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Optimal quantum-programmable projective measurements with coherent states
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We consider a device which can be programed using coherent states of light to approximate a given projective
measurement on an input coherent state. We provide and discuss three practical implementations of this
programmable projective measurement device with linear optics, involving only balanced beam splitters and
single photon threshold detectors. The three schemes optimally approximate any projective measurement onto a
program coherent state. We further extend these to the case where there are no assumptions on the input state.
In this setting, we show that our scheme enables an efficient verification of an unbounded untrusted source
with only local coherent states, balanced beam splitters, and threshold detectors. Exploiting the link between
programmable measurements and generalized swap test, we show as a direct application that our schemes
provide an asymptotically quadratic improvement in existing quantum fingerprinting protocol to approximate

the Euclidean distance between two unit vectors.
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I. INTRODUCTION

A typical experiment with measurement of a quantum state
involves preparing a circuit, which is often classically con-
trolled, to perform a vast range of operations on the state. The
choice of measurement typically depends on the task at hand
and is usually fixed beforehand. In some cases, one could
alternatively use a measurement device which is classically
(re)programmable to obtain a wide variety of measurement
scenarios. Recent developments on this front involve a pro-
grammable optical circuit that can implement all possible
linear optical protocols up to the size of that circuit [1]. The
circuit involves Mach—Zehnder interferometers and thermo-
optic phase shifters which are electronically and optically
controlled.

In this paper, we investigate an alternative scenario where
a quantum input—rather than a classical program—controls
the choice of measurement. This setting has applications
in several quantum protocols for solving communication
complexity problems. These include quantum fingerprint-
ing protocols to check for equality between two given
strings [2-5], Euclidean distance of two real vectors [6], and
matching-based one-way communication complexity prob-
lems [7,8]. The choice of measurement being driven by an
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input quantum state has also been extensively used in cryp-
tography settings such as private quantum money schemes
[5,9-12]. In these works, a central issue is to test whether
two unknown quantum states are equal. Such a quantum state
comparison can be performed using a programmable projec-
tive measurement device, where multiple copies of one of the
two states to be compared act as program states encoding the
direction of the measurement, which is then performed on the
other state: if the projection succeeds, the states are considered
equal, otherwise they are considered different.

The comparison of two states is trivial in the classical
world, where two bit strings can be bit-wise checked and thus
the maximum number of operations that are needed equals
the size of the strings. However, comparing two quantum
states is nontrivial since a quantum state is typically in a
superposition over multiple possible basis states. If we simply
follow the above classical procedure of individually measur-
ing the quantum states in some fixed basis and comparing
the measurement outcomes, then the basis measurement only
reveals partial information about each quantum state, i.e., the
amplitude corresponding to the specific basis state onto which
the quantum state has collapsed. Hence, this measure-and-
compare approach does not work for comparing two unknown
quantum states. Buhrman ef al. [2] introduced a simple test,
the so-called swap test, to compare two unknown quantum
states with one-sided error probability, i.e., the test succeeds
with certainty if the two quantum states are the same, however,
there is a nonzero probability of failing the test if the two
states are different. This test uses a controlled-swap operation
and is optimal under one-sided error probability, if one only
has a single copy of the two quantum states [13]. However, to
succeed with an arbitrarily small desired error probability e,
this technique needs to perform independent tests on at-least
logarithm of inverse-¢ number of copies of both quantum
states.
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Generalizing this scenario, Chabaud et al. [14] introduced
a version of the swap test when one is provided with just a
single copy of one of the states in some input register and
multiple copies of the other state in the program registers.
They investigated the probability of a successful projective
measurement on the input state in the basis of the program
register state by constructing a circuit that takes as inputs the
states in the input and program registers. They showed that
this probability increases with the number of copies of the
state in the program register. In particular, they proposed an
implementation of a state comparison test, where all output
states are measured, with generic quantum states encoded in
single photons. They showed that the same implementation
provides a programmable projective measurement scheme in-
volving balanced beam splitters and photon number-resolving
detectors, in which the states in the program registers approx-
imate the direction of the measurement, which is performed
on the state in the input register.

Their proposal, however, requires the creation and ma-
nipulation of high-dimensional superposition states, which
is out of the reach of current experimental photonic tech-
nologies required for implementing quantum communication
tasks. A major step in overcoming the difficulty in experimen-
tal realizations for such protocols requiring high-dimensional
states was proposed by the theoretical work of Arrazola and
Liitkenhaus [3]: Their work maps any protocol involving pure
states of many qubits, unitary transformations, and projective
measurement to protocols based on coherent states of light in
multiple optical modes, passive linear optical transformations
and single-photon threshold detection. Since coherent states
of light are natural realizations of states produced by lasers,
these are highly efficient to produce and manipulate exper-
imentally. This model was subsequently used to demonstrate
quantum advantage in quantum communication tasks [4,8,15].

Motivated by the coherent state mapping of quantum pro-
tocols, we extend the results of Ref. [14] and introduce a
programmable device which uses coherent states of light
to perform a given projective measurement onto program
coherent states, with commercially available passive linear
optics components such as balanced beam splitters and single-
photon threshold detectors. Our scheme takes as input a
single-mode coherent state (the input register) and M — 1
copies of some coherent state |B) (the program registers)
and approximates the projective measurement {|8) (8|, 1 —
|B) (B]} on the state in the input register in a single run.
We provide and discuss three practical implementations of
our programmable projective measurement scheme. The three
schemes, which we will refer to as the Hadamard scheme,
the amplifier scheme, and the looped amplifier scheme, re-
spectively, all provide an optimal projective measurement
with one-sided error probability given a single copy of the
input register and M — 1 copies of the program registers,
in the sense that they achieve the best possible approxima-
tion of the projective measurement using M — 1 program
states. The schemes differ, however, in the number of lin-
ear optics components. While all three schemes are efficient,
the looped amplifier scheme is the most practical scheme
requiring a single balanced beam splitter and a single thresh-
old detector—with the counterpart that it requires an optical
switch.

In addition to substantially reducing the experimental
requirements, we obtain two additional advantages in our
scheme compared to the original scheme of Ref. [14]. First,
our scheme leaves a remaining output state after the projective
measurement, which can be used as a resource for subsequent
tasks. The second advantage is that from the use of coherent
states, we obtain a more faithful projective measurement than
using a single-photon encoding, implying better probability in
carrying out a successful projective measurement.

Next, we extend our scheme to allow the input register to
be obtained from an untrusted source: Instead of requiring that
the state in the input register is a coherent state, we allow any
generic quantum state as an input, while the states in the pro-
gram registers are still obtained from a trusted coherent state
source. This setting is very natural in quantum cryptography
and in verification of quantum state preparation [10,12]. In
this setting, we also show an optimal approximate projective
measurement on the input state, thus finding relevance when
such a measurement is a part of some verification protocol.
Our result enables an efficient verification of an unbounded
untrusted source with only trusted coherent states, balanced
beam splitters, and threshold detectors.

As a final result, we give an application of our general-
ized scheme by showing an at-most quadratic improvement
in soundness of an existing quantum fingerprinting proto-
col to approximate the Euclidean distance between two unit
vectors [6].

The paper is organized as follows. In Sec. II, we review the
existing state comparison techniques for qubit states and co-
herent states. Following Ref. [14], we then consider the setting
of a single input register state and multiple program register
states, where both the input register state and the program
register states are coherent states, in Sec. III. We introduce and
compare three different schemes for performing state compar-
ison and programmable projective measurement with coherent
states. Further, in Sec. IV, we give the proof of the optimality
of our projective measurement for all three schemes, under the
one-sided error requirement. We then analyze the robustness
of our schemes by considering experimental imperfections in
Sec. V. In Sec. VI, we drop the assumption that the incom-
ing input register state is a coherent state. We further prove
that our projective measurement scheme is also optimal in
this case. We conclude with Sec. VII by giving a concrete
improvement of the quantum fingerprinting protocol to solve
the Euclidean distance problem [6].

II. QUANTUM STATE COMPARISON

A circuit for comparing two unknown qubit states, known
as the swap test, was first introduced by Buhrman er al. [2].
The analog of this test when the states are unknown coherent
states was introduced in Ref. [3]. We briefly review these two
tests here. Throughout this paper, we use logarithm in base 2.

A. The swap test

The swap test uses a controlled-swap gate applied on
two unknown qubit states |¢) and |¢), and controlled by an
ancilla qubit, as shown in Fig. 1. Applying the circuit and
measuring the ancilla qubit gives output 1 with a probability
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FIG. 1. Controlled-swap circuit employed to compare the incom-
ing qubit states. The ancilla qubit is measured in the computational
basis and this relates to the probability of telling the two qubit states
apart.

P(1)= 11— [(¢|¥)?), and output O with probability
PO)=1-P().

We define the completeness and soundness of this test as
follows:

Completeness: If the states |¢) and |y) are the same, then
there is a zero probability of the outcome being 1. We say that
the test has perfect completeness ¢, = 1, where the complete-
ness is defined as c; = 1 — (1), when the input states are the
same. The subscript denotes that two states have been used for
testing. Alternatively, we say that the test meets the one-sided
error requirement when it has perfect completeness.

Soundness: If the states are different, then with finite prob-
ability P(1), one is able to tell the states apart. Thus the
soundness, defined as s, = P(1), is strictly greater than O.
The soundness of this scheme can be increased to any desired
1 — 8, by repeating the test O(log %) times, using new copies
of the states each time.

We note that this test provides an optimal comparison be-
tween two unknown states for the one-sided error probability.

B. Comparing two coherent states

The above swap test compares two unknown qubit states.
If the unknown states are coherent states instead, then an
analogous test can be performed by simply mixing the states
on a balanced beam splitter and observing a photon click with
a single-photon threshold detector (detector Dy in Fig. 2).

This can be seen as follows. The beam splitter transforms
the input mode creation operators {a', b} into the output

Do

FIG. 2. Balanced beam splitter (BS) operation acting on input
coherent states |«) and |B). The lower output mode of the BS is
measured with a single-photon threshold detector Dy. The probability
of obtaining a click in Dy relates to the projective measurement test
of distinguishing the two coherent states.

mode creation operators {¢", d'}. This input to output conver-
sion is given by

-

Q>
+

S-Sl

@ +dh,

T

—

=

@ —dh. (1)

The input state at the beam splitter is

), ® By » @)

where the subscripts denote the mode in which the coherent
states enter the beam splitter. In the absence of experimental
imperfections, this yields the output state

oz+/3> a—ﬁ>
® . 3
7z 181, ®

The probability of obtaining a click in the detector Dy (mode
d)is

o — BI?
Pp, =1 —exp (—T =1— [l 4)
We can relate the completeness ¢, and soundness s; of the test
to the trace distance of the tested states |«) and |8). The trace
distance for two coherent states {|«) , |8)} is

Il ee) (el = [B) (Bl lle = /1 — [ (] B)> =V 1 — e~ la=bP,
(5)
We assign the detection event (obtaining a click in D) the
value 1 and to the other detection event (no click in detector
Dy) the value 0. The completeness and soundness for this test
are:

Completeness: If the states are the same, then their trace
distance is 0, since |o) = |B). This implies that | {(«|8) | = O,
thus leading to P(1) = 0. This ensures perfect completeness
¢, = 1, where the subscript denotes the size of the interferom-
eter.

Soundness: Suppose the states |o) and |8) are € far in trace
distance, i.e.,

I[ee) (] = 18) (Bl llw = € = [(alf)| < V1—€2  (6)

From this, we can lower bound the soundness s, as

s =P)>1-+1-¢2, 7

where € is any lower bound to the trace distance between the
program and tested states. This implies that the soundness is
strictly greater than O for a nonzero €. The soundness can
be decreased to any desired § by repeating the measurement
procedure for O(log %) runs. Further, this method provides an
optimal comparison between two unknown coherent states un-
der one-sided error probability. We prove this more generally
in Sec. IV.

III. GENERALIZED SINGLE RUN COHERENT STATE
COMPARISON

Having briefly reviewed existing unknown state compari-
son techniques, we now consider the scenario where we have
a single copy of an unknown coherent state |o) in the input
register and multiple copies of the coherent state |8) in the
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TABLE 1. Differences between coherent state comparison
schemes in terms of number of optical elements. The first two
schemes take as input a single copy of a coherent state |«) and M — 1
copies of a coherent state |8), where M is a power of 2, while the
looped amplifier scheme is independent of M. The optical elements
are balanced beam splitters, single-photon threshold detectors, and
the switch is an optical switch element, only required for the looped
amplifier scheme.

Scheme Beam splitters Detectors Switch
Hadamard iMlogM M—1 0
Amplifier M—-1 logM 0
Looped amplifier 1 1 1

program register. The task is to check if the state in the input
register is equal to the state in the program register.

In the simplest case, the state comparison can be performed
with a single copy of the state in the program register, like in
the previous section. This succeeds with a probability given
by Eq. (4). In this section, we prove that having multiple
copies of |B) increases the success probability of state com-
parison with state |«). For this, we first provide a generalized
interferometer construction, the Hadamard scheme, based on
Hadamard-Walsh transforms, following Ref. [14]. We then
derive the amplifier scheme, requiring much less optical gates
and detectors than the previous scheme. Finally, we mod-
ify the amplifier scheme using an optical switch to obtain a
scheme with even less optical elements, the looped amplifier
scheme. The differences between all three schemes are sum-
marised in Table I.

A. The Hadamard scheme

In Ref. [14], it is shown how to perform state comparison
and programmable measurements with linear optics using
generic quantum states encoded in degrees of freedom of
single photons. These photons are fed into an specific interfer-
ometer, the Hadamard interferometer, which we review below.
All output modes of the interferometer are then measured with
photon number-resolving detectors and the classical outcomes
are postprocessed to retrieve the statistics of a projective
measurement. In what follows, we adapt and simplify their
approach to the case where the input states are coherent states.
We show that single-photon threshold detectors are sufficient
for our needs, obtaining a practical scheme.

Input state: Suppose the input is M coherent states, where
M is a power of 2,

)o@ 1B)1--- ®1B)m-1> ®

where the subscript denotes the mode in which the coherent
state enters the generalized interferometer (indexed from 0
to M — 1). For brevity, we address this state as |¢f...8).
This input state is then fed in an interferometer of size M.
For M = 4 spatial modes, this interferometer is described by
the Hadamard-Walsh transform of order 2,

1
mo=n = (0 1) ©)

|cx)
18)

Do
|ﬁ> D4
18) D.

FIG. 3. Hadamard interferometer with four input modes.The in-
put states are one input register state |«) and three local states |8),
one in each mode. The detectors D; are single-photon threshold
detectors, Vi € {0, 2}.

where H is a Hadamard matrix. The corresponding interfer-
ometer for M = 4 is depicted in Fig. 3.

In the general case, the Hadamard interferometer of order
M 1is described by the Hadamard-Walsh transform of order
n = log M, which is defined by

H, = H®n7 (10)

with Hy=1and Hy = H.
Output state: The input coherent states |«f...[S) upon
interaction with the interferometer of order n transforms as

lf...B) > HylaB ... B) = 15081 ...8m—1), (11)

wrM-Dp
Ji

where, with a simple induction, we obtain §) = and

S = % for k > 0. Thus the last M — 1 modes have the
same probability of a click when we detect with single-photon
threshold detectors. The probability Py that none of the M — 1
detectors clicks is
M-1
Py, B, M) = ]_[ [1 — P(click in kth mode)]
k=1

M—1
=[] 11— —exp(=I8)
k=1
M—1 5
=exp<— e — | )
= (l(a|B)»)' . (12)

In particular, for all a, 8 € C, Py(a, B, +00) = |(«|B)|%,
which corresponds to a perfect projective measurement of the
states |«) and |B). Assigning to this detection event (none of
the detectors clicks) the value 0, and to other detection events
(at least one of the M — 1 detectors clicks) the value 1, we
obtain a device whose statistics mimic those of a projective
measurement, with

Py(0) = 1 — Py (1) = ([{@B)]*)' . (13)

The test based on single-photon encoding from Ref. [14]
requires using M number-resolving detectors. On the contrary,
the encoding with coherent states requires M — 1 single-
photon threshold detectors. Experimentally, this is much more

043035-4



OPTIMAL QUANTUM-PROGRAMMABLE PROJECTIVE ...

PHYSICAL REVIEW RESEARCH 3, 043035 (2021)

cost effective and relatively easier to implement. The test
based on coherent state encoding has the following charac-
teristics:

Completeness: 1If the states are the same, then the trace
distance | |&) («| — |B) (B] |l = 0, and hence the probability
of having the detection event 1 is 0. Thus, the completeness of
this scheme is ¢y = 1.

Soundness: If the states {|«) , |B)} are € far apart in trace
distance, then using Eq. (5), and the fact that the soundness is
sy = 1 — P(0), we obtain

sy >1—(1— e, (14)

Moreover, contrary to single-photon encoding, the Hadamard
scheme with coherent state encoding leaves a remaining
single-mode output state, as the first output mode is not mea-
sured.

Another advantage with coherent state encoding is that
it gives a more faithful projective measurement than the
single-photon encoding in Ref. [14]. Indeed,the statistics cor-
responding to a perfect projective measurement are

P(0) =1—P(1) = |(«[B)I, s)

where |(«|8)|? is the overlap between the input state and the
program state, while for the single-photon encoding, with an
M-mode input state |« . .. B), the corresponding statistics as
obtained in Ref. [14] are

1 1
P(0)=1—P(1)=A7[+<1—A—4>|<alﬂ)|2, (16)

and for any given value of the overlap |(«|8)|> we have

[l B)P < (el By~ < Ai/[ + (1 - A%)I(Ollﬂ)lz, a7

where the term on the left-hand side corresponds to a perfect
projective measurement [Eq. (15)], the central term corre-
sponds to our coherent state scheme [Eq. (13)] and the term on
the right-hand side corresponds to the single-photon scheme
[Eq. (16)]. In particular, for a given size M, the maximal
statistical gap with a perfect projective measurement is

e

esp(M) = max

(18)
1
=
for the single-photon encoding, and
= =%) —
ecs(M) = max (') — x|
M—=1 M—1
WU (19)
MM
1 1
e M’

for the coherent state encoding, which is lower than the
single-photon encoding gap. This happens because, for the
single-photon encoding, no assumption is made about the
input states, while in our case states |«) and |8) are assumed

|:8> \ . Do
18) 4. D1

FIG. 4. Amplifier scheme with four input modes. The input states
are one tested state |«) and three local states |8), one in each mode.
The detectors D; are single-photon threshold detectors. This scheme
may be contrasted with the one in Fig. 3

to be coherent states. This additional information about the
states allows us to better approximate a perfect projective
measurement with the same number of input states. A re-
lated question would be, Is the generalized Hadamard scheme
optimal or can a better measurement setting improve the
state comparison? We show in Sec. IV that the generalized
Hadamard interferometer is actually optimal for approaching
perfect projective measurements with coherent states under
the one-sided error requirement. However, we already show
in the next paragraph that there exists a simpler measurement
setting than the Hadamard interferometer, achieving the same
performance in the test.

B. The amplifier scheme

The Hadamard scheme of size M described in the previous
section uses (M log M)/2 balanced beam splitters and M — 1
single-photon threshold detectors. We introduce a simplified
scheme of the same size, which only uses M — 1 balanced
beam splitters and log M detectors, and show that it achieves
the same performance than the Hadamard scheme. We refer
to this scheme as the amplifier scheme, since it maps identical
input coherent states to an amplified coherent state in the first
output mode and the vacuum in all other modes.

For M = 4 spatial modes, this interferometer acting on
modes {0, 1, 2, 3} is described by the following unitary ma-
trix:

U> = Hps x (Ho,1 @ Ha3), (20)

where H; ; corresponds to the balanced beam splitter operation
acting on modes i and j (where the modes are indexed from O
to M — 1) and identity on the other modes (Fig. 4).

The generalized amplifier interferometer is defined by in-
duction,

U, =Homp x (U1 @ U,—1), 21

where n = logM and where U; = Hy; = H is a Hadamard
matrix. This induction relation is illustrated in Fig. 5. In-
dexing the spatial modes from 0 to M — 1, the 2% output
modes are measured with single-photon threshold detectors,
fork =0...n— 1. A simple induction shows that the output
state in the 2¥ output mode is |;‘k;%’?).
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a+(M-1)8 >A
¢ o) A —\ / -
n:/i>
22 /\ 'DO
15— :
M/2 { U,_1 a-— > /\
227
)
1 —A
a—f
( 2% > A
18) /\ 'Dn_1
M/2 < Un—l
A
\ 18) U,

FIG. 5. General amplifier scheme of size M, with one copy of o) and M — 1 copies of |8): The first output modes of two interferometers
described by U,_; are mixed on a balanced beam splitter. The input states are one tested state |«) and M — 1 local states |B), one in each
mode. Indexing the spatial modes from 0 to M — 1, the 2% output modes are measured with single-photon threshold detectors labeled Dy, for

k=0...n—1.
Hence, the probability that none of the n = log M detectors
clicks is given by

n—1

Py(ar, B. M) = [ [ [1 = P(click in the 2*th mode)]

-l )

n—1 1 k+1
= exp (— Z <§> la — ﬁ|2>
k=0

M—1 )
ZGXP(— " Ia—ﬂ|>

= (|(«lB)P)! 7, (22)

thus retrieving the statistics obtained with the Hadamard
scheme, using only n = log M detectors. Moreover, another
simple induction shows that the amplifier interferometer can
be implemented with only M — 1 balanced beam splitters.

C. Looped amplifier scheme

Noting the recursive character of the amplifier scheme,
we present another possible implementation of the amplifier
scheme using a looped beam splitter interaction, one single-
photon threshold detector, and an active optical element,
namely, an optical switch (Fig. 6).

This setup now uses an active optical element and a
constant number of passive linear optical elements, and ap-
proximates a perfect projective measurement up to arbitrary

precision. It works in the following manner. Initially, the states
|a) and |B) are mixed on a balanced beam splitter. This results
in a probability of not obtaining a click in the detector Dy
given by

Py(a, B, 1) = [{«|B)]. (23)

If a click is detected in Dy, then one immediately concludes
that |a) # |B8). Otherwise, in the next iteration, the switch
connects to the upper arm and the next interaction with the
beam splitter results in

o+ B
7 >®|J§ﬁ)_>

where in the lower arm the amplitude of the new coherent
pulse has been multiplied by +/2. The coherent state |v/2/)
is produced using variable optical attenuator (VOA): an active
optical element to prepare coherent states with desired ampli-
tude by the varying the intensity in the attenuator. Iterating
this over n = logM runs, where at the kth run, the upper
arm corresponding the unmeasured output state interacts with
the local state [25—1/28) (produced using VOA) in the beam
splitter, the probability that there is no click obtained D, over
all the runs is the same as Eq. (22). Hence, by construction, the
statistics of the setup after n — 1 pulses {|B), - - - |2~D/28)}
sent reproduce those of the amplifier scheme of size M.

The three schemes discussed provide experimentally
friendly devices to perform a variety of quantum information
processing tasks using coherent states, ranging from state
comparison to programmable projective measurements. We
show in the next section that these schemes are optimal for

o+ 38
e

oa—p
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k={2,n)

4
Al

Switch

Dy

2Fp ey )

FIG. 6. The looped amplifier scheme. The coherent state |«) is sent once, while at each loop a new coherent state [2¢~1/2) g fork = {1, ..n},
with n = log M. The switch ensures a closed loop after the input state |«) passes through. The clicks are collected in the detector Dy for all the
n instances of the beam-splitter interaction. In the ideal case, when |a) = |8), the detector Dy does not click across any of the n instances. If
the two states are different, however, there is a finite probability of a click across the n instances.

coherent state comparison under the one-sided error require-
ment.

IV. OPTIMALITY OF THE GENERALIZED TEST

An extension of the results in Ref. [16], which studies the
problem of unambiguous comparison of unknown coherent
states, proves the optimality of both the Hadamard scheme
and the amplifier scheme for coherent state comparison, under
the one-sided error requirement. In other terms, since these
schemes satisfy the promise of perfect completeness, we show
that they achieve minimal soundness.

A. Optimal POVM for comparing coherent states under the
one-sided error requirement

Let {ITy, IT1;} be a POVM for comparing coherent states |o)
and | 8) under the one-sided error requirement, when provided
a single copy of |@) and M — 1 copies of |B) (the proof of
Ref. [16] assumes M = 2). The operator Iy corresponds to
saying that the states |o) and |B) are the same, while the
operator I1; corresponds to saying that they are different.
These operators thus verify the following conditions:

[Ty, [Ty = 0, My + I, =1, (25)
where [ is the identity operator and
Va € C, T[T, |a) («|®M] =0, (26)

where the last condition is the one-sided error requirement.
Integrating this condition over C yields

0= / oM ) (@] = T Ayl (27)
where we have defined

Ay = /dza o) (a|®M > 0. (28)

Note that the condition in Eq. (27) is equivalent to the one-
sided requirement in Eq. (26) because the operators IT; and
lar) (r|®M are positive.

The operator %AM is actually a projector. This result can
be obtained by writing state |«) in the Fock basis and an inte-
gration in polar coordinates, where o = re’ (the derivation is
detailed in Appendix A). From Eq. (28), we obtain

T o0
Aw =2 b ) (29)
N=0
where we have defined for all N > 0,
N!
M\ ._ ag—N/2 [
Xy =M Z klz...kM!|k1"'kM)' (30)

¥, k=N

With the multinomial formula, we obtain (¥ |x¥) =1 for
all N > 0, and since the states | XI{‘,” ) have exactly N photons,
we have (' |x¥) = 8y for all N, N’ > 0. The states |x')
thus are orthonormal and with Eq. (29), the operator %A M1
a projector.

By Eq. (27), the supports of I1; and %AM are disjoint,
and by Eq. (25) we see that [Ty + IT; = I, so the support of
A;”AM is included in the support of I1y. The optimal POVM

t t . e
{IT™, TI{™} for state comparison minimizes the error proba-

bility, hence with the one-sided error requirement, ngt must
have minimal support, meaning that

M +00
e = ~Aw = [x) (x| and T =T - I
N=0

(€29)
Note that, with the same proof, this choice of POVM is also
optimal in the generalized setting where one is given one
unknown generic state (not necessarily a coherent state) and
M — 1 unknown coherent states, and is asked to test if all the
states are identical or not.
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B. The Hadamard interferometer is optimal
for coherent state comparison

We now show that the Hadamard interferometer is optimal
for coherent state comparison under the one-sided error re-
quirement. Let {I1}}, 1"} be the POVM corresponding to the
Hadamard interferometer with threshold detection of the last
M — 1 modes. Then,

M = AT¢A,, (32)

where H, is the unitary evolution corresponding to the action
of the interferometer of order M defined in Eq. (10) in the
M-mode infinite-dimensional Hilbert space, with n = log M,
and where

¢ =1®0) (oM (33)

is the POVM operator corresponding to the event where none
of the M — 1 threshold detectors clicks. We obtain

) = A7 (1 ® |0) (0|*¥~"HA,

+o0
= Y HI(N) (N|®[0) (01®M")H,.  (34)

N=0
Fork=1,...,M, we write &Z the creation operator for the

kth mode. For all N > 0, we have

N 1 .
Af(N)®|0)°M-D)y = — AT @) 10y*M

+/N!

M*N/Z
- A gt WV 0)eM
= m (a1 + +aM) |0)
L=|xa), 35)

where we have used H,|0)* =|0)*M, ATA, =1,

ﬁ,f&l'lfl,, = %, the multinomial formula, and Eq. (30).
With Egs. (31) and (34), we obtain T4 = 1", which
concludes the proof.

Given that the statistics obtained with the amplifier scheme
and the looped amplifier scheme mimic those of the Hadamard
scheme, these schemes are also optimal for the same state
comparison task.

V. ANALYSIS WITH EXPERIMENTAL IMPERFECTIONS
FOR M = 4 MODES

While these devices are relatively easy to implement, any
implementation would suffer from experimental imperfec-
tions. In this section, we analyze the performance of the
amplifier scheme in presence of such imperfections. There
are three major sources of error: (i) limited detector efficiency
and channel transmission loss, characterized by a parameter
0 < n < 1. This changes the coherent state « to ,/ne, thus
reducing the probability of obtaining a click using a single-
photon threshold detector by a factor n; (ii) limited beam
splitter visibility 0 < v < 1, which may lead to a click in the
wrong detector; (iii) dark counts in the detectors characterized
by a probability pg.k. For our analysis, the click probability
due to the coherent states is O(1) and thus significantly larger
than the dark count probability pyax (~107%) observed in the
standard commercially available superconducting nanowire

1.000
0.975-

» 0.9501

0

2 0.925 1

g

© 0.900-

(e}

S 0.8751

@]
0.850 -
0.825-
0.800 -

Order M=2 scheme
—— Order M=4 scheme

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
a

FIG. 7. Comparison of the completeness for M =2 and M = 4
schemes in presence of experimental noise, as a function of the am-
plitude of the measured state. Here, we have chosen the experimental
imperfection parameters n = 0.9, v = 0.99 as observed in standard
optical setups.

single photon detectors. The effects of dark count can thus be
safely ignored and we only consider the effects of limited de-
tector efficiency and channel transmission loss together with
limited beam splitter visibility.

For M = 2, when the input |«), |8) is fed in an imperfect
beam splitter, the transformation from input modes to output
modes is the following:

) @ |B) +> |v/Vks + T —vk_) ® [Vk_ + /1 —vky),

(36)
where ky = (¢ 4+ B)/~/2 and k_ = (« — 8)/+/2. The corre-
sponding unitary transformation is

1 (A B
/_
H_ﬁ<A _B>7 Gn
where A = /v + /1 —v,and B = /v — /1 —v.

Next, we consider the case of M = 4 spatial modes (Fig. 4),
indexed from O to 3. We apply the imperfect transformation on

the input |« 8B B). This results in
lafBB) = Uy lafBB) = 180816283) (38)
where from Eq. (20) we derive

Uy = Hy, x (Hy, ® H, 3)

1 1 1 1
a2 lap lap 1B?
1 1
| HA -HB 0 0 (39)
- 1 1 1 1 ’
3A*>  JAB  —3AB —3B?
1 1
0 0 A —5B
withA = /v ++/1 —vand B = /v — /1 — v. We thus ob-
tain
Aa — B Ao — B?
5= A8 4 5 =Y"BF
V2 2

Adding the channel and detector losses 7, the output is
mapped as & — /néy, for all k.

Similar to the analysis without experimental imperfec-
tions, the output modes 1 and 2 of the imperfect amplifier

043035-8



OPTIMAL QUANTUM-PROGRAMMABLE PROJECTIVE ...

PHYSICAL REVIEW RESEARCH 3, 043035 (2021)

interferometer are measured, with the coherent state input be-
ing |aBBB). The probability Py that none of the two detectors
clicks is

Py(a, B, v, ., M = 4) = exp(—n (81> + [6:1*)).  (41)

Assigning to the detection event no detector clicks, the
value 0, and to other detection events, i.e., at least one of
the detectors clicks, the value 1, we obtain a device whose
statistics mimic those of a projective measurement.

Completeness: When the states are the same, the correct-
ness, which is the probability of not obtaining the detection
event 1 is

c;® = Py(er, a, v, 17, 4) = exp(=2n(1 — v)(1 +2v)|a|?).
(42)
We observe that if v =1 (no imperfections), then ¢; ' = 1,
thus we obtain perfect completeness.

Comparison of completeness with the M = 2 scheme: The
analogous completeness in M = 2 scheme is

P = Py, @, v, 1, 2) = exp(—2n(1 —v)|al?).  (43)

From Egs. (43) and (42), we observe that ¢ < ¢, which
implies that the completeness in the M =4 scheme is less
than the completeness in M = 2 scheme. This is illustrated
in Fig. 7, which compares the M = 2 and M = 4 settings for
experimental parameters = 0.9 and v = 0.99. The reduction
in completeness probability for the M = 4 scheme is precisely
what accounts for an increase in soundness probability (when
the input and program register states are different), which we
detail in the next paragraph.

Soundness: If the states are different, the probability of
obtaining the detection event 1 (soundness) is computed in
Appendix B and given by

|
seP=1—exp[ —n(v* — 1)l — BI> — n((1 + 2v)(1 — v) + 2/v(1 — v)|]* — n((1 + 2v)(1 — v) — 2y/v(1 — v)|BI*].

(44)

The analogous soundness for the M = 2 scheme with experimental imperfections reads

5P =1—exp[—n(v—3)la— B —nd —v+ vl —v)al> —nd —v— /vl —v)IBI*]. (45)

In the absence of any experimental imperfections, it is
straightforward to see that s4 is always greater than s,. We
observe in Fig. 8 that this also holds in the presence of exper-
imental imperfections with parameters n = 0.9 and v = 0.99,
for a fixed program coherent state amplitude 8 = 1. Further,
we also analytically show that, even with experimental im-
perfections, s; " > 55 for all values of quantum efficiency
n, visibility factor v, and program coherent state amplitude
(see Appendix C). Thus, the M = 4 scheme outperforms the
M = 2 scheme in soundness. We note the similar gain in the
soundness is expected when comparing M = 2 scheme with
the scheme involving any arbitrary M value. For simplicity, we
have shown the comparison for M = 2 and M = 4 schemes.

M=2 scheme
—— M=4 scheme

0.71
0.6 1
» 0.5
€ 0.4
30.31
0.2
0.1

0.0 -

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
a

FIG. 8. Comparison of the soundness for M =2 and M =4
schemes in presence of experimental noise parameters n = 0.9, v =
0.99, for a fixed program state amplitude g = 1.

(
VI. STATE COMPARISON FOR AN UNTRUSTED SOURCE

We now consider an adversarial scenario where the un-
known state in the input register is not restricted to being a
coherent state but can be any generic (mixed) quantum state
produced by some untrusted party, while the states in the
program register are coherent states obtained from a trusted
source. The task is then to check whether the states in the
input and program registers are equal. We first analyze this
state comparison task under one-sided error when the program
register contains a single coherent state |8). Subsequently,
we generalize the state comparison procedure by allowing
multiple copies of |8) in the program register. We note that
in both settings, we receive only a single unknown state from
the untrusted source. We conclude this section by proving that
our scheme is optimal for state comparison even when we do
not make any assumption whatsoever about the state in the
input register.

A. State comparison with a single copy of the test
and program register states

We consider the scenario where the input register state is
a generic quantum state T and the program register state is a
coherent state |8). Any single-mode state t can be expressed
in the Fock basis as

T= Y wlkl, (46)
k

=0

with the normalization condition ano Tyn = 1, coming from
from Tr(z) = 1.

Let us look at the completeness and soundness arguments
again:
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Completeness: If the states T and |B) are the same, then
their trace distance is 0. Thus, the probability of having the
detection event 1 is zero. This ensures perfect completeness
again, i.e., c; = 1.

Soundness: Trace distance. Suppose ||t — |B) (B] ||« = €.
This implies

VI=(BltIB) =€, (47)

so (B]T|B8) <1—€% We show in Appendix D that the
probability of obtaining a click in the detector Dy after the
interaction of the states T and | 8) in the balanced beam splitter
is tightly lower bounded as

1
Pp, > 5(1 —(BlT1B))
(48)
&2
>3
Thus the soundness in this case is sy > %, where € is any
lower bound to the trace distance between the program and
tested states.

B. Generalized single run state comparison

The generalized single run state comparison scheme is run
on a single unknown state 7 [Eq. (46)] in the input register
and M — 1 coherent states |8) in the program register. Here
we analyze the completeness and soundness of the amplifier
scheme used for comparison as described in Sec. I1I B.

Completeness: 1f states T and |B) are the same, then their
trace distance is O and the probability of a click in at least
one of the detectors in output modes 2k is 0. Thus, we obtain
perfect completeness ¢y = 1.

Soundness: Suppose ||z —[B) (B][lx = €, so (B T|B) <
1 — €. We show in Appendix E that the probability that at
least one of the detectors in output modes 2* clicks after the
interaction of the states T and | 8) in the balanced beam splitter
is tightly lower bounded as

Pp > (1 _ %)(1 —(BITI8Y)

> (l — i)ez.
M

Thus, the soundness in this case is sy > (1 — Al,l)e2 > 5, for
M > 2. The bound improves by adding more copies of the
program register states, as can be expected.

(49)

C. Test optimality

The proof of optimality derived in Sec. IV holds even when
the input register state is a generic mixed state, as long as the
program register states are coherent states. Indeed, the optimal
POVM for state comparison, when one has a single copy of
input register state and M — 1 copies of the program register
states is derived, assuming it satisfies the completeness rela-
tion in Eq. (26), which is also the case here. This implies that
the optimal POVM when the tested state is generic, while the
program register states are coherent states, is the same as the
one constructed in Sec. IV. This proves the optimality of our
proposed projective schemes in this generalized setting.

VII. IMPROVED QUANTUM FINGERPRINTING

Our schemes allow us to improve the soundness of quan-
tum information protocols which use swap tests of coherent
states as a subroutine. As a concrete example of an application
of our generalized state comparison schemes, we consider
the improvement in performance of a specific quantum com-
munication protocol: the quantum fingerprinting protocol for
estimating the Euclidean distance of two real vectors within
a constant factor. Our model of study is the simultaneous
message passing model of communication complexity [6].

The communication task is as follows. Two parties, Al-
ice and Bob, receive data sets x and y, respectively, which
are unit vectors in R”. They are interested in checking the
similarity of their data sets, through a referee, by estimat-
ing the (square of the) Euclidean distance of their vectors,
llx = ylI3 = >__;(xj — y;)* within some multiplicative con-
stant € with a probability at least 1 — §.

A trivial solution to this problem would be Alice and Bob
transmitting the strings x and y, respectively, to the referee.
This, however, is a nonoptimal protocol in terms of commu-
nication resources (number of bits sent to referee) when the
task is only to approximate the Euclidean distance. As we
show, the task can be solved with much lower communication
resources when Alice and Bob send the fingerprints of their
data sets, which would typically be of much shorter lengths
while still allowing the referee to estimate the Euclidean dis-
tance within some constant. When we restrict the model to
Alice and Bob sharing no randomness, the classical finger-
print size necessary to solve this problem is (4/n) (the lower
bound in the classical communication complexity needed to
solve the Euclidean distance within a constant € with an error
probability at most § € [0, %] is 2\/g(8)\/_ — g(8) — 6, where
g(x) =2(0.5 — x)*loge) [17-20].

Motivated by the original quantum fingerprinting protocol
of Buhrman et al. [2] to check for the equality of two n-bit
strings, Kumar et al. [6] proposed a coherent state quantum
fingerprinting protocol to estimate the Euclidean distance with
O(log n) qubits, which is asymptotically exponentially shorter
in size compared to the classical fingerprints. We note that a
similar improvement in resources for approximately checking
the equality of the two bit strings problem was proposed by
Ref. [3] in the coherent state framework and subsequently
demonstrated in Refs. [4,15].

A. Quantum fingerprinting protocol to approximate
the Euclidean distance

Here we review the coherent state fingerprinting protocol
proposed by Ref. [6] to approximate the Euclidean distance.
Alice and Bob prepare quantum fingerprints of their data
sets, which are a sequence of coherent pulses in n modes,
and send these to the referee. Alice (similarly, Bob) prepares
her state |1,) by applying the displacement operator D, (1) =
exp(al — a,) to the vacuum state, where a, = > i x;b; is
the superposed annihilation operator [3] and b ; is the photon
annihilation operator of the jth mode. The coherent state
fingerprint of Alice is then

L) = Da(1)10) = &y Ix); (50)
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Alice Referee
A a A
n 2 1
A
n DO

FIG. 9. Alice and Bob prepare coherent state fingerprints, |1,)
and |1,), as a sequence of coherent pulses in n modes, with the
jth mode amplitude encoding the information of jth component
of the vector. This is then interfered sequentially in the balanced
beam splitter and the results are analyzed in single-photon threshold
detector D.

where |x;) . is a coherent state of amplitude x; occupying the
jth mode. The mean photon number for state |1,) is given by
w= Zj |xj|2 = 1, independent of the input size. This scheme
is illustrated in Fig. 9.

The referee interacts the coherent fingerprints from Alice
and Bob sequentially using a balanced beam splitter and ob-
serves the single-photon clicks in a threshold detector Dy. The
input of the interaction is

) ® I1y) ®|x] ®1y)); (51)

The output in the mode corresponding to the detector Dy at
the jth pulse is |x’ - =) - LetZ; be the binary random variable
J

which equals 1 w1th the probability that the detector D; clicks
(xj— V/ )r‘\/ (x; YJ)
~L 5

at the jth pulse, namely, p; = 1 — exp(—
The latter approximation holds true since x and y are unit
vectors in R” and for large n the terms (x; — y;)* are typically
of the order of 1/n. The Euclidean distance (E) is equal to

]E[Z ZJ}. (52)
j=1

The Chernoff-Hoeffding inequality [21] can then be
with >>%_, Z; within a mutiplicative

used to estimate £
Elg, €L (53)
€— exp| —— ).
2 | S T

precision € > 0:

n

{

i=1
Equation (53) provides the referee with the estimation of the
Euclidean distance between two unit vectors x and y within a
desired multiplicative precision € with a success probability
at least 1 — 24, with § = exp(—<¢* ) in a single run.

For the coherent state ﬁngerprmt with an average photon
number p = 1 across n time modes, the fingerprint size (trans-
mitted information) is O(logn). Thus, the estimation of the
Euclidean distance within (e, §) requires Alice and Bob each
to send exponentially smaller sized fingerprints to the referee
than the classical analog of O(y/n).

B. Improved quantum fingerprint protocol

Here we consider the performance of our generalized state
comparison method and demonstrate that, in a single run,
the referee is able to estimate the Euclidean distance of two
vectors x, y € R"” with substantially better probability than the
original fingerprinting protocol.

The setting is as follows: Similar to the protocol of Ref. [6],
Alice and Bob prepare their quantum fingerprints |1,) and
[1),, respectively, as a sequence of coherent pulses in n modes.
Here, one of the parties, say Alice, sends a single copy of
the fingerprint state to the referee, while Bob sends multiple,
M — 1, copies of the fingerprint state to the referee. Figure 10
illustrates the setting where, upon receiving the fingerprint
states, the referee applies the projective measurement scheme.
Here we showcase the amplifier scheme but the same re-
sults are obtained using the Hadamard and looped amplifier
schemes.

The referee applies the generalized amplifier interferome-
ter Ujogu of Eq. (21) to the incoming states. The clicks are
then collected in the log M threshold detectors indexed as
D: {D(), D], ey DlogM—l}-

Let Z;; be the binary random variable that is 1 with
the probability that the detector indexed Dj clicks at the
jth pulse, with j e {l,...,n} and k€ {0,...,logM — 1},
namely, p;x = 1 — exp(— (x’zkl{ )~ (X’zT’{ Agam the ap-
proximation holds true since x and y are unit vectors in R”
and for large n the terms (x; —y; )? are typically of the order
of 1/n. The Euclidean distance (E) in this case is equal to

n,logM—1

Bl Z | (54)

M j=1,k=0

Once again, the Chernoff-Hoeffding inequality can be used to
estimate £ with Z;’zlolg,ﬁ o' Z;x within a multiplicative preci-

sion € > 0:

n,JogM—1

1 - 1) -
P > zj_k—<1—M>E 26(1—M>E

j=1,k=0
I1\’E
L2exp|-€*(1-—=) =
M 3
< 26203, (55)

where 2§ is the failure probability in estimating the Euclidean
distance in the original fingerprint protocol.

With the improved quantum fingerprinting protocol, we
conclude with Eq. (55) that the Euclidean distance between
two vectors x and y can be estimated within an additive factor
¢ with a probability 1 — 282(1=3), which is better than the
original protocol by a factor 2(1 — Aid) > 1 forall M > 2. For
example, M = 4 already provides a power 1.5 improvement
in the probability of successfully estimating the Euclidean
distance.

We note that when Bob sends M — 1 coherent state fin-
gerprints to the referee, this leads to the total transmitted
information to be M x O(logn). As long as M is independent
of n, we still achieve an asymptotic exponential reduction in
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FIG. 10. Improved quantum fingerprinting protocol where Alice sends a single copy of |1), to the referee while Bob sends M — 1 copies
of the fingerprint |1,) to the referee. Here the referee employs the amplifier scheme with M — 1 beam splitters and log M threshold detectors

{D07 Dy, ..., DlogM—l}'

transmitted information compared to the classical analog of

O(\/n).

VIII. DISCUSSION

We have presented an optimal programmable measurement
scheme that projects the incoming single-mode state in the in-
put register onto a local coherent state in the program register.
Our scheme is implemented using balanced beam splitters and
single-photon threshold detectors. Our implementation of this
interferometer is efficient, and threshold detectors with high
efficiency and low dark counts are commercially available
[22]. Our most efficient scheme in terms of optical compo-
nents, the looped amplifier scheme, requires only a single
beam splitter and a single threshold detector, together with an
optical switch. We have further generalized our schemes to a
cryptographic setting where the input register state is obtained
from an untrusted source and is no longer assumed to be a
coherent state.

This universal implementation using coherent states as
program states can act as a backbone in improving the per-
formance of a range of quantum protocols in communication
complexity [2,23], cryptography, and computational regimes
[24-29]. For example, it has been shown that communica-
tion protocols using coherent state fingerprints provide an

J

asymptotic exponential advantage in communication re-
sources in estimating the Euclidean distance between two
vectors compared to any classical protocol [6]. For this
protocol, we show a further quadratic improvement in the
probability of correctly estimating the Euclidean distance
compared to the original protocol.

The general applicability of our optimal state comparison
schemes makes them attractive and easy to implement. An-
other feature that we bring is that the output quantum states are
not completely destroyed after the performing the comparison
test. Further, the output states carry the overlap information of
the unknown quantum test.
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APPENDIX A: COMPUTING THE EXPRESSION OF THE OPERATOR A, IN FOCK BASIS

Using the notations of the main text, and writing

o2 X o
— Z ’ Al
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we obtain
s Z/ kj (Dl* )Z; lj
Ay = o exp[—M|a ki ky){l...1
M / p[—M|a|*] j;o\/ ~~kM!ll!-~-lM!|] ) (L. Il
VjelM]
2 k.. Syl [ 29 14+ K+, o
= dr exp[—Mr*]r'" ff*’/ do ex [19 (k; —l)i|
Z \/kl' kM'll ! Ji=o P =0 P Z

i dag) (- Ly

Al/l i ‘Szjk_zvz,flf \/(ijj)!(zj'lj)!

ijjM# kl'kM'l]'lM‘

- N N! N!
:MZ 2. M ol gtV LT e han) (e D

N=0Y kj=N

Y li=N
= (A2)

where we have defined for all N > 0

M —N/2 N!
) =M S S ki k). (A3)
kil.. . ky!
¥, k=N
APPENDIX B: COMPUTING THE SOUNDNESS FORM =4
When the states are different, the probability of obtaining the detection event O (failure probability) is
P(M=4)=1—s; =exp (—%A), (B1)
where

A =2l =B)+VT—v@+ PP + e =B +2/v(1 — V)@ + B )

= (1 +2v)e — B> +2(1 +2v)(1 — V)| + B> + 8/ v(1 — v)(lee]* — [BIP),
where we used (@ — B)(a + B)* + (o — B)* (e + B) = 2|x|* — 2|B|%. Using |a + BI*> = 2|a|> + 2|B|* — |« — B|?, we obtain
A= (4v2 — Do — ,8|2 +4[(1 4+ 2v)(1 —v) +2/v( — v)]|oz|2 +4[(1 4+ 2v)(1 —v) =2/ v(1 — v)]|,3|2. (B3)

APPENDIX C: COMPARING THE SOUNDNESS FOR M = 2 TO THE SOUNDNESS FOR M = 4

We show in this section that 557 < 5" for all «, 8. We have

5P =1—exp[ —n(v—3)le =B =01l = v+ /vl —v)lal
=1 —v = vl = )IE]

= 1 —exp[—nAal, (ChH
and
siP = 1—exp[ —n(v? = 7)loe = B
—n((1+2v)(1 = v) +2,/v(1 = )|
—n((1+2v)(1 —v) = 2/v(1 = v)|BP]

= 1 —exp[—nA4]. (C2)

Since the function x — 1 — e~ is increasing, it is sufficient to show that A, < A4 for all «, 8. Writing o = re’® and B = teV,
where r,t > 0 and ¢, ¢ € [0, 2], we obtain

As—Ary= (3 + vl =) +vd =) + (3 + 1 —v) — Vvl — )2 = 2rt(3 — v(1 — v)) cos(p — ¥). (C3)
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This last expression is a polynomial of degree 2 in r, with a positive leading coefficient. Thus, if its discriminant is negative, then
the expression is always positive. The discriminant is

A =4t [(——v(l—v)) cos(@ —¥)* — (2 + vl —v) + VA =) (1 +vd —v) = Vo1 —1))]
< —61? v(l —v)
0, (2D

/

N

where the third line is obtained by using cos(¢ — ) < 1. Hence, for all experimental parameters within the error model we
consider, we have 557 < s3°F.

APPENDIX D: SOUNDNESS FOR A GENERIC INPUT STATE WITHM =2

By linearity of the probabilities, it is sufficient to prove Eq. (48) when 7 is a pure state.

Let us write T = |¥) (Y|, where |{) = ano Y, |n), where ano [¥,]? = 1. We first show Eq. (48) for 8 = 0. In that case,
the two-mode input state is

1Y) ®10), = D ¥ ln), @ [0),

n=0

—Z (”)"lo ) ® [0}, (D1)

n>0

where a' is the creation operator corresponding to the input mode of |y). Writing &7 and d”, the creation operators of the output
modes after the balanced beam splitter evolution H, the output state is given by

Hly), ®0), = Z

AT n
( ) 0). ® 10)4
n>0

Z sz Z ( ><f*)"(3*>”"‘ 10)e ® [0

Z 27 () c®In—k),. (D2)

n>0

The probability that the detector Dy, corresponding to the output mode d, does not click is given by

Py = Tr{(I. ® [0) (0l)H [¥) (], ® 10) (0], H]

n m

-y 'ﬁif)/zzz ()(T)Tr[(ﬂc@m (OL)(K) (L, ® In = k) (m — 1],)]
n,m=0

_y
n=0 2

1
< Wol’ +5 3 1wl

n>1

1
[¥ol* + il [¥ol*)

1

e (D3)
2 2

Note that this inequality is an equality whenever ¥, = 0 for n > 1. Given that Pp, = 1 — Py, this yields

Pp, > (1 — [{¥]0) %), (D4)

which concludes the proof when = 0.
Now if 8 # 0, we define

l¢) := D' (B) |y), (D5)

043035-14



OPTIMAL QUANTUM-PROGRAMMABLE PROJECTIVE ... PHYSICAL REVIEW RESEARCH 3, 043035 (2021)

where D is a displacement operator, with |8) = D(8)|0), so |[¥) = D(B)|¢) and |(¥|B)|> = |(¢|0)|>. The input state is
given by

1), ® 1B), = Du(B) @ Dyp(B) 1§}, ® |0),, (D6)

where the subscript indicates the modes onto which the displacement operator acts. The probability that the detector Dy does not
click after the beam splitter interaction is then given by

Py = Tr[(I. ® |0) (O|)H |¥) (¥], ® |0) (0], H']

= Tr{(I. ® |0) (0|,)H (Da(B) ® Dy(B)) |$) (], ® 10) (O], (D}(B) ® Dy (B)H. o7
Now we have
H(D.(B) @ Dy(B)) = (D.(V2B) @ T)H. (D8)
Hence,
Py = Tr{(I. ® [0) (01,)(De(v2B) ® L)H |9) (¢, ® 10) (0], HT (DI (V2B) ® 14)] 09)
= Tr{(I. ® [0) (0,)H |¢) (¢1, 10) (0l, H'],
and the previous proof for 8 = 0 gives
Pp, = 5(1 — [([0)). (D10)
Finally, since |(¥|8)|> = |(¢|0)|?, we obtain
Pp, = 5(1 = [(y]B)1%), (D11)

and this inequality is an equality whenever (¢|n) = 0 for n > 1, with |¢) = D*(B) |y).

APPENDIX E: SOUNDNESS FOR A GENERIC INPUT STATE FOR ANY M

By linearity of the probabilities, it is sufficient to prove Eq. (49) when 7 is a pure state.
Let us write T = |¥) (Y|, where |) = ngo Y, |m), where Zm>0 |¥|?> = 1. We first show Eq. (49) for 8 = 0. In that case,
the M-mode input state is

[¥0...0) = |m0...0). (E1)

m=0

The probability that none of the detectors in output modes 2* clicks (the modes being indexed from 0 to M — 1) after the amplifier
interferometer evolution U, is given by

M—1
P@:Tr|:<®ﬁi)0n|1ﬂ0...0) (1/;0...0|0j}, (E2)
i=0

where E; = |0)(0] if i = 2% and E; = I otherwise. From Sec. IV, since the amplifier scheme U, reproduces the statistics of the
Hadamard scheme H,,, this probability can be written as

Py = T[T [ 0...0) (¢ 0...0]], (E3)
where
g™ =Y ) (|- (E4)
N=0
with
) =My _ N ky .. k). (E5)
S kil ky!
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Expanding Eq. (E3) in Fock basis using Eq. (E1) yields

= _ N! N! .
I ZMN\/kl!'..kM!\/lll“.lMlt/fpqur[ﬂkl...kM)(ll...lMI)(|p0...0)(qO...0|)]

N=03%", k=N Z/ lj=N p,q=0
2
_y %l
= I
p=0

1
2 2
< ol + 22 > 19l

p=1

1
= |wo|2+ﬁ—4(1 — [¥ol®)

- i+<1 —i)wfoﬂ. (E6)
M M

Note that this inequality is an equality whenever v, = 0 for n > 1. Given that Pp = 1 — Py, this gives

Py

1
Pp > (1 - M)“ — [(¥10)]%), (E7)

which concludes the proof when § = 0.
Now if 8 # 0, we define

l¢) :== D' (B)|y), (E8)

as in the previous section, where D is a displacement operator, with |8) = D(B) |0), so that |/) = D(B) |$¢) and |(¥|B)|* =
[{(¢|0)|2. The input state is given by

[y B...8) =DM |$0...0). (E9)

The probability that none of the detectors in output modes 2k clicks is given by
M—1
Py = Tr[(@E,)Un v B...B) <wﬂ.--ﬁ|UJ}
i=0

M—1
= Tr|:<® E) 0,D(8)2 1¢0...0) (¢0...0] D*(ﬂ)wﬁj}, (E10)

i=0

where E; = |0) (0] if i = 2% and E; = T otherwise. We have
M—1
0.D(B)PM = <® f)(&-)) O, (E11)
i=0

where (89, ..., 8y_1)" = U,(B, ..., B)". Inparticular, §; = 0ifi = 2%, soforalli=0,...,M — 1,
D'(8)E:D(5;) = E;. (E12)

Hence,

i=0 i=0

/M1 M—1 M—1
Py = Tr (@E) <® [)(&))0,, 1$0...0) (¢0...0]0] (@D*((S[)ﬂ
L \i=0

=Tr (M_lﬁf((s,-)EiD(s,-)) U, 1¢0...0)(¢0...0| 0;}
L
=Tr ( Ei)U,,|¢o...o>(¢0...0|0,j}. (E13)
L \i=0
The previous proof for 8 = 0 gives
Pp > (1 — %)(1 = [(10)]?). (E14)
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Finally, since |(¥|B8)]*> = |(¢|0)|?, we obtain

PD)(

1 ! 1 2
—A—4>( — K¥1B)),

(E15)

and this inequality is an equality whenever (¢|n) = 0 for n > 1, with |¢) = D*(B) |y).
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