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Antibunched N-photon bundles emitted by a Josephson photonic device
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We propose an experimentally feasible scheme for generating antibunched N-photon bundles by a dc
voltage-biased Josephson junction in series with a superconducting microwave resonator and a charge qubit.
Each resonant tunneling Cooper pair leads to the excitation of the charge qubit and resonator with N photons
simultaneously via the ac Josephson effect. Meanwhile, the charge qubit with strong anharmonicity is utilized to
regulate the tunneling behavior of the Cooper pairs; that is, the presence of N photons in the resonator prevents
the next tunnel event. So the resonator contains only N photons or none, and all other possibilities are greatly
suppressed. Combined with the system’s dissipation, the resonator can emit its energy in antibunched bundles of
N strongly correlated photons with high purity and an in situ tunable emission rate. Such a nonclassical source
could be useful in applications in the field of quantum information science.
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I. INTRODUCTION

In recent years, Josephson photonics of a dc voltage-
biased Josephson junction in series with superconducting
microwave resonators has received considerable attention as
a bright and robust on-chip source of quantum microwaves
[1–8]. Through the ac Josephson effect, the inelastic Cooper-
pair tunneling through the junction can create a coherent
flow of microwave photons inside the resonator [9–12].
The nonclassical radiation with high photon flux can be
engineered with a specifically tailored electromagnetic en-
vironment [13–17], which requires no external microwave
control drives. Experimentally, significant progress in this
field has been achieved, such as realizations of masers
[18,19], two-mode squeezing [20–22], near-quantum-limited
amplifiers [23], and antibunched single-photon emissions
[24,25].

The voltage-biased Josephson junction acts as a highly
nonlinear driving element to the cavity. Provided that the
N-photon resonance condition is satisfied (where N is an
integer), the transfer of one Cooper pair enables the creation
of N cavity photons [26–29]. So a crucial question then arises
about whether the strong nonlinearity of this light-charge
interaction can be exploited for on-demand generation of
N-photon states, which is a long-standing goal in quantum
information science [30–34]. Because the harmonic resonator
has an infinite number of evenly spaced quantum levels, the
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nonlinear cavity drive will inevitably cause the transitions to
the higher Fock states. Therefore, it is challenging to directly
utilize this device to efficiently generate and manipulate the
desired N-photon state.

In this work, we introduce an extra charge qubit into the
circuit of a dc voltage-biased Josephson junction coupled to
a microwave resonator and aim to control the emission of the
resonator in the form of antibunched N-photon bundles. The
central idea is to excite the charge qubit and, at the same time,
to populate the resonator with N photons for each resonant
tunneling Cooper pair. Meanwhile, a charge qubit with strong
anharmonicity is utilized to regulate the tunneling behavior
of the Cooper pairs; that is, the presence of N photons in the
resonator prevents the next tunnel event. In this way, a super-
Rabi oscillation can be realized between the |0, g〉 and |N, e〉
states with vastly different energies, where the resonator’s
transitions to the higher Fock states are greatly suppressed.
Combined with the system’s dissipation, the resonator can
release its energy in groups of N strongly correlated photons,
yielding an antibunched N-photon quantum light source. Such
a highly nonclassical emitter is of fundamental interest and
lies at the heart of many quantum technological applications,
such as beating the diffraction limit [35], quantum metrology
[36,37], and quantum information processing [38,39].

We recall that the idea of N-photon bundle emission was
first proposed by Sánchez Muñoz and colleagues with a cavity
mode coupled to a strongly driven two-level atom [40] and
attracted attention in a series of subsequent studies [41–48].
Here our scheme takes advantage of the nonlinear dynamics
of the inelastic Cooper-pair tunneling, where the Josephson
junction as a voltage-to-frequency converter is explored to
realize the N-photon bundle emission with high purity and
an in situ tunable rate. It thus differs fundamentally from the
previous proposals [40–48]. The present work offers a strategy
for the generation of nonclassical microwave radiations with
Josephson photonics circuits.
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FIG. 1. Schematic of the proposed setup. A dc-SQUID com-
posed of two identical Josephson junctions is coupled to both an LC
resonator and a charge qubit via the biased voltage V .

II. MODEL

As illustrated in Fig. 1, the proposed model consists of a
dc voltage-biased dc superconducting quantum interference
device (dc-SQUID) in series with an LC resonator and a
charge qubit. We consider the situation in which the biased
voltage V is smaller than the gap voltage 2�s/e (�s is the
superconducting gap), where no quasiparticle excitation can
be produced in the superconducting electrodes. The charge
qubit is a Cooper-pair box that has a tunnel junction with
capacitance Cj and Josephson coupling energy Ej ; that is, a
gate voltage Vg as a control parameter is coupled to the system
via a gate capacitor Cg [49–52]. The dc-SQUID is treated
as a tunable Josephson junction with the effective Josephson
energy EJ = 2EJ0 cos(π�ext/�0) [22], which can be varied
by controlling the magnetic flux �ext penetrating the loop
(�0 = h/2e is the magnetic flux quantum). The supercon-
ducting cavity could be realized either as a lumped element
oscillator [24] or as the fundamental mode of a transmission
line resonator [25]. Since the voltage V locks the total phase of
the three subunits, the charge qubit and resonator are coupled
to each other via the phase difference across the dc-SQUID.

If the charge qubit is operated at an optimal working point
CgVg/2e = 1/2, the Hamiltonian of the whole circuit is given
by (see Appendix A; hereafter h̄ = 1)

H = 1
2δσz + ωa†a − EJ cos[ωJt + η1 + 2λ(a† + a)], (1)

where the charge qubit with strong anharmonicity has been
reduced to a two-level system of an excited state |e〉 and
a ground state |g〉; that is, σz = |e〉〈e| − |g〉〈g| is the Pauli
matrix, and δ is the energy splitting. a† (a) is the creation (an-
nihilation) operator of the photons, and ω = 1/

√
LC denotes

the eigenfrequency of the resonator. The third interaction
term couples the Cooper-pair transfer to the excitation of
the qubit and resonator. ωJ = 2eV/h̄ is the Josephson fre-
quency, and η1 is the phase difference across the qubit’s
junction. The parameter λ = √

πZ/RK sets the magnitude of
zero-point displacement of the resonator, where Z = √

L/C is
the characteristic impedance, and RK = h/e2 is the resistance
quantum.

III. SUPER-RABI OSCILLATION

Using the Hamiltonian (1), we now derive the effective
N-photon coupling Hamiltonian that can generate super-Rabi
oscillations between the states with an N difference in their
photon number. In the interaction picture, we have (see

FIG. 2. (a) Bare energy structure of the qubit and resonator,
where the red arrow indicates a super-Rabi oscillation between |0, g〉
and |N, e〉 states. (b) Dynamics of the state populations P0g and P2e for
the two-photon resonance; that is, the red solid and green dash-dotted
curves are simulated with the original Hamiltonian HI, while the
black dashed and blue dotted curves are achieved with the effective
Hamiltonian Heff . The parameters are chosen to be ω/2π = 7 GHz,
δ/2π = 5 GHz, EJ/2π = 0.7 GHz, and λ = 0.2.

Appendix B)

HI = −EJ

4
e−iωJt (σ−e−iδt − σ+eiδt − σz )D[α(t )] + H.c.,

(2)

where σ+ = |e〉〈g| (σ− = |g〉〈e|) is the spin-ladder opera-
tor and D[α(t )] = exp[α(t )a† − α∗(t )a] is the cavity dis-
placement operator with time-dependent amplitude α(t ) =
−2iλeiωt . The Hamiltonian HI describes a highly nonlinear
drive, which is akin to the multiphoton process in trapped
ions [53]. By choosing an appropriate voltage V , we can
set the N-photon resonance condition ωJ = δ + Nω. In the
rotating-wave approximation, we obtain the effective Hamil-
tonian Heff = ∑∞

m=0 Hm under the Fock basis (see Appendix
B), where

Hm = gm+N
m |m + N, e〉〈m, g| + H.c. (3)

and gm+N
m = EJβ

m+N
m /4 is the N-photon resonance Rabi fre-

quency with

βm+N
m =

√
m!

(m + N )!
(−2iλ)N e−2λ2

L(N )
m (4λ2). (4)

In Eq. (4), L(N )
m (4λ2) is a Laguerre polynomial.

In the absence of dissipation, each Hm in Heff can in-
duce a coherent N-photon transition from the state |m, g〉 to
|m + N, e〉. So the Cooper pair can tunnel to excite the qubit
and the resonator with N photons simultaneously. Note that,
if the system is initially prepared in the ground state |0, g〉,
the Hamiltonian H0 will govern the evolution of the wave
function, which is restricted to a truncated Hilbert subspace
of a super-Rabi oscillation |0, g〉 ←→ |N, e〉, as depicted in
Fig. 2(a). Hence, the charge qubit under the two-level ap-
proximation is crucial for preventing the excitations of the
cavity to the higher Fock states. Similar to the mechanism
of multiphoton blockade [54–58], the absorption of N cavity
photons will impede the further tunneling of the Cooper pair
and inhibit the absorption of the next N photons. Thus, the
cavity contains only N photons or none, and all other possi-
bilities are strongly suppressed. This is the essential point for
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implementing a quantum microwave source that emits energy
strictly by N-photon quanta.

To exhibit the multiphoton Rabi oscillation, we numer-
ically solve the Schrödinger equation for the two-photon
resonance, where the initial state is |0, g〉. The time evolution
of the populations P0g in the state |0, g〉 and P2e in the state
|2, e〉 is presented in Fig. 2(b). Strikingly, perfect super-Rabi
oscillation |0, g〉 ←→ |2, e〉 is observed with both the original
Hamiltonian HI and the effective Hamiltonian Heff . Moreover,
we just need to adjust the biased voltage V to match the
different N-photon resonance conditions.

IV. ANTIBUNCHED N-PHOTON BUNDLE EMISSION

To trigger the N-photon bundle emission, we have to con-
sider the dissipation of the system, which will transform the
N-photon state into N strongly correlated photons outside of
the cavity. In the Born-Markov approximation, the dynamics
of the system is determined by the master equation

dρ

dt
= −i[HI, ρ] + κ

2
L[a]ρ + γ

2
L[σ ]ρ, (5)

where L[o]ρ = 2oρo† − o†oρ − ρo†o is the Lindblad oper-
ator for a given operator o and κ (γ ) denotes the energy
damping rate of the cavity (qubit). We have assumed that the
cavity and qubit are coupled to the environment independently
in the weak-coupling regime, i.e., ω, δ 	 γ , κ . Addition-
ally, we have neglected the thermal excitation, which is about
∼10−7 at the working temperature of 20 mK.

The underlying principle of the N-photon source is
that a former Cooper-pair tunneling event blocks the latter
one, which gives rise to an antibunched N-photon bundle
emission. More specifically, the tunneling of a single Cooper
pair extracts energy quanta from the voltage and constructs
a coherent super-Rabi oscillation; that is, the system will
evolve to a superposition state of |0, g〉 and |N, e〉. In the
presence of dissipation, each photon in |N, e〉 has a chance to
leave the cavity, which is a probabilistic event determined by
Rabi frequency gN

0 and photon loss rate κ . Once one photon
leaks out of the cavity, the system collapses to the state
|N − 1, e〉, which will disrupt the giant Rabi oscillation due to
its insufficient energy. Consequently, the remaining photons
have no choice but to leave the cavity in rapid succession. As
a result, a bundle of N cascaded itinerant photons is emitted,
but with an intrinsic temporal structure; that is, the first
photon emitted with the time 1/Nκ is closely followed by the
subsequent one, 1/(N − 1)κ , until the last one, 1/κ . The total
emission time of the bundle is τB = ∑N

i=1 1/iκ (smaller than
3/κ for N = 10). After all photons have left out of the cavity,
the system is in the state |0, e〉. Only after direct emission of
the qubit within its coherence time τQ = 1/γ can the second
Cooper pair traverse to reconstruct the Rabi oscillation for the
next emission of a bundle.

The above physical picture is valid only when the condition
κ 	 γ is satisfied. First, this is because the state |N, e〉 has
another dissipative channel via the charge qubit’s spontaneous
emission. If κ is not much larger than γ , there will be a
non-negligible probability for |N, e〉 to dissipate into the state
|N, g〉. Then, the Rabi dynamics controlled by the subunit
HN in Eq. (3) will further shuffle population from |N, g〉 to

FIG. 3. A tiny fraction of one quantum trajectory showing a
complete period of two-photon emission, where the red triangles de-
note the successive one-photon emissions and the blue one indicates
the flip of the qubit. The damping rates are κ/2π = 0.1 GHz and
γ = κ/20. The other parameters are chosen to be the same as those
in Fig. 2.

the state |2N, e〉, contaminating the pure N-photon emission.
More importantly, the timescales of τQ 	 τB guarantee the
emitted bundles are well separated, which leads to the de-
sired antibunching. On the other hand, we cannot make an
arbitrarily small γ . At the extreme case of γ → 0, the system
is close to being a completely antibunched N-photon bundle
emitter, but with an extremely low emission rate because of
the infinite reloading time. Therefore, γ is a key factor for
determining the quantum character of the emission. We have
to balance κ and γ to ensure an N-photon source with a purity
and emission rate that are both relatively high concurrently.

To well understand the photon radiating process, we now
turn to the Monte Carlo simulations with γ = κ/20 and track
individual trajectories of the system. The emission event is
recorded whenever the system undergoes a quantum jump.
As shown in Figs. 3(a)–3(c), we display a tiny fraction of
one quantum trajectory for the two-photon resonance. At
first, the super-Rabi oscillation causes the system to be in
the superposition state of |0, g〉 and |2, e〉. As time goes on,
the cavity emits one photon, denoted by the first red triangle
in Fig. 3(a), resulting in the collapse of the wave function
into the state |1, e〉 with almost unit probability, as seen in
Fig. 3(b). Immediately, the second photon is emitted within
the cavity lifetime (the second red triangle). Thus, a bundle of
two photons is emitted in a very short temporal window. As
expected in Fig. 3(c), the system then stays in the state |0, e〉
for a long time until the flip of the qubit (the blue triangle),
after which it will return to the ground state |0, g〉 and start a
new period for emitting the next photon pair.

It is now clear that the N-photon bundle stems from the ra-
diative cascade of a Fock state |N〉. So the emitted N photons
in a bundle are strongly correlated. In Fig. 4(a), the zero-
delay photon correlation functions g(n) = 〈a†nan〉/〈a†a〉n are
plotted, indicating strong correlations of the radiated photons.
Remarkably, at each N-photon resonance point � = Nω, a
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FIG. 4. (a) Zero-delay nth-order photon correlation functions g(n)

versus �/ω, where � = ωJ − δ. (b) The standard second-order cor-
relation function g(2)(τ ) and the generalized second-order correlation
function g(2)

2 (τ ) versus κτ for the two-photon resonance. The param-
eters are chosen to be the same as those in Fig. 3.

sharp dip instead of a bunching peak is observed for each
g(n), which is solid evidence that the cavity emits its energy in
antibunched N-photon bundles. To reveal the quantum statis-
tics of the bundles, we adopt the generalized second-order
correlation function [40]

g(2)
N (τ ) = 〈a†N (0)a†N (τ )aN (τ )aN (0)〉

〈(a†N aN )(0)〉〈(a†N aN )(τ )〉 (6)

to characterize the bunching or antibunching, where the N-
photon events are considered the basic unit of the emission. As
simulated in Fig. 4(b), the numerical result for g(2)

2 (τ ) shows
that the system behaves as an antibunched photon-pair emitter
for γ = κ/20, while the standard g(2)(τ ) fails to capture the
correlation between the separated photon pairs.

V. PURITY AND EMISSION RATE

An ideal N-photon emitter emits only bundles of N pho-
tons. In a realistic circumstance, however, it may experience
undesirable processes, such as single-photon emission or exci-
tation to the |2N〉 Fock state, which will produce bundles with
other photon numbers. To quantify the amount of N-photon
emission, we introduce the purity and the emission rate [44],
which are the most important features of such an emitter. The
purity is defined as

πN = n(I,N )
a∑N

i=1 n(i)
a

, (7)

where n(I,N )
a is the cavity population of the ideal N-photon

emission and n(i)
a is the mean photon number accumulated by

all the possible i-photon transitions. Obviously, πN represents
the percentage of the emission to be N-photon bundles. The
emission rate is given by SN = κn(I,N )

a .
The purity π2 and rate S2 of the two-photon emission

versus �V and γ are respectively shown in Figs. 5(a) and 5(b),
where �V is the voltage that deviated from the resonance
one. We can see that, in the range γ /κ ∈ [0, 0.1], π2 slowly
decreases with the increase of γ , while S2 has the opposite be-
havior. As stated before, there is, indeed, a trade-off between
the purity and the emission rate. Experimentally, when an
external control line is coupled to the charge qubit, the decay
rate γ can be adjusted by tuning the coupling strength between
them [59,60]. This allows us to have an in situ tunable emis-

FIG. 5. Purity and rate of the two-photon emission. (a) π2 and
(b) S2 versus the imperfect tuning �V and the qubit’s decay rate γ

for a fixed cavity decay rate κ/2π = 0.1 GHz. The other parameters
are chosen to be the same as those in Fig. 2.

sion rate. With the currently available parameters ω/2π =
7 GHz, δ/2π = 5 GHz, EJ/2π = 0.7 GHz, κ/2π = 0.1 GHz,
γ /2π = 0.005 GHz, and λ = 0.2, two-photon emission with
a purity π2 ∼ 99% and a rate S2 ∼ 2.78 MHz can be achieved.
Note that, as the number N gets larger, the N-photon cou-
pling rate is considerably reduced (see Appendix C). So the
other off-resonance i-photon process (i �= N) will gradually
dominate the dynamics and spoil the N-photon character of
the output field. Nevertheless, we can still reach about 99%
of the three-photon emission with a rate ∼0.22 MHz (see
Appendix C).

Finally, we perform Monte Carlo simulations over 40 quan-
tum trajectories to record the photon clicks, and there are
enough data to simulate a real situation with radiated photons.
In Fig. 6, a series of photon emission events for the two-
photon resonance is illustrated. Apart from two single-photon
emissions and one four-photon emission, all the rest of the
225 events are two-photon emissions. According to these data,
we can readily get an efficiency ∼99% for the two-photon
emission with a rate ∼2.81 × 106 counts/s, which is pretty
consistent with the numerical results for π2 and S2.

FIG. 6. A series of emission events extracted from the Monte
Carlo simulations over 40 quantum trajectories for the two-photon
resonance. The single-, two-, and four-photon emissions are denoted
by green stars, red circles, and the blue diamond, respectively. The
parameters are chosen to be the same as those in Fig. 3.
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VI. CONCLUSIONS

We have proposed an efficient method for the generation
of antibunched N-photon bundles in a Josephson photonics
device. By embedding a charge qubit in the circuit of a dc
voltage-biased dc-SQUID coupled to a superconducting cav-
ity, we can establish a super-Rabi oscillation between the
|0, g〉 and |N, e〉 states through Cooper-pair tunneling, where
the two-state charge qubit plays a key role in inhibiting the
excitation of the cavity to higher Fock states. Together with
the system’s dissipation, the cavity can continuously radiate
antibunched bundles of N strongly correlated photons; that is,
almost pure two- and three-photon emissions with the rates
on the order of megahertz can be reached with the current
technology. This nonclassical source could be instrumental for
various quantum technological applications.
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APPENDIX A: DETAILED DERIVATION OF EQ. (1)

As shown in Fig. 1, the Hamiltonian of the system follows
from the three subunits

H̃ = 4Ec(n1 − ng)2 − Ej cos η1

+ q2

2C
+

(
h̄

2e

)2
φ2

2L

− EJ cos η2 − 2e(V − Vres − Vq)n2. (A1)

The first two terms describe the charge qubit part with the di-
mensionless gate charge ng = CgVg/2e as a control parameter.
Ec = e2/2(Cj + Cg) is the single-electron charging energy,
and Ej is the Josephson coupling energy. n1 is the number
of Cooper pairs, and η1 is the phase difference across the
junction. The second two terms are the resonator part, where
q and φ denote the charge and phase operators acting on the
capacitance C and inductance L, respectively. The last two
terms represent the dc-SQUID part, where EJ is the effec-
tive Josephson coupling energy, η2 is the phase difference,
and n2 counts the number of transferred Cooper pairs [4,5].
These three sets of conjugate variables obey [η1, n1] = i,
[φ, q] = 2ie, and [η2, n2] = i. According to Kirchhoff’s rules,
the voltage across the dc-SQUID is V − Vres − Vq, where
Vres = −h̄φ̇/2e and Vq = −h̄η̇1/2e are the voltage drops at
the resonator and qubit, respectively. By utilizing the classical
phase-voltage relation η̇2 = V − Vres − Vq, we can rewrite the
dc-SQUID’s Josephson coupling term as −EJ cos(ωJt + η1 +
φ) [4,5], where ωJ = 2eV/h̄ is the Josephson frequency. Since
the voltage V locks the total phase of the three subunits, the
nonlinear coupling between the charge qubit and resonator is
induced via the phase difference across the dc-SQUID.

To obtain the desired coupling, we perform a time-
dependent gauge transformation U (t ) = exp[i(ωJt + η1 +
φ)n2] to Eq. (A1). By means of the formula H =

U (t )†H̃U (t ) + ih̄ dU (t )†

dt U (t ), we can get the Hamiltonian

H = 4EC (ñ1 − ng)2 − Ej cos η1 + q̃2

2C
+

(
h̄

2e

)2
φ2

2L

− EJ cos (ωJt + η1 + φ). (A2)

In the equation above, ñ1 = n1 + n2 (q̃ = q + 2n2e) is the
new number (charge) operator, which is caused by the charge
fluctuations relative to the flow of Cooper pairs through the
dc-SQUID. Even so, the transformed operator ñ1 (q̃) is still
conjugate to η1 (φ).

In the charge regime Ec 	 Ej , the Hamiltonian describing
the charge qubit takes the form [49–52]

Hq =
∑

n

[
4EC (ñ1 − ng)|n〉〈n|

− Ej

2
(|n + 1〉〈n| + |n〉〈n + 1|)

]
, (A3)

where |n〉 is the eigenstate of the number operator ñ1. At
the degeneracy point ng = 1/2, only the two lowest-energy
charge states of |0〉 and |1〉 are relevant, while all other charge
states with a much higher energy can be ignored. Then, the
charge qubit is reduced as a two-state system with Hq =
1
2 h̄δσz, where δ = Ej/h̄ is the transition frequency and σz =
|e〉〈e| − |g〉〈g| is the Pauli operator in the basis of excited state
|e〉 = (|1〉 − |0〉)/

√
2 and ground state |g〉 = (|1〉 + |0〉)/

√
2.

Furthermore, we introduce the annihilation a and creation
a† operators

a =
√

h̄

8Ze2

(
φ + i2eZq̃

h̄

)
, a† =

√
h̄

8Ze2

(
φ − i2eZq̃

h̄

)
,

(A4)

where Z = √
L/C is the characteristic impedance. In terms of

a and a†, the Hamiltonian of the LC resonator can be quan-
tized as Hr = h̄ωa†a, where ω = √

1/LC is the resonance
frequency.

By substituting Hq, Hr , and φ = 2λ(a† + a) into Eq. (A2),
we obtain (hereafter h̄ = 1)

H = 1
2δσz + ωa†a − EJ cos[ωJt + η1 + 2λ(a† + a)]. (A5)

This is just Eq. (1) in the main text. Here the parameter λ =√
πZ/RK sets the magnitude of the zero-point displacement

of the resonator (RK = h/e2 is the resistance quantum).

APPENDIX B: DETAILED DERIVATION OF THE
N-PHOTON COUPLING HAMILTONIAN

We now give more details on deriving the N-photon cou-
pling Hamiltonian. In the interaction picture with respect to
the frame rotating exp[−it ( 1

2δσz + ωa†a)], the Hamiltonian
in Eq. (A5) will yield

HI = −EJ

4
e−iωJt (σ−e−iδt − σ+eiδt − σz )D[α(t )] + H.c.,

(B1)

where we have used the relation e−iη1 = (σ− − σ+ − σ z )/2
and σ+ = |e〉〈g| (σ− = |g〉〈e|) is the spin-ladder operator. In
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FIG. 7. The different N-photon coupling rates |gN
0 | versus the

cavity’s zero-point fluctuation λ, where we choose the parameter
EJ/2π = 0.7 GHz.

addition, D[α(t )] = exp[α(t )a† − α∗(t )a] is the cavity dis-
placement operator with time-dependent amplitude α(t ) =
−2iλeiωt , which can be directly expanded in the Fock
basis [62]

D[α(t )] =
∞∑

m=0

( ∞∑
l=0

βm+l
m |m + l〉〈m|eilωt

+
∞∑

l ′=1

βm+l ′
m |m〉〈m + l ′|e−il ′ωt

)
, (B2)

with

βm+l
m =

√
m!

(m + l )!
(−2iλ)l e−2λ2

L(l )
m (4λ2). (B3)

In Eq. (B3), L(l )
m (4λ2) is a Laguerre polynomial. By choosing

an appropriate voltage V , we can set the N-photon reso-
nance condition ωJ = δ + Nω. For the parameters ωJ, δ, ω 	
EJβ

m+l
m /4, we can make a rotating-wave approximation to

discard those rapidly oscillating terms and derive the effective
Hamiltonian

Heff =
∞∑

m=0

Hm =
∞∑

m=0

gm+N
m |m + N, e〉〈m, g| + H.c., (B4)

where gm+N
m = EJβ

m+N
m /4 is the N-photon coupling rate that

enables a direct transition from |m, g〉 to the state |m + N, e〉.

FIG. 8. (a) and (b) Dynamics of the state populations P0g and
PNe for the three- and four-photon resonances without regard to
dissipation; that is, the red solid and green dash-dotted curves are
simulated with the effective Hamiltonian Heff , while the black dashed
and blue dotted curves are achieved with the original Hamiltonian HI.
(c) and (d) Purities and rates of the three- and four-photon emissions.
The parameters are chosen to be the same as those in Fig. 5.

APPENDIX C: THE PURITIES AND RATES OF THE
THREE- AND FOUR-PHOTON EMISSIONS

In the main text, a thorough study of the two-photon
emission was made. Here we investigate the purities and
rates of the three- and four-photon emissions. As shown in
Fig. 7, with the increase of N , the N-photon coupling rate
|gN

0 | is considerably reduced in the range λ ∈ [0, 0.3]. So the
other off-resonance i-photon process (i �= N) will gradually
dominate the dynamics and spoil the pure N-photon bundle
emission. The super-Rabi oscillations |0, g〉 ←→ |N, e〉 for
the three- and four-photon resonance are shown in Figs. 8(a)
and 8(b), respectively. It is seen that the rotating-wave ap-
proximation does not work well for the case N = 4, where
the other off-resonance processes play a non-negligible role.
Figures 8(c) and 8(d) display the purities and rates of the
three- and four-photon emissions. As the number N gets
larger, both the purity and emission rate are obviously re-
duced. Nevertheless, we can still reach about 99% of the
three-photon emission with a rate ∼0.22 MHz.
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