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Enhancing stimulated Raman excitation and two-photon absorption using entangled states of light
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We find that stimulated Raman excitation of an atom by a two-photon pulse can be enhanced by orders
of magnitude if the photons are simultaneously frequency correlated and spatially anticorrelated. That is, a
correlated photon pair must have an inherent time delay between its constituent photons. This counterintuitive
feature is a manifestation of the uncertainty principle, which yields that frequency-correlated photons cannot
be time (spatially) correlated. This is opposite to two-photon absorption by a three-level atom, for which the
enhancement occurs if photons in the pulse are frequency anticorrelated and spatially correlated, that is, photons
in the pair simultaneously interact with the atom. Our findings can be useful for imaging and spectroscopy of
biological samples which demand low illumination intensity.
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Interaction of nonclassical radiation fields with atoms is a
subject of long-standing interest. Entangled two-photon states
of light have potential applications in quantum information
processing [1], communications, and optical switching [2].
The resolution of images can be enhanced using two-photon
absorption in conjunction with quantum imaging techniques
[3,4]. Potential applications would benefit from new meth-
ods of enhancing the rate of two-photon processes. For
example, two-photon absorption laser-induced fluorescence
diagnostics is a powerful technique which has been used to
provide information on densities of plasma and flame species
[5]. It has been applied to atmospheric-pressure plasma jets
to measure atomic oxygen and nitrogen densities [6–8],
and to obtain temporally and spatially resolved hydrogen
and oxygen images in nonequilibrium, nanosecond-duration
pulsed-discharge plasmas [9].

The use of nonclassical states of light can open the way
to realize a low-intensity microscopy at intensity levels not
achievable with classical sources and to achieve the same
fluorescence signal at much lower excitation light intensity
[10]. This reduction of the probing light intensity is a critically
important advantage for sensing [11] and biological appli-
cations since high light intensity could result in damage of
sensitive chemical and biological samples.

For atomic systems, it has been shown that efficiencies
of the two-photon absorption [12–18] and upconversion of
light [19,20] can be enhanced by using quantum correlated
photon pairs. This effect has been observed experimentally
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[14,21,22]. Entangled photons can also induce transitions in
two-atom systems [23,24] or induce two-photon transparency
[25]. Recently, it has been demonstrated that arbitrary steady-
state population inversion can occur in atoms driven by a
squeezed vacuum reservoir [26]. Squeezed light can also en-
hance two-photon absorption [27] (see also Appendix).

The most widely used method for the generation of pairs of
entangled photons is spontaneous parametric frequency down-
conversion, in which an incident pump photon effectively
splits up in a nonlinear medium into two lower-frequency (sig-
nal and idler) photons. Parametrically down-converted light
exhibits correlations between the down-converted photons, in
that detection of a photon at one point in space-time may enor-
mously enhance the probability of detecting its counterpart at
another space-time location. At low photon fluxes, these cor-
relations correspond to production of entangled photon pairs
[28]. Two-photon excitation induced by entangled photons
can exhibit nonclassical features, in particular, a linear depen-
dence on the intensity [12,13,29,30], which was observed with
two-photon absorption [14,31].

Here, we consider a three-level atom with transition fre-
quencies ω1 and ω2 between states |c〉, |b〉, and |a〉 (see Fig. 1)
placed in a pulse of entangled light. Initially, the atom is in the
ground state |c〉. We assume that the atom is being excited by
a two-photon pulse described by the field state vector

|i〉 =
∑
k1,k2

φ(k1, k2)|1k1 1k2〉, (1)

where φ(k1, k2) is a probability amplitude to find two photons
in the pulse with wave vectors k1 and k2. For the ladder �

scheme of Fig. 1(a), the atom can become excited to the upper
state |a〉 by a two-photon absorption. While for the Raman
� scheme of Fig. 1(b), the atom absorbs a photon from the
pulse and then emits a photon of different frequency (Raman
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(a) (b)

FIG. 1. A three-level atom with transition frequencies ω1 and ω2

between states |c〉, |b〉, and |a〉. The state |c〉 is coupled to |b〉, and |b〉
is coupled to |a〉. In the ladder scheme (a) the ground-state atom can
become excited to the state |a〉 by absorbing two photons, while in
the � scheme (b) a photon is absorbed and reemitted with different
frequency (Raman scattering).

scattering). In the Raman scattering the photon emission can
be stimulated by the photon remaining in the pulse. We as-
sume that both photons in the pulse have a relatively wide
bandwidth, but the sum (or difference) of their frequencies
is still well defined, such that the two-photon process is on
resonance with the states |c〉 and |a〉. Here, we will consider a
two-photon process via a virtual state without real excitation
of the intermediate state |b〉, that is, photons in the pulse are
detuned from the c-b transition frequency.

The probability amplitude that the atom goes from the
ground state |c〉 to the state |a〉 is given by

A = − 1

h̄2

∑
f

〈 f |〈a|
∫ ∞

−∞
V̂ (t ′)dt ′

∫ t ′

−∞
V̂ (t ′′)dt ′′|c〉|i〉, (2)

where |i〉 and | f 〉 stand for the initial and final states of the
field, respectively. In the rotating wave approximation the
interaction Hamiltonian between the atom at r = 0 and the
field for the ladder scheme reads

V̂ (t ) = −℘bc

∑
k

gkâkei(ω1−νk )t |b〉〈c|

−℘ab

∑
q

gqâqei(ω2−νq )t |a〉〈b| + H.c., (3)

where νk = ck is the photon angular frequency, âk and â†
k

are annihilation and creation operators for the photon with
wave vector k,℘bc and℘ab are dipole moment matrix elements
between the states |b〉 and |c〉, and |a〉 and |b〉, respectively,

gk is the atom-photon coupling constant gk =
√

h̄νk/2L3
phε0,

and Lph is the photon length. In Eq. (2) the summation is over
all possible final states of the field f . For the � scheme, the
second term in Eq. (3) should be replaced with

−℘ab

∑
q

gqâ†
qe−i(ω2−νq )t |a〉〈b|.

Substituting Eq. (3) into Eq. (2) and integrating over time
yields

A± = 2π i℘bc℘ab

h̄2

∑
k,q

gkgq

ω1 − νk
δ[ω1 − νk ± (ω2 − νq)]M±,

(4)

where the upper sign and the lower sign in Eq. (4) correspond
to the ladder � and the Raman � scheme of Fig. 1, respec-
tively. The δ function in Eq. (4) implies energy conservation
in the two-photon process, and

M+ =
∑

f

〈 f |âqâk|i〉, M− =
∑

f

〈 f |â†
qâk|i〉. (5)

For the ladder scheme, the final state of the field is the state
with zero photons, and using Eq. (1), we obtain

M+ = φ(q, k) + φ(k, q). (6)

For the case of the � scheme we will consider the stimulated
Raman scattering process. Then, for M− in Eq. (5), the final
state of the field is the state with two photons in the mode q,
yielding M− = √

2M+.
We consider a one-dimensional geometry in which the

two-photon pulse propagates along the x axis. This is a good
approximation for collinear propagation of photons. Replac-
ing the sum in Eq. (4) with an integral, we obtain

A± = ic℘bc℘ab

4π h̄ε0Lph

×
∫ ∞

−∞
dk

∫ ∞

−∞
dq

√|kq|
(ω1 − νk )

δ[ω1 − νk ±(ω2−νq )]M±.

(7)

We assume that φ(q, k) peaks at k close to ω1/c and q close to
ω2/c. Due to the factor 1/(ω1 − νk ), the first term in M± gives
the main contribution to the integral in Eq. (7). Integration
over q yields

A± = cLphG±
∫ ∞

−∞
dk

√|kq±|
(ω1 − νk )

θ [ω2 ± (ω1 − νk )]φ(q±, k),

(8)
where G+ = i℘bc℘ab/4πch̄ε0L2

ph and G− = √
2G+ are dimen-

sionless constants and cq± = ω2 ± (ω1 − νk ).
Next we discuss an upper limit on the atom’s excitation

probability by a separable two-photon state

φ(k1, k2) = f1(k1) f2(k2), (9)

where f1(k) and f2(k) are functions that peak at k = kα and
k = kβ , respectively. We assume that kα and kβ obey the
condition of two-photon resonance

kβ ± kα = ω1 ± ω2

c
(10)

and ckβ (ckα) is close to ω1 (ω2), namely, |ckβ,α − ω1,2| �
ω1,2. In terms of kα and kβ one can write q± as

q± = kα ± kβ ∓ k,

that is, if k = kβ , then q± = kα . The state (1) is normalized
such that ∫ ∞

−∞

∫ ∞

−∞
dk1dk2|φ(k1, k2)|2 = (2π )2

L2
ph

. (11)

Plugging Eq. (9) into Eq. (8) yields

A± =cLphG±
∫ ∞

−∞
dk

√|kq±|
(ω1 − νk )

θ [ω2±(ω1−νk )] f1(q±) f2(k).

(12)
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The function f1(q±) f2(k) peaks at k = kβ . Taking the factor
in front of this function at k = kβ , the integral in Eq. (12) can
be approximated as

A± ≈ cLphG±

√
kαkβ

ω1 − ckβ

∫ ∞

−∞
dk f1(kα ± kβ ∓ k) f2(k). (13)

Using the Cauchy-Schwarz inequality, one can write

∣∣∣∣
∫ ∞

−∞
dk f1(kα ± kβ ∓ k) f2(k)

∣∣∣∣
�

√∫ ∞

−∞
dk| f1(kα ± kβ ∓ k)|2

√∫ ∞

−∞
dk| f2(k)|2

=
√∫ ∞

−∞
dk| f1(k)|2

√∫ ∞

−∞
dk| f2(k)|2 = 2π

Lph
,

where we used the normalization condition (11). As a result,
we find the following upper bound on the excitation proba-
bility amplitude produced by the separable two-photon state:

|A±| � 2πcG±

√
kαkβ

ω1 − ckβ

. (14)

This upper bound can be achieved for a certain class of sepa-
rable states.

Next we assume that the two-photon pulse is entangled and
has the form

φ = N

(k1 + k2 − kα − kβ )2 + γ 2+

ei�1k1+i�2k2

(k1 − k2 − kα + kβ )2 + γ 2−
,

(15)

where N is a normalization constant, kα and kβ obey the
condition of two-photon resonance (10), ckβ (ckα) is close
to ω1 (ω2), γ± � kα,β , and �1,2 are parameters determining
correlation between photons.

The normalization constant N is obtained from Eq. (11),
which yields N = 4

√
2(γ+γ−)3/2/Lph. Plugging Eq. (15) into

Eq. (8) gives

A± = cLphNG±
γ 2±

ei�1(kα±kβ )

×
∫ ∞

−∞
dk

√|kq±|
(ω1 − νk )

θ [ω2 ± (ω1 − νk )]ei(�2∓�1 )k

4(k − kβ )2 + γ 2∓
.

(16)

For kβ 
 γ∓, the function 1/[4(k − kβ )2 + γ 2
∓] sharply

peaks at k = kβ . Approximating the slowly varying factors by
their values at k = kβ , the integral in Eq. (16) can be estimated
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FIG. 2. Probability to find two photons with wave vectors k1

and k2 in the state (15) with kβ = 100γ−, kα = 50γ−, and either
γ+ = 0.1γ− (a), γ+ = γ−(b), or γ+ = 10γ− (c). In the plots the
probabilities are normalized by their maximum values.

as

A± ≈ cLphNG±ei�1(kα±kβ )
√

kαkβ

γ 2±(ω1 − ckβ )

∫ ∞

−∞

ei(�2∓�1 )kdk

4(k − kβ )2 + γ 2∓

= 2
√

2πcG±ei�1kα+i�2kβ

√
kαkβ

ω1 − ckβ

√
γ∓
γ±

e−|�2∓�1|γ∓/2.

(17)

Equation (17) shows that in the limit γ− 
 γ+ and |�2 −
�1|γ− � 1, the atom’s excitation probability for the ladder
scheme is by a factor of 2γ−/γ+ 
 1 greater than that for
a separable two-photon state [cf. Eq. (14)]. In contrast, for
the Raman � scheme [lower sign in Eq. (17)], the excitation
probability is enhanced if γ+ 
 γ− and |�2 + �1|γ+ � 1.

The limit γ∓ 
 γ± corresponds to a large frequency cor-
relation or anticorrelation of the state (15). To demonstrate
that, in Fig. 2 we plot the probability to find two photons
with wave vectors k1 and k2, P(k1, k2) = |φ(k1, k2)|2. The
figure shows that for γ− 
 γ+ the state (15) is frequency
anticorrelated [Fig. 2(a)] and it is frequency correlated for
γ+ 
 γ− [Fig. 2(c)]. For the frequency-correlated (anticor-
related) state the probability P(k1, k2) peaks along the line
k1 = k2 + kα − kβ (k1 = −k2 + kα + kβ ). If γ+ ∼ γ−, the cor-
relation disappears. Thus, in order to obtain enhancement of
the two-photon excitation in the ladder scheme, the entangled
state must be frequency anticorrelated. In contrast, for the Ra-
man scheme, the enhancement occurs if the state is frequency
correlated.

The frequency correlation property is independent of �1,2,
which enters the phase of the state (15). However, according to
Eq. (17), to achieve enhancement, one should also satisfy the
condition |�2 ∓ �1|γ∓ � 1; otherwise, the excitation prob-
ability is exponentially suppressed. To gain insight into the
latter requirement, we explore the spatial correlation of the
entangled state (15). Taking the Fourier transform of Eq. (15),
we obtain the following coordinate representation:

φ ∝ eikαx1+ikβ x2−γ+|x1+x2+�1+�2|−γ−|x1−x2+�1−�2|. (18)

Equation (18) yields that the probability to find pho-
ton 2 at a coordinate x2 peaks at x2 = x1 + �1 − �2 for
γ+ < γ−. Thus, if �2 = �1 and γ− 
 γ+, the state is
spatially correlated, and photons arrive simultaneously at
the atom’s location. For γ+ > γ− the probability peaks at
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FIG. 3. The left (right) column shows the probability to find two
photons in the state (15) with kβ = 100γ−, kα = 50γ−, and �1,2 = 0
as a function of the photon wave vectors k1 and k2 (coordinates x1

and x2). For the upper and lower rows, γ+ = 0.1γ− and γ+ = 10γ−,
respectively. In the plots the probabilities are normalized by their
maximum values.

x2 = −x1 − �1 − �2. Hence, if �2 = −�1 and γ+ 
 γ−,
the state is spatially anticorrelated, and two photons always
appear symmetrically about the mean time of arrival of the
two photons. Since the atom is located at x = 0, the state is
spatially anticorrelated relative to the position of the atom.
Please note that we are working in the interaction representa-
tion in which the state vector of the free field does not evolve
with time and the spatial correlation properties refer to this
time-independent state.

In Fig. 3 we plot |φ(k1, k2)|2 and |φ(x1, x2)|2 for the en-
tangled two-photon state (15) for �1,2 = 0 and either γ+ =
0.1γ− (upper row) or γ+ = 10γ− (lower row). The figure
demonstrates that if the state is frequency anticorrelated (up-
per row), it is spatially correlated, and vice versa.

A frequency-anticorrelated state can be produced in a cas-
cade decay of an atomic three-level system with transition
frequencies ckα and ckβ [32]. For such a state,

φ(k1, k2) = 2
√

γαγβe−ix0(k1+k2 )

Lph(k1 + k2 − kα − kβ + iγα )(k2 − kβ + iγβ )
,

(19)
where γα and γβ are the half-widths of the upper and lower
transition in the decaying atom, respectively, and x0 is the
location of the source. In Fig. 4 we plot the probability to find
two photons with wave vectors k1 and k2 for the state (19).
The figure shows that for γβ 
 γα the state (19) is frequency
anticorrelated, while for γβ � γα the correlation disappears.
For γβ 
 γα the excitation probability of the ladder system of
Fig. 1(a) by the pulse (19) is enhanced by a factor of γβ/γα as
compared with that for separable states.

The enhancement occurs because for γβ 
 γα the state
(19) is also spatially correlated, and pairs of the entangled
photons are emitted at very nearly the same time. This
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FIG. 4. Probability to find two photons with wave vectors k1 and
k2 in the state (19) with kβ = 100γβ , kα = 50γβ , and either γα =
0.1γβ (a), γα = γβ (b), or γα = 10γβ (c). In the plots the probabilities
are normalized by their maximum values.

allows both photons to simultaneously interact with a given
atom, which enhances the rate of two-photon absorption
[12,21,30,33]. The atom’s excitation is accomplished in a
single step: One photon of the pair promotes the atom to the
virtual intermediate state, while its counterpart immediately
(in a time less than the virtual-state lifetime) completes the
two-photon transition [13].

Our results can be straightforwardly generalized to the case
of a many-photon entangled pulse described by the field state
vector

|i〉 =
∑
k1,k2

φ(k1, k2)|nk1 mk2〉, (20)

where φ(k1, k2) is a probability amplitude to find the field in
the state with nk1 photons in the mode k1 and mk2 photons in
the mode k2. We find that in this case the excitation probability
amplitude is described by Eqs. (14) and (17) multiplied by√nkα

mkβ
for the ladder scheme and

√
(nkα

+ 1)mkβ
/2 for the

Raman � scheme. That is, the conclusion about enhance-
ment of the excitation probability by a factor of 2γ∓/γ±
remains true for the more general field state (20). Thus use of
frequency-correlated (anticorrelated) entangled states of light
is advantageous not only for small pulse intensity, but also
for many-photon pulses. This makes it more appealing for
practical applications.

In summary, we consider stimulated Raman excitation and
two-photon absorption by a three-level system interacting
with a two-photon pulse. We obtain analytically an upper limit
on the probability of excitation produced by separable two-
photon states and an expression for the excitation probability
by an entangled pulse.

We find that stimulated Raman process can be enhanced
by orders of magnitude if photons in the pulse are simultane-
ously frequency correlated and spatially anticorrelated. That
is, a correlated photon pair must have an inherent time delay
between its constituent photons; yet the stimulated Raman
process is enhanced. This counterintuitive feature is a con-
sequence of the quantum-mechanical uncertainty principle,
which in the operator form reads �A�B � 1

2 |〈[Â, B̂]〉|, where
�A and �B are standard deviations of Â and B̂. Taking Â =
x̂1 − x̂2 and B̂ = k̂1 − k̂2, where k̂ = i∂/∂x is the wave-vector
operator, we obtain [Â, B̂] = −2i, and the uncertainty prin-
ciple yields �(x1 − x2) � 1/�(k1 − k2). That is, if photons
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are frequency correlated [�(k1 − k2) is small], they cannot be
spatially correlated.

This is opposite to two-photon absorption, for which the
enhancement occurs if photons in the pulse are frequency
anticorrelated and spatially correlated, that is, photons in
the pair simultaneously interact with the atom. Since opera-
tors k̂1 + k̂2 and x̂1 − x̂2 commute, the uncertainty principle
allows photons to be simultaneously frequency anticorre-
lated and time (spatially) correlated. We show that it is
important to have frequency and spatial correlation (or anti-
correlation) simultaneously in order to achieve enhancement
of the two-photon processes for the ladder and the Raman
schemes.

In the present analysis we consider two-photon pulses
and study the effect of frequency and space correlation. If
we allow pulses to have an arbitrary number of photons,
the problem becomes richer. For example, if the average
number of photons in the pulse is much smaller than 1,
then entanglement can enhance two-photon absorption even
if photons in the pulse are not frequency correlated, but
photon numbers are correlated (see Appendix for details).
However, use of frequency-correlated (anticorrelated) entan-
gled states of light is also advantageous for many-photon
pulses.

Our findings can be useful for imaging and spectroscopy of
biological samples which demand low illumination intensity
[10,11], and the possibility of measurement of ground-state
hyperfine transitions [34–36]. Our result [see Eq. (17)] also
shows that frequency entanglement can be used for sup-
pression of unwanted two-photon processes. For example, if
photons in the pulse are frequency correlated (γ− � γ+), then
the two-photon excitation probability is suppressed by a factor
of γ−/γ+ � 1, while the Raman process is not. Similarly, if
photons are frequency anticorrelated, then stimulated Raman
excitation is suppressed. Thus entanglement can be used to
control the rate of atomic excitation and select desired excita-
tion pathways. One should mention that Raman or two-photon
absorption pathways can be also selectively eliminated by
using peculiar entangled states generated by sending a two-
photon pulse through an interferometer [37–39]. Schemes in
which only one photon from the pair is used to excite the
sample, while the other photon serves as a reference, have
also been investigated [38,40]. In addition, it has been shown
experimentally that efficiency of coherent Raman processes
depends on the classical correlation between the driving fields
[41,42].

Owing to the recent developments in nonlinear crystal
optics, a high degree of frequency correlation or anticor-
relation can be achieved by use of special phase-matching
conditions in a spontaneous parametric frequency down-
conversion process. For example, the photons generated with
a continuous-wave pump are frequency anticorrelated. On the
other hand, frequency-correlated photons can be obtained in
a special nonlinear crystal in which the group velocity of the
pump beam happens to match the average group velocity of
the downconverted photons [43,44]. In fact, generation of the
correlated photons has been demonstrated [45–48], where the
frequency correlation and anticorrelation can be controlled by
artificially designed material with quasi-phase-matching, or
by other means [49–51].
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APPENDIX: ATOM EXCITATION BY ENTANGLED LIGHT
WITH NO FREQUENCY CORRELATION

Here, we show that photon entanglement can enhance two-
photon processes even if there is no frequency correlation
between photons. We consider the ladder scheme of Fig. 1(a)
and the Raman scheme of Fig. 1(b) and assume that the field
is a superposition of two modes described by mode functions
�1(t, r) and �2(t, r) which have carrier frequencies close to
ω1 and ω2, respectively. The mode functions �1 and �2 are
properly normalized.

In the rotating wave approximation the interaction Hamil-
tonian between the three-level atom located at r = 0 and the
two-mode field for the ladder scheme reads

V̂ (t ) = −℘bcg1�
∗
1(t, 0)eiω1t â1|b〉〈c|

−℘abg2�
∗
2(t, 0)eiω2t â2|a〉〈b| + H.c., (A1)

where â1,2 and â†
1,2 are annihilation and creation operators for

the photon in modes 1 and 2, ℘bc and ℘ab are dipole moment
matrix elements between the states |b〉 and |c〉, and |a〉 and |b〉,
respectively, and g1 and g2 are the coupling constants between
the atom and modes 1 and 2. For the � scheme, the second
term in Eq. (A1) should be replaced with

−℘abg2�2(t, 0)e−iω2t â†
2|a〉〈b|.

Substituting Eq. (A1) into Eq. (2) yields

A+ = − 1

h̄2℘ab℘bcg1g2M+

×
∫ ∞

−∞
�∗

2(t ′, 0)eiω2t ′
dt ′

∫ t ′

−∞
�∗

1(t ′′, 0)eiω1t ′′
dt ′′ (A2)

for the ladder scheme and

A− = − 1

h̄2℘ab℘bcg1g2M−

×
∫ ∞

−∞
�2(t ′, 0)e−iω2t ′

dt ′
∫ t ′

−∞
�∗

1(t ′′, 0)eiω1t ′′
dt ′′

(A3)

for the Raman scheme, where

M+ =
∑

f

〈 f |â2â1|i〉, M− =
∑

f

〈 f |â†
2â1|i〉. (A4)
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We assume that for the Raman scheme the Stokes photon is
emitted in mode 2.

If we are interested in the probability amplitude that the
atom goes from the ground state |c〉 to the state |a〉 without
specifying the final state of the field, then the sum in Eq. (A4)
should be taken over a complete set of final states of the field
| f 〉. As a result, we obtain

|M+|2 = 〈i|â†
2â2â†

1â1|i〉, |M−|2 = 〈i|â2â†
2â†

1â1|i〉. (A5)

Equations (A2) and (A3) show that the transition probabil-
ity is proportional to P± ∝ |M±|2 and dependence on the pulse
shapes and their overlap is factored out.

If the initial state of the field is separable, that is, |i〉 can
be written as a product of the field state in modes 1 and 2,
|i〉 = |i1〉|i2〉, then Eq. (A5) yields

|M+|2 = n̄1n̄2, |M−|2 = n̄1(n̄2 + 1),

where n̄1 and n̄2 are the average numbers of photons in modes
1 and 2, respectively. That is, for a separable state, the excita-
tion probability goes as

P+ ∝ n̄1n̄2, P− ∝ n̄1(n̄2 + 1). (A6)

If the initial state of the field is entangled, for example, it
is a two-mode squeezed state

|i〉 = eα∗â†
1 â†

2+αâ1â2 |0102〉,
where α is a parameter, then

|M+|2 = n̄(1 + 2n̄), |M−|2 = 2n̄(1 + n̄). (A7)

That is, the excitation probability goes as the average photon
number in the mode, P± ∝ n̄, for n̄ � 1, and as n̄2 for n̄ 
 1.

The two-mode squeezed state can be generated in a non-
linear crystal by a parametric down-conversion process in an
optical cavity [52] or utilizing a four-wave mixing process in
an atomic vapor [27]. For this state, the photon numbers in
modes are correlated. Namely, the photon numbers in each
mode n1 and n2 fluctuate obeying thermal distribution, but
the difference n1 − n2 does not fluctuate. That is, if there are
n photons in mode 1, then with unit probability there are n
photons in mode 2.

Equation (A7) shows that entangled light (with photon
number correlation) can yield substantially higher probability
of the two-photon absorption for low illumination intensity
compared with a separable state [see Eq. (A6)]. In the present
example there is no frequency correlation between photons
in the two modes. Frequency-correlated photons can yield an
additional enhancement, as discussed in the main text.

One should mention that the Minkowski vacuum is a
squeezed state if the field is described using Rindler modes
[53]. In 1 + 1 dimensions, the Rindler mode functions read

φ1ν =
√

a

νc
(∓z − ct )i νc

a θ (∓z − ct ), (A8)

φ2ν =
√

a

νc
(ct ± z)−i νc

a θ (ct ± z). (A9)

Here, ν is the photon frequency in the Rindler space, and a
is a parameter which has the dimension of the acceleration.
For ν > 0 the modes (A8) and (A9) have a positive norm. The
upper and lower signs in Eqs. (A8) and (A9) correspond to the

Atom 2 Atom 1

Minkowski space

FIG. 5. Ground-state atoms 1 and 2 are uniformly accelerated in
the right and left Rindler wedges, respectively, and become excited
simultaneously.

left- and right-propagating photons, respectively. The mode
functions (A8) and (A9) are nonzero in half of the t-z plane
and form a complete basis set.

Introducing operators of the Rindler photons b̂ν , one can
obtain for the Minkowski vacuum |0M〉 [53]

〈0M |b̂†
1ν b̂1ν |0M〉 = 〈0M |b̂†

2ν b̂2ν |0M〉 = 1

e2πcν/a − 1
. (A10)

That is, the Minkowski vacuum is filled with Rindler photons;
however, their number for realistic parameters is exponen-
tially small. In the Minkowski vacuum the number of Rindler
photons in the modes φ1ν and φ2ν is correlated. One can
obtain the following representation of the Minkowski vacuum
in terms of Rindler states [53]:

|0M〉 =
∏
ν>0

(1 − e−2πcν/a)eexp(− πcν
a )(b̂†

R1ν b̂†
R2ν+b̂†

L1ν b̂†
L2ν )|0R〉

=
∏
ν>0

(1 − e−2πcν/a)

∞∑
nR1ν=nR2ν=0
nL1ν=nL2ν=0

e−π (nR1ν+nL1ν )cν/a|nR1ν, nR2ν〉

× |nL1ν, nL2ν〉, (A11)

where |nR1ν, nR2ν〉 (|nL1ν, nL2ν〉) are states with nR1ν and nR2ν

(nL1ν and nL2ν) Rindler photons in the right-propagating (left-
propagating) modes φ1ν and φ2ν . That is, if there are n Rindler
photons in the right-propagating (left-propagating) mode φ1ν ,
then with unit probability there are n Rindler photons in
the right-propagating (left-propagating) mode φ2ν , and vice
versa.

From the perspective of an atom uniformly accelerated
with acceleration a, the frequencies of Rindler photons are
positive [54]. Such a ground-state atom can absorb Rindler
photons and become excited, which is known as the Fulling-
Davies-Unruh effect. If two ground-state atoms are uniformly
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accelerated in opposite directions (see Fig. 5), they can be-
come excited by absorbing Rindler photons from the modes
φ1ν and φ2ν , respectively.

Due to vacuum correlations, if atom 2 becomes excited
by absorbing the right-propagating Rindler photon φ2ω of
frequency ω, then with unit probability there is a nonzero
number of the right-propagating Rindler photons in the mode
φ1ω. They can excite atom 1. That is, atom 1 becomes ex-

cited with a much higher probability provided that atom 2
detected a photon. Because of the photon number correlation,
the joint excitation probability of two atoms is proportional
to the average number of Rindler photons, rather than the
average number squared. This is analogous to the two-photon
absorption of a stationary atom illuminated by squeezed light,
for which, in the limit n̄ � 1, the excitation probability goes
as P ∝ n̄.
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