B3)
we relate the potential V to the charge ρ through

V (q, kz ) =
∫ ∞

−∞

dkz
′

2π
Iq(kz, kz

′)ρ(q, kz
′). (B4)

Equation (B4) replaces Eq. (A4). For a point-charge Q at
height zQ, ρ(q, kz ) = Qe−ikzzQ and Eq. (B4) transforms into

V (Q, zQ; q, z) = QIq(z,−zQ), (B5)

where the kernel Iq was transformed back to real space. This
replaces Eq. (A6) and provides a closed expression for the
kernel in real space, using the results of Ref. [45]. The induced
charge given by Eq. (A2) is replaced by

ρind(q, z) =
∫ ∞

−∞
dz′

[∫ ∞

−∞
dz′′ Iq(z′′,−z′)χρρ (q, z, z′′)

]
× ρext (q, z′). (B6)

043036-15



BERTHOD, ZHANG, MORPURGO, AND GIAMARCHI PHYSICAL REVIEW RESEARCH 3, 043036 (2021)

Comparing with Eq. (A1), we see that the quantity in square
brackets yields the response term of the dielectric function.
Using Eq. (A3), we thus find that the dielectric function
Eq. (A5) is replaced by

ε−1(q, z, z′) = δ(z − z′) + [χ11(q)δ(z)Iq(0,−z′)

+ χ12(q)δ(z)Iq(d,−z′) + χ21(q)δ(z − d )

×Iq(0,−z′) + χ22(q)δ(z − d )Iq(d,−z′)].
(B7)

For a uniform medium ε(z) ≡ ε, the solution of Eq. (B3) or
Eq. (B5) is Iq(z,−z′) = e−q|z−z′ |/(2εq) and Eq. (B7) recov-
ers Eq. (A5). Equation (B7) warrants the neutrality condition∫ ∞
−∞ dz ε−1(0, z, zQ) = 0 for any value of zQ.

APPENDIX C: CLASSICAL AND QUANTUM
CHARGE RESPONSES

The notion of polarizability is pivotal for the description
of the quantum capacitance proposed in this paper. However,
this notion may occasionally hurt the intuition, because it has
no classical analog. More precisely, the polarizability is a
quantity that becomes infinite rather than zero when the laws
of quantum mechanics are taken to their classical limit. Our
goal in this Appendix is to elucidate this point by proposing an
interpretation of the polarizability as a way to separate, in the
charge response, the part resulting from classical electrostatics
and the part resulting from quantum mechanics. We first de-
rive the susceptibility of the capacitor ignoring all quantum
effects. This “classical susceptibility” explains the geomet-
rical capacitance and allows one to understand why there is
no “classical polarizability”. We then x-ray Eq. (11) to distin-
guish classical and quantum contributions in the total charge
response and we show that the latter is wholly accounted for
by the polarizability.

The linear-response approach used in Sec. II B for a quan-
tum capacitor works equally well for a classical capacitor. The
classical linear response to an external potential is given by the
Poisson equation. In a three-dimensional system with uniform
dielectric constant, this equation is ρ = −en = εq2U . The
classical susceptibility defined through n = χ classU is simply
χ class = −εq2/e. It vanishes in the long-wavelength limit, be-
cause classical charges are immune to a uniform electrostatic
potential. In the geometry of a capacitor, the Poisson equation
has the form given in Eq. (A4). To conform with the sign
convention of Sec. II B, we define the potential energies on
the plates as U1(q) = |e|Vext (q, 0) and U2(q) = −|e|Vext (q, d ),
and we write ρext (q, z) = −|e|n1(q)δ(z) + |e|n2(q)δ(z − d ),
where here (and only here) n1 and n2 denote the excess den-
sities on the plates, that are in general different if U2 �= −U1.
Equation (A4) can then be recast in the 2 × 2 matrix form(

n1

n2

)
=

(
χ class

11 χ class
12

χ class
21 χ class

22

)(
U1

U2

)
(C1)

with

χ class
11 = χ class

22 = − ε

e2
q[1 + coth(qd )], (C2a)

χ class
12 = χ class

21 = − ε

e2

q

sinh(qd )
. (C2b)

The intraplate response is finite at q = 0, increases mono-
tonically with increasing q, and becomes linear at large q.
This contrasts with the three-dimensional case, where the
classical susceptibility is exactly proportional to q2. Due to
the cutoff e−qd in the interplate Coulomb potential, there is no
interplate response at wavelengths much shorter than d , such
that χ class

12 is a decreasing function that vanishes exponentially
at large q. Despite these qualitative differences, both intra- and
interplate responses approach the same value −ε/(e2d ) in the
long-wavelength limit. Inserted in Eq. (8), the macroscopic
classical susceptibilities correctly give C = CG.

One could have derived Eq. (C2) directly from the re-
lation χ class = −V −1, where V is the Coulomb interaction.
This relation is obvious in the uniform three-dimensional
continuum, where V = e/(εq2) and χ class = −εq2/e. Using
the 2 × 2 Coulomb-interaction matrix of the capacitor, one
checks that this relation holds there as well. In an attempt to
define a “classical polarizability”, one could invert Eq. (11),
which gives 
 = −χ (1 + V χ )−1. The substitution of χ class =
−V −1 would then yield a 
class that is formally infinite.
Physically, infinite polarizability signifies that nothing stops
classical charges from moving in an external potential, unlike
quantum charges that are limited by the Pauli exclusion. The
polarizability of free quantum charges is the Fermi-level DOS
∝m/h̄2, which indeed diverges in the classical limit h̄ → 0.

Coming back to the capacitor, the susceptibility χαβ de-
termines how the charges in plate α move in response to an
external potential applied in plate β. This motion is a mixture
of classical electrostatics and quantum correlations. The clas-
sical motion ultimately leads to the geometrical capacitance
and the quantum correlations to the quantum capacitance.
The separation between classical and quantum motions is
not explicit in Eqs. (8) and (10), because both effects are
mixed in χαβ . It is therefore necessary to distinguish these
contributions: this is where the polarizability comes into
play. The response to the external potential must be self-
consistent. The primary displaced charge—by this we mean:
the charge that would be displaced, were the Coulomb in-
teraction inexistent—induces via the Coulomb interaction a
potential that opposes the external potential and readjusts the
response. This is the phenomenon of screening. The primary
displaced charge is written −
αβU , where 
αβ is the polar-
izability and the minus sign reflects that the primary charge
is opposite to the source charge of the external potential U .
Free quantum charges move in an external potential inso-
far as empty states are available. The calculation shows that
their polarizability 
0 is proportional to the Fermi-level DOS
(Appendix D). Note that this result indeed does not require a
Coulomb interaction. The Coulomb interaction has two dis-
tinct effects. On the one hand, the uncorrelated response 
0 is
replaced by a correlated response 
. The physical intuition
is that charges have a reduced probability to be at a short
distance from one another (exchange-correlation hole). When
one charge moves in response to the external potential, other
charges are prevented from moving nearby. It can be seen
in the main text that 
0 yields the kinetic capacitance, the
difference between 
 and 
0 accounting for the quantum cor-
rections. On the other hand, the Coulomb interaction triggers
the self-consistent screening, which obeys the Poisson equa-
tion and may therefore be labeled “classical”. Specifically, the
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primary charge −
αβU generates a potential Vαα (−
αβU )
in plate α and Vβα (−
αβU ) in plate β, where Vαα and Vβα

are the intra- and interplate Coulomb potentials, respectively
(all quantities depend on q). Note how quantum and classical
effects get mixed here: the charge −
U is limited by the Pauli
principle and other quantum correlations, but the potential
V (−
U ) is set by the classical Poisson equation. The system
responds to the secondary potential like it does to the external
potential, which triggers a geometric series of terms that even-
tually converges to give the total response χαβU . Hence χαβ

rests on a quantum “kernel”, 
, that determines the responses
to the classical potentials generated at the successive orders. In
the diagrammatic jargon, the kernel is called the “irreducible”
part of the response, which has a simple graphical meaning
for the diagrams (see Appendix D).

APPENDIX D: DIAGRAMMATIC THEORY
OF THE CROSS POLARIZABILITY

In this Appendix, we sketch a diagrammatic theory of the
cross quantum capacitance and we evaluate approximately
two important series of diagrams. Our purpose is to show that
these series lead to an interplate polarizability proportional to
the DOS of the capacitor plates and whose sign can be positive
or negative depending on d , the masses, and the equilibrium
densities of carriers in the plates. The static susceptibilities
defined in Eq. (9) are represented by the following diagram:

(D1)

The minus sign cancels the sign of the loop and ensures that
the relation is consistent with the diagrammatic rules. The left
part of the diagram represents the density operator in plate α,

(D2)

the right part is the density operator in plate β, and the shaded
box represents all ways of connecting the fermion lines by
intra- and interplate Coulomb interactions. Equation (11) cor-
responds to the diagrammatic equation

The black box represents only a subset of all connections
contained in the shaded box. Indeed, the polarizability 
 is
defined as the sum of diagrams that are irreducible, i.e., that
cannot be split in two disconnected pieces by cutting just one
interaction line. All reducible diagrams, on the other hand,
have the structure shown in the last term of the equation.
Equation (13) corresponds to the diagrammatic result

(D3)

The various quantities in the previous diagrammatic relations
are 2 × 2 matrices and matrix products are implied. For in-

stance, the explicit expression for −χ12 is

This shows that χ12 is nonzero even if 
12 = 0: in that case,
the second and third terms on the right-hand side survive.

The interplate polarizabilities 
12 and 
21 are in general
nonzero and different. In the RPA, however, they vanish. The
RPA replaces the polarizability by its value in the absence of
Coulomb interaction:

(D4)

This approximation prevents any interplate polarizability,
because the particle-hole pair created on one side of the
diagram—that is, on a given plate—must recombine on the
same plate:

(D5)

More formally, it follows from Eq. (11) that 
RPA
αβ ≡ 
0

αβ =
−χ0

αβ , which vanishes for α �= β because n1(q, t ) and
n2(−q, 0) commute in Eq. (9) if H12 = 0. The RPA leads,
in the long-wavelength limit, to the Thomas-Fermi approx-
imation in which the polarizability is proportional to the
Fermi-level density of states. Applying the diagrammatic
rules, one indeed finds


RPA
αα (q, ε) = = −

∑
kσ

f (ξαk) − f (ξαk+q)

ε + ξαk − ξαk+q + i0+

= να (ε = 0, q → 0, T = 0). (D6)

In this expression, ξαk = εαk − μα is the electron dispersion
in plate α measured from the chemical potential and f (ξ ) is
the Fermi distribution function.

Any diagram with a continuous line connecting the left
and right vertices, irrespective of how complex it is, belongs
to the intraplate polarizability. Along one such line, the plate
“flavor” is conserved like in the example below:

.

The interplate polarizability diagrams must therefore have
particle-hole pair creations and annihilations on each plate
independently, and the pairs on both plates interacting via the
interplate interaction. In other words, there can not be any
exchange of particles between the plates (our Hamiltonian
excludes tunneling between the plates). The only first-order
diagram satisfying this property is

.

However, this diagram is reducible and does not belong to
the polarizability. Following the same idea at second order,
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we get two Aslamazov–Larkin-type irreducible diagrams that
contribute to the interplate polarizability:

.
(D7)

Similar diagrams occur in the theory of the Coulomb drag
between two parallel two-dimensional conductors [17,46].
These two diagrams lead to geometric series that can be
approximately evaluated in closed form. We present this eval-
uation below, as it shows that the corresponding polarization
is proportional to the DOS in the two plates and may change
sign. A more thorough investigation of 
12 goes beyond the
scope of the present paper.

We replace in the first diagram of (D7) the bare interaction
by the screened interaction using Eq. (D3) and include higher-
order terms, obtaining the infinite series

.
(D8)

The ladder sum is readily evaluated if we approximate the
screened interaction by its value at Q = 0. Here, we use the
imaginary-time formalism and the “four-vector” notation

Q ≡ (q, i�n), K ≡ (k, σ, iωn),
∑

K

≡
∑
kσ

1

β

∑
iωn

,

where iωn and i�n are fermionic and bosonic Matsubara
frequencies, 1/β = kBT , and a unit normalization area is im-
plied. The ladder sum is

(D9)

Although its expression resembles that of the noninteracting
susceptibility Eq. (D6), the quantity ζ 0

12(Q) introduced here
is not a charge susceptibility. The susceptibility χ12 describes
the propagation of a density fluctuation created on plate 2 and
annihilated on plate 1: we have seen above that χ0

12 vanishes,
because a density fluctuation cannot propagate from plate 2 to
plate 1 in the absence of interplate interaction. In contrast, ζ12

describes the propagation of pairs created by simultaneously
adding a particle to plate 2 and a hole to plate 1. These pairs
propagate freely in the absence of interaction, therefore ζ 0

12 is
nonzero. The following expression results for the first series

of diagrams:



(1)
12 (Q) ≈

∑
K

G1(K )G1(K + Q)
∑

K ′
G2(K ′)G2(K ′ − Q)

× W 2
12ζ

0
12(K ′ − K − Q)

1 + W12ζ
0
12(K ′ − K − Q)

. (D10)

From the second diagram of Eq. (D7), we proceed similarly
to generate the cooperon series:

. (D11)

Like the particle-hole ladder Eq. (D9), the particle-particle
ladder in Eq. (D11) is readily evaluated formally if the inter-
action is replaced by its short-range and static limit:

(D12)

The function ζ̄ 0
12 describe the propagation of pairs created

by simultaneously adding a particle to plates 1 and 2. This
quantity is ultraviolet divergent if the dispersions ξαk are
unbounded. The divergence arises from ignoring a natural
cutoff in W12(Q) at large Q. It may be removed by restoring
a cutoff in the momentum integrals. Alternatively, a standard
way of curing the divergence [47–52] is to express the full
ladder [including the term of first order in W12 that is not
present in Eq. (D12)] in terms of the two-particle t-matrix,
which contains information about the interplate bound state.
Both approaches yield equivalent results and we first adopt the
t-matrix solution here. We will revert to the cutoff later when
discussing the sign of the cross polarizability. For a contact
interaction W12, the t-matrix is given by

T −1
12 (q, E ) = W −1

12 −
∑
kσ

1

E − h̄2q2

2M − h̄2k2

2μ
+ i0+

, (D13)

where M = m1 + m2 and μ = m1m2/(m1 + m2) are the total
and reduced masses, respectively. The full particle-particle
ladder—often called the pseudopotential and denoted �—
obeys a Bethe-Salpeter equation analogous to Eq. (D3): −� =
−W + (−W )ζ̄ 0(−�). The partial series in Eq. (D12) corre-
sponds to W − �. Using the t-matrix in order to eliminate W
from the Bethe-Salpeter equation, one arrives at the following
exact representation of the pseudopotential:

�−1
12 (Q) = T −1

12 (q, E ) −
∑
kσ

[
1 − f (ξ1k) − f (ξ2q−k)

i�n − ξ1k − ξ2q−k

− 1

E − h̄2q2

2M − h̄2k2

2μ
+ i0+

]
.

043036-18



THEORY OF CROSS QUANTUM CAPACITANCE PHYSICAL REVIEW RESEARCH 3, 043036 (2021)

The momentum sum is now convergent, because ξ1k + ξ2q−k

approaches h̄2k2/(2μ) at large k. There is freedom in choos-
ing q and E in the t matrix. The t matrix diverges at the
bound state energy, which occurs below the minimum of the
two-particle continuum given by h̄2q2/(2M ). We can write the
bound-state energy as Eb(q) = h̄2q2/(2M ) − |Eb|, such that
T −1

12 (q, Eb(q)) = 0. With the choice E = Eb(q), the pseudopo-
tential reads

�−1
12 (Q) =

∑
kσ

[
f (ξ1k) + f (ξ2q−k) − 1

i�n − ξ1k − ξ2q−k
− 1

|Eb| + h̄2k2

2μ

]
.

(D14)
The series of diagrams Eq. (D11) yields an expression like
Eq. (D10), where the fraction at the second line is replaced by
W12 − �12(K + K ′). Collecting both series, we arrive at the
expression



(1+2)
12 (Q) ≈

∑
K

G1(K )G1(K + Q)
∑

K ′
G2(K ′)G2(K ′ − Q)

×
[

W 2
12ζ

0
12(K ′ − K − Q)

1 + W12ζ
0
12(K ′ − K − Q)

+W12 − �12(K + K ′)

]
. (D15)

Due to the Q dependencies of ζ 0
12(Q) and �12(Q), progress is

difficult without making further approximations. In line with
the neglect of the Q dependence of W12, we may ignore the
Q dependencies of the effective interactions represented by
ζ 0

12 and �12. The first two factors in the right-hand side of
Eq. (D15) become −
RPA

11 (Q) and −
RPA
22 (−Q), respectively,

such that for Q = 0 these two factors reduce to ν1ν2 [see
Eq. (D6)]. We are left with the following expression for the
long-wavelength cross polarizability:



(1+2)
12 (0) ≈ ν1ν2

[
W 2

12ζ
0
12(0)

1 + W12ζ
0
12(0)

+ W12 − �12(0)

]
. (D16)

Looking back at Eq. (D7), we recognize that the factors ν1

and ν2 arise from the loops on the left and right, respectively,
while the terms in the square brackets give the effective in-
terplate interactions at long wavelength in the particle-hole
and particle-particle channels. Both interactions are of order
W 2

12, such that their signs are not set by the sign of the
screened interaction W12. In the particle-hole channel, the
sign of the effective interaction is the sign of ζ 0

12(0). In the
particle-particle channel, �12(0) approaches W12 for W12 → 0
such that W12 − �12(0) ∼ W 2

12 and the sign of the effective
interaction is fixed by the second derivative d2�12/dW 2

12.
We now evaluate ζ 0

12(0) and �12(0) at zero temperature for
two parabolic bands ξαk = h̄2k2/(2mα ) − μα . Since ξ2k can
be expressed in terms of ξ1k and vice-versa, the momentum
sums can be rewritten as integrals involving the DOS of plates
1 and 2:

ζ 0
12(0) =

∫ ∞

−∞
dξ

ν1(ξ ) f (ξ )

ξ
(
1 − m1

m2

) − m1
m2

μ1 + μ2 + i0+

−
∫ ∞

−∞
dξ

ν2(ξ ) f (ξ )

ξ
(m2

m1
− 1

) + m2
m1

μ2 − μ1 + i0+ .

The plate DOS are constant as soon as ξ > −μ1,2:

m2ν1(ξ ) = m1m2

π h̄2 θ (ξ + μ1),

m1ν2(ξ ) = m1m2

π h̄2 θ (ξ + μ2),

such that

ζ 0
12(0) = m1m2

π h̄2

[∫ 0

−μ1

dξ

ξ (m2 − m1) − m1μ1 + m2μ2 + i0+

−
∫ 0

−μ2

dξ

ξ (m2 − m1) + m2μ2 − m1μ1 + i0+

]

= − m1m2

π h̄2(m1 − m2)
ln

(
m1

m2

)
. (D17)

Clearly ζ 0
12(0) < 0. In particular, ζ 0

12(0) approaches the in-
traplate susceptibility χ0

11 = −m1/(π h̄2) in the limit where
m2 approaches m1. Proceeding similarly and using the relation
μα = π h̄2nα/mα with nα the density in plate α, we find

�−1
12 (0) = μ

π h̄2 ln

[ |Eb|
π h̄2

m2n1 + m1n2

(n1 − n2)2

]
(D18)

for the pseudopotential, with μ the reduced mass. Note that
n1 and n2 are the equilibrium densities in the plates. It appears
that the effective interaction in the particle-particle channel
approaches zero logarithmically in the particular case of two
plates with the same density. In order to determine the sign
of the effective interaction, it is necessary to substitute in
Eq. (D18) |Eb| by its expression in terms of the bare inter-
action W12. Since this removes |Eb| from the expressions, it
would restore the ultraviolet singularity unless a high-energy
cutoff is simultaneously introduced. To this end, we solve
Eq. (D13) for the bound state, cutting the divergence at energy
Ec:

1

|W12| = μ

π h̄2

∫ Ec

0

dε

|Eb| + ε − i0+ = μ

π h̄2 ln

(
1 + Ec

|Eb|
)

,

which gives the solution

|Eb| = Ec

exp
(

π h̄2

μ|W12|
) − 1

≈ Ec exp

(
− π h̄2

μ|W12|
)

, (D19)

the last expression being accurate for small W12. Inserting
Eq. (D19) in Eq. (D18) yields

W12 − �12(0) = W 2
12

W12 + π h̄2

μ
/ ln

[ Ec

π h̄2
m2n1+m1n2

(n1−n2 )2

] . (D20)

As the bare interplate potential is cut at short wavelength by
a factor e−qd , the screened potential must behave similarly
and we can use h̄2/(μd2) as the cutoff. Introducing this,
Eq. (D17), and Eq. (D20) in Eq. (D16) and keeping the lowest
order in W12 leads to our final result reported in the main text,
Eq. (33).

APPENDIX E: QUANTUM CAPACITANCE
AND LOCAL-FIELD FACTORS

The STLS theory [20] includes quantum effects in the
susceptibility by means of a local-field factor G(q) instead of
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the polarizability. The role of G(q) is to take into account cor-
relations in the screening process. The primary response to the
external potential (see Appendix C) is taken as χ0U , like in the
RPA. The response to the secondary potential V χ0U , however,
is not χ0V χ0U like in RPA, but χ0(1 − G)V χ0U . The cor-
rection −G represents the effect of the exchange-correlation
hole, which changes the screening at short distances. It can be
shown that G(0) = 0, because the long-distance physics is not
affected by the correlations, and that limq→∞[1 − G(q)] =
g(0), where g(r) is the pair-distribution function [21]. The
STLS theory provides a self-consistent definition of G(q) that
can be solved numerically. Once generalized to the geometry
of the capacitor [18], it provides another way of expressing
the quantum capacitance. The susceptibility matrix of the
capacitor now takes the form

χ−1 =
(

χ−1
01 − V11(1 − G11) V12(G12 − 1)

V21(G21 − 1) χ−1
02 − V22(1 − G22)

)
,

(E1)
where χ0α (q) are the noninteracting susceptibilities and
Gαβ (q) are the local-field factors. By comparing Eq. (E1) with
Eq. (11), one can express 
αβ in terms of Gαβ , Vαβ , and χ0α .
After substitution into Eq. (16), the result for the quantum
capacitance is

e2

CQ
= lim

q→0

[
− 1

χ01
− 1

χ02
−(G11 + G22)V11−(G12 + G21)V12

]
.

Because it rests on the noninteracting susceptibilities, this
representation singles out the kinetic capacitances Ckin,α/e2 =
να = −χ0α . This leads to the expression

1

CQ
= 1

Ckin,1
+ 1

Ckin,2
− 1

�C

1

�C
= 1

2ε
lim
q→0

G11(q) + G22(q) − e−qd [G12(q) + G21(q)]

q
.

(E2)

The RPA corresponds to Gαβ = 0 and only gives the kinetic
capacitances, as found previously. The local-field factors cal-
culated for electron-hole bilayers [19,53,54] vanish linearly
for q → 0 with a positive slope for the diagonal elements and
a negative slope for the off-diagonal ones. Hence �C > 0
and CQ > Ckin,1/2 for two identical plates, consistently with
Fig. 4.

APPENDIX F: COMPARISON OF EQS. (31) AND (34)

We compare here the model of quantum capacitance
derived in Sec. III A for a symmetric capacitor with the
diagrammatic result. To this end, we express the quantum
capacitance given by Eq. (31) in terms of the same dimen-

FIG. 8. Comparison of the two quantum capacitance models for
a symmetric capacitor. The capacitance is plotted (a) vs density for
dimensionless thickness x = 1 and (b) vs thickness for dimensionless
density y = 3. The dashed lines show the model based on screening
lengths, Eq. (F1), which is only valid in the range x > 1

2 (1 − 1/y).
The solid lines show the diagrammatic result, Eq. (F2).

sionless variables as used in Eq. (34), x = d/a1 and y =
(8πn1a2

1)1/2, and we normalize it by the kinetic capacitance
of plate 1, which yields

C(I)
Q

Ckin,1
= y/2

y − 1
+ 1

4x

(√
1 + 2xy

y − 1
− 1

)
. (F1)

The condition of validity d > �1/2 translates into x > 1
2 (1 −

1/y). We would like to compare this expression with the
diagrammatic result, Eq. (34), specialized for identical plates,
i.e., with u = 1 and v = 1. Because Eq. (31) requires 
12 


11, we use the nonself-consistent model by setting 
12 to
zero in Eq. (34c). Equation (34b) is regular at u = 1 but has
a singularity at v = 1. As 
12 depends only logarithmically
on v close to the singularity, we set v = 1.00001 to represent
plates with equal densities. The resulting quantum capacitance
is

C(II)
Q

Ckin,1
= y/2

y − 1
+ (y − 1)4

16y2(y − 1 + xy)2

×
{
−2 + ln

[
8

(1 − v)2(xy)2

]}
. (F2)

Figure 8 compares the two models. They both yield sim-
ilar orders of magnitude and similar trends for the quantum
capacitance versus density and thickness. The cross polariz-
ability is positive in this configuration of capacitor and the
quantum capacitance is increased relative to the RPA value,
diverging a low density similarly in both models [Fig. 8(a)].
For very small thicknesses, the capacitance C(II)

Q diverges
logarithmically due to the singular contribution of the bound
state. The model C(I)

Q is not applicable in this regime, where
x < 1

2 (1 − 1/y) [Fig. 8(b)].
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