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We compare three first-principles methods of calculating the Curie temperature in two-dimensional (2D)
ferromagnetic materials (FM), modeled using the Heisenberg model, and propose a simple formula for estimating
the Curie temperature with high accuracy that works for all common 2D lattice types. First, we study the effect
of exchange anisotropy on the Curie temperature calculated using the Monte Carlo (MC), the Green’s function,
and the renormalized spin-wave (RNSW) methods. We find that the Green’s function method overestimates
the Curie temperature in high-anisotropy regimes compared to the MC method, whereas the RNSW method
underestimates the Curie temperature compared to the MC and the Green’s function methods. Next, we
propose a closed-form formula for calculating the Curie temperature of 2D FMs, which provides an estimate
of the Curie temperature that is greatly improved over the mean-field expression for magnetic material screening.
We apply the closed-form formula to predict the Curie temperature 2D magnets screened from the C2DB
database and discover several high Curie temperature FMs, with Fe2F2 and MoI2 emerging as the most promising
2D ferromagnets. Finally, by comparing to experimental results for CrI3, CrCl3, and CrBr3, we conclude that for
small effective anisotropies, the Green’s-function-based equations are preferable, while for larger anisotropies,
MC-based results are more predictive.

DOI: 10.1103/PhysRevResearch.3.043024

I. INTRODUCTION

Thanks to the recent discovery of the two-dimensional
(2D) magnets CrI3 [1], CrBr3 [2], and CrGeTe3 [3], research
in the field of 2D magnets has garnered unprecedented at-
tention in the past few years. Their perceived application in
spintronics [4,5], valleytronics [6], and skyrmion-based [7]
magnetic memories [8] has sparked great interest. Moreover,
the experimental demonstration of the electric field control
of the magnetic order in CrI3 [1] provides a path towards
the technological realization of electrically tunable magnetic
memories using 2D magnets.

However, the low Curie temperature of 2D magnets acts as
a hurdle in their practical application. Most of the 2D magnets
discovered experimentally have a low Curie temperature, e.g.,
45 K for CrI3 [1] and 34 K for CrBr3 [2]. While Fe3GeTe2 has
a Curie temperature of 130 K [9], it has an itinerant magnetic
behavior, which cannot be controlled using an external electric
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field. On the other hand, the high Curie temperature in VSe2

[10] is a matter of debate, with reports emerging of VSe2

having a charge-density-wave ground state with no magnetic
ordering [11,12].

The dearth of high Curie temperature 2D magnets has
led to an unprecedented effort in the search for 2D magnets
with higher Curie temperature. Thankfully, the possible span
of 2D magnets is quite large, starting from 2D crystals [13]
to conventional 2D materials doped with transition metals
[14–19]. However, experiments can only be performed for the
most promising 2D ferromagnets. Hence, a vast amount of
research is dedicated to high-throughput screening of the most
promising 2D magnets from theory [20–22].

A common strategy in such high-throughput calculations
for predicting the Curie temperature of 2D magnets is as fol-
lows. First, obtain 2D materials with magnetic ordering from
material databases such as the C2DB [23]. Then, approxi-
mate the magnetic structure using a parameterized Heisenberg
model whose parameters are obtained from the density func-
tional theory (DFT) calculations [24]. Finally, predict the
Curie temperature from the phase change of the Heisenberg
Hamiltonian, calculated using computationally costly Monte
Carlo simulations with anisotropy [20–22,25] or even using
the Ising model [13]. The Monte Carlo simulations are costly
in terms of computational time and memory compared to
the mean-field theory. As a result, many researchers use the
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less accurate mean-field calculations for predicting the Curie
temperature of newly discovered materials [25,26].

Monte Carlo simulations with anisotropy result in a rather
accurate estimation of the Curie temperature for most of the
experimentally verified 2D magnets yet discovered [24,27].
However, care must be taken because the calculated Curie
temperature depends on the parameters of the Heisenberg
Hamiltonian [28] and on the approximation used at the DFT
level. Moreover, the recent application of methods that take
into account the quantum mechanical fluctuations in the
Heisenberg model to 2D magnets, e.g., the Green’s func-
tion [29,30] and the renormalized spin-wave [31] methods,
raises further questions on how much the Curie temperature
depends on the level of approximation used to solve the
Heisenberg Hamiltonian. Moreover, the Curie temperature of
2D ferromagnets strongly depends on the anisotropy [32],
which is itself dependent on the spin-orbit interaction of the
material [31,33–35]. The different methods used to solve the
Heisenberg Hamiltonian have a different impact of anisotropy.
So, it is highly desirable to understand how much the Curie
temperature of the 2D ferromagnets depends on various meth-
ods used for solving the Heisenberg Hamiltonian. There have
been previous works on understanding the impact of exchange
anisotropy on the Curie temperature of 2D magnets. Most
of the works have either focused on using only the MC
simulations to obtain a closed-form description [25] or have
compared the Curie temperature using different methods in
extremely high regimes of the exchange anisotropy [27].

We compare, for 34 2D materials, three methods of calcu-
lating the Curie temperature from a Heisenberg Hamiltonian:
the Monte Carlo (MC), Green’s function, and renormal-
ized spin-wave (RNSW) methods. We first provide a brief
overview of the Heisenberg Hamiltonian, while the three solu-
tion methods are discussed elaborately in the Appendix. Next,
we provide an analytical formula to approximate the Curie
temperature calculated using the three solution methods, as
a function of nearest-neighbor exchange strength (J) and
anisotropy (�NN). Further, we calculate the Curie temperature
using the three methods, as a function of exchange anisotropy,
and fit the analytical formula to each. We then calculate the
Curie temperature of 34 2D ferromagnets screened from the
C2DB database [23] using our analytical formula and find
some very promising ferromagnets with high Curie temper-
ature, including Fe2F2 and MoI2 having, for all methods,
estimations above 403 and 281 K, respectively. Finally, we
show that the Curie temperature calculated using the three
methods depends quantitatively on the long-range interac-
tions; however, the qualitative trend remains the same and the
analytical formula we develop provides a good estimation for
a first-level theoretical screening.

II. METHODOLOGY

A. The Heisenberg Hamiltonian

Two-dimensional ferromagnets are most commonly mod-
eled through the Heisenberg Hamiltonian,

H = 1

2

∑
i, j

ŜiJi j Ŝ j +
∑

i

D
(
Ŝz

i

)2
, (1)

where Ŝ = Ŝxx + Ŝyy + Ŝzz is the spin operator. Here, the
spin operator can take eigenvalues S = n/2, with n a strictly
positive integer. The off-diagonal elements of the J tensor
Ji j between spins at sites i and j have been found to be
much smaller than the diagonal elements for most of the 2D
ferromagnets (FMs), and hence, we assume the off-diagonal
elements to be zero when modeling ferromagnets. For the
present study, exchange interactions up to second neighbor
are accounted for, while the second term of the Heisenberg
Hamiltonian—called the on-site anisotropy—is ignored. The
Heisenberg Hamiltonian thus reduces to
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, (2b)

where the anisotropy is modeled through distinct values for
the in-plane and out-of-plane anisotropic exchange strength,
respectively; Jxx = Jyy = J (1 − �) and Jzz = J (1 + �). The
unitless anisotropy �i j = (Jzz

i j − Jxx
i j )/2Ji j is said to be of the

easy-axis type when positive, while of the easy-plane type
otherwise.

We solve the Heisenberg Hamiltonian as a function of tem-
perature using the MC, the Green’s function, and the RNSW
methods. These three methods used to solve the Heisenberg
Hamiltonian are discussed extensively in the Appendix.

B. Analytical formula for screening 2D magnets

Using the exact methods of calculating the Curie tem-
perature, i.e., the MC, the Green’s function, and the RNSW
methods, is computationally costly. Hence, to provide a
closed-form equation for TC calculated using all three meth-
ods, we propose the analytical formula

TC = 1

α1 − α2 ln(�NN)

J (S2 + θS)

kB
, (3)

which is inspired by the group-theoretical approach used by
Bander et al. [36]. Here, S is the spin eigenvalue and �NN

is the nearest-neighbor exchange anisotropy. kB is the Boltz-
mann constant. θ = 1 for the Green’s function and RNSW
methods, and θ = 0 for the MC method. Dimensionless pa-
rameters α1 and α2 are fit so that TC matches the Curie
temperature as a function of �NN, J , and S, obtained using the
MC, Green’s function, and RNSW methods for the hexagonal,
honeycomb, and square lattices (Fig. 1).

The anisotropy originates due to the spin-orbit coupling,
and spin-orbit coupling is a much weaker interaction than
the electronic exchange interaction. �NN is the ratio of the
strength of the anisotropy and exchange interaction J; it is
highly unlikely that �NN would approach 1 for any 2D mag-
netic material. Nevertheless, we fit the formula only up to
�NN = 0.2 to the exact methods. Also, the group-theoretical
method applied by Bander et al. [36] is only valid around
�NN → 0, from which our formula is inspired. Therefore, the
formula should only be used to calculate the Curie tempera-
ture of materials whose �NN � 0.2.
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(a) (b)

(c) (d)

FIG. 1. Three different type of lattices for 2D materials: (a) hon-
eycomb, (b) hexagonal, and (c) square lattices. For the (b) hexagonal
and the (c) square lattices, the unit cell contains only one atom,
whereas for the (a) honeycomb lattice, the unit cell has two atoms,
referred to as sublattice A (pink) and sublattice B (black). (d) The
in-plane (Jxx

i j ) and out-of-plane (Jzz
i j ) exchange interaction between

spins i and j.

C. Obtaining the input parameters of the analytical formula

The parameters for the analytical formula proposed in
Eq. (3) can be obtained from DFT total energy calculations
using

J⊥ = E⊥
FM − E⊥

AFM

2NNNS2
, (4a)

J‖ = E‖
FM − E‖

AFM

2NNNS2
, (4b)

J = J⊥ + J‖

2
, (4c)

�NN = J⊥ − J‖

2J
. (4d)

Here, E⊥/‖
FM and E⊥/‖

AFM are the total energies calculated using
the DFT for FM and antiferromagnet (AFM) order with the
magnetic axis oriented in the out-of-plane/in-plane direction.
NNN is the number of nearest neighbors. For obtaining param-
eters beyond nearest neighbor, one has to use the advanced
mapping methods presented in Ref. [24].

III. RESULTS AND DISCUSSION

We first discuss the impact of nearest-neighbor ex-
change anisotropy on the Curie temperature calculated using
the three exact methods, and fit to this the TC calculated using
the analytical formula. We then calculate the Curie temper-
ature of 2D ferromagnets screened from the C2DB database
using the fitted analytical formula. Finally, we discuss the
impact of next-nearest-neighbor anisotropy on the Curie tem-
perature of Cr compounds.

A. Effect of exchange anisotropy

Figure 2(a) shows the calculated Curie temperature (TC)
for a hexagonal 2D material as a function of nearest-neighbor
exchange anisotropy (�NN) using the three methods. For
all three methods, the Curie temperature increases with in-
creasing anisotropy. Moreover, for zero anisotropy, the Curie
temperature tends to zero for all three methods.

There are three regions with a distinct feature in Fig. 2(a).
First, within the yellow shaded region, the Curie temperature
calculated using the MC and the Green’s function methods
matches closely. For lower anisotropies, the Green’s function
approach results in a Curie temperature that is lower compared
to the MC approach, whereas for higher anisotropies, the
situation is opposite: the Curie temperature estimated using
the Green’s function is higher than the one estimated using the
MC method. Moreover, for all three regions, the renormalized
spin-wave approach results in a Curie temperature below both
the MC and the Green’s function methods.

The existence of three regions for the MC and the Green’s
function methods can be understood by careful observation of
the exact Curie temperature formulas. In the limit of �NN →
1, the Curie temperature calculated using the Green’s function
method tends to the result from the molecular-field theory
[29], which overestimates the Curie temperature, whereas for
higher anisotropies �NN → 1, the Curie temperature calcu-
lated using the MC method remains below the Ising limit
[27]. Therefore, because the molecular-field theory results
in an overestimation of the Curie temperature compared to
the Ising model, the Green’s function method overestimates
the Curie temperature compared to the MC method at higher
anisotropies. For �NN = 0, the Curie temperature calculated
using the Green’s function method goes to zero, in accordance
with the Mermin-Wagner theorem [32], whereas for the MC
method, the average magnetization M =

√
S2

x + S2
y + S2

z re-
mains finite due to the nonzero exchange interaction. Hence,
for lower anisotropies, the MC method overestimates the
Curie temperature.

To further understand the impact of �NN, we plot the
sensitivity ( 1

TC

dTC
d�NN

) of the Curie temperature in Fig. 2(b)
for all three methods. We observe that both the RNSW and
Green’s function methods have an almost similar sensitivity to
�NN, and the sensitivity decreases with increasing anisotropy.
Moreover, we see that the MC method is much less sensitive to
�NN, especially at lower anisotropy compared to the RNSW
and Green’s function methods.

B. Fitting of analytical formula to exact methods

Figure 2 also shows the fit of the analytical function
[Eq. (3)] to the Curie temperature calculated using the MC,
the Green’s function, and the RNSW method, respectively,
for a honeycomb lattice. The corresponding figures for the
hexagonal lattice and the square lattice are provided in
the Supplemental Material [37]. For all three lattices, we use
�NN = 0.0 to �NN = 0.2 as the fitting range. We observe
that Eq. (3) fits remarkably well to the Curie temperature
calculated using the mentioned methods. The parameters α1

and α2 are provided in Table I. From Table I, we see that the
parameter α2 for the MC method is much lower compared to
the Green’s function and RNSW methods.
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FIG. 2. (a) Comparison of Curie temperature calculated using the Green’s function, the Monte Carlo (MC), and the renormalized spin-wave
(RNSW) methods as a function of nearest-neighbor exchange anisotropy (�NN) for a honeycomb lattice. For the MC method, the solid line
shows the median and the shading shows the 25th to 75th percentile of the calculated Curie temperature. The dashed lines show a fit using
function [α1 − α2 ln(�NN )]−1J (S2 + θS)/kB for the respective methods. The horizontal tick shows the Ising limit (1.52S2, with S = 3/2) and
the quantum mean field (1/3[S(S + 1)NNN], NNN = 3 for honeycomb lattice). The yellow shaded area shows the region where the MC and the
Green’s function methods have a difference of less than 10%. (b) Comparison of Curie temperature sensitivity calculated using the Green’s
function, the MC, and the RNSW methods as a function of nearest-neighbor exchange anisotropy (�NN) for a honeycomb lattice.

C. Screening of 2D magnets from C2DB
and their critical temperatures

Figure 3(a) shows a schematic of our screening process.
We screen the C2DB database [23] for ferromagnetic 2D
materials with out-of-plane exchange anisotropy (J > 0 and
�NN > 0). We find 34 2D magnets with FM order in their
ground state. Next, we calculate their Curie temperature using
the analytical formula in Eq. (3).

Figures 3(b) and 3(c) show the calculated Curie temper-
ature of the screened ferromagnets sorted as a function of
exchange interaction (Ji j) and exchange anisotropy (�NN),
calculated using the MC, the Green’s function, and the RNSW
methods. The table comprising the Curie temperature using
the different methods is provided in the Supplemental Mate-
rial [37].

We observe some general trends from Figs. 3(b) and 3(c).
First, the Curie temperature is indeed dependent on the meth-
ods used to solve the Heisenberg Hamiltonian. We observe
the same pattern as in Fig. 2(a), where the Curie temper-
ature calculated using the RNSW method remains low for
all the materials; however, for higher anisotropy, the RNSW
method starts approaching the MC results. Given that all of
the identified 2D ferromagnets from the C2DB database have
anisotropy, i.e., �NN < 0.25, we can say that the RNSW

TABLE I. Parameters of the analytical formula.

Lattice Parameter MC Green RNSW

α1 0.49 0.07 0.40
Honeycomb

α2 0.14 0.37 0.62
α1 0.24 0.24 0.32

Hexagonal
α2 0.045 0.14 0.21
α1 0.37 0.34 0.43

Square
α2 0.08 0.24 0.36

method gives the most conservative estimation of the Curie
temperature. On the other hand, the Curie temperature calcu-
lated using the Green’s function method remains below the
MC method for compounds until ZrI2 (�NN = 0.0072). Most
remarkably, from our screening using the analytical formulas
for all three methods, we identify that some very promising
candidates for realizing 2D ferromagnets are Fe2F2 and MoI2

for whom even the RNSW method predicts a Curie tempera-
ture of 403 and 281 K, respectively. Fe2F2 has a high exchange
interaction strength that leads to its higher Curie temperature,
whereas MoI2 has a higher exchange anisotropy that leads to
a higher Curie temperature.

Interestingly, we see from Figs. 3(b) and 3(c) that all three
experimentally discovered Cr compounds, i.e., CrI3, CrBr3,
and CrCl3 , are screened from the C2DB database. For CrI3,
we obtain a Curie temperature of 41, 31, and 23 K (45 K,
experimental [1]), and for CrBr3, we find a Curie temperature
of 26, 24, and 14 K (34 K, experimental [2]) from the Green’s
function, the MC, and the RNSW method, respectively. The
close estimation of the Curie temperature of Cr compounds
compared to their experimental values suggests that the ana-
lytical formula in Eq. (3) can be used for an efficient first-level
screening of 2D ferromagnetic compounds.

It should be noted that the obtained high Curie temperature
for metals, e.g., Fe2F2, using our formulas provides a rough
first-level estimate because their itinerant magnetic nature
is not fully captured by the Heisenberg model. Therefore, a
more detailed approach is needed to precisely predict their
magnetic order as a function of temperature, e.g., dynamical
mean-field theory.

D. Impact of next-nearest-neighbor anisotropy

Until now, we discussed the impact of nearest-neighbor
exchange anisotropy on the Curie temperature calculated
using various methods and showed our analytical formula,
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FIG. 3. (a) Materials obtained from the C2DB database with positive out-of-plane anisotropy and positive exchange interaction. The Curie
temperature of the screened materials using the analytical formula for the MC, the Green’s function, and the RNSW (top abscissa) methods
sorted as a function of (b) exchange interaction (Ji j) and (c) exchange anisotropy (�NN).

used for high-throughput screening of 2D FMs. Here, we
discuss the impact of next-nearest-neighbor interactions,
especially the next-nearest-neighbor anisotropy, and the
impact of long-range interactions on the theoretical prediction
of Curie temperature of 2D FMs. We use the honeycomb
lattice as an example.

Figure 4 shows the comparison between the Curie
temperature (TC) for a honeycomb 2D material as a func-
tion of next-nearest-neighbor exchange anisotropy [�NNN =

(Jz
NNN − Jx

NNN)/(2JNNN)] for a honeycomb lattice. We keep
the nearest-neighbor anisotropy fixed at �NN = 0.01 and
nearest-neighbor exchange at JNN = 2.5 meV. We observe
that both the Green’s function and RNSW methods have
a similar sensitivity to the next-nearest-neighbor anisotropy,
whereas the MC calculations are relatively less sensitive. As
discussed in Sec. III A, the observed low sensitivity of the MC
simulations to next-nearest-neighbor anisotropy is due to their
classical nature.
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FIG. 4. Comparison of Curie temperature calculated using the
Green’s function, Monte Carlo, and the renormalized spin-wave
methods as a function of next-nearest-neighbor exchange anisotropy
(�NNN) for a honeycomb lattice. The vertical dashed line shows the
�NNN = 0 at which Fig. 2 is calculated. For the MC method, the
solid line shows the median and the shading shows the 25th to 75th
percentile of the calculated Curie temperature.

E. Importance of long-range interactions for the quantitative
estimation of TC

While the approximate results of the analytical formula are
good as a first screening, further neighbors can still lead to
significant changes of the TC. We compare the Curie temper-
ature calculated for Cr compounds, i.e., CrI3, CrBr3, CrCl3,
and CrGeTe3, using the MC, the Ising MC, the Green’s
function, and the RNSW methods, to their experimentally
measured value in Table II, including the long-range interac-
tions. The experimental comparison of methods is subject to
the parameters obtained from DFT and with a change in ex-
change functional, i.e., the J parameters change. However, the
Perdew-Burke-Ernzerhof (PBE) parameters have been found
to be close to experiments for CrI3 [38] and serve as a good
benchmark for evaluating the three methods and their regimes
of applicability.

We observe that the Curie temperature calculated using
the MC and the RNSW methods is in good agreement with
the experimental values for CrI3, and MC and the Green’s
function methods is in good agreement for CrBr3, whereas
the Curie temperature calculated using the RNSW and the
Green’s function methods results in a good agreement for
CrCl3 . The Curie temperature of monolayer CrGeTe3 has not
been reported experimentally yet; however, if we consider that
the Curie temperature follows the same trend as reported in
[3], we find that the RNSW method results in a much closer
estimation of the Curie temperature. It is worth noting that the
experimental Curie temperature for all three Cr-compounds

TABLE II. Curie temperature (K) of Cr compounds using exact
methods with long-range interactions.

Method MC Green RNSW Ising Mean-field (NN) Expt.

CrI3 63 83 36 181 89 45 [1]
CrBr3 37 39 20 130 55 35 [2]
CrCl3 25 21 15 100 53 17 (bulk) [39]
CrGeTe3 64 68 38 314 237 42 (bilayer) [3]

TABLE III. J parameters and anisotropies of experimental Cr
compounds.

JNN JNNN JNNNN

Parameters (meV) (meV) (meV) �NN �NNN �NNNN

CrI3 2.21 0.75 0.029 0.043
CrBr3 1.38 0.44 0.010 0.012
CrCl3 1.31 0.24 0.001 0.006
CrGeTe3 5.87 −0.28 0.345 0.02 0.0 0.028

lies between what is calculated by the three methods with
RNSW setting the lower limit and Green’s function and MC
setting the upper limit.

We now compare the J parameters for the Cr compounds
shown in Table III to the Curie temperatures calculated using
the various methods in Table II. From Table III, we find
the nearest-neighbor anisotropy �NN = 0.029 for CrI3. As
expected from Fig. 2, the MC Curie temperature is below
the Green’s function Curie temperature for CrI3. For CrBr3,
the nearest-neighbor anisotropy �NN = 0.01, which is in the
range where the MC and Green’s function results almost over-
lap in Fig. 2. Hence, the Curie temperature calculated using
the MC method is almost the same as the one calculated using
the Green’s function method. For CrCl3 , the nearest-neighbor
anisotropy �NN = 0.001, which is in the range where the
RNSW and Green’s function methods are closer and the MC
method overestimates the Curie temperature. Hence, the Curie
temperature calculated using the MC method is higher than
the Green’s function method. For CrGeTe3, the anisotropy is
in the range where the MC and the Green’s function method
have a difference less than 10% [from Fig. 2(a)], and hence,
the Curie temperature calculated using the MC and Green’s
function methods is almost the same.

We see in Table II that the inclusion of the next-nearest-
neighbor interaction does impact the Curie temperature
quantitatively. A similar conclusion was drawn in our pre-
vious works for both bulk [24] and monolayer 2D magnets
[30]. However, the trend of Fig. 3 remains the same, with
the RNSW method being the most conservative, and the MC
and Green’s function methods interchanging their estimation
depending on the anisotropy. Therefore, the analytical formu-
las provided in this work can be used to obtain a qualitative
estimation of Curie temperatures of 2D ferromagnets with the
least effort. However, for quantitatively more accurate results,
one will have to include the long-range interactions.

IV. CONCLUSION

We have compared three common methods, i.e., the MC,
the Green’s function, and the RNSW methods, used for cal-
culating the Curie temperature of 2D ferromagnets, which are
modeled using the Heisenberg Hamiltonian. We have inves-
tigated the impact of nearest-neighbor exchange anisotropy
as well as the next-nearest-neighbor anisotropy on the Curie
temperature calculated using the mentioned methods. We
have shown that the Curie temperature calculated using the
Green’s function and the MC methods as a function of
nearest-neighbor anisotropy results in three regions. At low
anisotropy, the Green’s function method results in a lower
Curie temperature; at higher anisotropy, the MC method
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results in a lower Curie temperature; and in-between, there is
a region where both the Green’s function and the MC methods
result in the same Curie temperature estimation.

We have provided a closed-form analytical formula to
calculate the Curie temperature of 2D FMs using nearest-
neighbor exchange and anisotropy. The analytical formula to
calculate the Curie temperature has been fitted to the exact
Curie temperature obtained from the MC, the Green’s func-
tion, and the RNSW methods. We have applied our formula
on 34 2D ferromagnets screened from the C2DB database
[23] and found some very promising ferromagnets with high
Curie temperature, including Fe2F2, and MoI2 which have the
lowest estimation of 403 and 281 K, respectively.

By comparing the Curie temperature of the experimentally
grown Cr compounds, we found that for CrCl3, which has
low anisotropy, the RNSW and the Green’s function methods
result in a more accurate estimation of the Curie temperature,
whereas for CrI3, which has a higher anisotropy, the MC
method results in a good estimation of the Curie temperature.
Moreover, for CrBr3, which has an intermediate anisotropy,
both the MC and the Green’s function methods result in a
similar estimation of the Curie temperature, suggesting that
for materials with low anisotropy, the RNSW and the Green’s
function methods will result in a more accurate description
of the Curie temperature, whereas for materials with higher
anisotropy, the MC method results in a better estimation of
the Curie temperature.

Finally, we have shown that the inclusion of long-range
interactions does impact the Curie temperature quantitatively;
however, the qualitative behavior remains the same. There-
fore, the analytical formulas provided in this work can be
used to obtain a qualitative estimation of Curie temperatures
of 2D ferromagnets with the least effort. However, for quan-
titatively more accurate results, one will have to include the
long-range interactions and use the exact methods depending
on the anisotropy.
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APPENDIX

We briefly discuss the MC, the Green’s function, and the
RNSW methods in this Appendix.

1. Renormalized spin-wave method

First proposed by Bloch et al. [40], spin waves have been
used extensively in the theory of magnetism. The framework

of the spin waves starts by bosonizing the spin operators
(Ŝ) of the Heisenberg Hamiltonian using the Holstein-

Primakoff transformation [41], with Ŝ+ = 2S
√

1 − â†â
2S â†,

Ŝ− = 2Sâ
√

1 − â†â
2S , and Ŝz = S − â†a. Here, Ŝx = Ŝ++Ŝ−

2 and

Ŝy = Ŝ+−Ŝ−
2i . â†/â are the bosonic creation/annihilation opera-

tors, and S is the spin. We put the value of spin operators and
J in Eq. (2b) and ignore the fourth-order terms,

H =−
∑
i, j

Ji j (1−�i j )S

(
â†

i â j − â†
i â†

i âiâ j

2S
− â†

i â†
j â j â j

2S

)
+H.c.

− 1

2

∑
i, j

Ji j (1 + �i j )(S
2 − Sâ†

i ai + Sâ†
j â j + â†

i âiâ
†
j â j ).

(A1)

We now make a Hartree-Fock approximation to decouple the
second-order terms of Eq. (A1) as â†

i â†
j â j â j = â†

i â j〈â†
j â j〉.

The second-order terms are merely the bosonic number den-
sity terms (〈â†

i âi〉 = 〈n〉). With these substitutions, we obtain

H = H0

(
1 − 〈n〉

2S

)
, (A2)

with H0 = −∑
i, j Ji j (1 − �)S(â†

i â j ) + 1
2

∑
i, j Ji j (1 +

�)(Sâ†
i âi + Sâ†

j â j ) + H.c. The creation and annihilation
operators are transformed in their reciprocal space,

a†
i =

∑
k∈B

exp(ik.ri)a
†(k), (A3a)

ai =
∑
k∈B

exp(ik.ri)a(k). (A3b)

Substituting Eq. (A3) into Eq. (A2), we obtain the
Hamiltonian

H (k) = H0(k)

(
1 − 〈n〉

2S

)
. (A4)

The eigenvalue of Eq. (A4) is the excitation energy El (k, T )
for the lth band. Here, El (k, T ) is temperature dependent
because 〈n(T )〉 follows Bose-Einstein statistics,

〈n(T )〉 =
∫

BZ

∑
l

d2k

exp[ El (k,T )
kBT ] − 1

. (A5)

To calculate the Curie temperature, the starting spin con-
figuration is considered to be pointing in the z direction.
The magnetization is defined as S = 〈Ŝz〉, with 〈Ŝz〉 = S −
〈a†a〉 (Holstein-Primakoff transformation). As defined earlier,
〈a†a〉 = 〈n(T )〉, leading to the equation for magnetization as
a function of temperature,

S(T ) = S − 1

N

∫
BZ

∑
l

d2k

exp[ El (k,T )
kBT ] − 1

. (A6)

Here, N is the number of atoms in the unit cell, l is the band in-
dex, and S is the initial magnetization. Solving magnetization

043024-7



SABYASACHI TIWARI et al. PHYSICAL REVIEW RESEARCH 3, 043024 (2021)

S(T ) and the energy eigenvalue El (k, T ) self-consistently, we
obtain the temperature-dependent magnetization. However,
Eq. (A6) diverges for El (k, T ) = 0. To avoid divergence, we
define the Curie temperature as the temperature at which
S(T ) = S/2.

2. Green’s function method

Zubarev’s double-time temperature-dependent Green’s
functions have been proven successful for three-dimensional
ferromagnets in the past, and this over the entire temperature
range [42,43]. The technique explicitly accounts for the fact
that spins obey bosonic commutation relations between dis-
tinct lattice sites and fermionic ones between different lattice
sites. First, one needs to derive an equation of motion for
the Green’s functions—this is an exact relation that derives
from the Heisenberg equation of motion. The Green’s function
equation of motion that we derive is

ωGα
i j = 1

2π

〈[
Ŝα

i , Ŝ−
i

]〉
δi j + 〈〈[

Ŝα
i , Ĥ

]
; Ŝ−

j

〉〉
. (A7)

Here, iω is the excitation energy, Ĥ is the Heisenberg Hamil-
tonian, and Gα

i j = 〈〈Ŝα
i ; Ŝ−

j 〉〉 is the Green’s function for

the spin operator Ŝα
i with α ∈ {+,−, z}. With some alge-

bra, it can be found that the higher-order Green’s function
〈〈[Ŝα

i , Ĥ ]; Ŝ−
j 〉〉 reduces to 〈〈Ŝα

i Ŝβ
j ; Ŝ−

j 〉〉, where β ∈ {+,−, z}.
To allow for a solution of the Green’s function equa-
tion of motion [Eq. (A7)], higher-order Green’s functions
〈〈Ŝα

i Ŝβ
j ; Ŝ−

j 〉〉 are decoupled in terms of lower-order Green’s
function Gα

i j using the Tyablikov decoupling approximation
[44] (which gives the same results as Englert’s random phase
approximation combined with the appropriate form of the
fluctuation-dissipation theorem [45]). The Tyablikov decou-
pling scheme decouples higher-order terms using〈〈

Ŝα
i Ŝβ

l ; Ŝ−
j

〉〉 → 〈
Ŝβ

l

〉〈〈
Ŝα

i ; Ŝ−
j

〉〉 + 〈
Ŝα

i

〉〈〈
Ŝβ

l ; Ŝ−
j

〉〉
= 〈

Ŝβ

l

〉
Gα

i j + 〈
Ŝα

i

〉
Gβ

l j . (A8)

We then define the homogenous magnetization M = 〈Ŝz〉
and write the Green’s function in the reciprocal space,

Gα
i j = 1

N

∑
k∈B

exp[ik · (ri − r j )]G
α (k). (A9)

Combining Eqs. (A7), (A8), and (A9), we obtain a matrix
equation,

[ωI − �(k)]G(k) = A. (A10)

I is an identity matrix of size 3 × 3, and G(k) is comprised
of three Green’s functions {G+, G−, Gz}. For details on build-
ing matrices �(k) and A, the interested reader may refer to
Vanherck et al. [29,30].

The Green’s function in Eq. (A10) is solved self-
consistently with the homogenous magnetization M for each
temperature. The temperature at which the homogenous
magnetization M becomes 0 is referred to as the Curie temper-
ature. However, in the absence of an external field, taking the
limit of small magnetization (close to the ferromagnetic tran-
sition temperature) yields an explicit expression for the Curie
temperature. For effective easy-axis anisotropies

∑
j Ji j�i j �

0, the Curie temperature vanishes in accordance with the
Mermin-Wagner theorem [32]. On the other hand, TC for
effective easy-axis anisotropies can be written as [29,30]

kBTC = S(S + 1)

3	C
, 	C = 1

vb

∫
BZ

φC(k) dk. (A11)

The integrand is

φC(k) = 1

T − fE − ‖ fO‖ . (A12)

Let
∑

n represent a sum over all nth neighbors, i.e., NN, NNN,
and

∑
n,E and

∑
n,O the same sum but restricted to atoms

located on the same (equal, E) or the other (O) sublattice. We
define

T =
∑

n

Jn(1 + �n), fE =
∑
n,E

Fn ,

and fO =
∑
n,O

Fn. (A13)

T is a measure for the total anisotropic exchange in-
teraction. fE and fO are defined in terms of Fn = Jn

(1 − �n)
∑

p exp(ik · rp)δnp. Here, δnp = 1 for n = p.
Compared to the renormalized spin-wave theory, not only

the excitation energies but also the effective density of states
are renormalized by the magnetization, yielding a better
description over the entire temperature range. The major dif-
ference between the Green’s function and the RNSW methods
lies in the level at which the decoupling is performed. The
Tyablikov decoupling [44] is performed at the level of spin
operators, whereas the Hartree-Fock decoupling is performed
at the level of bosonized spin waves.

3. Monte Carlo method

For both the Ising and the Monte Carlo methods with
anisotropy, Eq. (2b) is treated as a classical equation with
spin operators (Ŝ) becoming spin vectors (S). We use the
Metropolis algorithm to simulate the phase change of the
classical Heisenberg Hamiltonian [46].

For the Metropolis sampling of the Ising and Monte Carlo
methods, the spin vectors become scalars and are fixed to
take values S ∈ {−Smax, Smax}. Whereas for the Monte Carlo
method with anisotropy, the spin vectors are sampled using
a spherical sampling scheme [24]. From the Metropolis algo-
rithm, we obtain the magnetic susceptibility and specific heat
as a function of temperature. We obtain the Curie temperature
from the peak of specific heat or susceptibility as they both
coincide for easy-axis ferromagnets.

4. DFT calculations

The J , �, and S were directly obtained from the C2DB
database and were fed into the analytical formulas. However,
we calculated the long-range J parameters for Cr compounds
and Fe2F2, using the method developed in Ref. [24], which
uses noncollinear DFT calculations. All the ab initio DFT
calculations reported in this work were performed using the
Vienna ab initio simulation package (VASP) [47,48]. The
ground-state self-consistent field (SCF) calculations were
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performed using a projector-augmented wave (PAW) po-
tential [47] with a generalized-gradient approximation as
proposed by Perdew-Burke-Ernzerhof (PBE) [49]. We have
used a kinetic energy cutoff of 400 eV for our DFT calcula-
tions. The Brillouin zones were sampled using a �-centered
k-point mesh of size 5×5×1 points for 2×1×1 supercells.

The Cr-compound supercells were relaxed until the force
on each of the ions was below 10 meV/Å. The energy
convergence criterion for the subsequent SCF calculations
was set to 10−4 eV. The C2DB parameters and our own DFT
calculations for the Cr compounds and Fe2F2 showed a differ-
ence of less than 20% in the J parameters.
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