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Kirigami involves cutting a flat, thin sheet that allows it to morph from a closed, compact configuration into
an open deployed structure via coordinated rotations of the internal tiles. By recognizing and generalizing the
geometric constraints that enable this art form, we propose a design framework for compact reconfigurable
kirigami patterns, which can morph from a closed and compact configuration into a deployed state conforming
to any prescribed target shape, and subsequently be contracted into a different closed and compact configuration.
We further establish a condition for producing kirigami patterns and mechanisms which are reconfigurable and
rigid deployable allowing us to connect the compact states via a zero-energy family of deployed states. All
together, our inverse design framework lays out a path for the creation of shape-morphing material structures.
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I. INTRODUCTION

Kirigami is the art of using cuts in a single sheet of paper
that allow for changes in the shape of the sheet via coordi-
nated rotations of the connected facets. In recent years, the
art form has motivated the design of metamaterials wherein
architected cuts on a flat, thin sheet of material can lead
to unusual properties not found in most naturally occurring
materials, such as a negative Poisson’s ratio [1]. There have
been a vast number of studies on the geometry, topology, and
mechanics of kirigami [2-8] with applications to the design
of nanocomposites [9,10], shape-morphing sheets [11,12],
inflatable structures [13], soft robots [14], etc. Almost with-
out exception, the deployed kirigami structures are open and
periodic, and the property of admitting multiple closed and
compact contracted states has been addressed only in a few
well-known periodic regular kirigami patterns [15-17], and
lead to states that are related to each other via global rotations.
This raises a natural question: Is it possible to introduce cuts
on a thin sheet of material in a way that yields a deploy-
able and reconfigurable kirigami structure conforming to any
prescribed shape and admitting multiple closed and compact
contracted states? Here we answer this question in the affir-
mative by building on our recent inverse design framework [6]
and identifying a set of geometric constraints to achieve both
reconfigurability and a range of different energy landscapes
associated with the deployment pathway. This allows us to
design kirigami patterns that can undergo certain nontrivial
shape changes under deployment to achieve a prescribed de-
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ployed or contracted shape, while also being reconfigurable
and rigid deployable.

Since kirigami derives its properties via coordinated ro-
tations of the individual cells, it is natural that the problem
of kirigami design is close to the design of mechanisms
[18-22], in which a set of moving parts are connected by
kinematic joints to form a deployable structure. However, we
note that while kinematic mechanism designs mainly focus on
rigid-deployable structures formed by rigid bars, our inverse
kirigami framework is applicable to both rigid and stretchable
materials. Furthermore, by focusing on how the angles and
edge lengths of the tiles in a given kirigami pattern can be
changed to achieve the desired properties, we circumvent the
role of designing structural topology for mechanism design.

II. RECONFIGURABLE KIRIGAMI DESIGN

To crystallize our question in a minimal setting, we
consider the quad kirigami patterns, a class of deployable
structures obtained by introducing cuts to form quadrilateral
tiles connected at hinges [see Fig. 1(a)] with a single global
degree of freedom. To determine the size and orientation of
the cuts that yield a deployed configuration approximating
a prescribed target shape, it is more convenient to work in
the deployed space and change the geometry of each tile. In
our recent work [6], we have shown that the key criteria for
guaranteeing that the deformed deployed configuration yields
a valid kirigami pattern, also known as the contractibility
constraints, consist of the edge length constraints and the
angle sum constraints. As illustrated by the red dotted lines
in Fig. 1(a), the edge length constraints enforce the constancy
of the length of each pair of edges in the deployed space that
correspond to the same edge in the pattern space:

a=b, c=d, p=gq, r=s. (1)
The angle sum constraints enforce the condition that the set

of angles {ay};_, (for quad kirigami, n = 4) in the deployed
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FIG. 1. Reconfigurable kirigami design. (a) An enlargement of the unit cell of a quad kirigami tessellation illustrating the constraints on
edge lengths and angles to be satisfied [Eqs. (1)—(4)]. The red dotted lines indicate the ordinary edge pairs corresponding to the same cuts,
and the blue dotted lines indicate the dual edge pairs for getting the other contracted configuration. (b) The inverse design framework for
reconfigurable kirigami. Starting with a given kirigami pattern and a prescribed target shape, we construct an initial guess in the deployed
space and solve a constrained optimization problem to obtain a valid deployed configuration that satisfies both the ordinary contractibility
constraints, and the new reconfigurability constraints, and matches the target shape. We then contract the deployed configuration in two ways,
one by following the cut edge pairs and one by following the dual edge pairs to obtain two contracted states. The angles are colored based on

the correspondence in the kirigami pattern.

space that correspond to the same vertex in the pattern space
[see Fig. 1(a)] satisfy

> =2, @)
k=1

To ensure that the deformed deployed configuration admits
another closed and compact contracted state, we exploit an un-
derlying duality present in the standard quad kirigami pattern
associated with reconfigurability, which implies the presence
of dual pairs of length and angle constraints. These read as
follows:
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FIG. 2. The optimization process for producing a reconfigurable kirigami pattern. The two plots show the objective function [Eq. (7)] and
the maximum constraint violation, which takes all constraints in Eqs. (1)—(6) into consideration. We use MATLAB’s fmincon optimization
solver to iteratively update the coordinates of the nodes and change the pattern from the initial guess to an optimal configuration that matches
the target shape and satisfies the reconfigurability conditions. As the pattern is reconfigurable, it admits two different closed and compact

contracted states.

(1) Dual edge length constraints. For each pair of adjacent
edges belonging to two different tiles and not paired up in
Eq. (1) [i.e., the blue dotted lines in Fig. 1(a)], we should have

e=f, g=h p=s, q=r, 3)

noting that each pair of them will then correspond to the same
edge in the reconfigured pattern space.

(2) Dual angle sum constraints. For every set of angles
{Br}i; dual to the set of angles {o};_, in Eq. (2) inside a
unit cell [Fig. 1(a)], we should have

Y Bo=2m, )
k=1

noting that B, B2, ..., B, will then correspond to the same
vertex in the reconfigured pattern space.

Altogether, for quad kirigami, the contractibility con-
straints proposed in [6] and the reconfigurability constraints
proposed in this work enforce that all edges around each hole
in the deployed configuration must be equal in length, yielding
a rhombus, and that all angles of the deformed tiles at two
opposite corners of each rhombus hole should add up to 2.

In addition to the internal constraints, to further ensure that
the deployed configuration conforms to a prescribed boundary
shape, we must also enforce the shape matching constraints
[6] for every boundary node p;:

Ip: — PillI> = 0, o)

where P; is the projection of p; onto the target boundary.

Given the above constraints, we are now in a position
to frame the inverse design framework for reconfigurable
kirigami, shown in Fig. 1(b). Given a regular kirigami tessel-
lation and a prescribed target shape, we start with an initial
guess of the deployed configuration, which can either be a
trivial deployment of the standard tessellation, a deformed
configuration produced by a conformal/quasiconformal map
[24,25], or any other methods that preserve the number and
connectedness of the tiles. Almost without exception, any
initial guess will violate at least some of the constraints in
contractibility, reconfigurability, or target shape matching. To
obtain a valid reconfigurable kirigami pattern, we formulate a
constrained optimization problem for the deployed configura-
tion with all constraints above together with the nonoverlap
constraints which prevent adjacent tiles from overlapping. At
every angle between two adjacent faces in the deployed space,
we enforce the following inequality [6]:

((b—a)x(c—a)i) =0, (6)

where a and b are two nodes of a face, a and ¢ are two nodes
of another face, (b, a, ¢) form a right-hand ordered angle
between the two faces, and 7i = (0, 0, 1) is the outward unit
normal. Here we simply adopt the objective function used in
our previous work [6] to yield a smooth shape change over the
entire pattern, noting that other choices are possible:

min Ail Z (Z(aij — B, 2+ Xk:(aik —b;, )2), @)

i=1 \ j
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FIG. 3. Reconfigurable kirigami patterns. (a) For each example, the top row shows the two contracted states and the bottom row shows the
deployed state which matches the prescribed target boundary shape [see Fig. 4(a) for more examples]. (b) Reconfigurable kirigami patterns
produced by further enforcing a reflection symmetry constraint in the constrained optimization framework [see Fig. 4(b) for more examples].
(c) Energetics of the deployment and contraction of a reconfigurable kirigami pattern shows barriers near the two contracted states, but almost
zero energy in between. This results in an unusual landscape, with monostable elastic minima at the ends and a mechanism-like zero-energy
phase in between (see also the inset log-scale plot). The insets show the intermediate deployed states with each tile color coded by the total
spring energy along all its edges and diagonals (denoted by e) (see Video S1 [23] and Appendix A for details).

where o;;, B;; are a pair of corresponding angles in two adja-
cent cells and q;, , b;, are corresponding edge lengths in two
adjacent cells, and M is the total number of pairs of adjacent
cells.

Expressing all constraints and the objective function in
terms of the coordinates of the nodes in the deployed configu-
ration, we solve this optimization problem using the fmincon
routine in MATLAB, where the gradients of the objective func-
tion and the constraints are computed analytically and spec-
ified in the solver using the SpecifyObjectiveGradient
and SpecifyConstraintGradient options. This yields a
deformed deployed configuration that satisfies all constraints,
from which we can obtain the two contracted states by rotating
the tiles according to the two sets of edge correspondences.

Figure 2 shows an example of the optimization process
by the MATLAB’s fmincon solver. In this example, the target
deployed shape is a rainbow and we start with the standard

deployed configuration of a quad kirigami pattern as the
initial guess. As all adjacent cells are identical, the initial
value of the objective function is 0. However, since the target
shape is not matched, the initial constraint violation is large.
Throughout the iterations, the solver gradually updates the
coordinates of the nodes to match the target shape, which
results in a difference in angle and length between adjacent
cells and hence the objective function value becomes nonzero.
As the optimization process continues, the solver minimizes
the objective function and the constraint violation. Finally, it
reaches an optimal solution, a valid deployed configuration of
a reconfigurable kirigami pattern that satisfies the target de-
ployed shape and admits two closed and compact contracted
states. Figure 3(a) shows several examples of reconfigurable
kirigami patterns obtained by our method, where each of
the kirigami patterns admits two distinct contracted states
and the deployed configuration conforms to a prescribed
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FIG. 4. More examples of reconfigurable quad kirigami patterns with different target boundary shape obtained by our framework.
(a) Patterns produced without enforcing any symmetry constraint. For each example, the two closed and compact contracted configurations and
the deployed configuration matching the prescribed target shape are shown. Prescribing a symmetric target boundary shape does not necessarily
yield a symmetric pattern. (b) With an additional left-right symmetry constraint enforced in the constrained optimization framework, the

patterns produced will be symmetric.

intermediate target shape. We see that our method is capa-
ble of approximating target shapes with different curvature
properties, like our previous inverse design framework [6].
Additionally, we can also control the boundary shape of a
contracted state by introducing additional constraints on the
boundary edge lengths and angles, yielding a reconfigurable
kirigami pattern that deploys from a contracted rectangle to
a circle and then contracts to another shape. Of particular
interest is the fact that it is possible to use microscopic tile

rotations that induce local topological rearrangements to in-
duce an effective overall global rotation. In addition, if the
deployed target shape is symmetric, one can further enforce
this as an additional constraint in the optimization framework
to produce reconfigurable kirigami patterns that are symmetric
in the contracted and deployed states [Fig. 3(b)].

The presence of multiple closed and compact contracted
states in these reconfigurable structures naturally implies the
presence of at least a bistable mechanical energy landscape
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FIG. 5. Conditions for multiple closed, compact contracted
kirigami states can be mapped to linkage deployment. (a) The de-
ployment of a generic four-bar linkage. The grey lines show the
three deployment paths, two of which (the top and bottom rows)
are degenerate. As for the nondegenerate one (the middle row),
since the edges are not necessarily equal in length, it is not possible
to achieve multiple closed and compact contracted states. (b) The
deployment of a reconfigurable four-bar linkage. The grey lines show
the three deployment paths, two of which (the top and bottom rows)
are degenerate. As for the nondegenerate one (the middle row), note
that the edges are equal in length and hence it is possible to achieve
multiple closed and compact contracted states.

[Fig. 3(c)], with additional minima arising as a function of
new constraints. To characterize this energy landscape, we
quantify the deformation of the tiles by replacing the edges
and diagonals of the quads by linear springs with a total

energy
(nx,»(r) —x;()]| — l,-,-)z ®

E(t) = Z

i,j:li.j1e€

where £ is the set of all edges and diagonals, x;(¢) is the
position of the node i at time #, and /;; is the rest length of the
spring at [i, j] (see Appendix A for more details). When we
calculate the elastic energy as a function of the deployment
stage, we find that the two compact end states are indeed
global energy minima, but the tiles have to deformed to move
away from these states. Interestingly, there is a regime of
deployment where the system is more like a mechanism with
the tiles essentially responding by just rotating [see Fig. 3(c)
inset and Video S1 of the Supplemental Material [23]]. This
is a generic feature of reconfigurable kirigami patterns that
behave like elastic structures near their compact states, and
like rigid mechanisms away from them.

More reconfigurable kirigami patterns are given in Fig. 4.
As shown in Fig. 4(a), the inverse design method may pro-
duce asymmetric patterns even if the target boundary shape is
symmetric. Figure 4(b) shows examples of symmetric recon-
figurable quad kirigami patterns produced by enforcing an ad-
ditional left-right symmetry constraint in the constrained op-
timization process. More specifically, we first shift the target
pattern such that the symmetry axis is x = 0. We then make
only the left half nodes (with x < 0) as variables [in the form
of (x;,y;),i=1,2,...], while each of the corresponding
nodes in the right half is enforced to be (—x;, y;). The coordi-
nates are then used in the optimization process as usual for de-
termining the constraint violation and descent direction. It can
be observed that with this additional constraint, the results are
more regular in shape. Note that reconfigurable kirigami pat-
terns that approximate a prescribed shape are not necessarily
unique. Using different initial guesses, it is possible to obtain
different reconfigurable kirigami patterns. The large variety of
shapes produced demonstrate the flexibility of our framework.

One can also consider each negative space in a quad
kirigami pattern as a four-bar linkage to analyze reconfigura-
bility. Figure 5 shows the deployments of a generic four-bar
linkage and a reconfigurable four-bar linkage respectively. As
illustrated in the middle row of Fig. 5(a), for a generic 2x2
quad kirigami pattern, it is not possible to morph the pattern
from a closed and compact contracted configuration to a de-
ployed state and then contract it to another closed and compact
contracted configuration while remaining embedded in two
dimensions. By contrast, as illustrated in the middle row of
Fig. 5(b), for a reconfigurable 2x2 quad kirigami pattern,
all four edges of the negative space are equal in length and
hence it is possible to achieve multiple closed and compact
contracted configurations.

III. RECONFIGURABLE AND RIGID-DEPLOYABLE
KIRIGAMI DESIGN

Our previous example shows that generic quad kirigami
patterns are not single degree-of-freedom mechanisms [6],
and thus neither are reconfigurable kirigami patterns that we
have introduced so far. While one may control the stability
of the patterns by tuning the hinge stiffness as discussed in
[6], it is noteworthy that the hinge stiffness is not considered
in the constrained optimization problem and hence has to be
handled separately. This raises a natural question: How can we
complement the geometric constraints in Egs. (3) and (4) to
preserve the single degree of freedom in the kirigami patterns
by modifying the proposed inverse design framework without
introducing extra steps? Said differently, how can we make
quad kirigami rigid-deployable by admitting a single con-
tinuous path from one contracted pattern through the solved
deployed state to the second contracted pattern state such that
all the constituent tiles rotate rigidly without deforming? To
enable this, we introduce the following rigid-deployability
constraints: around every negative space (i.e., a hole formed
by four edges of four neighboring quads), we should have

ity =a3tas=B1+pP=Hp+ps=m, 9

where the design angles are as shown in Fig. 1. Intuitively,
note that a four-bar linkage has two one-dimensional rigid
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FIG. 6. An illustration of the constraints for reconfigurable, rigid-deployable kirigami design. Left: In kirigami patterns, each negative
space (blue) formed by a generic deployed quad kirigami structure (not necessarily reconfigurable) is a four-bar linkage with two pairs of
adjacent edges having the same length. Right: If the reconfigurability constraints are enforced, all links in the four-bar linkage have the same
length. Such a linkage has three rigid deployments (shown by the dotted lines), one nontrivial path in which all angles between links are
activated (the horizontal dotted lines with arrows in between the two dark green boxes in the pattern space and the reconfigured pattern space)
and two degenerate paths connected by branch points at the ends of the first path (the vertical dotted lines in the green boxes in the pattern
space and the reconfigured pattern space). The linkage can deploy rigidly from the branch point into either deployment paths, but cannot rigidly
transform directly between points on the deployment paths while remaining embedded in two dimensions. If Eq. (9) is satisfied, the four-bar
linkage in the pattern space will be as shown in the dark green box, and hence there is a rigid deployment path (as indicated by the green ticks)
for morphing it from the pattern space to the deployed space and then to the reconfigured pattern space. However, if Eq. (9) is not satisfied,
the four-bar linkage in the pattern space will be as shown in the pale green boxes, and so there is no rigid deployment path for reconfiguring it

(as indicated by the red crosses).

deployments connected by a single branch point, the config-
uration with all edges collinear and an angle of 7 between
overlapping edge pairs at the common hinge (see the top and
bottom rows of Figs. 5(a) and 5(b)). The linkage can deploy
rigidly from the branch point into either deployment paths,
but cannot rigidly transform directly between points on the
deployment paths while remaining embedded in two dimen-
sions. Therefore, a reconfigurable quad kirigami pattern is
rigid-deployable if and only if all edges of each negative space
are collinear in the contracted configuration. A mathematical
justification of the constraints stated in Eq. (9) is provided
below.

Lemma. (Local rigid deployability) A reconfigurable
kirigami patternis locally rigid-deployable if and only if Eq. (9)
is satisfied for all negative spaces.

Proof. Equation (9) ensures that each negative space forms
a straight line in both contracted configurations. Taken in
isolation, each negative space can be thought of as a four-
bar linkage (highlighted in blue in Fig. 6, left). A negative
space/four-bar linkage from a generic quad kirigami pat-
tern (i.e., one that is not reconfigurable) has two unique
edge lengths where edges with equal lengths are incident to
each other [see Fig. 5(a)]. Such a four-bar linkage has two
one-dimensional deployment paths in the plane connected to
each other at two branch points, where the edges with equal
lengths coincide with each other and all edges are collinear.
In the plane, the four-bar linkage cannot move from one
deployment path to another except at and through a branch

point. Thus, quad kirigami patterns which do not satisfy the
rigid-deployability constraints contain negative spaces which
cannot pass from pattern to deployed states in the plane with-
out changing edge lengths. And, conversely, quad kirigami
patterns which satisfy the rigid-deployability constraints have
only negative spaces which can rigidly deform from their
straight-line pattern configurations to their solved, deployed
configurations in the plane. Reconfigurable quad kirigami
structures have negative spaces/four-bar linkages with all
lengths being equal [see Fig. 5(b)]. Such linkages have three
one-dimensional deployment paths, one path in which all
hinges are activated and the linkage forms a rhombus, and
two degenerate paths in which two of the four hinges in the
linkage are activated, each connected to the rhombus path at
a respective branch point (Fig. 6, right). Thus, reconfigurable
quad kirigami patterns satisfying Eq. (9) have only negative
spaces which can rigidly deform from their two straight-line
pattern configurations to their solved, deployed configura-
tions in the plane and hence are locally rigid deployable.
And thus if Eq. (9) is violated for some negative space in a
reconfigurable quad kirigami pattern, the pattern cannot be
locally rigid deployable as the four-bar linkage cannot rigidly
move to a branch point while remaining embedded in two
dimensions. |

We now prove the following result:

Theorem 1. (Global rigid deployability) A reconfigurable
kirigami pattern is globally rigid-deployable if and only if
Eq. (9) is satisfied for all negative spaces.
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FIG. 7. Reconfigurable, rigid-deployable kirigami patterns. (a) The deployment of a reconfigurable and rigid-deployable kirigami pattern
at different states [see also Video S2 [23] and Fig. 8(a)]. The rigid-deployability constraints lead to a flat energy landscape, which indicates that
the tiles do not deform throughout the process. Each black curve shows the trajectory of a tile center, with the black dot indicating its current
position. The color of each tile indicates the orientation change (6) with respect to the initial contracted state. (b) The deployment of two other
reconfigurable and rigid-deployable kirigami patterns (see Fig. 9 for more examples). (c) Transforming the square to a circle [see also Video

S3 [23] and Figs. 8(b) and 10 for more examples].

Proof. The above lemma provides local rigid deployabil-
ity if and only if the constraints in Eq. (9) are satisfied for
each negative space in the pattern. To analyze global rigid
deployability, we construct a loop condition F around a single
interior face in a generic (i.e., not necessarily reconfigurable)
quad kirigami which must be identity at all points along a rigid
deployment. As shown in Fig. 6, let 6; ; be design angles and
¢;,; be deployment angles in a quad kirigami four-bar linkage
negative space. Let f; be the function that transfers a deploy-
ment angle ¢; ; to the deployment angle ¢;1;; by composing
angle-sum transfer /; and four-bar kinematics transfer f; such
that

iv1,1 = fi(di1) = gilhi(¢i )], (10

bi2 = hi($i,1) =21 — diy — 0i,1 — bi2, an
biv1.1 = 8i(Pi2)
gt i sin s (12)
I+ B = 2iliacos i
If the loop condition
F(¢11) = fa(5(~L2(/1((91,0))) = d11 13)

is satisfied for every value of ¢;; € [0,27 — 6, — 6)]
for every interior quad, then the quad kirigami pattern is
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FIG. 8. Physical models of reconfigurable, rigid-deployable kirigami patterns. (a) A physical model for the pattern in Fig. 7(a) cut from
a clear acrylic sheet, with the tops/bottoms of pieces checkerboard colored red and black with permanent marker. (b) A physical model for
the square-to-circle example in Fig. 7(c) cut from a multiply sheet. For each example, the green edges shown in the leftmost panel form
the internal four-bar linkages and black edges complete the quad geometries. Quad interiors have been removed to reduce the weight of the
models. Once the pieces have been laser cut, hinges are formed by applying small strips of light blue tape across pairs of vertical faces incident
to the hinge vertex. The second left panel shows the perspective view of the assembled model. The right panel shows snapshots of the physical
model at different states (see also Videos S4 and S5 [23]). All tiles in the physical model are rigid and undergo no deformation throughout the
deployment, while the thickness of the tape joints has some minor effect at the two contracted states and so the model needs to be held still

with a small external force at the end states.

globally rigid-deployable. In a reconfigurable quad
kirigami pattern, we have 6;1+6,o =7 and [;; =l»
and hence ¢z =hi(¢i1) =7 — i1, biv1,1 = &i(Pi2) =
T — @iz, div1.1 = fi(Pi1) = ¢i1. So F is a composition of
identity functions f; and is itself identity. Thus, reconfigurable
quad kirigami patterns satisfying Eq. (9) are globally
rigid-deployable. |
Therefore, we can obtain reconfigurable kirigami patterns
which are (globally) rigid-deployable by simply augmenting
our constrained optimization framework with the additional
condition (9). In other words, the constrained optimization
now involves the original contractibility constraints [Egs. (1)
and (2)], the reconfigurability constraints [Eqs. (3) and (4)],
the shape matching constraints, the nonoverlap constraints,
as well as the rigid-deployability constraints [Eq. (9)]. As a
remark, by considering the tiles as rigid parts, our method can
also be used for designing reconfigurable mechanisms.
Figure 7(a) shows a reconfigurable, rigid-deployable
kirigami pattern obtained by our method. In contrast to the
patterns in Fig. 3, here each four-bar linkage in the rigid-
deployable pattern forms a pair of straight lines in both
contracted states, and hence there is no geometrical frustra-
tion throughout the deployment. The trajectory of the tiles
throughout the deployment and the zero energy associated
with deployment process confirms that the pattern morphs
smoothly from a contracted configuration to a deployed
configuration and subsequently to another contracted con-
figuration (see also Video S2 [23]). It is noteworthy that
the reconfigurability constraints and the rigid-deployability
constraints imply that all negative space rhombi are similar
(i.e., congruent up to rescaling). Therefore, the change in the
orientation of the tiles forms a checkerboard pattern with a
magnitude that is spatially uniform and changes continuously
from O to 7 /2 throughout the deployment and contraction.

Figure 7(b) shows the deployment of two other reconfig-
urable, rigid-deployable kirigami patterns. It can again be
observed that each pattern transforms smoothly from one con-
tracted configuration to another contracted configuration, and
the orientation change of the tiles forms a checkerboard pat-
tern. It is also possible to perform the constrained optimization
directly on the two contracted configurations without caring
about the intermediate states (see Appendix B). As a striking
example of this approach, we revisit the question of circling
the square [6] via a reconfigurable, rigid-deployable kirigami
pattern, with the result shown in Fig. 7(c) (see also Video S3
[23]). Note that a major difference between the pattern in
Fig. 7(c) and the one in Fig. 3(a) is that here the circle
shape is achieved at the reconfigured contracted state, while in
Fig. 3(a) the circle shape is achieved at the deployed state (see
Appendix C for more analyses of the reconfigurable kirigami
patterns and other variations).

To realize our computations in a physical setting, we fab-
ricated the model in Fig. 7(a) by laser cutting acrylic plastic
sheets and connecting the tiles with tape joints [see Fig. 8(a)],
from which we can see that the physical model behaves
just as predicted. We also fabricated another physical model
made of laser-cut wooden tiles connected with tapes for the
square-to-circle pattern in Fig. 7(c) [see Fig. 8(b)]. The results
demonstrate the flexibility of our proposed reconfigurable
kirigami design framework which yields geometric construc-
tions that are material independent (see also Appendix D).

Figure 9(a) shows an example of reconfigurable, rigid-
deployable kirigami patterns at different resolutions, with
their deployed shapes approximating the same circle. By
increasing the cut resolution, a higher accuracy of the approx-
imation of the prescribed shape can be achieved. Figure 9(b)
shows more examples of reconfigurable, rigid-deployable
kirigami patterns. In particular, note that we can obtain a
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FIG. 9. More examples of reconfigurable, rigid-deployable kirigami patterns with different prescribed target shape. (a) An example of
reconfigurable, rigid-deployable quad kirigami patterns at different resolutions. All four patterns can be deployed to approximate a prescribed
circle. (b) Even with the additional rigid-deployability constraint, our framework is still capable of producing a large variety of patterns that
exhibit highly nontrivial shape change throughout the deployment and contraction process and approximate different target deployed shape.

rigid-deployable example analogous to the structure in
Fig. 3(a). Figure 10 shows several reconfigurable, rigid-
deployable quad kirigami patterns obtained by solving the
optimization problem in the two contracted spaces directly.

IV. EXTENSIONS

While we have primarily focused on the quad kirigami pat-
terns so far, other bases such as the kagome (triangle-based)
kirigami patterns may also be used to construct reconfigurable
kirigami patterns. The key is to identify the reconfigurability
constraints analogous to Egs. (3) and (4) for achieving another
closed and compact state for the kagome pattern [Fig. 11(a)].
In particular, at each hexagonal negative space, there are two
sets of edge length constraints (see the red and blue dotted

lines) to be satisfied. Consequently, all six edges of each
hexagonal negative space must be equal in length in any
reconfigurable kagome kirigami pattern. Figure 11(b) shows
a reconfigurable kagome pattern obtained by our framework
and the deployment and contraction process.

Besides, so far we have limited ourselves to planar kirigami
patterns. We now show how to extend our approach to pro-
duce three-dimensional kirigami-based reconfigurable tubular
structures that morph from one contracted configuration into
another contracted configuration. To achieve these designs, we
introduce cuts into a given target tubular shape into patches
and isometrically unfold them onto the plane. We then ap-
ply our constrained optimization framework to produce a
reconfigurable kirigami pattern for each planar shape, with
the periodicity of the boundaries corresponding to the cuts
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FIG. 10. More examples of reconfigurable, rigid-deployable kirigami patterns obtained by directly solving the optimization problem in
the two contracted spaces. For each pattern, one of the contracted states is enforced to approximate a prescribed shape. (a) An example with
the two contracted states and several intermediate deployed states. (b) More examples obtained by this approach, each exhibiting a significant

shape change in between the two contracted states.

enforced. Finally, the patterns are mapped back to the three-
dimensional space to form a reconfigurable tubular structure.
In Fig. 12(a), we show a three-dimensional kirigami-based
reconfigurable tubular structure that morphs from one con-
tracted configuration into another contracted configuration.
Figure 12(b) shows another reconfigurable tubular structure
achieved by this approach. When compared to the one in

(a)

Fig. 12(a), this structure exhibits a smaller axial expansion but
a more nonuniform radial change throughout the deployment
and contraction process. More complex reconfigurable tubular
structures can then be constructed using multiple copies of the
patterns obtained by the optimization framework [Fig. 12(c)].

We remark that here we only consider a target 3D tubu-
lar shape with zero Gaussian curvature so that we can

’
\
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KR XK
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></
>:</

FIG. 11. Extending our framework for producing reconfigurable kagome kirigami patterns. (a) The reconfigurability constraints for the
kagome pattern. The red and blue dotted lines indicate the ordinary and dual edge correspondences respectively, and the red and blue arcs
indicate the ordinary and dual angle correspondences respectively. (b) The deployment and contraction of a reconfigurable kagome kirigami

pattern.
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FIG. 12. Extending our framework for producing reconfigurable tubular structures. (a) Our framework can be extended for creating
reconfigurable tubular structures which morph from one three-dimensional contracted configuration into another three-dimensional contracted
configuration. Given a target three-dimensional (3D) shape, we first cut and unfold it onto the plane. We then solve the 2D constrained
optimization problem with an additional periodic boundary constraint to produce a reconfigurable kirigami pattern for the planar shape. We
can then map the design back to 3D to form a reconfigurable tubular structure. (b) Another reconfigurable tubular structure with a more
nonuniform radial change throughout the deployment and contraction process. (c) A more complex reconfigurable tubular structure produced

by assembling four copies of the pattern in (b).

isometrically unfold it onto the plane after introducing a cut
to get a target 2D shape for the optimization. As the target
tubular shape is with zero Gaussian curvature, the deployed
configuration we obtain should also be with zero Gaussian
curvature in theory. However, note that mapping the 2D re-
sult back to the 3D space requires interpolating the 3D node
positions based on their 2D coordinates, which may involve
small numerical error that makes the tubular structure slightly
curved [as we can observe in the middle of Figs. 12(b) and
12(c)]. As for the two contracted configurations of the tubular
structure, note that they are not necessarily with zero Gaussian
curvature. Analogous to origami structures, these closed and
compact contracted configurations in three dimensions satisfy
the angle sum constraints at every vertex but the dihedral
angles between the tiles are not necessarily m. Besides, as
the rigid-deployability theory for the 3D case is less clear,
here we do not include the rigid-deployability constraints in
the 2D optimization problem. The resulting tubular structures
may require elastic folding throughout the deployment and
contraction process.

V. DISCUSSION AND CONCLUSION

While many prior works have studied the geometry, topol-
ogy, and physics of kirigami patterns, the ability of achieving

multiple closed and compact contracted configurations has
not been understood. In this paper, we have taken the first
step to explore the possibility of such compact reconfigurable
design and show that one can achieve reconfigurability in
addition to the shape constraints we introduced in our prior
framework [6]. We have further shown that it is possible to
enforce rigid-deployability in the inverse design framework
via an additional set of geometric constraints. All together, our
approach exploits the duality in kirigami patterns to create a
class of reconfigurable kirigami patterns and planar mecha-
nisms with multiple closed and compact configurations. Just
as flat-foldability and rigid-foldability of origami [26] opened
the way for understanding and extending origami designs,
perhaps their natural analogs in kirigami, viz. contractibility
and rigid-deployability, that we have uncovered here might
pave the way for a range of art-inspired mathematics, science,
and engineering.
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FIG. 13. An example of optimizing the boundary shape of the reconfigured contracted state. Note that only half of the boundary nodes
at the reconfigured contracted state (see the blue nodes at the top boundary) can be enforced to lie on the target shape (the red closed curve)
precisely. One reason is that the angle sum at the remaining half of the boundary nodes at the reconfigured contracted state (see the purple
nodes at the top boundary) is constrained by the rigid-deployability constraints. Another reason is that those purple nodes come from the
interior of the initial contracted state, which are constrained by the angle sum constraints and reconfigurable angle sum constraints therein.
Enforcing them to lie on the target curve will introduce additional conditions on the relevant angles, making the problem overconstrained.
Nevertheless, increasing the resolution of the kirigami pattern can help achieve a better approximation of the target shape even if only half of
the boundary nodes in the reconfigured contracted state are controlled.
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APPENDIX A: DEPLOYMENT ENERGETICS

To study the deployment energetics of the reconfigurable
kirigami patterns, we consider a linear spring model similar to
the model in [6]. Let x;(¢), X»(¢), . . ., X,(¢) be the coordinates
of the nodes in a reconfigurable kirigami pattern at time ¢ €
[0, 1], where {x;(0)}!_; and {x;(1)}\_, correspond to the two
contracted configurations. We introduce a linear spring along

every edge and every diagonal of the tiles and consider the
following energy:

E()

2
_ Z (||Xi(l)—Xj(l)|| _lij> A

I
i,j:[i,j] is an edge or a diagonal 2

where /;; is the rest length of the spring at [i, j]. To get
the deployment path, we start with a contracted configura-
tion (obtained by the constrained optimization framework)
and continuously pull two opposite nodes towards their

(b) logo(€rq)

FIG. 14. Rigid-deployability constraint violation. (a) A reconfigurable kirigami pattern obtained by our proposed design framework
without imposing the rigid-deployability constraints [Eq. (9)]. (b) A reconfigurable kirigami pattern obtained by our proposed design
framework with the rigid-deployability constraints included in the optimization process. In each example, the color of the angles in the
first contracted state represents the value of log,,[e;q(1, @2)], and the color of the angles in the second contacted state represents the value of
log,olewa(Bi, B2)], where a4, as, B1, B, are the angles described in Eq. (9).
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corresponding positions in the target deployed configuration
(also obtained by the constrained optimization framework).
To remove the global translations and rotations of the model,
we focus on symmetric patterns and pull two opposite nodes
along the axis of symmetry. At each time point, we solve
for the intermediate deployed configuration by minimizing
Eq. (A1) subject to the positional constraints of the two nodes.
After reaching the target deployed configuration, we repeat
the process by pulling two nodes towards their corresponding
positions in the second contracted configuration (obtained by
the constrained optimization framework).

As guaranteed by the constrained optimization framework,
the energy is zero at both contracted configurations and the
target deployed configuration for any reconfigurable kirigami
pattern. This results in a multistable energy landscape. If the
rigid-deployability constraints are further enforced, all tiles
will undergo no deformation throughout the deployment pro-
cess and hence E = 0 at all time ¢ theoretically.

APPENDIX B: CONSTRAINED OPTIMIZATION
IN THE TWO CONTRACTED SPACES

As mentioned in the main text, in case it is more desirable
to design a reconfigurable kirigami pattern that achieves a
target reconfigured contracted shape without caring about how
the deployed states look like, we can formulate a constrained
optimization in the two contracted spaces directly.

Denote the initial contracted state by S; and the reconfig-
ured contracted state by S,. Let {x;}_, and {y;}’_, be the nodes
in S; and S, respectively. Suppose we would like S, to approx-
imate a prescribed target shape (such as a circle). To solve for
a valid reconfigurable and rigid-deployable kirigami pattern
that satisfies the requirement, we consider the optimization
over all 2n nodes xi, ..., X,, Y1, ..., ¥ (i.., 4n coordinates
in total) with the following constraints:

(1) Corresponding edges in S; and S, should be equal in
length.

(2) Corresponding angles in S and S, should be equal.

(3) Rigid-deployability constraints for the angles in S
(e, a1+ =as+as =01+ B,=pB3+ Bs =7 as dis-
cussed in the main text).

(4) Target shape matching constraints for half of the
boundary nodes in S,.

(5) (Optional) Boundary shape matching constraints for
half of the boundary nodes in ;.

The constraints (i) and (ii) ensures the consistency (in
terms of the edge lengths and the angles) between the two
contracted states. Note that the two constraints are different
from the original edge length constraints (which are about
edge pairs in the same deployed state) and the original angle
sum constraints (as the angle sum is automatically 27 in
the contracted states here). The constraints (iii) guarantee the
rigid-deployability/contractibility by optimizing the angles in
one of the contracted states [the constraint (ii) will change
the angles in the other contracted state accordingly]. The
constraints (iv) and (v) control the boundary shape of the two
contracted states.

For (iv) and (v), note that the shape matching constraints
can only be enforced for the half of the boundary nodes
which always remain to be at the boundary throughout the

@) 0.02
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FIG. 15. Possibility of achieving other energy landscapes. (a) A
2x2 reconfigurable kirigami pattern that only satisfies half of the
rigid-deployability constraints. More specifically, we have 8, + 5, =
B3+ B4 =m in Eq. (9) while o) + o # . For this pattern, the
energy landscape contains only one energy bump. (b) For a 3x2
reconfigurable kirigami pattern, note that the angles «;, «, are related
to the geometrical frustration in opening the negative space in one
unit cell (highlighted by the blue dotted lines). After the deployment
and contraction process, one can see that these angles are also related
to the geometrical frustration in recontracting the negative space in
another unit cell (highlighted by the green dotted lines). This shows
that the constraints involving ¢;’s and the constraints involving §;’s in
some neighboring cells are related, and hence one cannot eliminate
one of the energy bumps by simply enforcing only half of Eq. (5).

deployment and contraction from S; to S, (see the blue nodes
in Fig. 13). One reason is that if the rigid-deployability con-
straints are enforced, the angle sum at the remaining half of
the boundary nodes (see the purple nodes) in the two con-
tracted states must be 7 at the first contracted state. After
those purple nodes move to the boundary at the reconfigured
contracted state, the angle sum at each of them should still
be m and hence the two boundary edges incident to each
of them always form a straight line. Therefore, those nodes
cannot fit an arbitrary given shape at the second contracted
state precisely. Moreover, even if the pattern is not enforced
to be rigid deployable, it is still impossible to control the
shape at some boundary nodes precisely. The reason is that
the reconfigurable angle sum constraint at those purple nodes
at the top boundary will propagate to the bottom boundary
via a sequence of angle sum constraints and reconfigurable
angle sum constraints at the interior. To fit some curved shape
such as a circle, there must be some angle condition that the
angles at those purple nodes should satisfy (e.g., the angle sum
at such a node must be less than 7 in order to approximate
the curvature of the circle), and such conditions at one purple
node will limit the angle sum and hence the shape at its op-
posite boundary. Nevertheless, by increasing the resolution of
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FIG. 16. A physical paper model of the reconfigurable and rigid-deployable kirigami pattern in Fig. 7(a). (a) We consider each tile as a
polyhedron with certain thickness and create a planar layout pattern with some extra small faces to give height to the folded pieces. (b) We
can then obtain the paper layout patterns by laser cutting. The paper layout patterns are folded and glued to form the tiles (top), which are
subsequently assembled using tape to form a deployable structure (bottom).

the kirigami pattern, one can approximate the target boundary
shape very well even by enforcing the target shape matching
constraints for only half of the boundary nodes.

APPENDIX C: ANALYSIS OF THE PATTERNS
1. Quantifying the rigid-deployability constraint violation

To quantify the nonrigid deployability of different kirigami
patterns, we define the rigid-deployability constraint violation
by the absolute difference between m and the sum of each
pair of angles described in the rigid-deployability constraints
[Eq. (9)]:

(CDH

where o, o, are two corresponding angles in Eq. (9).
Figure 14 shows two examples of reconfigurable kirigami
patterns with the same target deployed shape. The pattern
in Fig. 14(a) is obtained via the constrained optimization
without imposing the rigid-deployability constraints, while
the one in Fig. 14(b) is obtained with the rigid-deployability
constraints imposed. Note that e,q is significantly smaller for
the second example. This can also be observed from the
fact that most of the relevant four-bar linkages (the nega-
tive spaces) do not form straight lines in the two contracted
states in Fig. 14(a), while those in Fig. 14(b) form visually
straight lines. More specifically, we have mean(eyq) ~ 107!

e(ar, az) = |m —ay — ay|,

for the first example, while mean(e;q) ~ 10-° for the second
example.

We remark that sometimes the constraint violation for the
patterns obtained without enforcing the rigid-deployability
constraints can also be small. For example, it can be observed
that the contracted negative spaces in the first circle example
in Fig. 4(b) also form visually straight lines [with mean(e;q) ~
10~*]. However, in general, if the rigid-deployability con-
straints are not enforced in the optimization problem, it is
expected that the resulting patterns will be with a relatively
large ey and hence are not rigid deployable. The energy
landscape will then be with at least two notable bumps as
shown in Fig. 3(c). As discussed in the main text, the vio-
lation of the rigid-deployability constraints is related to the
changes in the edge lengths in a negative space/four-bar
linkage needed for passing from the contracted state to the
deployed states. Therefore, the energy bumps decrease con-
tinuously as the geometry of the kirigami pattern approaches
the rigid-deployable case.

2. More variations

Besides the multistable energy landscape of the reconfig-
urable kirigami patterns and the zero energy landscape of the
reconfigurable, rigid-deployable kirigami patterns, one may
be interested in achieving other energy landscapes. For a
simple 2x2 quad unit cell, note that the first bump in the
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energy landscape is related to the violation of the first half
of Eq. 9) (i.e., o] + @y = a3 + o4 = 1), which is about the
geometrical frustration encountered when opening the nega-
tive spaces from the first closed and compact configuration.
Similarly, the second energy bump is related to the violation
of the latter half of Eq. (5) (i.e., B1 + B> = B3 + Bs = 7).
Therefore, it is natural to ask whether one can achieve an
energy landscape without one of the two energy bumps by
enforcing only half of Eq. (5). Indeed, it is possible to obtain a
2 x2 reconfigurable quad kirigami pattern with such an energy
landscape. As shown in Fig. 15(a), if the pattern only satis-
fiesBi+pPo=B3+Bs=mbutnota; +o, =3 +og =7,
then the resulting energy landscape only contains one energy
bump. However, for patterns with more tiles, we note that the
constraints involving «;’s and the constraints involving S;’s
in some neighboring cells are actually related to each other.
As shown in Fig. 15(b), the two angles «;, o, are related to
the first contracted negative space in the 2 x2 unit cell formed

by the top four tiles (blue dotted lines). After the deployment
and contraction process, one can see that these angles are in
fact also related to the reconfigured contracted negative space
in the 2x2 unit cell formed by the bottom four tiles (green
dotted lines). Therefore, if we enforce the first half of Eq. (9)
in one unit cell, then it automatically enforces the second
half of Eq. (9) for some other unit cell. Hence, for larger
patterns, it is impossible to eliminate only one of the two en-
ergy bumps by simply enforcing half of the rigid-deployability
constraints.

APPENDIX D: PHYSICAL MODELS

The designed reconfigurable kirigami patterns can be phys-
ically realized. Besides the acrylic plastic models and wooden
models shown in the main text, we show in Fig. 16 an alter-
native method to produce physical models with folded paper
pieces.

[1] J. N. Grima, A. Alderson, and K. E. Evans, Negative Poisson’s
ratios from rotating rectangles, Comput. Methods Sci. Technol.
10, 137 (2004).

[2] H. Mitschke, V. Robins, K. Mecke, and G. E. Schroder-Turk,
Finite auxetic deformations of plane tessellations, Proc. R. Soc.
A 469, 20120465 (2013).

[3] S. Shan, S. H. Kang, Z. Zhao, L. Fang, and K. Bertoldi, Design
of planar isotropic negative Poisson’s ratio structures, Extreme
Mech. Lett. 4, 96 (2015).

[4] A. Rafsanjani and D. Pasini, Bistable auxetic mechanical meta-
materials inspired by ancient geometric motifs, Extreme Mech.
Lett. 9,291 (2016).

[5] B. G.-G. Chen, B. Liu, A. A. Evans, J. Paulose, I. Cohen,
V. Vitelli, and C. D. Santangelo, Topological Mechanics of
Origami and Kirigami, Phys. Rev. Lett. 116, 135501 (2016).

[6] G. P. T. Choi, L. H. Dudte, and L. Mahadevan, Programming
shape using kirigami tessellations, Nat. Mater. 18, 999 (2019).

[71 S. Chen, G. P. T. Choi, and L. Mahadevan, Deterministic and
stochastic control of kirigami topology, Proc. Natl. Acad. Sci.
USA 117, 4511 (2020).

[8] C. Jiang, F. Rist, H. Pottmann, and J. Wallner, Freeform quad-
based kirigami, ACM Trans. Graph. 39, 1 (2020).

[9] M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L.
McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin,
D. A. Muller et al., Graphene kirigami, Nature (London) 524,
204 (2015).

[10] T. C. Shyu, P. F. Damasceno, P. M. Dodd, A. Lamoureux, L.
Xu, M. Shlian, M. Shtein, S. C. Glotzer, and N. A. Kotov, A
kirigami approach to engineering elasticity in nanocomposites
through patterned defects, Nat. Mater. 14, 785 (2015).

[11] R. M. Neville, F. Scarpa, and A. Pirrera, Shape morphing
kirigami mechanical metamaterials, Sci. Rep. 6, 31067 (2016).

[12] P. Celli, C. McMahan, B. Ramirez, A. Bauhofer, C. Naify, D.
Hofmann, B. Audoly, and C. Daraio, Shape-morphing archi-
tected sheets with non-periodic cut patterns, Soft Matter 14,
9744 (2018).

[13] M. Konakovi¢-Lukovié, J. Panetta, K. Crane, and M. Pauly,
Rapid deployment of curved surfaces via programmable aux-
etics, ACM Trans. Graph. 37, 1 (2018).

[14] A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, and K.
Bertoldi, Kirigami skins make a simple soft actuator crawl,
Sci. Robot. 3, eaar7555 (2018).

[15] J. I. Lipton, R. MacCurdy, Z. Manchester, L. Chin, D.
Cellucci, and D. Rus, Handedness in shearing auxetics
creates rigid and compliant structures, Science 360, 632
(2018).

[16] Y. Yang and Z. You, Geometry of transformable metamateri-
als inspired by modular origami, J. Mech. Robot. 10, 021001
(2018).

[17] M. Stavric and A. Wiltsche, Geometrical elaboration of auxetic
structures, Nexus Netw. J. 21, 79 (2019).

[18] Z. You and S. Pellegrino, Foldable bar structures, Int. J. Solids
Struct. 34, 1825 (1997).

[19] D. Mao, Y. Luo, and Z. You, Planar closed loop double chain
linkages, Mech. Mach. Theory 44, 850 (2009).

[20] J. M. McCarthy and G. S. Soh, Geometric Design of Linkages,
Vol. 11 (Springer, New York, 2010).

[21] Z. You and Y. Chen, Motion Structures: Deployable Structural
Assemblies of Mechanisms (CRC Press, New York, 2011).

[22] T. G. Nelson, T. K. Zimmerman, S. P. Magleby, R. J. Lang,
and L. L. Howell, Developable mechanisms on developable
surfaces, Sci. Robot. 4, eaau5171 (2019).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.3.043030 for the videos of the de-
ployment of several numerical and physical models produced
by our framework.

[24] G. P.-T. Choi and L. M. Lui, A linear formulation for disk
conformal parameterization of simply-connected open surfaces,
Adyv. Comput. Math. 44, 87 (2018).

[25] T. W. Meng, G. P.-T. Choi, and L. M. Lui, TEMPO: Feature-
endowed Teichmiiller extremal mappings of point clouds,
SIAM J. Imaging Sci. 9, 1922 (2016).

[26] T. Kawasaki, On the relation between mountain-creases and
valley-creases of a flat origami, in Proceedings of the Ist
International Meeting on Origami Science and Technology,
edited by H. Huzita (Universita di Padova, Ferrara, Italy, 1989),
pp. 229-237.

043030-16


https://doi.org/10.12921/cmst.2004.10.02.137-145
https://doi.org/10.1098/rspa.2012.0465
https://doi.org/10.1016/j.eml.2015.05.002
https://doi.org/10.1016/j.eml.2016.09.001
https://doi.org/10.1103/PhysRevLett.116.135501
https://doi.org/10.1038/s41563-019-0452-y
https://doi.org/10.1073/pnas.1909164117
https://doi.org/10.1145/3414685.3417844
https://doi.org/10.1038/nature14588
https://doi.org/10.1038/nmat4327
https://doi.org/10.1038/srep31067
https://doi.org/10.1039/C8SM02082E
https://doi.org/10.1145/3197517.3201373
https://doi.org/10.1126/scirobotics.aar7555
https://doi.org/10.1126/science.aar4586
https://doi.org/10.1115/1.4038969
https://doi.org/10.1007/s00004-019-00428-5
https://doi.org/10.1016/S0020-7683(96)00125-4
https://doi.org/10.1016/j.mechmachtheory.2008.04.005
https://doi.org/10.1126/scirobotics.aau5171
http://link.aps.org/supplemental/10.1103/PhysRevResearch.3.043030
https://doi.org/10.1007/s10444-017-9536-x
https://doi.org/10.1137/15M1049117

