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Free-electron qubits and maximum-contrast attosecond pulses via temporal Talbot revivals
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We use laser light and a transmission electron microscope to modulate a free-electron beam into high-contrast
electron pulses and free-electron qubits by using temporal Talbot revivals. At large enough propagation distances,
the discrete energy sidebands from a laser modulation acquire special phases and group delays that optimize
or cancel their time-domain interference, producing a revival or alternatively a pulse train at close to 100%
modulation depth. A sequence of two laser interactions at an optimized propagation distance allows us to
coherently control adjacent energy sidebands in amplitude and phase in the way of a qubit. The use of
continuous-wave laser light provides these modulations at almost the full brightness of the beam source. Free
electrons under large-distance laser control are therefore a promising tool for ultrafast material characterizations
or investigations of free-electron quantum mechanics.
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I. INTRODUCTION

The electron microscope is one of the most versatile in-
struments for investigating the atomic structure of complex
materials, but it is also useful for understanding the quantum
mechanics of the free electron and its strong interactions with
coherent and incoherent light [1–6]. For characterizations
of ultrafast material dynamics, electrons can be modulated
in time by the cycles of laser light [7–10], providing fem-
tosecond and attosecond time resolution for applications in
photon-induced electron microscopy [11,12], ultrafast elec-
tron diffraction [9], or waveform electron microscopy [13,14].
At these ultimately fast time scales, the structure of pulsed
beam electrons is dominated by their wave properties, evi-
dent from recent observations of discrete energy sidebands
[11,15,16], Rabi oscillations [17], quantum random walks
[8,18,19], and Hanbury-Brown-Twiss anticorrelations [20].
Consequently, ultrashort electron pulse formation is linked to
quantum effects [17,21].

Here, we ask how attosecond imaging can reach optimum
conditions for diffraction and microscopy experiments [9] and
how a free electron as an elementary particle can eventually
become a potential carrier of quantum information [22]. To
this end, we combine a transmission electron microscope with
two continuous-wave laser beams. Contrary to previous exper-
iments, we apply a particularly large free-space propagation
time that exceed 105 times the laser cycle period [10]. We find
a complex sequence of matter-wave transformations: Initially,
the electron wave packet compresses into a series of ultra-

*peter.baum@uni-konstanz.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

short electron pulses; next, these pulses lengthen to half the
inverse modulation frequency at the benefit of zero temporal
background; then the wave packet turns again into the same
ultrashort pulses as before; and finally, the wave function
experiences an almost full restoration to the original state after
the initial laser modulation. This chain of transformations
and revivals recurs multiple times upon further propagation
[23] and is robust against decoherence or dispersion. Con-
sequently, a second laser interaction at a properly chosen
fractional revival time allows us to demonstrate experimental
evidence for the production of a free-electron qubit.

II. EXPERIMENTAL IDEA

Figure 1(a) shows the idea of the experiment. An electron
beam (blue) passes through a thin membrane (orange) illumi-
nated by laser light (red). At proper angles and polarization
[9], the electric fields of the optical cycles impose a periodic
modulation of forward momentum. In the energy domain, the
spectrum obtains a discrete set of sidebands whose separation
is linked to the photon energy [11,15–17]. In the time domain,
faster electrons gradually catch up with slower ones, and the
electron beam transforms into a sequence of ultrashort pulses
with femtosecond or attosecond durations [8,9], albeit with a
temporal background from the decompressing electrons from
adjacent modulation cycles [8,9]. Behind this temporal fo-
cus, the pulses overdisperse, and the temporal structure falls
apart [9].

However, at an even longer propagation distance beyond
this regime, the accelerated part of each pulse will catch up
with the decelerated part of each preceding pulse [23,24]. We
might therefore hope, guided by simulations [22,23,25], that
quantum interferences can restore the original wave function
[23], form attosecond electron pulses with optimized tem-
poral contrast [25], or prepare special temporal structures
for subsequent manipulations with multiple laser beams. A
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FIG. 1. Quantum revivals and sub-light-cycle electron microscopy at maximum contrast. (a) Concept for exploiting quantum revivals for
generating attosecond electron pulses and qubits. A laser field (red) modulates an electron beam (blue) at a dielectric membrane (orange).
Upon further propagation, the wave packet transforms into pulses and afterward restores back to the initial form, followed by further pulse
compressions and revivals. (b) Evolution of the energy spectrum and sideband phases. Upper panel: Initial phases. Middle panel: Phases at
the half-revival. Bottom panel: Phases at the full revival. (c) Wave packets and pulses in the time domain. A Gaussian envelope is added for
depicting a limited temporal coherence. (d) Simulated quantum carpet |�|2 of an electron wave packet at a kinetic energy of 75 keV. L is the
propagation distance, and t is the local time. (e) Electron pulse duration �τ (solid) and temporal contrast (dashed) as a function of L. Pulse
duration is defined as the full width at half maximum of the peak above the adjacent local minimum [8,9].

free-electron qubit may be formed with laser modulations at
special propagation distances [22].

III. TEMPORAL TALBOT REVIVALS

Before reporting ultrashort pulses or qubits, we consider
the temporal dynamics of a laser-prepared electron wave
packet after extended propagation times. In the spectral do-
main [see Fig. 1(b)], the free-electron wave function after
laser modulation consists of a discrete set of spectral side-
bands that are separated by the laser photon energy hν

[15–17]; ν is the laser frequency, and h is Planck’s con-
stant. Every second sideband has a 90° phase shift according
to a Jacobi-Anger expansion [11,26]. Electrons have a rest
mass and consequently a nonlinear energy-momentum rela-
tion. During free-space propagation, the sidebands therefore
accumulate a series of additional phases that depend on the
sideband order n. This dependency is quadratic because the
laser-induced energy changes (a few electronvolts) are negli-
gible with respect to the central energy of the electrons (tens
of kiloelectronvolts). Application of a relativistically modi-
fied Schrödinger equation [27] is therefore appropriate, and
we can find an analytical quantum-mechanical solution (see
Appendix A).

The free-space rotation of the sideband phases will first
lead to alignment [Fig. 1(b), middle panel] and then produce a
phase-mirrored initial configuration (bottom panel). From our
analytical theory, we derive a revival distance of LQR = d2/λe,
where λe = h/(γ mev0) is the de Broglie wavelength of the
electron, me is the mass of the electron, γ is the Lorentz
factor, v0 is the electron velocity, d = βγλ is the effective
modulation wavelength, c is the speed of light, β = v0/c, and
λ is the wavelength of the laser. At this LQR, the first sideband
will have a phase equal to π , while the nth sideband accumu-

lates a phase of n2π (lower panel). Consequently, the electron
density as a function of time at LQR will be indistinguishable
from the initial one. A complete restoration including phases
occurs at L = 2LQR. This phenomenon [23] is a time-domain
analogue to the Talbot effect in optics [28,29], and we call the
propagation time toward the first revival the temporal Talbot
time TQR = d2/(λev0).

There will also be fractional revivals: If only some of the
sidebands have phases equal to multiples of 2π while other
sidebands have arbitrary phases, only some of the spectral
components will constructively restore the time-domain wave
function, while the other sidebands will produce destructive
interference. Figure 1(c) depicts such electron densities in
the time domain. Particularly interesting is the case of the
fractional revival of the order 1

2 at L = LQR/2, shown in the
middle panel of Fig. 1(b). At this condition, the odd sidebands
are brought to the same phase as the even sidebands, and in the
time domain, there will be maximum destructive interference.
As a result, we expect the formation of a train of attosecond
electron pulses with 100% contrast [see Fig. 1(c), middle
panel] and without the constant background current of ∼30%
that has been ubiquitous in attosecond electron microscopy so
far [8,9].

Figure 1(d) shows a calculation of the quantum dynamics
of a free-electron wave function at realistic beam parameters
(Appendix B). We use an electron energy of 75 keV, a laser
wavelength of 1.95 μm, a laser-electron coupling constant of
|g| = 0.785, and an initial Gaussian energy spread of 0.03
eV (root mean square) [30]. Indeed, we see in Fig. 1(d)
the expected dynamics: first, the temporal focusing of the
initial electron current density to a train of ultrashort pulses
of minimum duration at the propagation distance 1©; next, at
L = LQR/2, the formation of pulses with 100% contrast at the
distance 2© followed at L = LQR by a nearly full revival of the
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FIG. 2. Concept and experiment for attosecond pulse formation and free-electron quantum optics. (a) Schematic of the instrument. A
continuous-wave (CW) laser (red) interacts with electron wave packets � (blue) in a transmission electron microscope at two interaction
regions (orange), one for temporal compression and one for diagnostics or qubit formation. The optical phase difference �ϕ is controlled with
a piezoelectric actuator. Electron energy spectra are dispersed with a magnetic spectrometer on a screen (green). (b)–(d) Measurement results
for an electron energy of 120 keV (left panels) and 75 keV (right panels). (b) The laser-unaffected reference spectrum is independent of laser
delay �ϕ. (c) An electron spectrum after two interactions with laser light as a function of �ϕ. (d) Difference between the signal spectrum
from (c) and the reference spectrum from (b). The intensity is normalized to the decrease in the zero-loss peak. Dashed lines are indications of
symmetry. The laser powers at the two membranes are 4 W for 120 keV electrons and 3 W for 75 keV electrons, corresponding to electric field
strengths of 2 and 1.7 MV/m, respectively. (e) Measurement and analysis of the ±1 photon-order sideband intensities I±1 for 120 keV (left
panel) and 75 keV (right panel). Intensities are normalized to the laser-unaffected zero-loss peak. (f) Electron currents for the conditions
of short-pulse formation (left) and maximum contrast (right). The blue arrows show the pulse contrast Cmax (peak above background).
(g) Analytical predictions obtained by fitting probability density of Eq. (A16) to the experimental data of (d).

initial electron current at the distance 3©. After this restoration,
the entire process repeats, and the current density period-
ically compresses back to pulses (e.g., at distance 4©) and
higher-order revivals (e.g., at distance 5©). The limited tem-
poral coherence of the initial wave function (∼10 fs) causes
some overall dispersion effects that spread the wave packet
and make higher-order revivals slightly nonideal. Figure 1(e)
shows the evolution of the electron pulse duration �τ and
the degree of temporal contrast as a function of propagation
distance. Shortly after the interaction, the shortest pulses are
formed, and �τ reaches its minimum. Afterward, �τ reaches
at the half-revival point LQR/2 a local maximum that only
slightly exceeds the minimal value. Next, the pulses shorten to
minimum duration for a second time. The temporal contrast,
defined here as the ratio of electron current within the pulses
against the constant-current background, rises from zero to
unity upon propagation from zero to LQR/2 and then goes
back to zero at the full revival, where the initial electron den-
sity is restored. Free electrons therefore exhibit very similar
revival dynamics to isolated atoms and molecules [31–33],
Bose-Einstein condensates [34–38], or spin systems [39].

IV. EVIDENCE FOR ULTRASHORT ELECTRON
PULSES AT MAXIMUM CONTRAST

Figure 2(a) illustrates the experimental setup. A Philips
CM120 transmission electron microscope (gray) was up-
graded with two electron-laser interactions. The first laser-
electron interaction (compression) was located at the con-

denser aperture (9 cm after the source), and the second
interaction (attosecond diagnostics/qubit formation) was in
the sample chamber. Both times, a continuous-wave laser
(AdValue Photonics) at λ = 1.95 μm interacted with the
electron beam at a thin silicon membrane [10]. The in-
teraction elements were 50-nm-thick ultraflat, highly doped
silicon membranes with an aperture of ∼100 × 200 μm2

(UberFlat, Norcada). The electrons obtained a time-dependent
momentum modulation and discrete energy sidebands at hν =
±0.64 eV. The electrons propagated for ∼12 cm of free space
between the two interactions. Adjustment of the electron en-
ergy E0 between 75 and 120 keV allowed us to change the
propagation time between the two interactions. In the end,
the energy spectrum of the electrons was measured with a
magnetic energy spectrometer (Gatan GIF 100) as a func-
tion of the laser phase delay �ϕ, adjusted by a mirror on a
piezoelectric actuator. The electron current was set to ∼10
pA to minimize energy bandwidth and maximize temporal
coherence. Electromagnetic laboratory noise was filtered out
by drift tube chopping [10].

Figures 2(b)–2(d) show the measured energy spectrograms
for two cases E0 = 120 keV (left) and E0 = 75 keV (right).
According to the analytical predictions (see Appendix A),
120 keV corresponds to generating electron pulses with short-
est duration [10], whereas 75 keV should roughly correspond
to a half-revival distance between the two interactions. In both
sets of data, we observe periodic side peaks at ±hν, but their
dynamics is different. For 120 keV, the positive and negative
sideband peaks are found at nonsymmetric time delays, indi-
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FIG. 3. Experimental evidence for realization of a free-electron qubit. (a) Bloch sphere. State |0〉 denotes an electron wave function in the
−1 energy sideband, and state |1〉 denotes an electron wave function in the +1 sideband. In the experiment, the first laser-electron interaction
(red) creates from the zero-loss peak a symmetric sideband pattern. Free propagation for half the temporal Talbot time (solid blue) rotates the
phases and simultaneously prepares a time-controlled wave function. The second laser interaction (green) creates the qubit and simultaneously
rotates it around the Bloch sphere in dependence of the optical laser phase delay �ϕ. Additional free-space propagation or adjusting the timing
of electron emission can rotate the qubit state around the z axis (dashed blue). Note that the transient Bloch sphere with smaller radius (red
arrow) simply indicates less electron probability in the sidebands and not a statistical incoherence. (b) Measured electron spectra for the four
particular qubit states depicted in the Bloch sphere. Phases are discussed in the text. The zero-loss peak [constant with delay time; see Fig. 2(b)]
is subtracted for clarity.

cated by the tilted dashed lines [Fig. 2(d), left panel]. Also,
there are minima in the zero-loss peak that are periodic with
the laser delay. Consequently, electron current redistributes in
a complex way between all three energy features as a function
of �ϕ, and no peak is ever purely on or off. The origin of
this observation is the finite propagation time that is neither
negligible nor corresponds to a particular fractional revival.

In contrast, the data for 75 keV [Fig. 2(d), right panel] re-
veal positive and negative sidebands that alternate almost pre-
cisely between purely positive and negative energy changes
as a function of laser delay. The zero-loss peak shows no
modulation, and its electron current is independent of the laser
delay. The energy-gain peak (+1) is anti-aligned with the loss
peak (−1), as indicated by the dashed lines. This emergence
of symmetry occurs for an even longer free-space propagation
time than for 120 keV, and the result therefore provides direct
indication of wave function revivals in the time domain.

Figure 2(e) shows the fitted intensities of the ±1 sidebands
and the zero-loss peak for each laser phase delay. For both
electron energies, the sidebands exhibit sinusoidal dependen-
cies on the delay, but there are differences in the positions of
the minimum value and different phase shifts. For 120 keV,
the phase shift between the two sinusoidals is ∼120°, and
intensity is partially distributed into both sidebands for every
�ϕ. In contrast, a central feature of the 75-keV data is a phase
shift of ∼180°; each sideband maximizes at points where the
other sideband intensity reaches zero.

Such an exclusive energy gain or loss as a function of laser
delay implies that all the time-dependent electron density falls
either purely on the accelerating or purely the decelerating
slope of the laser acceleration cycles of the second inter-
action. Therefore, the time-modulated electron wave packet
must consist of pulses at ∼100% temporal contrast, and there
cannot be a substantial time-independent background current
like so far observed in previous reports of laser-compressed
electron pulses [8–10]. Figure 2(f) depicts the calculated
temporal electron density at the revival conditions (see Ap-
pendix B). The background-free electron pulses (right panel)
are slightly longer than for optimum compression (left panel),
but they still have a full width at half maximum of approxi-
mately half the laser modulation period. Attosecond electron
microscopy and diffraction [9] of stroboscopically excited

material responses [10] are therefore advanced to the best pos-
sible imaging contrast if choosing L = LQR/2 as the sample
distance. Figure 2(g) shows the fit of the data in Fig. 2(d) to
our analytical model. Almost all features are reproduced, and
the measured states are therefore approximately pure states.

Taken together, the experimental and analytical results of
Figs. 1 and 2 and the match of data with theory establish
and affirm that laser-modulated free-electron wave packets
with energy sidebands indeed reshape during free-space prop-
agation through a series of fractional revivals back into the
original wave function in the way depicted in Fig. 1(a). At
half of the temporal Talbot distance, there is an ultrafast pulse
train at ∼100% contrast.

V. EVIDENCE FOR FREE-ELECTRON QUBITS

The reported ability to interact multiple times in a coherent
and time-controlled way with a free-electron wave function at
distances of tens of centimeters creates a versatile perspective
for more complex operations. We now report the formation of
a free-electron qubit. The basis of our experiment is a recent
theoretical proposal by Reinhardt et al. [22] on the use of
laser-induced energy sidebands as a carrier of quantum infor-
mation in a scheme where laser modulations and free-space
propagations implement the noncommutative spin algebra of
a qubit with all the necessary features [22]. However, we asso-
ciate the qubit states |0〉 and |1〉 not with even and odd photon
orders but directly with the −1 and +1 sidebands at −hν and
+hν, respectively. Figure 3 depicts the corresponding Bloch
sphere. We assume that the laser-electron coupling strengths
at the two interactions are equal and low enough to avoid
higher-order sidebands and the onset of Rabi oscillations,
that is, |g1| = |g2| = |g| < 1

2 . In this case, the superposition
state α|0〉 + β|1〉 obtains at the fractional revival condition
L = LQR/2 the complex amplitudes:

α = A cos

(
�ϕ

2
− π

4

)
, and (1)

β = A exp (iϕ0) sin

(
�ϕ

2
− π

4

)
, (2)

where A ∝ J0(|g|)J1(|g|) depends on the laser power, J0 and
J1 are the Bessel functions of the first kind, �ϕ = arg g2 −
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arg g1 is the interferometric laser delay [see Fig. 2(a)], and
ϕ0 = arg g1 + arg g2 is the electron injection phase, that is,
the absolute timing of the electron wave function with re-
spect to the laser cycles. The values of α and β have all
the necessary properties of qubit amplitudes: They represent
a closed system with |α|2 + |β|2 = const and can be set by
the two laser-controlled parameters �ϕ and ϕ0 to any point
at the Bloch sphere [see Fig. 3(a)]. The first laser interaction
(red arrow pointing left) creates a symmetric sideband pattern
with |α| = |β|. Free-space propagation (blue arrow) by LQR/2
rotates the sideband phases [see Fig. 1(b)] and at the same
time compresses the electron density to high-contrast pulses in
the temporal domain [see Fig. 1(c)]. At this fractional revival,
the second laser interaction (green arrows) creates the qubit
in the above definition and simultaneously rotates it contin-
uously around the Bloch sphere meridian in dependence on
�ϕ, the relative optical phase between the two laser waves in
the experiment.

Figure 3(b) shows the measurement results. Plotted are
the sideband spectra for �ϕ = 1

2π, 3
2π , π , and 0. We see

the generation of the quantum states |0〉, |1〉, 1√
2
(|0〉 + |1〉),

and 1√
2
(|0〉 − |1〉) in the form of a predominant production

of the +1 sideband (first panel), a predominant production
of the −1 sideband (second panel), and production of the
two superposition states (third and fourth panel). Their phase
differences are evident from Fig. 2(e) and can be determined
with quantum state tomography [8]. Some residuals (∼0.25)
in the undesired sidebands for |0〉 and |1〉 are attributed to the
remains of timing jitter in our laser-interferometric setup and
residual mismatch of L to LQR/2. Nevertheless, the four states
depicted on the Bloch sphere of Fig. 3(a) are resolved.

Given the above considerations, the reported results rep-
resent experimental evidence for the production of a qubit
from a free electron as an elementary particle without an
environment. The crucial steps are the laser-optical con-
trol of discrete electron energy sidebands and the discovery
of fractional temporal revivals of such wave packets after
free-space propagation. The measured transition from |0〉 to

1√
2
(|0〉 + |1〉) corresponds to applying an Hadamard operator

[22], one of the two essential operations for implementing
single-qubit algebra. Continuous phase rotation can be im-
plemented by a further free-space propagation [blue dashed
arrow in Fig. 3(a)] or by phase-locked electron injection via
ϕ0. Such a phase lock is achievable by laser-triggering the
original electron emission timing or by preshaping the elec-
tron beam into pulses, for example, by time-locked bunching
with microwave radiation [40] or terahertz fields [7]. In future
experiments, coherent multicolor laser waves [8], terahertz-
driven electron energy modulators [7], or discrete space-time
coupling [19,41] can expand the complexity of the laser-
driven modulations, and electrostatic drift tubes or magnetic
chicanes can set and reconfigure free-space propagation times
at the frequency of electronics.

VI. DISCUSSION AND OUTLOOK

The common mechanism behind the reported generation
of maximum-contrast electron pulses and the formation of a
free-electron qubit is the temporal Talbot effect and the ability

of the free electron to interact multiple times in a coherent
and time-controlled way with laser light at distances of tens of
centimeters or more. In attosecond microscopy [42], the speci-
men can be placed at a far greater and more practical distance
from the original temporal focus [43], that is, for optimum
contrast at the half revivals [see Fig. 1(c)] or for optimum time
resolution at any of the recurrences of the shortest pulses [see
Fig. 1(d)]. Additionally, the fractional revivals provide means
to generate more complicated temporal distributions of elec-
trons for advanced time-imaging applications. If ultimately
short pulses and high contrast are needed at the same time, two
laser interactions can be combined [25]. For the qubits, there
are probably alternative ways of moving around the Bloch
sphere [22], for example, with the help of multifrequency
lasers or special fractional revivals, to provide more flexible
control than in our proof-of-principle demonstration.

By refraining from using femtosecond lasers and pulsed
electron sources with their limited average brightness
and instead modulating a continuous electron beam with
continuous-wave lasers [10], the reported shaped electron
wave packets in the form of ultrashort pulse trains or qubits are
generated at almost the full brightness of the electron source,
that is, at ∼109 electrons/s in a nanometer beam, limited
only by the current and emittance that can be delivered by
modern high-energy electron sources. Transmission electron
microscopes under the reported large-distance laser control
may therefore become a versatile basis for novel types of
fundamental and applied research with the free electron as an
elementary particle.
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APPENDIX A: ANALYTICAL THEORY

For the description of electron propagation and electron-
light interaction, we apply a one-dimensional (1D) model with
a fully coherent, pure electron wave function and classical
light. We use the relativistically modified 1D Schrödinger
equation [27,44] ih̄∂t�(z, t ) = Ĥ�(z, t ) that accounts for the
relativistic character of motion while maintaining the analyt-
ical and numerical simplicity of the Schrödinger equation.
The electromagnetic fields around the membranes are calcu-
lated by multipath interference (see below). Electrons move
in the z direction with a velocity v0 and experience two in-
teractions with laser light. The central momentum is p0 =
γ mev0, and the energy is E0 = γ mec2, where me is the rest
mass of the electron, γ = [1 − (v0/c)]−1/2 is the Lorentz
factor, and c is the speed of light. The values of E0 and
p0 are weakly altered by the interaction which is therefore
considered perturbative. Accordingly, the wave function is
represented as a product of fast and slow parts [27], �(z, t ) =
ψ (z′, t )exp[i(p0z − E0t )/h̄], where z′ = z − z is the local co-
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ordinate around the center of the wave packet z0 = v0t . For
free propagation, we take Ĥ = Ĥ0, where Ĥ0 is the non-
perturbed Hamiltonian, which is obtained by expansion of
the electron energy E around E0 according to Ĥ0 = E0 +
( p̂ − p0)v0 + ( p̂ − p0)2/(2γ 3me ), where p̂ is the momentum
operator [27]. Consequently, for free propagation, ψ (z′, t )
satisfies

ih̄∂tψ (z′, t ) = − h̄2

2meγ 3
∂2

z′ψ (z′, t ). (A1)

The factor meγ
3 is sometimes called the longitudinal mass

[45]. A similar equation for the envelope of the electron wave
packet can be obtained by solving Dirac’s equation [45]. In the
following, we assume a Fourier-limited Gaussian wave packet
with an energy spread of σE and a length σz = h̄v0/(2σE )
[27,44]:

ψ (z′, 0) = ψ0exp

(
− z

′2

4σ 2
z

)
, (A2)

where ψ0 = (2πσ 2
z )−1/4 is the normalization coefficient. The

temporal coherence is thereby considered a limiting factor

for coherent interaction. After propagation from z = 0 to LD,
where LD = v0tD is the drift distance, and tD is the drift time,
the new wave function ψD(z′) = ψ (z′, tD) is

ψD(z′) = ψ0a−1/2
D exp

(
− z

′2

4σ 2
z aD

)
, (A3)

where aD = (1 + iξLD) with dispersion parameter ξ =
h̄/(2meγ

3σ 2
z v0) = 2σ 2

E/(h̄meγ
3v3

0 ).
We now assume that the first interaction with the laser

is centered at z = LD. For the interaction with the field, we
use Ĥ = Ĥ0 + ĤI, where the interaction part of the Hamil-
tonian is approximated as ĤI ≈ −qeAz p̂/(γ me), Az is the z
component of the vector potential [15,27,46], and qe is the
negative-valued electron change. Here, we assume laser fields
below the relativistic regime |Az| 	 |mec/qe|. With this mod-
ification, the equation for the interaction becomes

ih̄∂tψ (z′, t ) =
[
− h̄2

2meγ 3
∂2

z′ + ih̄qe

γ me
Az(z′ + v0t )∂z′ − qe p0

γ me
Az(z′ + v0t )

]
ψ (z′, t ). (A4)

We now assume that the laser fields fade with distance from the interaction and vanish at |z − LD| > v0�t1/2, where the time
scale of the interaction �t1 is small enough (�t1 	 1/ξ ) to neglect the envelope dispersion during the interaction, that is, the
spatial derivatives in Eq. (A4). Solving the remaining first-order ordinary differential equation, we obtain

ψ

(
z′, tD + �t1

2

)∣∣∣∣
�t1→0

= ψ

(
z′, tD − �t1

2

)∣∣∣∣
�t1→0

exp

[
iqev0

h̄

∫
dt ′Az(z′ + v0t ′, t ′)

]
, (A5)

where the integration is performed over an infinite interval; see also Refs. [27,45]. An interesting feature of Eq. (A5), also noted in
Ref. [45], is that it is identical to its nonrelativistic counterpart, as considered in Refs. [11,15]. By using the complex electric field
Ẽz(z, t ) = Ẽz(z)e−iωt , where ω is the laser central angular frequency, the vector potential is Az(z, t ) = [Ẽz(z, t ) − Ẽ∗

z (z, t )]/(2ωi).
Here, we have assumed a continuous-wave laser, but the conclusions are also valid for laser pulses if their bandwidth is small.
In the integrand of Eq. (A5), Ẽz(z, t ′) = Ẽz(z)exp(−iωz/v0 + iωz′/v0) and eventually

qev0

h̄

∫
dt ′Az(z′ + v0t ′, t ′)

t ′= z−z′
v0= qe

h̄ω
Im

[
exp

(
iωz′

v0

) ∫
dz Ẽz(z)exp

(
− iωz

v0

)]
= |g| sin (kpz′ + ϕ), (A6)

where ϕ = arg g, the modulation wave number kp = ω/v0,
and like in Refs. [11,27,45],

g = qe

h̄ω

∫
dz Ẽz(z)exp

(
− iωz

v0

)
, (A7)

is the coupling strength, sometimes also called the PINEM
field [11,17,18].

1. Laser fields and coupling strengths

For our interaction setting, a semiconductor slab of refrac-
tive index ns and thickness ds illuminated by a laser beam
such that the focus size is large compared to the wavelength,
the laser fields are approximated as plane waves with the
amplitudes adiabatically decaying to infinity, and

g = g(E0, ω, α, αe, v0, ns, ds) = qev0E0 exp (iφ)

ih̄ω2

{
sin (α − αe)

1 − β cos (α − αe)
+ r

sin (α + αe)

1 + β cos (α + αe)

+ tslab

[
sin (α2 − αe)(e−iκ − 1)

1 − nsβ cos (α2 − αe)
+ rslab

sin(α2 + αe)(e−iη − 1)

1 + nsβ cos (α2 + αe)

]
− t

sin (α − αe)

1 − β cos (α − αe)
e−iζ

}
, (A8)

where E0 is the amplitude, and φ is the phase of the z compo-
nent of the electric field at the first interface of the membrane,

α and αe are, respectively, the angles of incidence of the laser
and the electron beam, α2 = asin(sin α/ns) is the refraction

043033-6



FREE-ELECTRON QUBITS AND MAXIMUM-CONTRAST … PHYSICAL REVIEW RESEARCH 3, 043033 (2021)

angle, κ = ω[1 − nsβ cos(α2 − αe)]/(v0 cos αe), η =
ω[1 + nsβ cos(α2 + αe)]/(v0 cos αe), ζ = ω[1−β cos(α −
αe) − ω

c d cos α]/(v0 cos αe), r = r12(1 − e2iδ )/(1−r2
12e2iδ ) is

the reflection coefficient for the slab, tslab = t12/(1−r2
12e2iδ )

and rslab = −r12ei2δ describe the fields within the slab,
t = (1−r2

12)eiδ/(1−r2
12e2iδ ) is the transmission coefficient,

δ = ω
c nsds cos α2, and r12 and t12 are the Fresnel reflection

and transmission coefficients for p-polarization at a boundary
of vacuum and the membrane material, respectively.

2. Modulation, propagation, and revivals

Using Eqs. (A5)–(A7), we obtain the wave function
ψ1(z′) = ψ (z′, tD + �t1/2 )|�t1→0 after the first interaction:

ψ1(z′) = ψD(z′)exp[i|g1| sin (kpz′ + ϕ1)], (A9)

where the indices 1 indicate parameters related to the
first interaction. A similar equation for the envelope of
the electron wave packet can alternatively be obtained by
solving Dirac’s equation [45]. We decompose the exponential
in Eq. (A9) by using the Jacobi-Anger expansion [26]
exp[i|g1| sin(kpz′ + ϕ1)] = ∑

n Jn(|g1|)exp(inkpz′ + inϕ1),
where Jn is the Bessel function of the first kind, and the
summation is hereon performed over the integer indices
from −∞ to +∞. By applying a Fourier transform
ψ̃1(k) = ∫ ∞

−∞ ψ1(z′)e−ikz′
dz′ of the resulting equation, where

k is the Fourier conjugate to the coordinate z′, and replacing
E ′ = h̄kv0, h̄ω = h̄kpv0, where E ′ = E − E0 is the offset
energy of the electron, we obtain the spectrum in energy units:

ψ̃1(E ′) = ψ̃0

∑
n

Jn(|g1|)einϕ1 exp

[
− (E ′ − nh̄ω)2aD

4σ 2
E

]
,

(A10)

where ψ̃0 = ψ0
√

4πσ 2
z . Variables with tildes denote spectral

quantities. The further evolution of the wave function is again
obtained by solving Eq. (A1) in the spectral domain. At a
distance L after the first interaction, the propagated wave
function in the momentum space is

ψ̃L(E ′) = ψ̃1(E ′)exp

(
− iE ′2L

2meγ 3h̄v2
0

)

= ψ̃1(E ′)exp

[
−iπ

E ′2

(hν )2

L

LQR

]
, (A11)

where the quantum-revival distance LQR = β3γ 3λ2mec/h is
introduced; in the coordinate space, the propagated wave
function is

ψL(z′) = ψ (z′, 0)
∑

n

Jn(|g1|)exp

(
iωnz′

v0
+ inϕ1

)

× exp

(
−iπn2 L

LQR

aD

aL

)
, (A12)

where aL = 1 + iξ (LD + L). If the temporal coherence is
large (ξLD 	 1 and ξL 	 1), the dispersion of the envelope

in Eq. (A12) can be neglected. By setting aD = aL = 1, we
arrive at

ψL(z′) = ψ (z′, 0)
∑

n

Jn(|g1|)exp

(
iωnz′

v0
+ inϕ1

)

× exp

(
−iπn2 L

LQR

)
. (A13)

Separating into odd and even sidebands, we obtain from
Eq. (A13)

ψL(z′) = ψ0exp

(
− z′2

4σ 2
z

)[
J0(|g1|) + 2i

∑
n=1,3,...

Jn(|g1|)

×sin

(
ωnz′

v0

)
exp

(
−iπn2 L

LQR

)

+ 2
∑

n=2,4,...

Jn(|g1|) cos

(
ωnz′

v0

)
exp

(
−iπn2 L

LQR

)]
.

(A14)

In Eq. (A14), one can explicitly see the quadratic depen-
dencies of sideband phases on their number, the restoration of
phases at L = LQR, and the π/2 phase shift between the odd
and even sidebands in the initial wave function (L = 0) that is
compensated under the half-revival conditions (L = LQR/2),
producing 100% temporal contrast [see Fig. 1(b)].

Equation (A12) allows us to estimate the conditions for
observation of the revivals for a typical transmission elec-
tron microscope at E0 = 75 keV with a 0.2 eV full width
at half maximum energy spread (σE = 0.085 eV); we obtain
ξ ≈ 0.8 m−1. Therefore, the energy spread of a typical micro-
scope without monochromator is sufficient to see revivals after
tens of centimeters of propagation. Distances at which re-
vivals can be observed increase quadratically with the inverse
bandwidth. A microscope with an energy monochromator
therefore promises several meters of dispersion-free revivals.

3. Second laser-electron interaction

If a second laser-electron interaction is located at a distance
L after the first stage, the laser imposes a second phase modu-
lation on the wave function in analogy to Eq. (A13):

ψ2(z′) = ψL (z′)
∑

m

Jm(|g2|)exp(imkpz′ + imϕ2), (A15)

where g2 and ϕ2 are the coupling constant and its phase for
the second interaction, respectively. By applying the inverse
Fourier transform, separating the real and imaginary parts in
the phase terms and introducing the photon order N = n + m,
we obtain from Eq. (A15) the spectrum after the second inter-
action:

ψ̃2(E ′,�ϕ)

=
∑
N,n

ψ̃N Jn(|g1|)JN−n(|g2|)exp[i(N − n)�ϕ]

× exp

(
−i2π

L

LQR
n

E ′ − h̄ωN

h̄ω

)
exp

(
−iπn2 L

LQR

)
,

(A16)
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where ψ̃N = ψ̃0exp(iNϕ1)exp[−aL(E ′ − Nh̄ω)2
/4σ 2

E ]. Equa-
tion (A16) represents a set of peaks at photon orders N ,
centered at energies Nh̄ω. Each of the peaks is composed of
several components originating from virtual absorption of n
and N−n photons on the first and second stages, respectively
[17]. From Eq. (A16), we see that, at the exact photon or-
ders |E ′ − h̄ωN | 	 h̄ω, the phases of the sidebands acquire
particular values at distances equal to the multiples of LQR/2;
see also Ref. [22].

4. Qubit amplitudes

If we assume |g1| = |g2| = |g| < 1
2 for Eq. (A16), we can

neglect all sidebands except for n = 0, ±1 and arrive at ex-
pressions for the ±1 sidebands in the spectral domain at the
exact value of the photon orders |E ′ − h̄ωN | 	 h̄ω:

ψ̃2(±hν,�ϕ) = ± 2|ψ̃0|2J0(|g|)J1(|g|)

×exp

[
i

πL
LQR

± (ϕ1 + ϕ2)

2

]
cos

(
πL
LQR

± �ϕ

2

)
.

(A17)

By removing the common phase, we obtain

ψ̃2(−hν,�ϕ) = 2|ψ̃0|2J0(|g|)J1(|g|)cos

(
πL
LQR

− �ϕ

2

)
, and

(A18)

ψ̃2(+hν,�ϕ) = − 2|ψ̃0|2J0(|g|)J1(|g|) exp [i(ϕ1 + ϕ2)]

× cos

(
πL
LQR

+ �ϕ

2

)
. (A19)

At the fractional revival condition L/LQR = 1
2 , we obtain

Eqs. (1) and (2) for the qubit amplitudes α and β.

5. Amount of the revivals in the time domain

To understand the consequences of a limited coherence to
the amount of the revivals that can in principle be observed,
we consider some drift distance LD of the initially minimal
Gaussian wave packet before the first interaction. The wave
function in the time domain is

ψL(z′, t ) = ψ0a
− 1

2
L

∑
n

Jn(|g1|)exp(inϕ1)

× exp

⎡
⎣−

(
z′ − nλβ L

LQR

)2

4σ 2
z |aL|2

⎤
⎦

× exp

{
i

1

|aL|2
[(

nkpz′ − n2π
L

LQR

)

× Re(aDa∗
L ) + Im(aL )

4σ 2
z

z′2
]}

, (A20)

where the factors aD = 1 + iξLD and aL = 1 + iξ (LD + L)
account for the dispersion before and after the interac-
tion, and the dispersion parameter ξ = h̄/(2meγ

3σ 2
z v0) =

2σ 2
E/(meγ

3v3
0 h̄). By analyzing the phases of the components

in Eq. (A20), we obtain the limiting number of revivals that
are permitted for a sideband n by the envelope spread:

�lim = π

2
N2

cyclesn
2, (A21)

where Ncycles is the length of the wave packet at the first
interaction stage divided by the modulation period; Ncycles =
2σz

√
1 + ξ 2L2

D/(λβ ). To obtain the condition for revival of all
sidebands from Eq. (A21), one should substitute n = 1. Inter-
estingly, the pre-interaction drift LD alleviates the condition
of Eq. (A21) by spreading the wave packet out over several
cycles or light.

Also, group dispersion of the wave packet envelopes can
prevent the revivals in the time domain, when the slippage of
the envelopes is larger than the envelope itself. In this case,
the amount of the revivals is limited by the mutual slippage
of the envelopes of the sidebands and equals as follows from
Eq. (A20)

�max ≈ Ncycles

nmax
= 2σz

nmaxλβ
≈ h̄ω

4πσE |g| , (A22)

where we have estimated the maximum number of the non-
negligible sideband as nmax ≈ 2|g|. In the spectral domain, the
slippage of the envelopes to more than the width of the enve-
lope will produce interference fringes inside each sideband.

APPENDIX B: FIGURE DETAILS

The temporal electron density in Fig. 1(d) is calculated
with Eq. (A12) for a propagation distance of L = 12 cm, a
pre-interaction drift distance LD = 0, a coupling strength of
|g| = 0.785, and a bandwidth σE = 0.03 eV. The pulse du-
ration �τ in Fig. 1(e) is calculated as the full width at half
maximum of the central maximum of electron density above
the adjacent minima. The temporal contrast in Fig. 1(e) is
calculated as the ratio of the difference of the central density
maximum and its adjacent minimum to their sum.

To determine the effective coupling factors |g1,2| of the ex-
periment, we record electron spectra from each laser-electron
interaction alone and fit the resulting data with |ψ̃1(E ′)|2,
see Eq. (A10); |g| is the only parameter. We obtain |g1| ≈
|g2| ≈ 0.5 and 0.3 for 120 and 75 keV, respectively. These
values approximately match the expectation from Eq. (A8).
Using these coupling constants, the delay-dependent data of
Fig. 2(d) is fitted with |ψ̃2(E ′,�ϕ)|2, see Eq. (A16). Two fit
parameters are applied: an experimental offset to �ϕ and the
initial electron energy spread σexp. Figure 2(g) shows a com-
parison of the result and the experimental data of Fig. 2(d).
The fit reproduces the positions of all peaks and minima,
their widths and mutual shifts, as well as their amplitudes.
These results confirm that almost all electrons in the beam
are modulated into attosecond pulses and qubits in accordance
with our report.

The amplitudes of the sidebands in Fig. 2(e) are measured
by fitting the measured data with three peaks at 0 and ±hν

followed by convolution with the laser-unaffected zero-loss
peak. The temporal electron density in Fig. 2(f) is calcu-
lated as an incoherent superposition of wave packets with
random emission timing for a propagation distance of 12 cm,
a coupling strength of |g| = 0.785, and a coherence length
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corresponding to a bandwidth of 0.2 eV (full width at half
maximum) or σE = 0.085 eV.

APPENDIX C: RELATIONS TO QUANTUM REVIVALS
IN OTHER FIELDS

Our analytical equation for the temporal revival distance
LQR = d2/λe has a very similar shape [23] to the equation
for the optical Talbot distance zT = a2/λ for the diffraction
of light with a wavelength λ from a grating with period
a [28,29,47,48]. In that respect, the measured revival phe-

nomenon is called a temporal electronic Talbot effect. Related
quantum revivals [49] have also been observed in a variety
of quantum systems other than free electrons, for example, in
isolated atoms and molecules [31–33], many-body quantum
systems [34–38], and spin systems [39]. In optics, transverse
revivals [50,51] are used for diffraction-free imaging [52,53],
nano-assembly [54], optical tweezers [55], or x-ray imaging
[56,57]. Transverse revivals of matter waves are used for
interferometry and high-resolution lithography [58–61]. Our
measurement results add matter-wave revivals in the temporal
dimension to this group.
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