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Engineering quantum wave-packet dispersion with a strong nonresonant femtosecond laser pulse
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A nondispersing wave packet has been attracting much interest from various scientific and technological
viewpoints. However, most quantum systems are accompanied by anharmonicity, so that retardation of quantum
wave-packet dispersion is limited to very few examples only under specific conditions and targets. Here we
demonstrate a conceptually universal method to retard or advance the dispersion of a quantum wave packet
through “programmable time shift” induced by a strong nonresonant femtosecond laser pulse. A numerical
simulation has verified that a train of such retardation pulses stops wave-packet dispersion.
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I. INTRODUCTION

The classical soliton [1], which is a localized wave propa-
gating without spreading, is a general phenomenon that can be
observed in various physical systems including water waves
[2], optical pulses in a fiber [3], and an electric LC circuit
[4]. In quantum mechanical systems, however, a localized
wave packet in general spreads with time due to dispersion
induced by anharmonicity. It is a universal phenomenon that
is observed in every physical system except for harmonic os-
cillators and was discussed in reference to the correspondence
between wave functions and particles in quantum theory [5].
A nonspreading wave packet has been attracting much interest
from various scientific and technological viewpoints including
pure mathematics [6,7], many-body physics [8–15], and opti-
cal communications [16,17]. In very few examples only under
specific conditions and targets, however, people could reduce
the influence of such anharmonicity by the external perturba-
tion and observe soliton-like motions [18]. Those examples
include a Bose-Einstein condensate [8–12], Rydberg wave
packet in an alkaline atom [19], and microcavity polariton
[13–15]. For example, Maeda et al. have performed an inter-
esting experiment, in which the Rydberg electron wave packet
is irradiated with a microwave continuously, so that the mo-
tion of the wave packet is synchronized with the microwave
oscillation, and its dispersion is controlled [19]. Although this
scheme could be useful for charged particles such as elec-
trons, a more universal scheme is necessary to be applied to
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electrically neutral systems as well. Here we demonstrate an
experimental method whose concept is universally applicable
to the spreading of a wave packet in a variety of quantum
mechanical systems. This method utilizes a nonlinear effect
induced by a strong nonresonant femtosecond (fs) laser pulse
in the near-infrared region (NIR pulse). A nonlinear strong-
laser effect has been applied to the control of molecular
photodissociation, population distribution of molecular vibra-
tional levels and selective population of laser-dressed atomic
states [20–23]. Now it is applied to the control of wave-packet
spreading. Our method can thus control the shape of a wave
packet at any timing during its propagation, and accordingly
a sequence of such controls can stop its dispersion, clearly
distinguishing itself from previous studies where the free evo-
lution of a wave packet was changed naturally by changing its
initial phases [24–26].

II. EXPERIMENT

A schematic overview of our current experiment is given
in Fig. 1(a). Our target is a vibrational wave packet gener-
ated with a fs pump laser pulse in the B electronic excited
state of the I2 molecule as shown in Fig. 1(b). The I2

gas is prepared in a vacuum chamber by the jet expansion
of I2/Ar mixture through a pinhole (diameter ∼ 100 μm)
at the end of a nozzle. A vibrational wave packet is cre-
ated on the B state using the fs pump pulse prepared with
an optical parametric amplifier (OPA, Quantronix TOPAS)
pumped by a Ti:Sapphire regenerative amplifier (Quantronix
TITAN, repetition rate 1 kHz, pulse width ∼ 100 fs FWHM).
The wavelength is set around 535 nm, which is resonant
with the B ← X (vX = 0) electronic transition. The bandwidth
of the pump pulse is ∼ 6 nm, so that the wave packet is
composed of ∼ 5 eigenstates centered around the vibrational
eigenstate vB = 30 of the B state. The pump pulse is thus
slightly chirped positively, and its chirp rate is estimated to
be ∼ 1800 fs2. After the delay τNIR, the NIR pulse modulates
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FIG. 1. Schematic of the spreading-control experiment. (a) Sce-
nario of the spreading control based on the quantum interference
induced by the strong nonresonant NIR pulse. In this sketch, the
spreading is retarded by the irradiation of the NIR pulse. (b) Potential
energy curves of I2. The B-state wave packet is created by the pump
pulse, and is modulated by the strong NIR pulse at t = τNIR. The
modulated wave packet is excited to the E state by the probe pulse at
t = τprobe, and its fluorescence signal is detected. (c) Pulse sequence
for the observation of the temporal evolution of the wave packet after
the irradiation of the NIR pulse. (d) Pulse sequence for the eigenstate
interferogram.

the wave packet through impulsive Raman transitions [27].
The NIR pulse is prepared with another OPA (Quantronix
TOPAS) pumped by the same regenerative amplifier. Its cen-
ter wavelength is tuned around 1540 nm. The typical power
density of the NIR pulse at the sample position is estimated
to be ∼ 0.8 TW/cm2. At this wavelength, resonant X ← B
transitions induced by the NIR pulse are negligibly small.
The modulated wave packet is detected as a quantum beat by
using another fs probe laser pulse, whose delay is hereafter
referred to as τprobe [Fig. 1(c)]. The probe pulse is prepared si-
multaneously with the NIR pulse using the common OPA. Its
wavelength is centered around 431 nm. This pulse is resonant
with the E ← B transition of the I2 molecule. The laser-
induced fluorescence from the E state is collected through a
monochromator and with a photomultiplier. A quantum beat
is observed as we scan the delay τprobe.

We also measure the state-resolved time-dependent
Ramsey interferogram (hereafter called an eigenstate interfer-
ogram) [28–38] to obtain the relative phases among different
vibrational eigenstates within the wave packet [Fig. 1(d)]. In
this Ramsey measurement, we scan the delay τcontrol between
the fs pump pulse and its replica (hereafter referred to as a
control pulse) with attosecond precision to measure the inter-

ferogram of two wave packets produced by a pair of those fs
pulses [28–31]. A nanosecond (ns) probe pulse around 400 nm
is prepared with a dye laser (Lambda Physik Scanmate-2E,
Dye: exalite 398, repetition rate 40 Hz). The timing of the ns
probe pulse is synchronized with the output of the regenerative
amplifier using a frequency divider and a delay generator
(SRS DG-535), and is set to ∼ 35 ns after the pump pulse. The
narrow bandwidth of the ns pulse allows for measuring the
interferogram of each vibrational eigenstate within the wave
packet independently [29].

III. EXPERIMENTAL RESULTS

Figures 2(a)–2(c) show the quantum beats measured by
scanning the delay τprobe of the fs probe pulse as shown in
Fig. 1(c). The green trace (a) shows a reference beat mea-
sured without the NIR pulse. The quantum beat with a period
of ∼ 470 fs is observed, and it corresponds to recurrence
motion of the wave packet on the B-state potential curve.
The decay of the beat amplitude is due to spreading of the
wave packet induced by its dispersion, which arises from the
anharmonicity of the electronic potential curve. From this
green trace, it is seen that the small positive chirp of the
pump pulse does not degrade the quantum beat seriously. The
traces [Figs. 2(b) and 2(c)] show the beats with the NIR pulse
shined at τNIR ∼ 5.07 ps (the wave packet moves around the
inner classical turning point) and ∼ 5.36 ps (the wave packet
has just passed the outer classical turning point), respectively.
To remove the effect of the NIR pulse on the wave packet
generated in the E state by the probe pulse, the NIR pulse
is blocked when the probe pulse is shined before the NIR
pulse. Around the delay τprobe ∼ 8.5 ps in Fig. 2(a), the wave
packet almost collapses and is delocalized, so that the beat
amplitude is minimized. In Fig. 2(b) such collapse is advanced
and appears immediately after the NIR pulse. In Fig. 2(c), on
the other hand, the collapse is retarded toward the opposite
direction. The wave-packet spreading is thus advanced and
retarded in Figs. 2(b) and 2(c), respectively, by the NIR pulses,
and their timing difference is only ∼ 290 fs, much smaller
than the amount of shift of the collapse.

Next we have measured the state-resolved eigenstate in-
terferograms to see what happens in Figs. 2(b) and 2(c) to
the relative phases among different eigenstates within the
wave packet. Examples of the measured interferograms are
plotted with dots in Figs. 2(d) and 2(e). The abscissa is the
timing of the control pulse τrel = τcontrol − τ0 where τ0 is set
around 6.68 ps. In Figs. 2(d) and 2(e), the eigenstate ob-
served with the ns probe pulse is switched from the vibrational
eigenstate vB = 30 to vB = 29 at τrel ∼ 0 fs by changing the
probe wavelength instantaneously. Figure 2(d) shows refer-
ence interferograms measured without the NIR pulse, whereas
Fig. 2(e) shows the interferogram measured with the NIR
pulse shined at τNIR ∼ 5.07 ps.

Such eigenstate interferograms are measured by scanning
τcontrol around 6.68 ps for the pair of vB = 29 and 30 and
the pair of vB = 30 and 31 at the two NIR timings of τNIR

∼ 5.07 ps and 5.36 ps corresponding to Figs. 2(b) and 2(c),
respectively. Examples of the eigenstate interferograms mea-
sured under different experimental conditions are shown in
Fig. S1 in the Supplemental Material [39]. These eigenstate
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FIG. 2. Experimental results of the spreading control. (a) Free temporal evolution of the wave packet. (b, c) Actively controlled wave-packet
spreading advanced and retarded by the NIR pulse shined at τNIR ∼ 5.07 ps and 5.36 ps, respectively. To remove the effect of the NIR pulse
on the wave packet generated in the E state by the probe pulse, the NIR pulse is blocked when the probe pulse is shined before the NIR
pulse. (d) (Dotted line) Eigenstate interferograms of vB = 30 (τrel < 0) and vB = 29 (τrel > 0) without the NIR pulse. (Red line) Fitted sine
curve for vB = 30. (Blue line) Fitted sine curve for vB = 29. (e) Similar to (d) with the NIR pulse shined at τNIR ∼ 5.07 ps. (f) Relative phases
of vB = 29 and 31 to vB = 30 obtained from the eigenstate interferograms exemplified in (d) and (e). The green shows the results without
the NIR pulse. The blue and red show the results with the NIR pulse shined at τNIR ∼ 5.07 ps and τNIR ∼ 5.36 ps, respectively, as seen in
(b) and (c).

interferograms give the relative phases between vB = 29 and
30 and between vB = 30 and 31 with and without the NIR
pulse. The red and blue solid curves in Figs. 2(d) and 2(e)
show sine functions

f (τrel ) = C + A sin(ωτrel + �vB ) (1)

fitted to the measured interferograms in the first half (τrel < 0)
and the second half (τrel > 0), respectively. The average fre-
quency of those four fitted sine functions, ωave is assumed to
be equal to the average of the transition frequencies of those
two vibrational eigenstates, so that ωave = (ω30 + ω29)/2 or
(ω30 + ω31)/2. Using the reported spectroscopic data for ω29,
ω30, and ω31 [40], we have calibrated the abscissa of the
eigenstate interferograms. A set of eigenstate interferograms
measured for vB = 30 and 29 or vB = 30 and 31 with the NIR
pulse on or off is then fitted again using the sine functions
given as Eq. (1) with the fixed transition frequency ωave. The
phase factor �vB is hereafter written as �OFF

vB
for the interfer-

ogram without the NIR pulse, and as �vB (τNIR) with the NIR

pulse shined at the delay τNIR. We define the relative phase
��vB (τNIR) of vB = 29 (or 31) to be the phase �vB (τNIR) of
vB = 29 (or 31) relative to vB = 30 with the NIR pulse shined
at τNIR. Similarly, the relative phase ��OFF

vB
of vB = 29 (or

31) is defined as the phase of vB = 29 (or 31) relative to vB =
30 without the NIR pulse. The relation between the phase
factor �vB and the phase of the eigenfunctions are given in
Appendix A.

From the observed interferograms, ��vB (τNIR) is obtained
from each set of eigenstate interferograms measured for vB

= 30 and 29 or vB = 30 and 31 with the NIR pulse on,
and averaged over its three independent sets of measurements.
There are, however, six independent sets of measurements of
the phase ��OFF

vB
, three of which combined with the mea-

surements of ��vB at τNIR = 5.07 ps and the other three with
��vB at τNIR = 5.36 ps, so that we have averaged over those
six measurements for ��OFF

vB
.

In Fig. 2(f) we have plotted ��vB (τNIR) and ��OFF
vB

measured under the three different experimental conditions
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corresponding to those shown in Figs. 2(a)–2(c). The shifts
of the relative phases θvB (τNIR) induced by the NIR pulse are
defined as

θvB (τNIR) = ��vB (τNIR) − ��OFF
vB

, (2)

which are obtained to be θ29(τNIR = 5.07ps) = −16◦,
θ31(τNIR = 5.07ps) = −37◦, θ29(τNIR = 5.36 ps) = 11◦ and
θ31(τNIR = 5.36 ps) = 32◦, respectively. It is important to
note that the relative phases ��vB and ��OFF

vB
depend on the

choice of τ0, whereas the NIR-pulse-induced shift θvB does not
depend on the choice of τ0. It is thus demonstrated that the

relative phases among the eigenstates within the wave packet
have been controlled by the NIR pulse, and this phase control
leads to the spreading control shown in Figs. 2(b) and 2(c).

IV. THEORETICAL ANALYSIS AND DISCUSSION

In numerical simulations, we assume the three-electronic-
state model as illustrated in Fig. 1(b). The time evolution of
the vibrational wave packets in the E , B, and X states, |ψE (t )〉,
|ψB(t )〉, and |ψX (t )〉, is described by the Schrödinger equation

ih̄
d

dt

⎡
⎢⎣

|ψE (t )〉
|ψB(t )〉
|ψX (t )〉

⎤
⎥⎦ =

⎡
⎢⎣

H0
E −μEB(r)Eprobe(t − τprobe) 0

−μBE (r)Eprobe(t − τprobe) HB(t ) −μBX (r)E (t )

0 −μXB(r)E (t ) HX (t )

⎤
⎥⎦

⎡
⎢⎣

|ψE (t )〉
|ψB(t )〉
|ψX (t )〉

⎤
⎥⎦. (3)

At the initial time, t0 < 0, the molecule is assumed to be in the
lowest vibrational state in the X state, |ψX (t0)〉 = |0X 〉, with
the energy eigenvalue, h̄ω0X ≡ 0. Note that we numerically
checked that the contributions from the thermally populated
vibrational excited states are so small that they do not change
the signals in the present study. We also note that the rotational
period of I2 in the B state is ∼ 600 ps, so that the rotational
motion does not affect the signals within the timescale <

10 ps. The vibrational Hamiltonian of each electronic state
is expressed as

He(t ) = H0
e − 1

2
αe(r)[ENIR(t − τNIR)]2 (e = X, B, E ),

(4)
where H0

e and αe(r) are the field-free Hamiltonian and the
polarizability function, respectively. As the E state is solely
used to detect the signals after the NIR pulse excitation, we
ignore the polarizability interaction in the E state. The vibra-
tional eigenstates of H0

B and H0
E are defined by the eigenvalue

problems, H0
B |vB〉 = h̄ωvB |vB〉 and H0

E |vE 〉 = h̄ωvE |vE 〉 with
the vibrational quantum numbers vB and vE , respectively. The
molecular parameters associate with the B and X states are
taken from several references which are summarized in our
previous study [41]. The E -state potential is approximated
by the Morse potential, which is generated by using the
Rydberg-Klein-Rees (RKR) potential [42]. The transition mo-
ment function between the E and B states is given in Ref. [43].

The nonresonant NIR pulse is specified by ENIR(t − τNIR)
with τNIR being the time delay with respect to the pump
pulse. Here we assume that the NIR pulse does not induce
the electronic transitions because of its far off-resonant central
frequency. The electronic transitions between the B and X
states and between the E and B states are induced by the
laser pulse E (t ) and the probe pulse Eprobe(t − τprobe), respec-
tively, with the transition moment functions μBX (r) = μ

†
XB(r)

and μEB(r) = μ
†
BE (r). When simulating the quantum beat

observed by a pump-probe scheme, we use E (t ) = Epump(t )
in Eq. (3). The temporal peak of Epump(t ) is set to t = 0. We
regard the total population in the E state as the quantum-beat
signal, which is expressed as a function of the time delay
of the probe pulse, τprobe. When simulating the eigenstate

interferogram, we use E (t ) = Epump(t ) + Econtrol(t − τcontrol ).
The control pulse, Econtrol(t − τcontrol ), is the replica of the
pump pulse but appears with the time delay, τcontrol. The in-
terferogram associated with the |vB〉 state is assumed to be
proportional to the population of |vB〉 after the control pulse.

We numerically integrate Eq. (3) by combining the second-
order split operator method and fast Fourier transform (FFT).
We adopt the spatial range [2.1 Å, 6.0 Å], which is equally
divided into 512 grid points. To reduce the number of the
temporal grid points, we assume the rotating-wave approx-
imations for the electronic transitions and introduce the
field-interaction representation [44], i.e., a frame rotating at
a suitable frequency. We assume the cycle-averaged polariz-
ability interactions because of the off-resonant frequency of
the NIR pulse. The pump, probe and NIR pulses are assumed
to be 80 fs FWHM Gaussian pulses. We introduce a phase
modulation into the pump pulse in the same manner as we
did in Ref. [41] to reproduce the experimentally measured
quantum beat in Fig. 2(a). The intensities of the pump and
probe pulses are chosen such that they induce less than 5%
population transitions. To reproduce the NIR-pulse effects
in Figs. 2(b) and 2(c), we adjust the intensity of the NIR
pulse as well as the polarizability function, αB(r), in the B
state. Roughly speaking, the magnitude of the polarizability
interaction is about four times larger than that used in our
previous study [41]. Under these conditions, we simulate the
signals in Fig. 3(a) in which the timing of the NIR pulse
(τNIR) is scanned from 5.02 to 5.46 ps. On the other hand,
the interferogram of each eigenstate is simulated in the range
of τcontrol ∈ [6.500 ps, 6.505 ps] with 400 signal points. The
number of the signal points is increased by 10 times by means
of spline interpolation. At each τNIR, we calculate the relative
phase by focusing on one of the peaks of the interferogram
without the NIR pulse and that with the NIR pulse. We repeat
the procedure to obtain the relative phases as a function of
τNIR. By using the relative phases, we calculate the shifts of
the relative phases, θvB (τNIR) of vB = 29 and 31 as a function
of τNIR as shown in Fig. 3(b).

Figure 3(a) shows that the beat structure is modulated
by the NIR pulse, depending on its timing τNIR. Around
τNIR ∼ 5.10 ps, the beat amplitude is dumped immediately
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FIG. 3. (a) Numerical simulation of the quantum beats when the
NIR pulse is shined at τNIR = 5.02 ps to 5.46 ps at every 0.04 ps.
The quantum beat at the top (green) is a reference curve simulated
without the NIR pulse. The blue trace corresponds to τNIR = 5.10 ps,
in which the NIR pulse is shined at the local minimum after the
eleventh beat structure. The red trace corresponds to τNIR = 5.34 ps,
in which the NIR pulse is shined around a half vibrational period after
the blue trace. These two timings are compared to the experimental
traces of Figs. 2(b) and 2(c), where NIR pulses are shined at the
similar timings of the traces with the same colors. (b) Simulated
shift of the relative phase θvB (τNIR ) of each eigenstate obtained by
changing τcontrol from 6.50 ps to 6.50 ps + 5 fs. The solid lines
with square and circle markers correspond to vB = 29 and vB = 31,
respectively. The two vertical dotted lines indicate the timings of the
NIR pulse τNIR = 5.10 ps and 5.34 ps.

after the NIR pulse and is recovered gradually, similar to
Fig. 2(b). Around τNIR ∼ 5.34 ps, the beat amplitude is
slightly enhanced by the NIR pulse, and the beat structure lasts
longer than the one without the NIR pulse, similar to Fig. 2(c).
These NIR timings are similar between the experiments and
simulations. It is also seen from the comparison between
Fig. 2(f) and Fig. 3(b) that θvB (τNIR) < 0 at τNIR ∼ 5.10 ps
and θvB (τNIR) � 0 at τNIR ∼ 5.35 ps for both vB = 29 and 31.

The simulations thus qualitatively reproduce the experimental
observations, demonstrating that the relative phases among
the eigenstates are controlled by the NIR pulse, and this phase
control leads to the control of wave-packet spreading.

The nonresonant strong NIR pulse induces the Rayleigh
and Raman scatterings in the wave packet [27]. We expect
that these scattering processes will generate the characteristic
coherent mixture depending on the relative phases among the
eigenstates involved in the wave packet, which could explain
the mechanism underlying the phase control. For the sake of
a qualitative explanation, we derive the analytical expression
of the B state wave packet |ψB(t )〉 by assuming the first-order
approximations with respect to the pump-pulse excitation and
the Raman scattering. The matrix element associated with the
Raman scattering (vB �= v′

B) is given by

h̄γ (vB, v′
B) = 〈vB|αB(r)|v′

B〉
∫ ∞

−∞
dse

−i(ωvB −ωv′
B

)s[ENIR(s)]2,

(5)
where the value is assumed to be real. Here αB(r) is the
polarizability function of the B state, and h̄ωvB (h̄ωv′

B
) is the

energy eigenvalue of the vibrational eigenstate |vB〉 (|v′
B〉).

Equation (5) shows that γ (vB, v′
B) is expressed as the matrix

element 〈vB|αB(r)|v′
B〉 multiplied by the frequency com-

ponent of [ENIR(t )]2 corresponding to the vB − v′
B Raman

transition. We further assume that the |�vB| = 1 Raman
transitions dominate the |�vB| � 2 transitions and neglect
the quantum number dependence, γ (vB, vB ± 1) � −|γ |, the
negative value of which is assumed according to our previous
study [41]. We then have the expression of the probability
amplitude as

〈vB|ψB(t )〉 = e−iωvB t+iη
[〈
vB|ψ0X

B

〉

− i

2
|γ |{e−i(ωvB+1−ωvB )τNIR

〈
vB + 1

∣∣ψ0X
B

〉

+ ei(ωvB −ωvB−1 )τNIR
〈
vB − 1

∣∣ψ0X
B

〉}]
, (6)

where we have assumed the quantum-number independent
shift, η � γ (vB, vB)/2. In Eq. (6), the wave packet initially
excited by the pump pulse, |ψ0X

B 〉, is expressed as

∣∣ψ0X
B

〉 =
∫ ∞

−∞
dt1eiH0

Bt1/h̄Epump(t1)μBX (r)|0X 〉 (7)

in the first-order perturbation approximation. The derivation
is summarized in Appendix B. Briefly, the first line of Eq. (6)
describes the component whose vB is unchanged by the NIR
pulse, and the second and third lines represent the contribu-
tions from the neighboring |vB ± 1〉 states through the Raman
transitions, respectively. Equation (6) thus shows that the
neighboring states, |vB ± 1〉, are coherently mixed into the
state |vB〉 through the Raman transitions induced by the NIR
pulse, and this mixing leads to the experimentally observed
phase shifts. It is important to note that this control scenario
is based on the Raman transitions, which is not specific to
molecular eigenstates, but universal to any type of Raman-
active eigenstates of a variety of quantum systems [45–47].

From the numerical simulation in Fig. 3(b), we note
that there appear interesting timings when θ29(τNIR) =
−θ31(τNIR) > 0 for every vibrational period. At these
timings, we can undo the wave-packet spreading. The NIR

043021-5



HIROYUKI KATSUKI et al. PHYSICAL REVIEW RESEARCH 3, 043021 (2021)

pulse shined at those timings to reverse the wave-packet
spreading is hereafter referred to as an “undo pulse.” For
example, τNIR ∼ 5.48 ps gives the phase shift θ29(τNIR) �
−θ31(τNIR) ∼ 15◦, shifting the time backward by 475 ×
15/360 � 20 fs, where 475 fs is a classical oscillation period
of the wave packet. It is also possible to shift the time forward
by almost the same amount if we choose τNIR ∼ 5.23 ps when
θ29(τNIR) = − θ31(τNIR) < 0 holds. A train of the undo pulses
could stop wave-packet spreading, leading to an alternative
concept of dispersion management.

To test this concept, we have numerically designed the
undo pulses by means of quantum optimal control the-
ory, which will be discussed elsewhere [48]. Here, instead
of the full optimization approach, we consider an analyti-
cal approach by adopting a minimal dephasing model that
consists of three vibrational states in the B state, |vB〉,
|vB + 1〉, and |vB + 2〉 with a specific initial condition,
〈vB|ψ0X

B 〉 = 〈vB + 1|ψ0X
B 〉 = 〈vB + 2|ψ0X

B 〉. The frequency dif-
ferences are given by ωvB+2 − ωvB+1 = ω − �ω and ωvB+1 −
ωvB = ω + �ω (�ω > 0), in which the anharmonic fre-
quency, �ω, causes the wave-packet spreading. We introduce
the vibrational period, T = 2π/ω, and the dimensionless
parameter, δ = �ω/ω. In the following, we examine how
to suppress modulation of the oscillating part of the quan-
tum beat by using a NIR-pulse train because the degree of
modulation directly reflects the degree of wave-packet spread-
ing. When deriving the analytical expressions, we adopt the
same assumptions and approximations as those we used when
deriving Eq. (6). We also neglect the vibrational quantum
number dependence of the overlap integrals associated with
the E ← B transitions. According to Appendix B, the oscillat-
ing part of the quantum beat in the absence of the NIR pulse
is expressed as a function of a time delay, x = τprobe/T ,

S(osc)
QB (x) = − cos(2πδx) cos(2πx), (8)

except for unimportant factors. We consider the NIR pulse
train composed of {E (n)

NIR(t − τ
(n)
NIR); n = 1, 2, . . . , N} with

τ
(n)
NIR being the time delay of the n-th NIR pulse. We add the

suffix n to the matrix element in (5), γ (n)(vB, v′
B) � −|γ (n)|, to

specify that it is originated from the nth NIR pulse, E (n)
NIR(t −

τ
(n)
NIR). Then the oscillating part of the quantum beat induced

by the lowest-order Raman transitions can be expressed as

S(osc)
NIR (x) = 1

2

N∑
n=1

|γ (n)| sin[2πδ(x − y(n) )]

× cos[2π (x + y(n) )], (9)

where the dimensionless time delay is defined by y(n) =
τ

(n)
NIR/T .

As a simple example, we examine how to suppress the
dephasing by using a single NIR pulse. Because the an-
harmonicity δ appears in the envelope in Eq. (8), we need
to find the right timing and intensity of the NIR pulse to
replace cos(2πδx) by cos[2πδ(x − X (1) )], where X (1) > 0
specifies the temporal backward shift. This has to be done
by introducing the signal in Eq. (9) with N = 1, which
leads to the conditions X (1) = k(1), y(1) = k(1)/2, and |γ (1)| =
4 sin(πδk(1) ) with k(1) = 1, 3, 5, . . . . It means that the NIR
pulse should be applied when the wave packet is located at the

FIG. 4. Simulated wave-packet spreading suppressed by a train
of strong NIR pulses. The wave packet here is an isolated three-level
system composed of the eigenstates vB = 29, 30, and 31 of the iodine
molecule with their population ratio 1:1:1 at the time origin t = 0.
(a, b) The wave-packet density at the interatomic distance of 3.92 Å
is plotted as a function of time t. (c, d) The wave-packet density at t
= 8.315 ps is plotted as a function of the interatomic distance. (a, c)
Free wave packet without NIR pulses. (b, d) Wave packet controlled
with a train of six NIR pulses shined at t =(3n − 1.5)T with n =
1, 2,..., 6 where T = 475 fs is a classical oscillation period of the
wave packet. These timings are indicated by the arrows in Fig. 4(b).
Each NIR pulse has a Gaussian envelope with a temporal width of
0.05 T (FWHM). The spreading of the wave packet is stopped almost
completely by the NIR pulses. Plots (a) and (c) are vertically offset
for better visibility. The movies of these wave packets are given in
Video S1 in the Supplemental Material [39].

outer turning point, which is consistent with the experimental
observation in Fig. 2(c) and with the simulation in Fig. 3(a).
It is straightforward to extend the analyses of Eq. (9) with a
general case of N to suppress the modulation in the quantum-
beat signal, i.e., to suppress the wave-packet spreading. Note
that it is also straightforward to see that the change of the sign
of γ (n) will shift the timing of the NIR pulse by a half of the
vibrational period, T/2.

This concept of dispersion management has been demon-
strated by numerical simulations in the three-level model
system composed of vB = 29, 30, and 31 of the iodine
molecule, which leads to the period, T = 0.475 ps, and the
parameter, δ = 0.015. As an example, we consider the case
of k(1), k(2), . . . , k(N ) = 3 with N = 6. Each NIR pulse in
the pulse train is assumed to have a Gaussian envelope with
a common temporal width of, 2

√
ln 2σ = 0.05, (FWHM in

units of T ), corresponding to ∼ 24 fs. Note that the time
evolution of the controlled wave packet is independent of the
choice of the value of σ if it is smaller than 0.1 (in units of T ).
Figure 4(a) shows a temporal evolution of the wave-packet
density at the interatomic distance of 3.92 Å without the undo
pulses. The beat amplitude decreases due to the spreading
of the wave packet. Figure 4(b) shows that this spreading
is stopped almost completely by a train of the undo pulses
shined at the timings indicated by the analytical treatment,
and with arrows in the figure. Accordingly, the shapes are
dramatically different at t = 8.315 ps between these two wave
packets, whose snapshots are shown in Figs. 4(c) and 4(d).
The movies of these wave packets are given in Video S1 in
the Supplemental Material [39].
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V. CONCLUSION

We have demonstrated the control of wave-packet dis-
persion with a strong nonresonant NIR pulse. The relative
phase shifts induced by the NIR pulse among the vibrational
eigenstates within the wave packet have been measured by the
time-dependent Ramsey interferometry with attosecond preci-
sion. It is shown that we can advance or retard the wave-packet
motion by tuning the timing of the NIR pulse. The model
simulation assuming Raman transitions between neighboring
vibrational levels reproduces the experimental results faith-
fully, supporting our concept of dispersion management by
strong-laser-induced interference. Extending this scheme with
a train of the NIR pulses, we have demonstrated a nondispers-
ing wave packet by numerical simulations in the three-level
model system. Such a simplest three-level system could ac-
tually be prepared in artificial quantum systems including
quantum dots and wells [45]. This scenario of dispersion man-
agement is universal to any Raman-active quantum systems.
Those systems would include a variety of electronic states in
Rydberg atoms and quantum materials.
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APPENDIX A: RELATION BETWEEN THE OBSERVED
SIGNAL AND PHASE OF EIGENFUNCTIONS

We consider the phase factor e−i(ωvB t+φvB ) of the vibra-
tional eigenstate |vB〉, where ωvB is its angular frequency
and φvB is the phase factor of the vB state. The phase φvB

is further decomposed as φvB = φ0
vB

+ δvB (τNIR) where φ0
vB

is an initial phase offset determined by the characteristics
of the pump pulse, and δvB (τNIR) is a phase shift induced
by the NIR pulse. Note that the second term does not
appear without the NIR pulse. The superposition of two
wave packets generated by the pump and control pulses
whose delay is given by τcontrol = τ0 + τrel can be written as∑

vB
e−iωvB t−iφ0

vB |vB〉(1 + eiωvB (τ0+τrel ) ), which gives the inter-
ferogram ∝ [1 + cos(ωvBτrel + φres

vB
)], where φres

vB
is the NIR

independent residual phase term. When the NIR pulse in-
duces a phase shift δvB (τNIR), the superposition is written
as

∑
vB

e−iωvB t−iφ0
vB

−iδvB |vB〉(1 + eiωvB (τ0+τrel )+iδvB ), which gives
the interferogram ∝ (1 + cos[ωvBτrel + φres

vB
+ δvB )]. Compar-

ing the two interferograms, it is seen that the phase shift
δvB (τNIR) induced by the NIR pulse directly appears as the
phase shift between the eigenstate interferograms with and
without the NIR pulse.

The relation between θvB (τNIR) and δvB (τNIR) is given as

θvB (τNIR) = ��vB (τNIR) − ��OFF
vB

= [
�vB (τNIR) − �30(τNIR)

] − (
�OFF

vB
− �OFF

30

)
= [

�vB (τNIR) − �OFF
vB

] − [
�30(τNIR) − �OFF

30

]
= δvB (τNIR) − δ30(τNIR), (A1)

where δvB (τNIR) is the phase shift of vB = 29, 30, and 31
induced by the NIR pulse defined in the beginning of this
Appendix.

APPENDIX B: ANALYTICAL EXPRESSION OF THE
QUANTUM BEATS

If we assume the first-order approximation with respect to
the pump-pulse excitation, the B-state wave packet after the
irradiation of the NIR pulse is expressed as

|ψB(t )〉 = i

h̄

∫ ∞

−∞
dt1UB(t, t1)μBX (r)Epump(t1)|0X 〉, (B1)

where the time evolution operator that includes the NIR-pulse-
induced interaction is defined by

UB(t2, t1) = T̂ exp

[
− i

h̄

∫ t2

t1

dsHB(s)

]
(B2)

with the time-ordering operator, T̂ . According to our previous
study, we divide the NIR-pulse-induced interaction into two
parts,

− 1

2
αB(r)[ENIR(t − τNIR)]2

= −1

2

∑
vB

|vB〉〈vB|αB(r)[ENIR(t − τNIR)]2

× |vB〉〈vB| + V̄ α
B (t ), (B3)

where the first (second) term of the right-hand side mainly
induces the Rayleigh scattering (Raman scattering). That is,
the first term in the right-hand side of Eq. (B3) leads to
the energy shift of the |vB〉 state, whose vibrational quantum
number dependence can be neglected as shown in our previous
study [41]. Because the phase shift, γ (vB, vB), is virtually
independent of the vibrational quantum number, it would be
straightforward to rewrite Eq. (B1) as

|ψB(t )〉 = i

h̄
e−iH0

Bt/h̄U (I )
B (τNIR)

∣∣ψ0X
B

〉
, (B4)

where |ψ0X
B 〉 is given by Eq. (7) and U (I )

B (τNIR) is defined by

U (I )
B (τNIR) = T̂ exp

[
− i

h̄

∫ ∞

−∞
ds eiH0

B s/h̄V̄ α
B (s)e−iH0

B s/h̄

]
,

(B5)

with the operator V̄ α
B (s) in Eq. (B3). We expand U (I )

B (τNIR)
up to the first order with respect to V̄ α

B (s) and introduce the
assumptions and approximations as explained above Eq. (6).
We then obtain Eq. (6).

We next derive the expression of the vibrational quantum-
beat signal after the probe pulse by assuming the first-order
perturbation approximation with respect to the probe-pulse
excitation and by using Eq. (B4). Because the signal is as-
sumed to be proportional to the E -state population, the signal
is expressed as

SQB(τprobe) = ∣∣〈ψvE
E

∣∣e−iH0
Bτprobe/h̄U (I )

B (τNIR)
∣∣ψ0X

B

〉∣∣2
, (B6)
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except for unimportant factors. Here we have assumed a single
vibrational state, |vE 〉 (the energy eigenvalue, h̄ωvE ), in the E
state for convenience. In Eq. (B6), 〈ψvE

E | is defined by

〈
ψ

vE
B

∣∣ = 〈vE |μEB(r)
∫ ∞

−∞
dt2e−i(H0

B/h̄−ωvE )t2 Eprobe(t2). (B7)

Expanding U (I )
B (τNIR) in the power of V̄ α

B (s), we see that the
zeroth-order term leads to the signal in the absence of the
NIR pulse. We assume a real probability amplitude, avB =
〈vB|ψ0X

B 〉, and neglect the vibrational quantum number de-
pendence of the overlap integral, 〈vB|ψvE

B 〉〈ψvE
B |v′

B〉. If we
consider the case where the probe pulse detects the wave
packet around the outer turning point and extract the os-
cillating part of the signal with �vB = ±1, then we will

have

S(osc)
QB (τprobe) = −

∑
vB

avB avB−1 cos
[(

ωvB − ωvB−1
)
τprobe

]
,

(B8)
except for unimportant factors.

When considering the NIR-pulse-induced quantum beat,
we assume the pulse train composed of N NIR pulses, which
is expressed as

∑N
n=1 E (n)

NIR(t − τ
(n)
NIR), with {τ (n)

NIR} being the
time delays. Because of this modification, the matrix element,
γ (vB, v′

B) in Eq. (5), is replaced with γ (n)(vB, v′
B), where

the superscript, (n), is introduced to denote that the matrix
element is originated from the nth out of N NIR pulses,
E (n)

NIR(t − τ
(n)
NIR). We extract the first-order term with respect

to V̄ α
B (s) from Eq. (B6) and adopt the same assumptions and

approximations we used in deriving Eqs. (6) and (B8). Then
we obtain the oscillating component of the first-order term,

S(osc)
NIR (τprobe) = −

N∑
n=1

∑
vB

|γ (n)|{a2
vB+1 sin

[
(ωvB+1 − ωvB )(τprobe − τ

(n)
NIR)

] − a2
vB−1 sin

[(
ωvB − ωvB−1

)(
τprobe − τ

(n)
NIR

)]}

−
N∑

n=1

∑
vB

|γ (n)|avB+1avB−1
{

sin
[(

ωvB+1 − ωvB

)
τprobe + (

ωvB − ωvB−1
)
τ

(n)
NIR

]

− sin
[(

ωvB − ωvB−1
)
τprobe + (

ωvB+1 − ωvB

)
τ

(n)
NIR

]}
, (B9)

which is applied to the three-state model to derive Eq. (9).
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