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Carrier mobility is at the root of our understanding of electronic devices. We present a unified methodology
for the parameter-free calculations of phonon-limited drift and Hall carrier mobilities in real materials within the
framework of the Boltzmann transport equation. This approach enables accurate and parameter-free calculations
of the intrinsic mobility and will find applications in the design of electronic devices under realistic conditions
of strain and temperature. The methodology exploits a novel approach for incorporating the effect of long-range
quadrupole fields in the electron-phonon scattering rates and capitalizes on a rigorous and efficient procedure
for numerical convergence. The accuracy reached in this work allows us to assess the impact of common
approximations employed in transport calculations, including the role of exchange and correlation functionals,
spin-orbit coupling, pseudopotentials, Wannier interpolation, Brillouin-zone sampling, dipole and quadrupole
corrections, and the relaxation-time approximation. We study diamond, silicon, GaAs, 3C-SiC, AlP, GaP, c-BN,
AlAs, AlSb, and SrO, and find that our most accurate calculations predict Hall mobilities significantly larger than
the experimental data in the case of SiC, AlAs, and GaP. We identify possible improvements to the theoretical
and computational frameworks to reduce this discrepancy, and we argue that new experimental data are needed
to perform a meaningful comparison, since almost all existing data are more than two decades old. By setting
tight standards for reliability and reproducibility, the present work aims to facilitate validation and verification
of data and software towards predictive calculations of transport phenomena in semiconductors.
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I. INTRODUCTION

The ability of metals and semiconductors to transport
electrical charges is a fundamental property in manifold
applications, ranging from solar cells, light-emitting de-
vices, thermoelectric, transparent conductors, photodetectors,
photocatalysts, and transistors [1–5]. Predicting transport
properties from first principles [6] thus offers a powerful tool
for the design of new materials and devices.

The aim of this work is to provide in-depth understanding
of the physical mechanisms at play which limit carrier trans-
port, to present robust and reliable reference data, and to make
the analysis in terms of electron-phonon scattering quantita-
tive. To achieve this, we assess the reliability and predictive
power of novel first-principles methods, using III-V and group
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IV semiconductors as a representative benchmark. Already in
1966, in a seminal work Cohen and Bergstresser [7] computed
the band structure of 14 semiconductors with the diamond
and zinc-blende structure. In 2013, Malone and Cohen [8]
repeated this task computing the quasiparticle band structure
in the many-body GW approximation, including spin-orbit
coupling (SOC) effects. Last year, Miglio et al. [9] studied
the zero-point renormalization of the electronic band gap of
30 semiconductors, mostly of the zinc-blende, wurtzite, and
rocksalt crystal structure. Here, we deliver an accurate and
efficient calculation method for carrier mobilities, including
spin-orbit coupling, dynamical quadrupoles and, magnetic
Hall effects, focusing on prototypical semiconductors. Our
benchmark includes the following ten semiconductors: dia-
mond, Si, GaAs, 3C-SiC, GaP, AlP, cubic BN, AlAs, AlSb,
and SrO. For the last five of these, no first-principles calcula-
tions of carrier mobility have been reported to date.

Due to the complexity of computing carrier mobilities
fully from first principles, the first calculation appeared
only in 2009 [10]. Since then, only 19 bulk semiconduc-
tors have been investigated: Si [10–16], Diamond [17], GaAs
[13,18–22], GaN [23–25], 3C-SiC [26,27], GaP [22], GeO2

[28], SnSe [29], SnSe2 [30], BAs [31,32], PbTe [33,34],
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naphtalene [35,36], Bi2Se3 [37], Ga2O3 [38–41], TiO2

[42], SrTiO3 [43,44], PbTiO3 [15], Rb3AuO [45], and
CH3NH3PbI3 [46].

In this work, we perform an in-depth analysis of the pre-
dictive accuracy of the first-principles Boltzmann transport
equation (BTE) for computing the carrier drift mobility and
the Hall mobility, and we compare directly to experimental
data. In brief, we find that spin-orbit coupling plays an im-
portant role for hole mobilities even in materials with small
coupling, that a local approximation to the velocity matrix ele-
ments (also used by us in earlier work) is not accurate enough,
and that optimizing the construction of the Wigner-Seitz cell
used in Wannier interpolations can accelerate the convergence
of the Brillouin zone integrals. We confirm the recent findings
[16,22,25] that dynamical quadrupoles, the next order of cor-
rection to dynamical dipoles, can significantly affect carrier
mobilities, and we show that this effect arises predominantly
from the change of the vibrational eigenmodes induced by the
quadrupole term of the dynamical matrix.

In this work, we also find that Wannier-function interpola-
tions (especially those associated with the conduction bands)
converge more slowly than previously estimated with respect
to the sampling of the coarse grid employed in the Wannier
representation. As a result, in order to obtain carrier mobil-
ities with an accuracy of 1% for fixed fine grids, it is often
necessary to use coarse grids including up to 183 points, still
providing a speed-up of two to three orders of magnitude
with respect to brute force sampling. We also find that a good
indicator of convergence is provided by the mobility effective
mass, as defined below. The sampling of Wannier-interpolated
quantities require between 803 and 2503 k and q grids, with
the exception of the electron mobility of GaAs which requires
a 5003 grid due to its very small electron effective mass. We
also show that the mobility and Hall factor converge linearly
with grid spacing, allowing for a simple extrapolation [47]
which achieves an accuracy of 1%.

This work thus answers crucial methodological and
physical questions. On the technical side, it establishes well-
defined criteria for high-accuracy calculations of transport
coefficients, clarifying the role and the level of (i) the ap-
proximations in the underlying first-principles calculation
to extract materials parameters (exchange-and-correlation
functionals, pseudopotentials, lattice parameters and SOC),
(ii) the interpolation procedures for quasiparticle dispersions
and interactions, and (iii) the numerical techniques that en-
sure the efficient convergence of transport coefficients. On
the physical side, the ability to describe with high accuracy
transport phenomena provides detailed access to the carrier
dynamics and to the inherent limits of the electrical transport
properties of key prototypical semiconductors. Our work also
gives access to quantitative spectral decomposition, enabling
now strain or chemical engineering and mode suppression.
Crucially, since usually it is the Hall mobility that is measured
rather than the drift mobility, this work allows a detailed and
unambiguous comparison with experimental data.

The manuscript is organized as follows. In Sec. II, we
briefly present the theory for computing phonon-limited drift
mobilities. We then extend the theory to include a small fi-
nite external magnetic field, to access the Hall mobility. We
also show how to efficiently compute mobility using inter-

polations based on maximally localized Wannier functions
(MLWF) [48]. In particular, we discuss how to compute ex-
act velocities and estimate quadrupole tensors, and include
dipole-dipole, dipole-quadrupole and quadrupole-quadrupole
corrections during the Fourier interpolation of the inter-
atomic force constant, as well as how to include dynamical
quadrupoles in the interpolation of the electron-phonon matrix
element. Finally, we discuss the use of adaptive broadening
for improved convergence.

In Sec. III, we present the computational methodology. We
first report the methodology and parameters used. Next, we re-
port our interpolation of the electron-phonon matrix elements
and deformation potential including dynamical quadrupole,
and show that the interpolated values reproduce density
functional perturbation theory calculations. We then discuss
typical fine grid convergence rates. We conclude the section
by showing that the mobility and the Hall factor converge
linearly with the spacing of the fine grid, allowing for a linear
extrapolation to the limit of exact momentum integration.

In Sec. IV, we present and discuss our results, starting
with analysis of the band structures, phonon dispersions, and
effective masses. We then assess the quality of various popular
approximations, such as the neglect of the nonlocal pseu-
dopotential contribution to the electron velocity, the neglect
of SOC, the neglect of quadrupole correction, the use of the
relaxation time approximation, the effect of the isotropic Hall
factor approximation, the effect of the exchange-correlation
functional, the effect of lattice parameters and pseudopotential
choice. In addition, we identify the dominant scattering mech-
anisms responsible for limiting the carrier mobility. Finally,
we conduct an in-depth comparison with available experimen-
tal mobility data, and assess the overall predictive power of the
BTE. We offer our conclusions in Sec. V.

II. THEORY

In this section, we first present the main equations for
calculating the drift mobility, and their generalization to the
case of vanishing magnetic field, yielding the Hall mobility.
We then present the Wannier interpolation scheme employed
here, and discuss how to obtain accurate electron velocities.
We also discuss the multipole expansion of the long-range
part of the dynamical matrix and electron-phonon matrix ele-
ments. Finally, we describe how we use adaptive broadening
in practical calculations.

A. Drift mobility

The low-field phonon-limited charge carrier mobility is
calculated as [10–15,15–25,27–46],

μαβ = −1

Vucnc

∑
n

∫
d3k

�BZ
vnkα∂Eβ

fnk. (1)

Here α, β run over the three Cartesian directions and ∂Eβ
fnk ≡

(∂ fnk/∂Eβ )|E=0 is the linear variation of the electronic oc-
cupation function fnk in response to the electric field E, Vuc

is the unit cell volume, �BZ the first Brillouin zone volume,
vnkα = h̄−1∂εnk/∂kα is the band velocity for the Kohn-Sham
state εnk, and nc = (1/Vuc)

∑
n

∫
(d3k/�BZ) f 0

nk is the carrier
concentration. f 0

nk is the Fermi-Dirac occupation function at
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equilibrium (in the absence of fields). We follow the notation
of Refs. [6,14]. The BTE describes the detailed balance be-
tween the carriers’ populations moving through phase space
under the action of the driving electric field E and the carriers
scattered by phonons. It can be derived from the Kadanoff-
Baym equation of motion by approximating the Hartree and
exchange-correlation potential, taking the diagonal Bloch
state projection and assuming a spatially homogenous elec-
tric field [6]. One then obtains the quantum time-dependent
BTE that can be further simplified by considering a time-
independent external field (DC), static electron-one-phonon
interactions and adiabatic phonons to give:

eE · 1

h̄

∂ fnk

∂k
= 2π

h̄

∑
m,ν

∫
d3q

�BZ
|gmnν (k, q)|2

× [ fnk(1 − fmk+q)δ(εnk − εmk+q + h̄ωqν )nqν

+ fnk(1 − fmk+q)δ(εnk − εmk+q − h̄ωqν )(nqν + 1)

− (1 − fnk ) fmk+qδ(εmk+q − εnk − h̄ωqν )(nqν + 1)

− (1 − fnk ) fmk+qδ(εmk+q − εnk + h̄ωqν )nqν], (2)

where nqν is the Bose-Einstein distribution. The electron-
phonon matrix elements gmnν (k, q) are the amplitude for
scattering from an initial state nk to a final state mk + q via
the emission or absorption of a phonon of frequency ωqν . We
obtain ∂Eβ

fnk required for Eq. (1) by taking the field derivative
of Eq. (2) at vanishing field. This yields the linearized Boltz-
mann transport equation (BTE) [6,14]:

∂Eβ
fnk = evnkβ

∂ f 0
nk

∂εnk
τnk + 2πτnk

h̄

∑
mν

∫
d3q

�BZ
|gmnν (k, q)|2

× [(
nqν + 1 − f 0

nk

)
δ(εnk − εmk+q + h̄ωqν )

+ (
nqν + f 0

nk

)
δ(εnk − εmk+q − h̄ωqν )

]
∂Eβ

fmk+q,

(3)

with τnk being the total scattering lifetime and the inverse τ−1
nk

is the scattering rate given by

τ−1
nk = 2π

h̄

∑
mν

∫
d3q

�BZ
|gmnν (k, q)|2

× [(
nqν + 1 − f 0

mk+q

)
δ(εnk − εmk+q − h̄ωqν )

+ (
nqν + f 0

mk+q

)
δ(εnk − εmk+q + h̄ωqν )

]
. (4)

A common approximation that we refer to as the self-energy
relaxation time approximation (SERTA) consists in neglecting
the second term on the right-hand side of Eq. (3). The mobility
then takes the simpler form [14]

μSERTA
αβ = −e

Vucnc

∑
n

∫
d3k

�BZ

∂ f 0
nk

∂εnk
vnkαvnkβτnk. (5)

In order to analyze the role of band curvature in mobility
calculations, we introduce a “mobility effective mass” as fol-
lows:

1

m∗
mob

= −1

3Vucnc

∑
αn

∫
d3k

�BZ

∂ f 0
nk

∂εnk
v2

nkα. (6)

This definition is obtained by setting τnk to a constant value τ

in Eq. (5), and by requiring that the resulting mobility can be
expressed in the standard Drude form with the same relaxation
time τ :

μ = eτ

m∗
mob

. (7)

Lastly, we introduce an approximate version of the SERTA
mobility, which is useful to disentangle the convergence of
electron band structures from that of the phonon energies and
electron-phonon matrix elements. To this aim, we define the
“constant adiabatic relaxation time approximation” (CARTA)
as the mobility obtained by taking the SERTA of Eq. (5) with
a constant electron-phonon matrix elements and vanishing
phonon frequencies: |gmnν (k, q)| = g2, with g an arbitrary
constant with units of energy, and ωqν = 0:

μCARTA
αβ = −eh̄

2πVucncg2

∑
n

∫
d3k

�BZ

∂ f 0
nk

∂εnk
vnkαvnkβ∑

m

∫ d3q
�BZ

δ(εnk−εmk+q)
. (8)

B. Hall mobility

Calculation of the direct current Hall coefficient has seen a
resurgence of interest [17,49–51]. Experimentally, Hall mo-
bility measurements are more common than time-of-flight
measurements of drift mobilities due to their superior accu-
racy and simplicity. This is reflected in the literature by a
significantly higher number of available Hall mobility data
compared to drift mobilities. However Hall measurements are
performed in the presence of an external finite magnetic field,
which introduces an additional Lorentz force on the carriers,
thereby altering the mobility. To compare with experiment,
we have to augment the BTE of Eq. (3) to account for the
additional magnetic field B [6,17]:

[
1 − e

h̄
τnk(vnk × B) · ∇k

]
∂Eβ

fnk = evnkβ

∂ f 0
nk

∂εnk
τnk

+ 2πτnk

h̄

∑
mν

∫
d3q

�BZ
|gmnν (k, q)|2

× [(
nqν + 1 − f 0

nk

)
δ(εnk − εmk+q + h̄ωqν )

+ (
nqν + f 0

nk

)
δ(εnk − εmk+q − h̄ωqν )

]
∂Eβ

fmk+q, (9)

with τnk being the total scattering lifetime defined in Eq. (4).
Taking derivatives on both sides of Eq. (9) with respect to the
Cartesian components of the magnetic field, Bγ , at zero field,
yields an equation for the linear response coefficients ∂Eβ

fnk
and ∂Eβ

∂Bγ
fnk:

∂2
Eβ ,Bγ

fnk =−e

h̄
τnk(vnk × ∇k )γ ∂Eβ

fnk

+ 2πτnk

h̄

∑
mν

∫
d3q

�BZ
|gmnν (k, q)|2

× [(
nqν + 1 − f 0

nk

)
δ(εnk − εmk+q + h̄ωqν )

+ (
nqν+ f 0

nk

)
δ(εnk − εmk+q − h̄ωqν )

]
∂2

Eβ ,Bγ
fmk+q.

(10)
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The Hall conductivity tensor is obtained from the second
derivatives of the current density with respect to electric and
magnetic field for vanishing fields:

σ H
αβγ = −e

Vuc

∑
n

∫
d3k

�BZ
vnkα Bγ ∂2

Eβ ,Bγ
fnk, (11)

or equivalently (in the linear regime) directly from Eq. (9) as

σ H
αβγ = −e

Vuc

∑
n

∫
d3k

�BZ
vnkα∂Eβ

fnk(Bγ ). (12)

In practice, we have implemented Eq. (9) and (12) to allow
for finite magnetic field calculation and where ∇k∂Eβ

fnk is
obtained by central finite difference on the dense grid. In this
work, we used a magnetic field value of 10−10 T.

Besides the drift and Hall conductivity and their mobility
analogues, a commonly reported quantity is the dimensionless
Hall tensor, which is defined as the ratio between the Hall
conductivity and the drift conductivity [52,53]:

rH
αβγ ≡ nce

∑
δε

σ−1
αδ σ H

δεγ σ−1
εβ

Bγ

, (13)

=
∑
δε

μ−1
αδ μH

δεγ μ−1
εβ

Bγ

, (14)

where Eq. (13) is the tensorial generalization of Eq. (1)
from Ref. [52]. For the cubic materials that we studied here,
Eq. (13) has only one nondiagonal independent component,
rH

123.
A popular approximation to Eq. (13) consists in assum-

ing a parabolic and nondegenerate band extremum, following
Ref. [54], p. 118 and Ref. [55], Eq. 3.12. Within this approx-
imation, the isotropic and temperature-dependent Hall factor
is given by [56]

riso = 〈τ 2〉
〈τ 〉2

, (15)

with

〈τ n〉 ≡
∫ ∞

0 τ n(xkBT )x3/2e−xdx∫ ∞
0 x3/2e−xdx

. (16)

Here, x = ε/(kBT ) and we introduced the distribution func-
tion of the total scattering lifetime:

τ (ε) =
∑

n

∫
d3k

�BZ
δ(ε − εnk )τnk. (17)

The numerical solution of the BTE requires the evaluation
of a large number of electron-phonon matrix elements in order
to converge the double momentum integrals (k and q). Various
schemes have been developed to deal with this challenge
including models with parameters computed from first prin-
ciples [57], direct evaluation of the electron-phonon matrix
elements using density-functional perturbation theory (DFPT)
[10], linear interpolation of the scattering rates [11,58], local
orbital implementations [59], smoothened Fourier interpola-
tion [60,61], Fourier interpolation of the perturbed potential
[16,22,62] and interpolation based on MLWFs [63,64]. The
use of MLWFs makes the calculations affordable and is the
method of choice in this work, where we rely on the EPW

software [63,65]. Such interpolation implies subtleties that
need to be dealt with carefully, as discussed in Sec. II C.

C. Interpolation of the electron bands, phonon dispersions,
and electron-phonon matrix elements

The interpolation of the various quantities required to com-
pute the drift mobility on ultradense grids relies on a discrete
Fourier transform followed by a Fourier interpolation at arbi-
trary crystal momenta. Due to the fact that the discrete Fourier
transform is in practice performed on a uniform finite grid, the
quality of the interpolation depends on the localization in real
space of each quantity.

In the case of the electronic Hamiltonian, we can leverage
the phase freedom of the Bloch orbitals to create Wannier
functions that are maximally localized in real space [48].
Since the interatomic force constants do not have such gauge
freedom, we use direct Fourier interpolation. This interpo-
lation requires some care in the case of polar materials, in
order to correctly describe long-range interactions and the
splitting of longitudinal-optical (LO) and transverse-optical
(TO) modes [66,67]. Electronic Wannier and Bloch states are
related by [48]∣∣�mRp

〉 = 1

Np

∑
nk

e−ik·RpUnmk|�nk〉 (18)

|�nk〉 =
∑
mRp

eik·RpU †
mnk

∣∣�mRp

〉
, (19)

where Rp is a lattice vector, Np is the number of unit cells in
the Born-von Kárman supercell, corresponding to the number
of k points, and Unm,k is a unitary rotation matrix that trans-
forms the Bloch wave functions to a Wannier gauge:∣∣�W

nk

〉 =
∑

m

Unmk|�mk〉. (20)

In particular, the unitary transformation U can be chosen to
obtain MLWFs that minimize the spatial spread functional
[48].

In this context, the Hamiltonian H and dynamical matrices
D can be transformed from the Bloch to Wannier representa-
tion as

Hmn(Rp) = 1

Np

∑
m′n′k

e−ik·RpU †
mm′kHm′n′kUn′nk, (21)

Dκα,κ ′β (Rp′ ) = 1

Np′

∑
qμν

e−iq·Rp′ e†
κα,qμDμν (q)eκ ′β,qν, (22)

where Np and Np′ are the number of unit cells in the
Born-von Kárman supercells for the electrons and phonons,
respectively, and eκα,qν are the eigendisplacement vectors cor-
responding to the atom κ in the Cartesian direction α for a
collective phonon mode ν of momentum q.

The extension of these two concepts to interpolate the
electron-phonon matrix elements has been derived in Ref. [65]
and yields

gmnκα (Rp, Rp′ ) = 1

NpNp′

∑
k,q

e−i(k·Rp+q·Rp′ )
∑
m′n′ν

×
√

2Mκωqν

h̄
e†
κα,qνU †

mm′k+qgm′n′ν (k, q)Un′nk. (23)
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In practice, we compute the electron-phonon matrix ele-
ments gmnν (k, q) on a coarse momentum grid and rely on
crystal symmetries to reduce the number of calculations to
be performed. To carry out the Wannier transformation from
coarse reciprocal space to real space, we first evaluate the
matrix elements on the entire Brillouin zone using symme-
tries. As pointed out in a recent paper [64], in the case of
SOC the spinor wave functions need to be rotated using the
SU(2) unitary group. There was a bug in version 5.2 of the
EPW software [63] related to this rotation. The bug has been
eliminated in version 5.3, and for the systems tested so far we
found a negligible impact. For example, we recalculated the
mobilities of silicon, GaAs, and CsPbI3, and found differences
smaller than 0.4% in all cases.

There are additional subtleties related to the Wannier in-
terpolation of the various quantities required to compute the
mobility. These aspects will be discussed in Sec. IV.

D. Band velocities

A key ingredient required in the calculation of carrier mo-
bility is the carrier velocity as can be seen in Eq. (1). The
velocity operator can be expressed in terms of the commutator
between the Hamiltonian of the system and the position opera-
tor, v̂ = (i/h̄)[Ĥ , r̂]. The matrix elements of v̂ in the presence
of nonlocal pseudopotentials are [68–71]

vnmk = 〈ψmk|p̂/me + (i/h̄)[V̂NL, r̂]|ψnk〉, (24)

where p̂ = −ih̄∂/∂r is the momentum operator, me is the
electron mass, and V̂NL is the nonlocal part of the pseudopo-
tential. Neglecting the term with V̂NL in the case of a nonlocal
pseudopotential is what we call the “local approximation”
[14]. Within this approximation, Eq. (24) reads

vloc
nmk = h̄k

me
δmn − i

h̄

me

∫
dru∗

mk(r)
∂

∂r
unk(r), (25)

where unk are the periodic part of the Bloch wave function. If
in the second part of Eq. (25) the terms corresponding to the
periodic part of the Bloch function are expanded into plane
waves, unk = ∑

G cnk(G)eiG·r, we obtain the simple velocity
expression in the local approximation:

vloc
nmk = h̄k

me
δmn +

∑
G

h̄G
me

c∗
mk(G)cnk(G). (26)

We note that this expression is only valid in the case of local
norm-conserving pseudopotentials. In practice, we will show
that this local approximation is too crude and one needs to
compute the matrix elements of the commutator in Eq. (24).
We carry out this procedure in the Wannier representation,
as described in Refs. [72–75]. In particular, we construct the
velocities interpolated at an arbitrary momentum k′ following
Eq. (31) of Ref. [73]:

vnmk′ = 1

h̄

∂

∂k′ Hnmk′ − i

h̄
(εnk′ − εmk′ )Anmk′ , (27)

where Anmk′ is the Berry connection defined as

Anmk′ = i〈unk′ |∂umk′/∂k′〉. (28)

We construct the Berry connection in the Wannier basis
[Eq. (20)] on the coarse k-point grid and compute the deriva-

tive using finite differences as [73]

AW
nmk = i

∑
b

wbb
(〈

uW
nk

∣∣uW
mk+b

〉 − δnm
)
, (29)

where b are the vectors connecting k to its nearest neighbors
and wb a weight associated with each shell of neighbors |b|.
These vectors are constructed in such a way as to satisfy [76]∑

b

wbbαbβ = δαβ (30)

using the smallest number of neighbors. The rotated overlap
matrices (from Bloch to Wannier basis) are obtained as〈

uW
nk

∣∣uW
mk+b

〉 =
∑
n′m′

U †
nn′kMn′m′ (k, b)Um′mk+b, (31)

where Mnm(k, b) = 〈unk|umk+b〉 is the overlap matrix between
the cell-periodic Bloch eigenstates at neighboring points k and
k+b.

We first Fourier transform the position matrix into real
space following Eq. (43) of Ref. [73]:

〈�n0|r̂|�mR〉 = 1

Np

∑
k

e−ik·RAW
nmk, (32)

where k belongs to the same grid employed for the Wannier
interpolation of the band structure. The quantity on the left
hand side decreases rapidly with R owing to the localization
of MLWFs, therefore we can use these real-space quantities to
interpolate back to arbitrary momenta k′:

AW
nmk′,α =

∑
R

eik′ ·R〈�n0|r̂|�mR〉. (33)

We do the same for the k′ derivative of the Hamiltonian
following Eq. (38) of Ref. [73]:

∂

∂k′ H
W
nmk′ =

∑
R

eik′ ·RiR〈�n0|Ĥ |�mR〉. (34)

Finally we unrotate from the Wannier basis to the Bloch
state basis using the diagonalizers of the Hamiltonian:

∂

∂k′ Hnmk′ =
∑
n′m′

U †
nn′k′

∂

∂k′ H
W
n′m′k′Um′mk′ , (35)

Anmk′ =
∑
n′m′

U †
nn′k′AW

n′m′k′Um′mk′ , (36)

which gives the desired Eq. (27).
We have implemented the interpolation of the velocity ma-

trix elements including the correction for nonlocal potentials
in the EPW software [63]. Figure 1 shows that the local
approximation yields significant errors in the calculated mo-
bilities, ranging from −80% to +40% of the correct value. For
this reason, we use the exact velocities of Eq. (27) throughout
this study. We also note that we only need the band diagonal
component of the velocity for the transport theory used in this
work vnk ≡ vnnk.

To evaluate the quality of the Wannier interpolation of
velocities, we perform direct DFT calculations using cen-
tral finite differences, with six neighboring points spaced by
5 × 10−4 2π/a.
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FIG. 1. (a) Relative deviation of the calculated carrier mobility with respect to our most accurate calculations when using one of the
approximations described in Sec. IV B. Electron mobilities are in orange, and holes are in green. In each case, only one effect is considered,
while all other settings are the same as for the reference calculation. We consider the following effects: (i) Long range part of the dynamical
matrix (D) and electron-phonon matrix elements (G). The label “0” means that no long range part has been considered, and “DD,” “DQ,”
and “QQ” mean that dipole-dipole, dipole-quadrupole and quadrupole-quadrupole contributions have been included. The labels “eD” and
“eQ” mean that monopole-dipole and monopole-quadrupole interactions are included, respectively. (ii) Using the velocity computed in the
local approximation via Eq. (26) instead of Eq. (27). (iii) Neglecting SOC. (iv) Employing the SERTA in Eq. (5) instead of Eq. (1). (v)
Using the relaxed lattice parameter of the PBE exchange-correlation functional. (vi) Using the experimental lattice parameter with the LDA
exchange-correlation functional. (vii) Using the PBE exchange-correlation functional and experimental lattice parameter, but with a different
parametrization of the pseudopotentials. The gray boxes represent the first and third quartile, while the average values are shown with a small
horizontal black line. The standard deviations are reported at the top of the figure. The electron mobility of GaAs is not reported in this figure
since the values are off the chart. (b) Same as in (a), but the deviations are reported as absolute values in cm2 V−1 s−1.

E. Long-range corrections: dipoles and quadrupoles

The analytic properties of the long wavelength limit of
the electron-phonon matrix elements in bulk polar materials
have been known for a long time [77], but the generalization
to first-principles calculations using Wannier-Fourier interpo-
lation [65] appeared only recently [78,79]. Following a line
of thinking closely related to the Fourier interpolation of the
phonon frequencies [66,67,80], one can decompose the matrix
elements into a short- (S) and long-range (L) contribution
[78,79]:

gmnν (k, q) = gSmnν (k, q) + gLmnν (k, q). (37)

In Eq. (37), the long-range part is given by the infinite multi-
pole expansion:

gLmnν (k, q) = gL,eD
mnν (k, q) + gL,eQ

mnν (k, q) + gL,eO
mnν (k, q) + · · · ,

(38)

where the first term comes from monopole (i.e., point-charge)
-dipole contribution, then monopole-quadrupole, monopole-
octopoles, and higher. The analytic form of the long-range part
of the monopole-dipole contribution is given as [78]

gL,eD
mnν (k, q) = i

4π

Vuc

e2

4πε0

∑
κ

[
h̄

2Np′Mκωqν

] 1
2 ∑

G 	=−q

× (G + q) · Z∗
κ · eκqν

(G + q) · ε∞ · (G + q)
e−i(G+q)·τκ 〈�mk+q|ei(q+G)·r|�nk〉,

(39)

where G is a reciprocal lattice vector, τκ is the position of
atom κ , Z∗

κ is the Born effective charge tensor of the atom κ

of mass Mκ , eκqν is the vibrational eigendisplacement vec-
tor normalized in the unit cell, ε0 is the vacuum dielectric
constant and ε∞ is the high-frequency dielectric tensor of
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the material. In the past, a Gaussian filter has been added to
Eq. (39). Since this filter breaks the periodicity of the matrix
element in reciprocal space, we recommend not to include it
in future calculations. One can notice that Eq. (39) diverges
as 1/|q| as we approach the zone center. This is an integrable
singularity, so that upon performing integrations in reciprocal
space one obtains finite values of physical properties.

The quadrupolar component of the matrix element at long
wavelength is given by [16]

gL,eQ
mnν (k, q) = 4π

Vuc

e2

4πε0

∑
κ

[
h̄

2Np′Mκωqν

] 1
2 ∑
G 	=−q

× (G+q) · (G+q) · eκqν · Q̃mnκ (k, G+q)

(G + q) · ε∞ · (G + q)
e−i(G+q)·τκ ,

(40)

where Q̃mnκ (k, G + q) is a third-rank effective quadrupole
tensor defined as

Q̃mnκαβγ (k, G + q) = 1
2 Qκαβγ 〈�mk+q|ei(q+G)·r|�nk〉

− eZ∗
κα,β〈�mk+q|ei(q+G)·rV Hxc,Eγ (r)|�nk〉, (41)

and Qκαβγ is the dynamic quadrupole tensor [81]. The third-
rank quadrupole tensor should obey the same symmetry rules
as other third-rank tensors such as the piezoelectric tensor or
the second-order magnetoelectric tensor [82]. One can there-
fore use tools such as the Bilbao Crystallographic Server [83]
to determine the nonzero components of the quadrupole tensor
for a given space group, and their relations. In the case of all
the polar materials investigated in this work, the quadrupole
tensor takes the form:

Qκαβγ = Qκ |εαβγ |, (42)

where εαβγ is the Levi-Civita symbol and Qκ is an atom-
dependent scalar. In the case of silicon and diamond, the
effective tensor in Eq. (41) is completely specified by a single
scalar [81]:

Q̃mnκαβγ (k, G + q)

= 1
2 (−1)κ+1Q|εαβγ |〈�mk+q|ei(q+G)·r|�nk〉. (43)

The quantity V Hxc,Eγ in Eq. (41) is the change of the
Hartree and exchange-correlation potential with respect to the
electric field Eγ [22]. This term is null in the case of materials
with vanishing Born effective charges and has been shown
to be small in the case of polar materials such as GaAs and
GaP [16,22]. Finally, we note that in the q + G → 0 limit, the
wave function overlap in Eqs. (39) and (41) can be written in
terms of the Wannier rotation matrices Unmk as [78]

〈�mk+q|ei(q+G)·r|�nk〉 = [Uk+qU †
k ]mn. (44)

A similar approach can be used to enforce the correct be-
havior of the dynamical matrices at long wavelength [66,84]:

Dκα,κ ′β (q) = DS
κα,κ ′β (q) + DL

κα,κ ′β (q), (45)

where the nonanalytical, direction-dependent term, is given
by the contribution of dipole-dipole, dipole-quadrupole and

quadrupole-quadrupole terms as

DL
κα,κ ′β (q) = 4πe2

Vuc

[ ∑
G 	=−q

DL,DD+DQ+QQ
κα,κ ′β (G + q)

− δκκ ′
∑
κ ′′

∑
G 	=0

DL,DD+DQ+QQ
κα,κ ′′β (G)

]
(46)

with

DL,DD+DQ+QQ
κα,κ ′β (q) = eiq·(τκ−τκ′ )e

−q·ε∞·q
4�2

q · ε∞ · q

[
q · Z∗

κα · q · Z∗
κ ′β

+ 1

4
q · q · Qκα · q · q · Qκ ′β+ i

2
q · Z∗

κα · q · q · Qκ ′β

− i

2
q · q · Qκα · q · Z∗

κ ′β

]
. (47)

In this expression, we neglected octopoles and higher-
orders as well as fourth-order and higher dielectric functions.
The sum over the lattice of charges is performed using the
Ewald technique, with a parameter �. In our calculations we
use � = 1 bohr−1 so that the real-space contribution in the
Ewald summation can be neglected [66].

F. Adaptive broadening

The numerical evaluation of Eqs. (3) and (4) requires to
approximate Dirac delta functions by Lorentzian or Gaussian
functions of finite broadening. This means that the resulting
mobility will depend on the value of the broadening used,
and careful convergence tests are required [14]. To circumvent
this difficulty, various schemes have been proposed includ-
ing adaptive broadening [85] and linear tetrahedron methods
[22,86].

We implemented the adaptive broadening approach in the
EPW software following Eq. (18) from Ref. [85], where the
state-dependent broadening is given by

ηnk(qν) = h̄√
12

√√√√∑
α

[
(vqνν − vnnk+q) · Gα

Nα

]2

, (48)

where Gα are the three primitive reciprocal lattice vectors, α

the three crystalline directions, vnnk+q the electronic velocities
defined by Eq. (27), Nα the q-point grid density in the three
crystalline directions. Eq. (48) can be scaled arbitrarily, and
for this work, we choose empirically a factor 1/2 after a num-
ber of numerical tests. In addition, the phonon velocity vqνν

is obtained from the momentum derivative of the dynamical
matrix, following an approach similar to Eq. (38) of Ref. [73]:

vqμνβ = 1

2ωqν

∂Dμν (q)

∂qβ

= 1

2ωqν

∑
R

iRβeiq·RDμν (R). (49)

In the case of polar materials, the momentum derivative of
the long-range dipole part is obtained by taking the derivative
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of Eq. (46) as ∂Dμν (q)
∂qβ

= ∑
G 	=−q

∂DL,DD
κα,κ′β (G+q)

∂ql
with

∂DL,DD
κα,κ ′β (q)

∂ql
= eiq·(τκ−τκ′ )e− q·ε∞·q

4�2

q · ε∞ · q

[
Z∗

κα,l Z
∗
κ ′β · q + Z∗

κα · qZ∗
κ ′β,l

− Z∗
κα · Z∗

κ ′β · q · q · ε∞
l · q

q · ε∞ · q
−Z∗

κα · Z∗
κ ′β · q · q · q · ε∞

l

q · ε∞ · q

+ iZ∗
κα · Z∗

κ ′β · q · q(τκl − τκ ′l )

− Z∗
κα · Z∗

κ ′β · q · q
ε∞

l · q
4�2

− Z∗
κα · Z∗

κ ′β · q · q
q · ε∞

l

4�2

]
,

(50)

where we have considered only the dipole-dipole interaction
term for simplicity. This choice does not change any of the
results presented in this work, because it only affects the
broadening parameter. This point will be discussed further in
Sec. III D. All results described below were obtained using
this adaptive broadening scheme.

III. COMPUTATIONAL METHODOLOGY

In this section, we describe the software and computa-
tional parameters employed. We discuss the interpolation of
electron-phonon matrix elements using the long-range dipole
and quadrupole corrections. We look at the convergence rate
with respect to the coarse and fine grid interpolation, and show
that the drift mobility, Hall mobility, and Hall factor can be ex-
trapolated to the limit of continuous Brillouin zone sampling.
Finally, we propose in Appendix A, a detailed account of the
Wannier function construction and their spatial localization,
in Appendix B, we give more details about the coarse grid
interpolation, and in Appendix C, we show a way to construct
an optimal Wigner-Seitz cell for the double three dimensional
Fourier interpolation of the electron-phonon matrix elements.

A. Density functional theory and density functional
perturbation theory calculations

We use the QUANTUM ESPRESSO software distribution
[87,88] with the relativistic Perdew-Burke-Ernzerhof (PBE)
parametrization [89] of the generalized gradient approxima-
tion (GGA) to density-functional theory. All the pseudopo-
tentials are norm-conserving, generated using the ONCVPSP

code [90], and optimized via the PseudoDojo initiative [91].
To assess the effect of the exchange-correlation functional,
we also regenerated the pseudopotentials using the ONCVPSP

code, and changed the exchange-correlation functional from
PBE to the Perdew-Zunger parametrization [92] of the lo-
cal density approximation (LDA) [93] but keeping all other
parameters unchanged. To assess the effect of pseudization
parameters, we also used PBE pseudopotentials from the SG15
ONCV library [94] that were extended to fully relativistic pseu-
dopotentials [95].

The electron wave functions are expanded in a plane-wave
basis set with the kinetic energy cutoff reported in Table I,
such that the total energy is converged to less than 1 mRy
per atom. The Brillouin zone is sampled with a homogeneous
�-centered grid of at least 20 × 20 × 20 k points to converge
linear-response quantities such as dielectric tensor, Born ef-

TABLE I. Valence electronic configuration, lattice parameter,
and plane-wave kinetic energy cutoff used in our calculations. The
first lattice parameter for each compound with a bibliographical
reference is the experimental value, while the second parameter
is obtained by performing a structural relaxation with the PBE
exchange-correlation functional.

Lattice (bohr) ecut

Valence electrons Exp. PBE (Ry)

C 2s22p2 6.740 [96] 6.751 100
Si 3s23p2 10.262 [97] 10.336 40
GaAs 3d104s24p1 - 3d104s24p3 10.683 [98] 10.865 130
SiC 3s23p2 - 2s22p2 8.238 [99] 8.276 80
AlP 3s23p1 - 3s23p3 10.318 [100] 10.406 80
GaP 3d104s24p1 - 3s23p3 10.299 [101] 10.408 80
BN 2s22p1 - 2s22p3 6.832 [102] 6.848 100
AlAs 3s23p1 - 3d104s24p3 10.696 [103] 10.825 150
AlSb 3s23p1 - 4s24p64d105s25p3 11.595 [104] 11.767 150
SrO 4s24p65s2 - 2s22p4 9.754 [105] 9.813 100

fective charges and phonon frequencies using DFPT [66,67].
The relative threshold for the self-consistent solution of the
Sternheimer equations was set to 10−17 or lower to ensure
accurate first-order perturbed wave functions. All the DFPT
data were produced in binary or XML format (as opposed
to the default text format) to preserve machine precision. We
include SOC in all our calculations. To obtain accurate results
for properties such as the spin-orbit splitting, semicore states
have been used for the pseudopotential of Ga, As, and Sb.
For definiteness we used experimental lattice parameters in
all cases, as reported in Table I. The relaxed lattice parameters
are also given in Table I, and tend to overestimate experiment
by an average of 1.3%, which is typical for PBE calculations.
As shown in Fig. 1, the lattice parameter can have a significant
impact on the calculated mobility, leading to differences of up
to 20% when comparing calculations with the optimized or
the experimental parameter.

To ensure reproducibility and follow the FAIR principles
(findable, accessible, interoperable, and reusable) [106], all
pseudopotentials and inputs as well as the version of the EPW
software containing the new developments are made available
in Ref. [107].

B. Dynamical quadrupoles

For practical calculations, we need a procedure for evaluat-
ing the quadrupole tensor introduced in Sec. II E. An efficient
way to compute dynamical quadrupoles rests on perturbation
theory and has been implemented in the ABINIT software [81].
However, this implementation is currently limited to the LDA
exchange and correlation functional, and to pseudopotentials
without nonlinear core corrections. To circumvent these lim-
itations, we propose an alternative strategy for estimating the
quadrupole tensor, which can be used with any exchange
and correlation functional and pseudopotential type. The gen-
eral idea is to determine the effective quadrupole tensor by
matching Eqs. (38)–(41) to explicit DFPT calculations at
small q. The minimum number of calculations required is
equal to the number of independent components of the tensor.
In practice, to minimize numerical noise we compute the
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TABLE II. Estimated effective quadrupole tensor (e bohr) com-
puted in this work. The complete tensors are given by Q̃καβγ =
(−1)κ+1Q|εαβγ | for Si and diamond and Q̃καβγ = Qκ |εαβγ | for all
other materials. We compare our values with previous calculations
based on perturbation theory from Ref. [22].

This work Previous work [22]

Compounds Qκ1 Qκ2 sum Qκ1 Qκ2 sum

Diamond 2.46 2.28a

Si 13.66 13.67
GaAs 34.72 −24.54 10.18 16.54 −8.57 7.97
3C-SiC 6.87 −2.44 4.43 – – –
AlP 11.30 −4.68 6.62 – – –
GaP 15.90 −8.02 7.88 12.73 −5.79 6.94
c-BN 3.46 −0.63 2.83 – – –
AlAs 14.75 −7.44 7.31 – – –
AlSb 19.06 −11.35 7.71 – – –
SrO 0.00 0.00 0.00 – – –

aPrivate communication with G. Brunin.

DFPT matrix elements for several points on a sphere with
|q| = constant.

To this aim, we use a PYTHON script with the long-range
analytic electron-phonon matrix elements from Eq. (38), and
the phonon frequencies, Born effective charges, dielectric
constant, eigendisplacements, and wave function overlaps
from the DFPT calculations. We then perform least squares
optimization with respect to the components of the quan-
drupole tensor, and include a mode-dependent offset as an
additional minimization parameter to capture the O(|q|0) term
of the matrix elements, following Eq. (3.17) of Ref. [77].
For the compounds considered in this work, we constrain the
quadrupole tensor to have the form of Eq. (42) or (43) during
the minimization, although the procedure holds for tensors of
any symmetry.

We emphasize that this procedure for calculating the
quadrupole tensor is inexpensive, as it requires the calculation
of only a dozen q points, see Fig. S1 of Ref. [108].

As a sanity check, we computed the quadrupoles of 3C-
SiC using the ABINIT software [62,109]. To use the ABINIT

implementation we considered LDA pseudopotentials with-
out nonlinear core correction and without SOC. We obtained
QSi = 7.025 e bohr and QC = −1.416 e bohr. Using the same
pseudopotentials and the Quantum Espresso software [88] we
obtained Q̃Si = 6.853 e bohr and Q̃C = −2.302 e bohr. We
attribute the small difference to the fact that the reported
results of Ref. [22] do not include the second term of Eq. (41),
and that our procedure does not capture the q → 0 limit with
the same precision as in DFPT.

Using the above procedure, we computed the effective
quadrupole tensor for all ten compounds. The results are re-
ported in Table II. Among the compounds considered here,
GaAs has the quadrupole tensor with the largest elements,
while this tensor vanishes in SrO due to the cubic Fm3m
space group symmetry. In Table II we also report the calcu-
lated quadrupole terms from Refs. [16,22] for comparison,
as obtained using perturbation theory, LDA without nonlinear
core correction, and neglecting SOC. We discovered that in all
the polar materials we investigated, the quadrupole correction

FIG. 2. Comparison between the deformation potential of the
�1 valence band of silicon from the direct DFPT (dots) and the
Wannier interpolation with and without quadrupoles, for different
k-point grids (the q-point grid is half of that). The components
included in the dynamical matrix and in the electron-phonon matrix
elements are labeled as “D” and “G,” respectively. The labels “DD,”
“DQ,” and “QQ” indicate the dipole-dipole, dipole-quadrupole and
quadrupole-quadrupole contributions, while “eD” and “eQ” de-
note the monopole-dipole and monopole-quadrupole interactions,
respectively.

was affecting more the acoustic modes than the optical ones.
For acoustic modes, only the atomic sum of the quadrupole
tensor is relevant, which we also report in Table II. In such
case, our fitting procedure is only expected to accurately re-
produce the atomic sum. Our calculations compare well with
Refs. [16,22], although close agreement is not expected due
to the aforementioned differences.

C. Interpolation of the electron-phonon matrix elements

To assess the quality of the Wannier interpolation, we com-
pare the interpolated electron-phonon matrix element with
those obtained from a direct DFPT calculation. For an eas-
ier comparison, we compute the total deformation potential
[79,110]:

Dν (�, q) = 1

h̄Nw

[
2ρVuch̄ωqν

∑
nm

|gmnν (�, q)|2
]1/2

, (51)

where the k = � point was chosen, the sum over bands is
carried over the Nw states of the Wannier manifold, and ρ is
mass density of the crystal. The advantage of examining the
deformation potential rather than the matrix elements directly
is that electronic degeneracies are traced out, and the fre-
quency that enters the zero-point amplitude is removed, so that
one can concentrate on the linear variation of the potential. To
investigate specific states, we also define the band-resolved
deformation potential Dν

mn(�, q) where the band summation
in Eq. (51) has been removed.

In Fig. 2, we compare the deformation potential of sil-
icon for the lowest valence band state at �, for the direct
DFPT calculation (black dots) and the Wannier interpolation,
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FIG. 3. [(a)–(j)] Comparison between the deformation potential of the valence band manifold from the direct DFPT calculations (dots)
and the Wannier interpolation including dipoles and quadrupoles (green lines) for diamond, silicon, GaAs, 3C-SiC, AlP, GaP, cubic BN, AlAs,
AlSb, and SrO, respectively. The k point for the deformation potential is located at the valence band maximum.

with and without quadrupoles (lines). In silicon, there is no
Fröhlich contribution to the matrix elements due to inver-
sion symmetry. There are, however, quadrupole contributions.
As can be seen in Fig. 2, the Wannier interpolation without
quadrupole correction reproduces the direct DFPT calculation
everywhere, except close to � in the �L and �K directions
for the LO and TO modes. The discontinuity of the LO
and TO modes at � poses a challenge to the interpolation
without quadrupole correction, as shown by the solid lines
in gray. Upon including quadrupole corrections, the defor-

mation potential is found to be independent of grid size. We
therefore only report the curve corresponding to the grid used
throughout this manuscript (see Sec. B). In contrast, the longi-
tudinal acoustic (LA) mode of silicon shown in Fig. 2 does not
exhibit any discontinuities at the zone center, and is therefore
well described without quadrupole correction. The deforma-
tion potential of the transverse-acoustic modes (TA) vanishes
and is not shown. These data are consistent with Ref. [15].

Figure 3 shows a systematic comparison between the de-
formation potential computed via explicit DFPT calculations
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and the results of our Wannier interpolation including dipole,
dipole-quadrupole and quadrupole corrections using Eq. (51).
We note the sharp change in deformation potential occurring
near the K point in diamond, and to a smaller extent in c-BN.
This effect is due to the avoided crossing in the phonon band
structure of diamond and c-BN at the same point in mo-
mentum space. Quantitatively, diamond and c-BN show the
largest deformation potential, which is consistent with these
compounds being the hardest materials in our set.

Overall, the agreement between the direct calculation and
the Wannier interpolation with quadrupole correction is excel-
lent, guaranteeing a good interpolation. The only exception is
SrO which is the only material investigated here for which the
quadrupole contribution vanishes by symmetry. This finding
could suggest that an accurate interpolation of SrO might
require the inclusion of octopole contributions. However, as
shown in Fig. S5 of Ref. [108], the interpolation of the defor-
mation potential of the conduction band manifold is perfect
which indicates that numerical instabilities occurs in the va-
lence band of SrO.

D. Convergence of the mobility with the fine Brillouin zone grid

We report in Appendix B the detailed convergence rate of
the electron and hole carrier mobility with increasing coarse
grid sizes. Using the converged coarse grids, we can proceed
to testing the convergence of the mobility with respect to the
fine grid. The presence of the ∂ f 0

nk/∂εnk term in the mobility,
see for example Eq. (5), implies that only those states close to
the valence band or conduction band edge will contribute. To
reduce the computational cost of these calculations we use the
following scheme. We construct a fine k-point grid composed
of only the points within a small energy window around the
band edges, and rely on crystal symmetry to further reduce
the number of points. For example in the case of the hole
mobility of c-BN, using an energy window of 0.3 eV and an
homogeneous fine grid of 2503 points, we only have 12,390
irreducible k points. Importantly, at no point we store the
entire uniform grid in memory. This reduction allowed us to
use extremely dense grids for the electron mobility of GaAs,
up to 8003 points in the first Brillouin zone.

Since all q-points can contribute (for example through
inter-valley scattering), we do not use symmetry reduction,
and keep all the q points of the uniform grid that lie with the
small energy window. For example, in the case of c-BN and a
grid of 2503 points, we have to compute 814 981 q points. To
this aim, we generate the q points on the fly, so that we do not
have to store the full grid in memory.

Finally, we interpolate the electron-phonon matrix ele-
ments for all these k and q points and store on disk only
the k and q points identified above that contribute to the
mobility. To retain only the information that will contribute to
the mobility calculation, for each q-point we store the matrix
elements for the nk states that fulfill the following condition:

h̄
∂ f 0

nk

∂εnk
τ−1

nk (q) >
10−16

NkNqN2
b

, (52)

where τ−1
nk (q) is the integrand of Eq. (4), Nk , Nq and Nb are

the total number of k points, q points, and wannierized bands,
respectively. The threshold in Eq. (52) guarantees that the cu-

mulative absolute error made by neglecting very small matrix
elements will be lower than machine precision, or 10−16. In
the c-BN example mentioned above, this procedure required
the storage of a binary file of approximately 40 GB instead of
multiple TBs required to store all the matrix elements. Once
all the scattering rates are written to disk, we read the file
in parallel using the message passing interface input-output
(MPI-IO) and solve the iterative BTE. The first step of the
iterative solution yields the SERTA mobility. The iterative
solution of the BTE is extremely fast (a few minutes) and
converges typically within a few tens of iterations. For the
compounds considered in this work, we determined that the
optimal energy window is between 0.2 and 0.3 eV, as shown
in Table S1 of Ref. [108].

The results for the SERTA and BTE mobility and Hall
factor are shown for all materials in Fig. 4. For similar reasons
as in Ref. [47], we stress that we are showing the results as a
function of inverse grid density and the fine k-point and q-
point grids are always the same. For example, the label 1/100
on the horizontal axis corresponds to a 1003 fine grid, such
that the left hand side of each figure corresponds to infinitely
dense sampling.

Interestingly, both the mobility and the Hall factor appear
to converge linearly with inverse grid density and can there-
fore be extrapolated. The linear interpolation range is depicted
in Fig. 4 with a gray shaded region. We perform the linear
extrapolation as soon as we enter the linear regime. This
linearity comes from the fact that we compute the momentum
integrals using the basic rectangular integration, therefore the
error scales linearly with the grid spacing.

We notice that the electron and hole mobility of diamond,
Si, c-BN as well as the electron mobility of GaAs and 3C-
SiC show a relatively steep slope, therefore it is important to
extrapolate the values for accurate results. In contrast, all the
other cases considered here exhibit a milder slope, therefore
the extrapolation is not necessary in these cases.

The linear behavior of the mobility is closely linked to
the smearing used for the energy conserving Dirac deltas in
Eq. (3). In Fig. 5, we focus on the electron mobility of c-BN
since the linear trend is very pronounced, and we show how
the carrier mobility depends on the grid density for various
Gaussian smearing parameters. We see that the smaller the
smearing the more pronounced are the fluctuations, and finer
grids are needed before the linear regime is reached. The ex-
trapolated value depends on the smearing used but eventually
differences should go to zero by reducing the smearing and
increasing the grids.

The above discussion does not take into account the finite
lifetimes of carriers in the calculations. In reality, a finite
smearing in the range of 10–50 meV is to be expected as
a result of the electronic linewidths. This effect could be
incorporated by setting the smearing to h̄/τnk with τnk given
by Eq. (4), but we have not explored this direction.

Since the linear extrapolation at fixed smearing is rather
tedious, in practice we proceed by using the adaptive smearing
introduced in Eq. (48). As seen in Fig. 5, this approach offers a
very good approximation to the zero-smearing extrapolation.
All data presented in Fig. 4 have been generated using adap-
tive smearing. We also show a similar analysis for the case of
the electron mobility of GaAs in Fig. S3 of Ref. [108].
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FIG. 4. Convergence of the SERTA (orange) and BTE (red) mobility and the SERTA (light green) and BTE (dark green) Hall factor as
a function of the fine k-and q-point grid size, using the converged coarse grids from Fig. 19. [(a)–(e)] Electron and (f)–(j) hole Hall factor
and mobility of diamond, silicon, GaAs, 3C-SiC, and AlP. [(k)–(o)] Electron and [(p)–(t)] hole Hall factor and mobility of GaP, cubic BN,
AlAs, AlSb, and SrO. Both quantities converge linearly with the fine grid density, and can therefore be extrapolated to infinity. The shaded
area denotes the interpolation range for the linear least squares fit of the Hall factor and mobility.

In Fig. 4, we also present the convergence of the SERTA
and BTE Hall factor defined in Eq. (13). In this case, the Hall
factor systematically converges linearly with grid density and
can be extrapolated to infinite grid density. Also in this case,
we can either extrapolate the results to zero smearing, or use
adaptive smearing. The results in either case are extremely
close, therefore we proceed with adaptive smearing in the
following.

IV. RESULTS

In this section, we discuss the main results of our calcu-
lations for all the compounds considered in our work. We
first describe the electronic and vibrational properties, then
we discuss the Hall factor and its temperature dependence, as
well as drift and Hall carrier mobilities. We also analyze in de-
tails the microscopic mechanisms responsible for limiting the
carrier mobilities. Lastly, we compare our results to available
experimental data.

A. Wannier interpolation of electron bands
and phonon dispersions

The interpolated electronic band structures and phonon
dispersions for the ten compounds considered in this work are
presented in Fig. 6.

The phonon dispersions are compared to neutron scatter-
ing data. Close agreement between theory and experiment is
found in all cases except for SrO, where the theory underes-
timates measured frequencies. The associated Born effective
charges, high-frequency dielectric constants and maximum
phonon frequencies are reported in Table III. The average
deviation for the highest phonon frequency between calcula-
tions and experiments is 1.6%.

Since DFT/PBE systematically underestimates the elec-
tronic bandgap, the dielectric constant is systematically
overestimated with respect to experiment. For the systems
considered here, the average overestimation of the dielectric
constant is 10%, but the largest discrepancy is as large as 30%.

As expected, the band gaps are severely underestimated.
The average deviation from experiments is of 41%. On the
other hand, the spin-orbit splitting is in slightly better agree-
ment with experiment, the average deviation being 18%.
Given these data, we expect that the electron-phonon matrix
elements will be overscreened, and we anticipate that our
calculated mobilities will tend to overestimate experimental
data. We will come back to this point in Sec. IV E.

The DFT mobility effective masses obtained without Wan-
nier interpolation are reported in Table III. The values range
from 0.1 to 0.8 me. Direct comparison of such mobility effec-
tive mass with experiment is not possible, however we can
compare the effective masses calculated using the standard
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TABLE III. Computed Born effective charges, high-frequency dielectric constants, maximum phonon frequencies, electronic band gaps,
spin-orbit splitting, and hole and electron effective masses (as well as mobility effective mass), compared to experiments. The experimental
data are reported in the row below each compound name. The mobility effective mass is evaluated for the temperature T = 300 K. The electron
effective mass of GaAs is not reported as we used the experimental mass, as discussed in the text.

ωmax Eg �so

Z∗ ε∞ (meV) (eV) (meV)

C 0 5.77 163.20 4.18 13
– 5.5 [97] 165 [111] 5.46 [121] 12 [122]

Si 0 12.89 63.71 0.55 48
– 11.94 [97] 62.74 [123] 1.17 [124] 44 [125]

GaAs 2.11 14.30 35.35 0.41 335
– 10.86 [126] 36.20 [126] 1.42 [127] 340 [127]

SiC 2.70 6.92 119.00 1.36 14
– 6.52 [127] 120.54 [127] 2.36 [127] 10 [127]

AlP 2.21 8.08 61.45 1.56 60
– 7.5 [128] 62.55 [129] 2.51 [130] 65 [131]

GaP 2.14 10.43 47.29 1.55 84
– 9.2 [126] 49.90 [126] 2.35 [132] 130 [132]

c-BN 1.91 4.54 157.92 4.53 21
– 4.46 [127] 158.82 [127] 6.4 [127] 9 [127]

AlAs 2.11 9.24 49.09 1.34 299
– 8.16 [126] 49.54 [126] 2.25 [133] 275 [116]

AlSb 1.79 11.48 39.59 0.99 670
– 10.9 [134] 39.18 [135] 1.7 [132] 645 [136]

SrO 2.45 3.78 56.52 3.31 61
– 3.5 [137] 59.8 [120] 5.22 [137] –

hole mass (me) electron mass (me)

m∗
hh m∗

lh m∗
so m∗,h

mob m∗
‖ m∗

⊥ m∗,el
mob

C 0.413 0.294 0.343 0.264 1.645 0.290 0.204
0.588 [138] 0.303 [138] 0.394 [138] – 1.4 [139] 0.36 [139] –

Si 0.260 0.189 0.225 0.187 0.957 0.193 0.144
0.49 [127] 0.16 [140] 0.234 [141] – 0.92 [142] 0.19 [142] –

GaAs 0.324 0.034 0.107 0.226 – 0.034
0.51 [127] 0.08 [127] 0.15 [127] – 0.067 [131] –

SiC 0.592 0.421 0.492 0.356 0.672 0.260 0.150
– 0.45 [143] – – 0.68 [144] 0.25 [144] –

AlP 0.545 0.253 0.354 0.350 0.787 0.277 0.171
GaP 0.376 0.141 0.214 0.249 1.051 0.410 0.171

0.54 [145] 0.16 [145] – – 0.87 [146] 0.252 [146] –
BN 0.53 0.52 0.52 0.399 0.914 0.303 0.197

0.38 [130] 0.15 [130] – – 1.2 [127] 0.26 [127] –
AlAs 0.463 0.151 0.264 0.297 0.851 0.240 0.166

0.81 [147] 0.16 [147] 0.30 [147] – 1.1 [148] 0.19 [148] –
AlSb 0.322 0.105 0.236 0.198 1.41 0.474 0.182

0.5 [149] 0.11 [149] 0.29 [150] – 1.0 [151] 0.26 [151] –
SrO 4.324 0.464 0.871 0.819 1.222 0.403 0.263

definition with experiments. We report all the experimental
and theoretical electron and hole effective masses in Table III.
Whenever the experimental values were reported along the
principal axis, we transform them to the density of state ef-
fective mass using for example m∗

hh = [(m110
hh )2m100

hh ]1/3, and
similarly for the light-hole effective masses.

For diamond, the experimental longitudinal and transverse
electron effective masses are 1.4 and 0.36 me [139], respec-
tively. For the hole, we used the values from Willatzen and
Cardona [138] which are obtained from linear muffin-tin or-
bital calculations corrected with measured energies, and are
considered most reliable (experimental values obtained from

the field dependence of the hole mobility show significant
dispersion, with 1.1 [152], 0.3 [152], and 1.06 [153] for the
heavy-hole, light-hold and spin-orbit band, respectively).

For silicon, the experimental longitudinal and transverse
electron effective masses are 0.92 and 0.19 me [142], respec-
tively, while the light and heavy hole masses are 0.16 and 0.5
me [140], respectively.

For GaAs, the electron effective mass is isotropic, with
a recommended experimental value of 0.067 me [131]. The
measured spin-orbit, light hole, and heavy hole effective
masses of GaAs are 0.15, 0.082, and 0.51 me [127], respec-
tively.
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FIG. 5. (a) Convergence of the SERTA and BTE electron mo-
bility of c-BN as a function of the fine k-and q-point grid size. The
coarse grid employed in these calculations is given in Fig. 19. We test
various fixed smearing parameters as well as the adaptative smearing.
(b) Electron mobility of c-BN at extrapolated infinite grid density,
plotted as a function of smearing parameter. The dashed lines are
the extrapolation to zero smearing. The use of adaptative smearing
(stars) yields results close to the zero-smearing extrapolation.

For 3C-SiC, the measured longitudinal and transverse elec-
tron masses are 0.68 and 0.25 me [127], respectively; for the
holes, we could find the density of states effective mass, 0.45
me [143].

For AlP, there are no experimental effective masses avail-
able, but we note a k · p study in relatively good agreement
with our results which reports 2.68 [131] and 0.16 me [131]
for the transverse and perpendicular electron effective masses,
respectively. For the hole, the same study obtains 0.73, 0.19,
and 0.3 me [131] for the heavy-hole, light-hole, and spin orbit
hole, respectively.

In the case of GaP, the low-temperature electron transverse
and longitudinal effective masses were measured to be 0.252
and 0.87 me [146], respectively. The heavy and light hole ef-
fective masses were obtained by cyclotron resonance at 1.6 K,
and are 0.54 and 0.16 me [145], respectively.

In the case of c-BN, the longitudinal and transverse elec-
tron effective masses are 1.2 and 0.26 me [127]; the heavy

hole masses were reported in the range 0.38–0.96 me, and
the light-hole masses were reported in the range 0.11–0.15 me

[130]. In the case of AlAs, a compilation of experimental data
from Ref. [154] shows that the electron transverse effective
mass ranges between 0.124 (from optical absorption) and 0.19
me (from quantum-well spectroscopic measurements).

For AlSb, the room temperature transverse and longitudi-
nal electron effective masses were measured to be 0.26 and 1.0
me [151] using indirect exciton absorption measurements. For
SrO we could not find reliable measurements of the effective
masses.

Overall, the agreement between DFT effective masses and
experiment is reasonable (within a factor 2–3) but there are
a few large discrepancies. For the electron effective masses,
the transverse mass of GaP and AlSb are overestimated
with respect to the experimental values by 63% and 82%,
respectively. In the case of silicon, the computed electron
effective masses are very close to the experimental values.
We note that our results are in line with previous calculations
employing perturbation theory [155]. Since DFT strongly un-
derestimates the effective mass of GaAs, with values ranging
from 0.03 me [156] to 0.053 me [22], we decided to use the
experimental effective mass for the calculation of the electron
mobility. To this aim, we employed a parabolic band approxi-
mation to evaluate analytically the eigenenergies and electron
velocities from the experimental effective mass. This semiem-
pirical procedure was used only for the electron mobility of
GaAs.

In the case of hole effective masses, the largest dis-
crepancies are found in the cases of c-BN (the mass is
underestimated by almost a factor of three), GaAs, Si, and
AlAs (all underestimating experimental values by 40-60%).
The impact of these discrepancies on the calculated mobilities
will be analyzed in Sec. IV E.

B. Impact of various approximations on the drift mobility

Having introduced all the required concepts and results,
we are now able to discuss Fig. 1. For each of the approxi-
mations tested, we only change a single parameter, keeping
everything else the same as in our most accurate calcula-
tions. The reference calculations have been performed using
converged coarse and fine grids, velocities including nonlo-
cal contributions, dipole and quadrupole corrections, SOC,
BTE, adaptive broadening, and experimental lattice param-
eters. The following considerations also apply to the Hall
factor.

We discuss the impact of the various approximations in
order of importance. We do not discuss the constant relaxation
time approximation (CRTA) which depends on the empirical
choice of the scattering rates and whose predictive power is
unclear [57].

The most severe approximation concerns the long-range
treatment of the dynamical matrix and the electron-phonon
matrix element. In Fig. 1, we break down the long-range
treatment into four levels: (i) no long-range treatment, (ii) in-
cluding Fröhlich dipoles, (iii) including dipole and quadrupole
corrections in the dynamical matrix, and (iv) including
monopole-dipole and monopole-quadrupole corrections in the
electron-phonon matrix elements.
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FIG. 6. Wannier-interpolated band structures [(a)–(e), (k)–(o)] and phonon dispersions [(f)–(j), (p)–(t)] of diamond, silicon, GaAs, 3C-SiC,
AlP, GaP, cubic BN, AlAs, AlSb, and SrO, respectively. The gray dots are experimental neutron scattering data for diamond [111], silicon
[112,113], GaAs [114], 3C-SiC [115], AlP [116], GaP [117], c-BN [118], AlAs [114], AlSb [119], and SrO [120].

Completely neglecting the long-range behavior has been
recognized in 2015 to be a severe limitation [78,79] but its
impact on the mobility has not yet been quantified. The conse-
quence of neglecting long-range contributions during Fourier
transformation of the matrix elements is that the Fröhlich
divergence when approaching the zone center is spuriously
suppressed. As a result, the overall electron-phonon coupling,
and therefore the scattering rates, will be strongly reduced.
This leads to a strong overestimation of the carrier mobility,
up to 220% in the case of the electron mobility of SrO.
Surprisingly, the hole mobility of 3C-SiC is only slightly
underestimated (8%) when ignoring long-range couplings.
This error cancellation is due to incorrect eigendisplacement
vectors and will be discussed shortly.

Next in order of significance, with a standard deviation
of 30%, is the neglect of dynamical quadrupoles during the
interpolation of the dynamical matrix and the electron-phonon
matrix element. Neglecting quadrupoles typically leads to an
underestimation of the mobility by an average of −5.6%, and
up to −45% in the case of 3C-SiC. A notable exception is
the case of c-BN, for which the neglect of quadrupole cor-
rections leads to an overestimation of the mobility by 71%.
This important effect has been discovered recently, and to our
knowledge it has been taken into account only in a handful
of works [15,16,22,25]. In the light of these developments, it
will be necessary to revisit prior mobility calculations.

In the case of silicon, neglecting quadrupoles for the LO
and TO modes in the �-L and �-K directions shown in Fig. 2
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FIG. 7. (a) Valence band deformation potential corresponding
to c-BN from 0 to 2 eV/bohr. The label “D” refers to the dy-
namical matrix, the label “G” refers to electron-phonon matrix
elements. The labels “DD,” “DQ,” and “QQ” indicate that dipole-
dipole, dipole-quadrupole, or quadrupole-quadrupole contributions
are included. The labels “eD” and “eQ” indicate monopole-dipole
and monopole-quadrupole terms. The black circles are the reference
DFPT calculations. (b) Same as in (a), but for the �1 valence band of
3C-SiC.

produces spurious oscillations, leading to a 4%/5% overesti-
mation of the electron/hole mobility. In the case of diamond,
the neglect of quadrupole corrections yields an overestimation
of less than 1% of the mobilities. Data for all compounds are
collected in Fig. 1, and their magnitude is in line with prior
work [22,157].

The effect of quadrupole correction can be substantial in
some compounds. For example, as seen in Fig. 1, the hole mo-
bility of c-BN is strongly overestimated. To better understand
why this is the case, in Fig. 7(a), we compare the deformation
potential obtained by including or neglecting the quadrupole
term. We can see that the high-energy modes are unaffected
by quadrupoles in this case. Conversely, the quadrupole cor-
rection becomes important for low-energy acoustic modes.

FIG. 8. Absolute value of the mass-scaled eigendisplacement
vectors eκα,qν in c-BN for the LA mode of the Boron atom in the
x, y, and z Cartesian direction along the L-� q-point line. The
label “D” refers to the dynamical matrix while the labels “DD,”
“DQ,” and “QQ” indicate that dipole-dipole, dipole-quadrupole, or
quadrupole-quadrupole contributions are included. The black arrows
are the reference DFPT calculations.

The red lines in Fig. 7(a) shows the result of the interpolation
performed by including only the dipole long-range correction.
This result clearly deviates from the direct DFPT calculations,
shown as the black dots close to the zone center. In particular,
the deformation potential corresponding to the LA mode in the
L-� and K-� directions is strongly underestimated, leading to
the observed large overestimation of the hole mobility of c-BN
(in Fig. 1).

Interestingly, we found that including quadrupole correc-
tions to the electron-phonon matrix elements only was not
sufficient to correctly describe the deformation potential, see
the orange lines in Fig. 7. Indeed, also in this case the de-
formation potential of the LA mode is overestimated, albeit
the overestimation is less significant, and the hole mobil-
ity of c-BN is underestimated accordingly (23%, see fourth
column of Fig. 1). This result is counter-intuitive since the
phonon frequencies are extremely well described by including
dipole-only terms in the dynamical matrix, see Fig. 23, for
example (in certain classes of materials such as piezoelectrics
this is often not the case [84]). A careful investigation shows
that the root cause which explains the difference between the
orange and green curves in Fig. 7 are the eigendisplacement
vectors obtained by diagonalization of the dynamical matrix.
The eigendisplacement vectors eκα,qν enter in Eq. (23) dur-
ing the Fourier transformation of the electron-phonon matrix
elements and within the long-range term in Eq. (40). As can
be seen in Fig. 8, the eigendisplacement vectors obtained by
diagonalization of the dipole dynamical matrix are incorrect
close to the zone center. It is therefore crucial to include
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at least dipole-dipole, dipole-quadrupole and quadrupole-
quadrupole in the dynamical matrix, see Eq. (46) as well
as monopole-dipole and monopole-quadrupole effects in the
electron-phonon matrix elements, see Eq. (40) to achieve a
reliable interpolation of the deformation potential. We also
emphasize that this correction must be applied both to the
dynamical matrix and the scattering matrix elements: a partial
correction of the dynamical matrix only is not sufficient, as
shown by the purple line in Fig. 7 and the third column of
Fig. 1.

Another interesting situation is found for 3C-SiC. We
show the deformation potential for the lowest energy band
in Fig. 7(b). Again we can see that the deformation potential
close to � along the K-� direction has a spurious finite value
at the zone center. Including quadrupoles in the dynamical
matrix and electron-phonon matrix elements fixes the prob-
lem. Among all materials, we note that including quadrupole
correction in the electron-phonon matrix element but not in
the dynamical matrix, yields an average underestimation of
the mobility by 5%.

Beyond long-range dipole and quadrupole corrections, the
most significant source of error in mobility calculations is the
local velocity approximation, whereby the nonlocal part of
the pseudopotential is neglected. This approximation yields
a large standard deviation of 28% with values ranging from
−71% in c-BN to +37% for 3C-SiC. We note that the local
approximation was used by some of us for the calculation of
the mobility of silicon [14]. We are now able to state that
this approximation yields an overestimation of the mobility by
+17% and +7% for the electron and hole mobility of silicon,
respectively. It is worth mentioning that the velocity including
nonlocal contributions was implemented in the EPW software
shortly after the publication of Ref. [14], so that subsequent
work is not impacted by this approximation.

The next source of error in order of importance is the
neglect of SOC. Without SOC the mobility is underestimated
by up to 62%. For the compounds investigated here, this
effect is almost negligible for electron mobility, while it is
significant for hole mobility. The strongest underestimation
occurs in AlSb with a −62% decrease in mobility. These
results are in line with earlier findings [13,14]. The reason for
this underestimation is that SOC only affects valence bands
in the semiconductors investigated here, because the valence
band maximum is predominantly of p character. The effect
of SOC is to lower the spin-split band, thereby reducing
the phase space available for scattering, which increases the
mobility. For systems with p states at the conduction band
bottom we expect a similar effect, for example in halide
perovskites [46].

Less significant than the above but still important is the
error that one makes by using the popular SERTA method.
This approximation systematically underestimates the mobil-
ity within the range 1% to 40%. At an intuitive level, the fact
that the SERTA mobility underestimates the BTE mobility
can be understood as follows: in the SERTA all scattering
processes reduce the electron current in the same way, while
in the BTE one takes into account the fact that forward scat-
tering does not reduce the current as strongly as backward
scattering. Therefore the BTE is expected to yield a higher
mobility.

The last three effects shown in Fig. 1 have a smaller impact
on mobility, with errors up to 20%. We go over these effects
in order of appearance in the figure. First, we investigated
the sensitivity of the mobility to the lattice parameter. To this
aim we recalculated all mobilities using the relaxed lattice
parameters. As discussed in Sec. III A, the PBE lattice pa-
rameter is overestimated with respect to experiment by an
average of +1.3%. This effect yields an average decrease
of mobility by −6.5%. We then considered the effect of the
exchange-correlation functional by using LDA instead of PBE
but keeping all other parameters the same. In this case, we find
only small changes, with an average of −1.5%. Lastly, we
explored the effect of pseudization parameters. To this aim,
we repeated the calculations using the SG15 ONCV library [94]
that was extended to fully relativistic potentials [95] instead of
the PSEUDODOJO library [91]. In this case, we find an average
deviation of the order of 2%. The small impact of these effects
on the calculated mobilities highlights the robustness of our
approach.

We note that many other effects can impact the calculation
of carrier mobilities, including electron-two-phonon interac-
tions [20], thermal lattice expansion [14], and band structure
renormalization due to electron-phonon coupling [47,158].
We expect these effects to be small in most materials, but it
will be important in the future to perform a detailed analysis.
The effect of quasiparticle corrections [14,24] and many-
body renormalization of the electron-phonon matrix elements
[159,160] will be discussed in Sec. IV E in relation with
experimental data.

C. Dominant scattering mechanisms

To gain a better understanding of the microscopic phenom-
ena responsible for limiting the intrinsic transport properties
of the compounds investigated here, we show in F4 of
Ref. [108] the electron and hole scattering rates τnk computed
via Eq. (4) at 150, 300, and 500 K. Without surprises, the
higher the temperature, the higher the scattering rates and the
lower the mobility.

As expected, in most cases we find a mild increase of
the scattering rates as we move away from the band edges,
which corresponds to acoustic-phonon scattering. At the onset
for the emission or absorption of optical phonons, the rates
show a marked increase. For example in diamond this sharp
increase occurs at around 160 meV, when optical phonon
emission/absorption processes become allowed. We note a
couple of exceptions to this general trend: the scattering rates
of electrons in GaAs and SrO, and both the electron and hole
scattering rates of c-BN first decrease when moving away
from the band edges which is attributed to LO phonon ab-
sorption and was investigated in Ref. [19].

In Fig. 9, we present the mode decomposition of the room-
temperature scattering rates, as well as the total scattering
rates. Starting from the holes: for diamond, the onset of scat-
tering is mostly related to transverse acoustic mode scattering,
while for silicon the longitudinal acoustic mode also plays an
important role. In the case of GaAs, AlP, GaP, AlAs, AlSb, and
SrO, the hole scattering near the band edges is dominated by
the longitudinal optical mode. For the electrons: the scattering
of electrons near the band edge in GaAs, AlP, GaP, AlAs,
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FIG. 9. [(a)–(j)] Mode decomposition and total scattering rates at room temperature as a function of energy from the band edges for
diamond, silicon, GaAs, 3C-SiC, AlP, GaP, cubic BN, AlAs, AlSb, and SrO, respectively. The energy range covers the energy window used in
the calculations.

AlSb, and SrO is dominated by longitudinal optical modes,
while diamond, silicon, 3C-SiC and c-BN show significant
contributions from LA and TA modes.

In 1966, Berman, Lax, and Loudon [161] have derived
intervalley-scattering selection rules for III-V semiconduc-
tors. For example, in the case of electrons in GaP, X -X
intervalley scattering is expected. The rule is that, if the mass
of the group-V element is heavier than that of the group-III
element, then LO scattering should be allowed by selection
rules, otherwise the LA scattering would be allowed. There-
fore, for GaP, one would expect LA-phonon scattering, while
for AlP, AlSb, and AlAs one would expect LO-phonon scat-
tering to dominate the intervalley scattering. Looking at Fig. 9

confirms the dominance of LO scattering in AlP, AlSb, and
AlAs. For the case of GaP, it seems the scattering at an energy
3/2kBT away from the band edge has about equal contribution
from LA and LO phonon modes.

A complementary viewpoint on the scattering rates is
obtained by considering only carriers at a given energy,
and resolving the rates by phonon energy. This analysis is
shown in Fig. 10. The calculations correspond to carriers at
an energy of 3kBT/2 away from the band edge and room
temperature, following previous work [46]. From this anal-
ysis, we can see that the scattering rate is overwhelmingly
dominated by acoustic scattering in diamond and c-BN. In
contrast, optical scattering dominates for electrons in GaAs,
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FIG. 11. Comparison between the room temperature first-
principles BTE drift mobility (blue) and the mobility obtained with
the Drude formula from Eq. (7) (green). The scattering lifetimes
τ3/2kBT are calculated as angular averages for carriers at an energy
of 3kBT/2 = 39 meV away from the band edge. The materials are
arranged in decreasing order of their BTE drift mobility value.

SrO, AlAs, AlP, and for holes in GaAs, AlAs, AlSb, GaP,
and AlP.

We also mention a few counter examples to the common
wisdom whereby if a material is dominated by deformation
potential acoustic scattering, then the temperature exponent
of the mobility is (T −3/2) [162]. Diamond, silicon, c-BN, and
3C-SiC are all dominated by acoustic-phonon scattering, but
the temperature exponents evaluated on the 150–500 K range
are −1.81, −2.05, −1.33, and −2.86 for the electrons and
−2.06, 2.93, −1.51, and −1.97 for the holes, respectively.
These data suggest that one should exert some caution when
applying simplified models based on the electron gas to real
materials.

For completeness we also examine the predictive power of
the classic Drude formula [Eq. (7)]. To this aim, we compare
our BTE calculations for all the compounds considered in this
work with the Drude prediction. In the Drude formula, we
employ the mobility effective masses reported in Table III and
the total scattering rates evaluated as in Fig. 10. The resulting
data are shown in Fig. 11. The Drude formula reproduces the
trend of ab initio BTE calculations very closely, although it
tends to overestimate mobilities by a factor of 1.1 to 3.1. This
favorable comparison implies that the materials descriptors
that we introduced, namely the mobility effective mass and the
scattering rates of carriers at 3kBT/2, provide a meaningful
description of carrier transport in the systems considered here.

D. Temperature dependence of the Hall factor

In this section, we investigate the temperature dependence
of the Hall factor. We use Eqs. (9)–(13) to compute the Hall
factors within both the SERTA and full BTE. For each temper-
ature we extrapolate the fine grids as discussed in Sec. III D,
and we present the results in Fig. 12. We find that the Hall
factor can vary substantially with temperature, ranging from
0.7 to 1.9 at room temperature. These results suggest that

caution should be used when comparing ab initio calculations
of carrier mobilities to experiments, since most reported ex-
perimental data refer to Hall mobilities, not drift mobilities.
As a technical note, we mention that below 150 K we could
not converge the Brillouin zone grids due to excessive compu-
tational cost. Accordingly these data are not shown in Fig. 12.

Our calculations indicate that the Hall factor exhibits rather
complex temperature trends, which reflects the variety of
phonon energy scales involved.

Comparison with experimental data for the Hall factor is
challenging given the scarcity of available data. We were only
able to find experimental values for the hole Hall factor of
diamond and for the electron Hall factor of GaAs, which we
report in Fig. 12. In both cases, we find reasonable agreement
between our calculations and experiments, with the largest
deviation being of the order of 30% (note the magnified scales
in Fig. 12).

In a recent paper [51], the authors calculated the electron
Hall factor of silicon to be 1.15 at room temperature. These
results are consistent with our Fig. 4 for the same fine grid
where we have an electron Hall factor of 1.12. The authors
of Ref. [51] also computed the electron Hall factor of GaAs,
finding a BTE value ranging from 1.22 to 1.14 in the 250–
400 K temperature range. Their results compare well with our
calculations, yielding a Hall factor of 1.28 to 1.13 in the same
temperature range.

In Fig. 12, we also show the Hall factor as computed
using the standard isotropic approximation given by Eqs. (15)
and (16) (gray dashed lines). For these calculations, we eval-
uated the Dirac deltas using a Gaussian of width 1 meV.
This approximation reproduces the BTE results quite well for
diamond, GaAs, AlP(e), GaP(h), c-BN(e), AlAs, AlSb, and
SrO. However, it fails even qualitatively in the case of silicon,
AlP(h), and GaP(e). One important limitation of the isotropic
approximation is that it cannot lead to a Hall factor smaller
than unity.

E. Temperature dependence of the drift and Hall mobility
and comparison to experiment

In this section, we examine the accuracy of the various
methods presented here in reproducing experimental carrier
mobility. In Fig. 13, we show the dependence of the BTE
drift and Hall mobility on temperature, and compare our
calculations to experimental data whenever available. The
calculations are presented in a log-log scale. We indicate with
dashed lines the linear fits used to determine the temperature
exponents in Table S2 of Ref. [108]. Our results span a large
range of power law decays, from T −1.18 for c-BN to T −3.15 for
AlP. In the temperature range considered here (150–500 K),
we find that a single exponent captures fairly well the calcu-
lated trends for all materials. Some deviations are found to
occur above 400 K in the case of GaAs, AlP, c-BN, AlAs, and
SrO. These deviations are indicative of high-frequency optical
phonons becoming increasingly important in carrier scattering
at these temperatures. We note that this fitting procedure is
done in order to extract a single exponent which can be com-
pared to experimental data fitted with the same procedure and
in the same temperature range, whenever available.

In Fig. 14(a), we compare the calculated and measured
temperature exponents. We find that in general the measured

043022-19



SAMUEL PONCÉ et al. PHYSICAL REVIEW RESEARCH 3, 043022 (2021)

1.08

1.10

1.12

1.14

1.16

1.18

H
al

l e
le

ct
ro

n 
fa

ct
or Diamond(a) (b) (c) (d) (e)

(f) (i)

(k) (l) (o)(m) (n)

(s)(r) (t)

1.1

1.2

1.3

1.4

1.5

1.6
Silicon

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

GaAs (

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.1

1.2

1.3

1.4

1.5
AlP

1.0

1.1

1.2

1.3

1.4

1.5

H
al

l e
le

ct
ro

n 
fa

ct
or

0.9

1.0

1.1

1.2

1.3
c-BN

1.1

1.2

1.3

1.4

1.5
AlAs

1.1

1.2

1.3

1.4
AlSb

1.0

1.1

1.2

1.3

1.4

1.5
SrO

0.5

0.7

0.9

1.1

1.3

H
al

l h
ol

e 
fa

ct
or

Konorova 1967

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

200 300 400 500
Temperature [K] 

1.0

1.1

1.2

1.3

1.4

1.5

H
al

l h
ol

e 
fa

ct
or

200 300 400 500
Temperature [K] 

0.6

0.7

0.8

0.9

1.0

1.1

1.2

200 300 400 500
Temperature [K] 

1.0

1.2

1.4

1.6

1.8

2.0

200 300 400 500
Temperature [K] 

1.2

1.4

1.6

1.8

2.0

200 300 400 500
Temperature [K] 

0.9

1.0

1.1

1.2

1.3

SERTA BTE Isotropic

Stillman 1970
Rode 1975

3C-SiC

GaP

(g)

(d)

(j)(h)

(p) (q)

FIG. 12. Temperature dependence of the calculated electron [(a)–(e), (k)–(o)] and hole [(f)–(j), (p)–(t)] Hall factor for diamond, silicon,
GaAs, 3C-SiC, AlP, GaP, cubic BN, AlAs, AlSb, and SrO, respectively. We show results within the SERTA (orange) and BTE (green). The
calculations have been extrapolated to infinitely dense Brillouin zone grids. The gray dashed lines correspond to the isotropic approximation
introduced in Eq. (15). Experimental data for diamond are taken from Konorova and Shevchenko [163]. Experimental data for GaAs are taken
from Rode [164] and Stillman et al. [165], for a low magnetic field of 0.5 kG.

exponents are well reproduced by the calculations, with an
error of less than 20%. The only exceptions are found for
SiC and AlSb, for which very few experimental studies exist.
Given the overall good agreement found for the other com-
pounds, we expect that the agreement between theory and
experiment for SiC and AlSb will improve as new experimen-
tal data will be produced in the future.

In Fig. 14(b), we show the comparison between calculated
and measured mobilities, in a logarithmic scale. In all cases,
the experimental data lay below the predicted phonon-limited
Hall mobility. The difference can be as severe as 100% in
some cases. The calculated drift mobility is found to be
closer to the experimental data, but we have to emphasize
that most experimental data reported in this figure are for the
Hall mobility, as indicated in Table S2 of Ref. [108]. The
SERTA drift mobility appears to be closer to experiments, and
in some cases below the experimental data (for example in
diamond, AlSb, and GaAs). This behavior is probably due
to a cancellation of errors, and should not be taken as an
endorsement of the SERTA method. Whenever possible we
recommend to perform complete BTE calculations. Finally,
we show in Fig. 15 a visual comparison of the three levels
of theory employed with the experimental range of values
found in literature. In general, the theoretical spread is smaller
than the experimental one and the relative ordering is mostly
respected. However, we note that we do not expect perfect
agreement between the calculations of phonon-limited carrier
mobilities and experimental data since the latest may incorpo-

rate additional scattering mechanisms. Indeed, we expect that
a better agreement can be reached by increasing the quality of
experimental samples.

F. Corrections to band structures and matrix elements
from experimental data

In this section, we investigate the role of many-body renor-
malization of the band structures and electron-phonon matrix
elements on the mobility. Since it is not currently possible
to perform complete many-body calculations of the BTE,
we estimate these effects by using the experimental effective
masses and by rescaling the electron-phonon matrix elements
via the experimental dielectric permittivities.

To this aim, starting from the experimental masses reported
in Table III, for the electrons we determine the conductivity
effective mass defined as the harmonic mean of the transverse
and longitudinal effective masses:

3

m∗,el
cond

= 1

m∗
‖

+ 2

m∗
⊥

. (53)

For the holes, we average the band contribution with the
following weighted average formula which assumes band
parabolicity [197]:

m∗,h
cond = (m∗

hh)5/2 + (m∗
lh )5/2

(m∗
hh)3/2 + (m∗

lh )3/2
. (54)
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FIG. 13. Calculated temperature dependence of electron [(a)–(e), (k)–(o)] and hole [(f)–(j), (p)–(t)] mobilities, and comparison to experi-
mental data for diamond, silicon, GaAs, 3C-SiC, AlP, GaP, cubic BN, AlAs, AlSb, and SrO, respectively. The calculated drift mobilities are in
red, the Hall mobilities are in green, and the experimental datapoints are in gray. The dashed lines indicate the power law fits with exponents
reported in Table S2 from Ref. [108] and obtained on the 150 to 500 K range. The references for the experimental data are as follows:
diamond [139,166–170], silicon [171–175], GaAs [164,176–180], 3C-SiC [181–184], AlP [185,186], GaP [187–189], AlAs [190–193], and
AlSb [194–196].

Using these experimentally derived quantities, we rescale our
calculated electron and hole Hall mobilities using

μmass = μ
(
m∗,DFT

cond /m∗,exp
cond

)
. (55)

The relative change in mobility obtained by this procedure
is reported in Table IV. In all materials considered here, this
rescaling decreases the hole mobility, with the exception of
SiC and BN. For the electron mobility, in all cases, but dia-
mond the mobility increases upon rescaling.

Along the same line, we also proceed to renormalize the
electron-phonon matrix elements by using the experimental
dielectric screening. This strategy allows us to capture effects
similar to the many-body renormalization of the electron-
phonon coupling [5,159]. Since the mobility contains the
square moduli of the matrix elements, we rescale the mobility
using

μscreen = μ(εexp/εDFT)2. (56)

In this operation, we employ the dielectric constants reported
in Table III.

In Fig. 16, we show the impact of rescaling the matrix
elements (black triangles) on the mobility together with the
rescaling of the matrix elements and effective masses (blue
crosses). For all cases, we also report the mean absolute error
(MAE) and the mean absolute relative error (MARE) between
the computed and experimental mobilities.

Our best first-principles BTE Hall mobilities have a large
absolute error around 1000 cm2 V−1 s−1 due to the strong
overestimation of the high electron mobility of GaAs and with
a MARE of 64%. If we remove GaAs from the dataset, which
is the compound with the highest mobility and hence it weighs
disproportionately in the calculation of the average, we obtain
a maximum absolute error of 335 cm2 V−1 s−1, and a MARE
of 62%. When we proceed to renormalize the electron-phonon
matrix elements using the experimental dielectric constant,
the results improve drastically with a MAE below 205 cm2

V−1 s−1 and MARE of 35%. However, this improvement is
partially canceled when we also use the experimental effective
masses, leading to a MARE of 55%.

These results indicate that improving the accuracy of the
band structures and electron-phonon matrix elements, for
example by using hybrid functionals [198] or many-body
perturbation theory [5,159] will be important for an accu-
rate theoretical description of the mobility. Whether these
improvements will lead to close agreement with experiment,
or else a more powerful theory beyond the BTE formalism
will be needed in the future, remains an important open ques-
tion.

Finally, we note that regardless of the level of approxima-
tion or re-scaling applied, the electron mobility of 3C-SiC and
AlAs, and the hole mobility of GaP are significantly higher
than experiment. This suggests that higher mobilities could
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FIG. 14. Comparison between theoretical and experimental
(a) temperature exponents and (b) mobilities. The values are reported
in Table S2 of Ref. [108]. The mean absolute error (MAE) and mean
absolute relative error (MARE) are indicated as inset in the bottom
figure and do not include the electron mobility of GaAs.

be achieved in these materials, paving the way for improved
electronic devices.

V. CONCLUSION

In this work, we have carried out an extensive investigation
of the carrier transport properties of ten simple semiconduc-
tors including diamond, silicon, GaAs, 3C-SiC, AlP, GaP,
c-BN, AlAs, AlSb, and SrO. Exploiting a precise interpolation

TABLE IV. Effect of rescaling the Hall mobilities obtained
via the BTE using experimental effective masses and dielectric
constants.

Hall mobility Effective mass Screening Both
cm2 V−1 s−1 rescaling rescaling rescaling

C-e 1705 −16% −9% −24%
C-h 2467 −28% −9% −35%
Si-e 1770 +2% −14% −13%
Si-h 574 −47% −14% −54%
GaAs-e 17860 – −42% −42%
GaAs-h 1068 −32% −42% −63%
SiC-e 2257 +3% −11% −8%
SiC-h 111 +17% −11% +4%
AlP-e 698 – −14% −14%
AlP-h 92 – −14% −14%
GaP-e 442 +56% −22% +21%
GaP-h 353 −32% −22% −47%
BN-e 956 +11% −3% +7%
BN-h 281 +57% −3% +52%
AlAs-e 640 +20% −22% +16%
AlAs-h 357 −45% −22% −47%
AlSb-e 431 +76% −10% +59%
AlSb-h 1000 −38% −10% −44%
SrO-e 65 – −14% −14%
SrO-h 5 – −14% −14%

approach and an efficient procedure for numerical conver-
gence, we have been able to compute from first-principles
transport coefficients with high accuracy. We also lay some
methodological landmarks by establishing well-defined cri-
teria for predictive calculations of transport coefficients,
including the role and the level of the approximations in the
underlying first-principles calculations (exchange and corre-
lation functionals, pseudopotentials, lattice parameters and
SOC), the interpolation procedures for quasiparticle disper-
sions and interactions, and the numerical techniques that
ensure the efficient convergence of transport coefficients. One
key result of this extensive study is that our most accurate Hall
mobility calculations seem to systematically overestimate the
experimental data. In a few cases, the overestimation is as
large as a factor of two. This is a quite promising outcome as
in our calculation we only included electron-phonon scatter-
ing and our result should be regarded as an upper limit to the
Hall mobility achievable in highly pure samples, suggesting
the possibility of further improvement in the transport prop-
erties of semiconductors of technological relevance. Here it is
also important to stress that our work has clearly shown that
the Hall factor exhibits significant variations across materials
and as a function of temperature, ranging between 0.7 and
2. This is a clear indication that the common practice of
comparing computed drift mobilities with experimental Hall
mobilities should be done with particular care. Finally, it is
important to stress that in our analysis we have also showed
that part of the difference between theory and experiment may
be connected with the inaccuracy in the DFT effective masses
and electron-phonon matrix elements, but further work using
explicit many-body perturbation theory calculations will be
needed to confirm this point.
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FIG. 15. Visual comparison of the room temperature theoretical drift mobilities using the self-energy relaxation time approximation
(SERTA), the Boltzmann transport equation (BTE), and the Hall mobilities using the BTE. Materials are sorted by mobility decreasing towards
the right hand side using the Hall BTE as reference. The shaded region indicates the range of measured electron (-e) and hole (-h) mobilities
using the values reported in Table S2 of Ref. [108].

Our work demonstrates that first-principles calculations of
carrier transport are making considerable progress. We believe
we are reaching a point where detailed comparison with high-
quality experimental data on pure samples will be increasingly
important. For example, we highlight the need for new ac-
curate measurements of the carrier mobility of SiC, AlAs,
and GaP, and we hope to reignite interest in the experimental
community to generate modern transport datasets for theorists
to compare with. This manuscript describes a comprehensive
protocol to perform such delicate calculations, and acts as a
blueprint for reporting first-principles transport data in a way

FIG. 16. Comparison between theoretical and experimental mo-
bility with experiment. Black triangles indicate the impact of
rescaling the matrix elements while blue crosses indicate additional
effective masses rescaling. The mean absolute error (MAE) and mean
absolute relative error (MARE) are indicated as inset in the bottom
figure and do not include the electron mobility of GaAs.

that is accessible, reliable, and reproducible. In this spirit, we
encourage the adoption of the FAIR [106] data and software
principles in the study first-principles transport.
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APPENDIX A: CONSTRUCTION OF WANNIER
FUNCTIONS AND SPATIAL LOCALIZATION

When performing calculations of carrier mobility, and es-
pecially in the presence of magnetic fields, it is crucial to have
symmetric and highly localized Wannier functions. In order
to provide a benchmark for future work, here we describe the
procedure followed to generate MLWFs and the properties of
the resulting matrix elements.

For diamond, we choose 4 sp3 orbitals (eight Wannier
functions) located on each atom of the inversion-symmetric
unit cell as initial projection for the valence and conduction
manifold. This choice leads to a Wannier function spread σ 2

of 2.40 Å2 per function for the converged coarse k-point grid,
and 0.79 Å2 for the valence bands, see Table V. The strong
localization of these MLWFs leads to a fast spatial decay
of the matrix elements in the Wannier representation of the
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TABLE V. Data related to the wannierization of all band structures considered in this work. The valence and conduction manifold are
computed separately. We indicate the initial projections and the number of iterations to reach a relative convergence of 10−12 in the spread, the
total spread, and the average spread per Wannier function for the converged k-point grids. For the initial projection, a number next to the atom
means that the initial projection is applied to only one of the two equivalent atoms in the primitive cell. The disentanglement window as well
as the frozen window are given with respect to the band edge. All calculations include SOC.

Material Number of WF Initial proj. Wind. eV Froz. eV k grid Number of iter. Spread (Å2)

C-e 8 C1:sp3 13.25 4.65 203 210 2.40
C-h 8 C1:sp3 – – 203 200 0.79
Si-e 12 Si1:d+Si1:s 14.20 4.00 163 1320 5.67
Si-h 8 Si1:sp3 – – 203 210 2.22
GaAs-e 8 Ga:sp3 9.88 5.75 143 3750 8.85
GaAs-h 16 Ga+As:sp3 9.88 5.75 163 170 3.04
3C-SiC-e 8 Si:sp3 13.15 5.85 223 390 4.36
3C-SiC-h 8 Si:sp3 – – 163 160 1.21
AlP-e 8 Al:sp3 9.69 2.79 183 480 8.37
AlP-h 6 P:p – – 163 170 3.00
GaP-e 8 Ga:sp3 9.19 3.79 143 2950 8.21
GaP-h 6 P:p – – 163 205 3.65
c-BN-e 8 B:sp3 – – 183 260 2.51
c-BN-h 6 N:p – – 143 205 1.22
AlAs-e 8 Al:sp3 9.05 2.34 163 240 8.51
AlAs-h 6 As:p – – 143 105 3.36
AlSb-e 8 Al:sp3 7.90 1.36 163 4160 9.80
AlSb-h 6 Sb:p – – 123 2260 4.46
SrO-e 12 Sr:d+Sr:s 13.26 5.06 123 7830 3.26
SrO-h 6 O:p – – 123 30 1.38

electronic Hamiltonian, the electron velocity, the interatomic
force constants, and the electron-phonon matrix elements,
down to nine orders of magnitude, as seen in Fig. 18. In all the
tests reported here, we find as expected that Wannier functions
describing the valence bands are more localized than for the
conduction bands.

In the case of silicon, the wannierization of the con-
duction band manifold is especially challenging. Using the
WANNIER90 software, we need 1320 iterations to converge
to a relative accuracy of 10−12 Å2 in the spread (we note in
passing the usefulness of the conjugate gradients algorithm
such that we changed the default of resetting the search di-
rection to steepest descents every 100 iterations, rather than
5, as default). For the conduction bands, we find that adding
one d and one s orbital on one of the silicon atoms as ini-
tial projection works best, and yields a spread of 5.67 Å2.
The comparison between the electronic band structure of the
conduction bands of silicon using this projection and an sp3

one is shown in Fig. 17. The challenge in obtaining carefully
converged effective masses lies in the fact that the conduction
band minimum of silicon does not lie at a high-symmetry
point and is therefore not included in the k-point grid used
for interpolation. The calculation of the conduction band
manifold is accelerated in silicon and diamond by excluding
the valence bands. The corresponding Wannier functions are
shown in Fig. 18. They display a relatively complex shape that
deviates from the simple chemical picture found for the other
materials. The difficulty in generating Wannier functions for
the conduction bands of silicon has already been discussed in
earlier work [211]. For the conduction band of SrO, we find
that using a similar combination of d and s orbitals on the

Sr atom works better than sp3, but it also results in a more
complicated and entangled set of Wannier functions, as shown
in Fig. 18.

For GaAs, we used 16 Wannier functions (eight Wannier
functions times two due to spin-orbit coupling); on the Ga
and As atoms, with sp3 character. These span both the valence
and conduction manifolds, and are used to calculate hole
mobilities. To reduce the computational cost for the electron
mobility, we used only eight Wannier functions centered on
the Ga atom, with sp3 character, to describe the conduction
manifold. Since we used semicore states for the pseudopoten-
tials, we excluded the first 20 bands from the wannierization
in the case of valence bands, and 28 bands in the case of con-
duction bands. The spread of the maximally localized Wannier
functions associated with Ga is 8.85 Å2. The case of the va-
lence band of GaAs is unique among the studied compounds.
We find that Wannierizing both the valence and conduction
bands yielded a smaller spread of 3.04 Å2 on the valence band
manifold than using six or eight Wannier functions of p or sp3

character on the As atom with a spread of 4.12 Å2 or 3.29 Å2,
respectively. We attribute the decrease in spread with increas-
ing number of Wannier functions in the case of GaAs to an
increase in the flexibility of the Wannier function basis set and
some hybridization with the conduction manifold due to the
small bandgap in DFT. For SiC we used sp3 orbitals located
on the Si atom, with eight Wannier functions for both valence
and conduction, and in the conduction band calculations we
excluded eight bands. After optimization, the spreads are 4.36
and 1.21 Å2 for all orbitals, respectively.

For the other six materials, we report in Table V all the
chosen initial projections, disentanglement energy windows,
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FIG. 17. Conduction band edge of silicon—including spin-orbit
coupling (SOC)—where the zero energy has been set at the X high-
symmetry point and computed using DFT (black line). (a) Electronic
bands obtained using Wannier interpolation with k-point grids rang-
ing from 103 to 163 and constructed from an initial set of four
sp3 projections on each Si atom. Both the valence and conduction
bands have been wannierized, totalling 16 Wannier functions due
to SOC. (b) Electronic bands obtained using Wannier interpolation
with k-point grids ranging from 103 to 163 and constructed from an
initial set of one s and five d projections on one Si atom only. Only
the conduction bands have been wannierized, totalling 12 Wannier
functions due to SOC.

and frozen windows [212]. For completeness, we mention in
Table VI the bands that were excluded from the wannieriza-
tion. In crystals with inversion symmetry such as diamond
or silicon, states with opposite spin orientations are degen-
erate. In zinc-blende structures, however, the lack of inversion
symmetry causes a spin splitting along all directions except
[100,213]. We verify in all cases that our choice of initial Wan-
nier projections preserves the expected crystal symmetries in
the spread and in the electronic band structure.

As seen in Fig. 18, the electronic Hamiltonian, velocity
matrix, dynamical matrix and electron-phonon vertex in the
limiting case of Rp = 0 or Re = 0 in the Wannier represen-
tation as a function of R = |Re − Rp| decay very rapidly. We
know that the decay of the Hamiltonian for the valence band
manifold must be exponential [214,215]. For the conduction
band the exponential decay is not guaranteed, and for the
dynamical matrix and the phonon part of the electron-phonon
matrix elements we expect a power law decay. To characterize

TABLE VI. Number of bands excluded from the wannierization
step, the exponential decay length of the Hamiltonian, velocity ma-
trix, dynamical matrix, and electron-phonon vertex in the limiting
case of Rp = 0 or Re = 0. The decays have been determined from a
least-squares fitting of the form exp(−hx) in a 10 Å range.

Excluded Decay length h−1 (Å)

bands H v D g(Re,0) g(0,Rp)

C-e 1–8 1.057 1.784 0.859 1.524 1.487
C-h – 1.028 1.224 0.859 1.172 1.156
Si-e 1–8 1.478 2.101 1.290 2.133 2.034
Si-h – 1.710 1.617 1.290 1.547 1.644
GaAs-e 1–28 1.465 2.850 1.601 2.459 2.278
GaAs-h 1–20 1.533 1.906 1.603 2.171 2.038
SiC-e 1–8 1.187 1.909 1.214 1.751 1.765
SiC-h – 1.245 1.362 1.215 1.381 1.719
AlP-e 1–8 1.517 2.785 1.373 2.511 2.272
AlP-h 1–2 | 9–40 1.328 1.328 1.373 1.736 2.060
GaP-e 1–18 | 35–40 1.434 2.716 1.397 2.360 2.205
GaP-h 1–12 | 19–40 1.293 1.490 1.397 1.903 1.985
BN-e 1–8 | 17–40 1.057 2.057 0.994 1.532 1.507
BN-h 1–2 | 9–40 0.976 1.091 1.000 1.254 1.539
AlAs-e 1–18 1.509 2.647 1.450 2.465 2.267
AlAs-h 1–12 | 19–40 1.247 1.375 1.450 1.720 2.057
AlSb-e 1–26 1.642 2.712 1.536 2.751 2.437
AlSb-h 1–20 | 27–50 1.305 1.638 1.537 2.041 2.182
SrO-e 1–16 1.284 1.813 1.505 2.409 1.732
SrO-h 1–10 | 17–40 0.952 1.035 1.505 1.326 2.076

the decay using a simple unified descriptor, we fit our data
with an exponential function for all cases. The resulting decay
length is reported in Table VI for all materials.

In the specific case of the valence band manifold of sil-
icon, the Hamiltonian decay length is 1.710 Å, improving
on earlier work which reported a decay length of 3.2 Å
with an empirical pseudopotential starting from four bond-
centered trial functions [214]. The worst localization is found
for the conduction band manifold of GaAs, GaP, and AlSb
(>2.7 Å), while the best localization is achieved for the va-
lence manifold of c-BN, diamond, and SrO (∼1 Å). We also
note that the spread and number of iterations required to reach
convergence systematically increase with k-point grid density.
Furthermore, it has been reported that convergence fails for
ultra-dense grids (80 × 80 × 80 and above) [216].

We also tested two aditional procedures for constructing
Wannier functions, namely the selectively localized Wannier
functions (SLWFs) [217] and the symmetry-adapted Wan-
nier functions (SAWFs) [218]. With SLWFs one constrains
the Wannier center rn to be located at the position r0n us-
ing a Lagrange multiplier λc as λc

∑
n(rn − r0n)2, where the

summation can be restricted to selected Wannier functions.
In this case, we consider the entire manifold. The multiplier
λc can be chosen arbitrarily; the larger the value, the more
difficult the convergence, so that in practice the Wannier
centers are close to but not exactly positioned at the target
positions. The SAWFs guarantee that the Wannier functions
respect the point group symmetry of the crystal. We note
that the existing implementation in the WANNIER90 [75] code
does not currently support band disentanglement with a frozen
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FIG. 18. The first two rows present the Wannier functions in real space for the conduction and valence bands, respectively; generated using
the XCRYSDEN visualization program [219]. In the case of conduction bands, we show the ±1.0Å−3/2 isosurface everywhere, except in the
case of SrO for which we show the isosurface at ±2.0Å−3/2. In the case of valence bands, we show the isosurfaces at ±0.2, ±0.5Å−3/2, ±1.0,
and ±1.0 Å−3/2 for Si, diamond, 3C-SiC and GaAs, respectively; and the isosurface at ±2.0 Å−3/2 for all the other materials. By denoting the
spinor components as [φ,ψ], in the figure we show |φ| × sign(�{φ}). The next five rows show the spatial decays of the electronic Hamiltonian,
velocity matrix, dynamical matrix and electron-phonon vertex in the Wannier representation, in the limiting case of Rp = 0 or Re = 0, as a
function of R = |Re − Rp|. The data points correspond to the largest value taken over the Wannier functions in each of the two unit cells at a
distance R, and are normalized such that the value is 1 at R = 0. The pink and purple colors indicate the wannierization for the conduction
and valence manifold, respectively. The size of the k- and q-point grids used for each manifold are also indicated in pink and purple colors,
respectively.

window nor SOC. In both cases, we find that the minimum
spread is larger than those reported in Table V. Therefore we
did not purse these avenues further.

The MLWFs obtained as described in this section were
used to calculate interpolated band structures, phonon
dispersions, and electron-phonon matrix elements in the fol-
lowing sections.

APPENDIX B: CONVERGENCE OF THE MOBILITY
WITH THE COARSE BRILLOUIN ZONE GRID

We present in Fig. 19 the convergence rate of the electron
and hole carrier mobility with increasing coarse grid sizes.
Overall, we find that using the same coarse k and q grid
leads to the fastest convergence. On the other hand, using
a coarse k-grid three times denser than the q-grid leads to
similar results but at a much higher computational cost, as
shown in Fig. S2 in Ref. [108] for c-BN. Therefore it is
recommended that calculations be performed using the same

k and q coarse grids. We note that the calculations presented
below were performed using a k grid twice as dense as the q
grid for historical reasons, but in future work, equal grids will
be employed.

To perform the convergence study, we use either a 603

or a 1003 fine grids as in indicated in Fig. 19. We verify
that the cross convergence between coarse and fine grids is
weak. As can be seen in Fig. 19, the interpolated mobility
converges slowly with respect to the coarse grid size, despite
dipole and quadrupole corrections being already included in
the calculations. The origin of this slow convergence has
not been investigated so far. To shed light on this effect, we
compute the mobility effective mass defined in Eq. (6) and
report the convergence of this purely electronic quantity with
orange dots in Fig. 20. We note that the mobility effective
mass reflects the quality of the Wannier interpolation of the
band structures. Its value should converge to the mobility
effective mass computed directly from DFT bands without
interpolation. In Fig. 20, the reference DFT value is shown
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FIG. 20. Convergence of the CARTA electron [(a)–(e), (k)–(o)] and hole [(f)–(j), (p)–(t)] mobility as a function of the coarse k-point grid
size (magenta dots). We only show the relative convergence since the CARTA mobility contains the arbitrary parameter g2, see Eq. (8). The
coarse q-point grid and the fine k and q-point grids are given in the inset. The vertical gray line indicates that convergence has been achieved,
and represents the coarse grid that is used in the remainder of this work. The orange dots are the mobility effective masses, and are referred to
the vertical axis on the right. The horizontal orange and magenta dashed lines are the DFT reference values.
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as horizontal dashed orange lines. Figure 20 shows that the
mobility effective mass plays a significant role in the slow
convergence of the mobility as a function of coarse grid size.
However, the convergence of the mobility effective mass is a
necessary but not sufficient condition for the overall conver-
gence of the mobility with coarse grid size. Since computing
the mobility effective mass is much cheaper than computing
the mobility, this quantity can be used to estimate a minimum
coarse grid size. In the cases of diamond, Si, 3C-SiC, AlP,
GaP, AlAs, AlSb, and SrO in Fig. 20, we see that the electron
mobility effective mass does not behave consistently with
the convergence of the mobility. It is also the case for the
hole mobility effective mass of GaAs and AlSb. The reason
for this deviation is that the effective mass does not fully
capture the scattering phase space, since it neglects the energy
conservation connected with the electron-phonon scattering
amplitudes.

To incorporate these effects, we employ the CARTA ap-
proximation defined in Eq. (8). In this case, we have to
compute the sum over q points explicitly, making it more com-
putationally involved, but still far cheaper than the SERTA
since we do not have to interpolate the dynamical matrix
and electron-phonon matrix elements. For the cases consid-
ered here, the CARTA calculations are at least two orders of
magnitude faster than the SERTA. We note that in CARTA
calculations we cannot employ adaptive broadening, therefore
we use a constant 10 meV Gaussian broadening for the Dirac
deltas. The CARTA results are shown as magenta dots in
Fig. 20, and show how the electronic degrees of freedom
influence the convergence with respect to the coarse Bril-
louin zone sampling. Since these calculations do not carry
information about the electron-phonon matrix element, we
present the data as a deviation from the CARTA mobility com-
puted without Wannier interpolation, by using directly DFT
eigenvalues.

By comparing Figs. 19 and 20, we observe that the CARTA
mobility converges at a similar rate as the BTE mobility. This
observation suggests to speed up the coarse grid convergence
by factoring out the electronic degrees of freedom. To this
aim, we rescale our BTE mobilities μαβ using the following
expression:

μscaled
αβ = μαβ

μCARTA,DFT
αβ

μCARTA
αβ

, (B1)

where μCARTA,DFT
αβ is the mobility obtained in the CARTA with

DFT eigenvalues and velocities. Equation (B1) allows one to
correct for the small off-set observed in some materials for the
effective mass mobility. Moreover, computing μCARTA

αβ is over
two orders of magnitude faster than μαβ since we only need
to interpolate the eigenvalues and velocities. The results for
the scaled BTE mobility are shown as orange dots in Fig. 19.
Importantly, not only μscaled

αβ converges faster, but it also does
so in a smoother and more systematic way.

The vertical thin gray line in Fig. 19 is the coarse grid
that we consider converged and that is used in all subsequent
calculations, unless stated otherwise. For the electron mobility
of GaAs, we do not report the mobility effective mass since
we used the experimental value to describe the bands and
velocities. From Fig. 19, we can note that the hole mobility

converges in a smooth and systematic way while this is not
necessarily the case for the electron mobility. This behavior
reflects the better real-space localization of Wannier functions
obtained for the valence manifold than the conduction mani-
fold, see Fig. 18.

For the case of silicon, the electron mobility is significantly
improved upon using the scaling of Eq. (B1). However, we
can notice that for our chosen converged grid, the calculated
mobility does not converge to the correct limit without scaling
(see Fig. 19). Specifically, the interpolated CARTA result
overestimates the CARTA/DFT result by 1%. We expect a
similar error to occur for the BTE mobility. We anticipate that
the slight difference will disappear upon using denser grids
or by using a more extended Wannier functions basis set, but
we have not investigated this further due to the computational
cost. An overestimation of 2% is also observed for the hole
mobility of AlSb. In all other cases, the interpolated CARTA
values converge smoothly to the CARTA/DFT result.

We are now in a position to answer the question on why is
the convergence of the carrier mobility slow with respect to
coarse grid size even when dipole and quadrupole corrections
are included. The answer is material dependent. In the case of
the electron mobility of Si, 3C-SiC, AlP, GaP, AlAs, AlSb, and
SrO, the slow convergence is mostly due to purely electronic
effects as demonstrated by the CARTA results. Specifically,
the Wannier-interpolated electron bands converge slowly with
grid size. A possible way to accelerate convergence would be
to increase the number of Wannier functions in order to im-
prove the flexibility of the basis functions. In general, for the
valence bands the convergence is smoother and more system-
atic, and, therefore, less can be gained by using the CARTA
rescaling. Nevertheless, we noticed some improvements for
diamond, AlP, GaP, c-BN, AlAs, and AlSb.

In the case of diamond and c-BN, very little improve-
ment is noticed using the CARTA rescaling. This indicates
that for these two materials the slow convergence can be
attributed to a slow convergence of the phonon dispersions and
electron-phonon matrix elements with grid size. Preliminary
tests indicate that the mobility converges much faster with
respect to the coarse grid size when calculating the velocity
matrix elements using the commutator of the nonlocal pseu-
dopotential and the Hamiltonian from Eq. (24). We also note
that we did not use μscaled

αβ further in this study.
In Fig. 21, we compare our coarse grid convergence results

with previous work for Si and GaP in Ref. [16]. Since only
the SERTA mobility is reported in Ref. [16], we compare
with our results at the same approximation level. Overall
our results agree quite well given that there are a number
of differences in the calculations. The coarse k-point grid in
Ref. [16] was fixed to 183, while we used a coarse k-point
grid that is twice the one reported in Fig. 21 for the q-point
grid. We used an equal fine k- and q-point grids of 1503 for
Si and 1203 for GaP, while Ref. [16] used a fine 723 k-point
grid and a 1443 q-point grid for Si and a 783 k-point grid
and a 1563 q-point grid for GaP. Different pseudopotentials
and exchange correlation functionals were used as well. In
addition, we included SOC, while Ref. [16] neglects it, but as
shown in Fig. 1, the effect on electron mobility is negligible.
The main difference between our results and those of Ref. [16]
is that our calculations including dipole but not quadrupole
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FIG. 21. Comparison between the coarse-grid convergence in the
present work and in Ref. [16], for the electron mobility of (a) Si and
(b) GaP as a function of the coarse q-point grid. All calculations are
performed within SERTA to be consistent with Ref. [16]. The coarse
k-point grid used in Ref. [16] is fixed to 183, while we used a coarse
k-point grid that is twice the one reported in this figure for the q-point
grid. We used equal fine k- and q-point grids of 1503 for Si and 1203

for GaP, while Ref. [16] used a fine 723 k-point and a 1443 q-point
grid for Si and a 783 k-point and a 1563 q-point grid for GaP.

corrections seem to converge rapidly, while in the earlier work
there is a slow drift of in the SERTA mobility calculated with
dipole correction. However, in agreement with Ref. [16], we
observe that the inclusion of quadrupole corrections leads to a
shift of the calculated mobility even at convergence.

APPENDIX C: OPTIMAL WIGNER-SEITZ
CONSTRUCTION

The interpolation of the Hamiltonian, dynamical matrix,
and electron-phonon matrix elements from real space to recip-
rocal space via Eqs. (21)–(23) is usually performed by using
a radial cutoff on the direct lattice vectors [63,220]. While
this is certainly the simplest possible choice, it is not the most
efficient, especially in the case of unit cells with high aspect
ratios.

In order to improve the accuracy of the interpolation, it
is convenient to select the direct lattice vectors so that the
distance between two Wannier centers or the distance be-
tween two atoms are within a cutoff radius. For example, in
the interpolation of the Hamiltonian we construct a shifted
Wigner-Seitz cell of lattice vectors Rp with the requirement
that this cell be centered on one of the two Wannier functions,

FIG. 22. Simplified schematic (two-dimensional 2 × 2 k/q grid)
of the electron-phonon matrix elements where rn and rm indicate the
position of the electronic Wannier centres, and τκ is the position of
the atom κ within a primitive cell. The square lattice indicates the
unit cells of the crystal and Rp and Rp′′ are the lattice vectors for
the electronic and phononic grids, respectively. When performing
the electron or phonon Fourier transform, we use the direct lattice
point p or p′′, respectively, if the trial point t = Rp + rm − rn or
t′′ = Rp′′ + τκ − rn is closer to 0 than any other supercell center S.
The red square denotes the central supercell.

say rn. The radial cutoff is then imposed with respect to the
distance |Rp + rm − rn|, where rm denotes the center of the
second Wannier function.

In practice, we determine the set of Wigner-Seitz vectors
to describes the electronic Hamiltonian:

Hmn(Rp) = (1/Np)
∑

k∈(ip× jp×op)

U †
mm′kHm′n′kUn′nke−ik·Rp,

(C1)
such that Rp + rm − rn ∈ (ip × jp × op) where rm is the ori-
gin vector pointing to the position of the mth Wannier center.
A similar approach was recently implemented in the Wan-
nier90 software for the interpolation of the Hamiltonian [75].

Similarly, in the case of the dynamical matrix, we consider
pairs of atoms τκ and τκ ′ . For each such pair, we construct a
Wigner-Seitz cell centered at τκ , and we impose a truncation
based on the distance |Rp′ + τκ ′ − τκ |. For the optimal choice
of a Wigner-Seitz vector for a discretized Brillouin zone grid
ip′ × jp′ × op′ , the short-range part of the dynamical matrix
takes the form [66]:

DS
κα,μ(Rp′ )

= (1/Np′ )
∑

q∈(ip′× jp′×op′ )

e−iq·Rp′ e†
κα,qνDS

ν,κ ′β (q)eκ ′β,qμ, (C2)

for all direct lattice vectors Rp′ such that Rp′ + τκ ′ − τκ ∈
(ip′ × jp′ × op′ ) and 0 otherwise. In Eq. (C2) we have made a
rigid shift to the central primitive cell such that it only depends
on one lattice vector Rp′ . As a result one needs to store a set
of atom-dependent Wigner-Seitz cells. In first-principles soft-
ware such as QUANTUM ESPRESSO [88], a Fourier-transform
grid is constructed with weights centered on pairs of atoms
and zeros elsewhere. In EPW, we slightly optimize the com-
putational cost of the interpolation by only retaining the union
of nonzero elements between all the Wigner-Seitz cells.

043022-29



SAMUEL PONCÉ et al. PHYSICAL REVIEW RESEARCH 3, 043022 (2021)

FIG. 23. Acoustic phonon dispersions of 3C-SiC near the zone
center, interpolated from a coarse 4 × 4 × 4 k-point and q-point
grid using a �-centered fixed Wigner-Seitz cell with dipole-dipole
correction (dash gray line), an optimal Wigner-Seitz cell with dipole-
dipole correction (red line), and an optimal Wigner-Seitz cell with
dipole-dipole, dipole-quadrupole and quadrupole-quadrupole correc-
tions (blue line). The black dots are reference datapoints obtained via
direct DFPT calculations.

In the case of the electron-phonon matrix elements, we
exploit the same ideas as above, this time for both the Wan-
nier functions and the atomic positions. The Wigner-Seitz
cells for electrons and phonons are chosen so that both the
|Rp + rm − rn| and |Rp′′ + τκ − rn| distances are minimized:

gnmκα (Rp, Rp′′ ) = 1

NpNp′′

∑
k ∈ (ip × jp × op)

q ∈ (ip′′ × jp′′ × op′′ )

e−i(k·Rp+q·Rp′′ )
∑
m′n′ν

×
√

2Mκωqν

h̄
e†
κα,qνU †

mm′k+qgm′n′ν (k, q)Un′nk,

(C3)

where the lattice vectors are obtained such that Rp′′ +
τκ − rn ∈ (ip′′ × jp′′ × op′′ ) and Rp + rm − rn ∈ (ip × jp ×
op). We note that the set of lattice vectors Rp′′ used for the
interpolation of electron-phonon matrix elements can in gen-
eral be different from the set employed for the interpolation of
the dynamical matrix. This procedure used to determine the
optimal set of vectors is sketched in Fig. 22. The set of direct
lattice vectors Rp and Rp′′ are selected such that the trial point
t = Rp + rm − rn, constructed from the distance between two
Wannier centers, or t′′ = Rp′′ + τκ − rn constructed from a
Wannier center and an atomic position in the central cell and
any other cell, is closer to the supercell center 0 than any
other supercell centers S. In the case of a trial point at equal
distance between 0 and S (i.e., on the surface of the supercell
Wigner-Seitz cell), a weight proportional to the number of

FIG. 24. Deformation potential of 3C-SiC without spin-orbit
coupling of the first electronic band (m = n = 1) on a coarse 3 × 3 ×
3 k-point and q-point grid including dipole and quadrupole correc-
tions. The Wigner-Seitz cell is either �-centered or constructed using
Rp + rm − rn ∈ (ip × jp × op) for the electrons and Rp′′ + τκ − rn ∈
(ip′′ × jp′′ × op′′ ) for the phonons, respectively. The black dots are
reference datapoints obtained via direct DFPT calculations.

degeneracies is given. The optimal Wigner-Seitz construction
is activated with the new use_ws input variable in EPW.
As a sanity check, we verified that the mobility of 3C-SiC
calculated on a 8 × 8 × 8 k-point and 4 × 4 × 4 q-point grid
was the same as the one obtained from a 2 × 1 × 1 supercell
with a 4 × 8 × 8 k-point and 2 × 4 × 4 q-point grid.

In Fig. 23, we report the calculated phonon dispersions
of the three acoustic modes of 3C-SiC. The dashed gray
line represents the interpolation from a coarse q-point grid
using a �-centered fixed Wigner-Seitz cell with dipole-dipole
correction. The red line is for an optimal Wigner-Seitz cell
with dipole-dipole correction. The blue line is for an opti-
mal Wigner-Seitz cell with dipole-dipole, dipole-quadrupole
and quadrupole-quadrupole corrections. We can see that the
�-centered Wigner-Seitz cell construction yields spurious
soft phonon modes along the �-L direction. The improved
Wigner-Seitz construction eliminates this artifact.

We also show in Fig. 24 a comparison between the de-
formation potential of 3C-SiC computed with a �-centered
Wigner-Seitz cell or with the improved construction. The new
construction produces results closer to those obtained directly
with DFPT everywhere. We note that the results shown in
Fig. 24 are for an unconverged small coarse grid of 3 × 3 × 3
for both k and q points. When using denser coarse grids,
these difference rapidly disappear (at least for the present case
of cubic semiconductors). Given that we use much denser
coarse grids in this work, for simplicity we employed the basic
�-centered construction in all calculations reported in this
work.
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