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Quantum spin compass models in two-dimensional electronic topological metasurfaces
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We consider a metasurface consisting of a square lattice of cylindrical antidots in a two-dimensional topo-
logical insulator (2DTI). Each antidot supports a degenerate Kramer’s pair of eigenstates formed by the helical
topological edge states. We show that the on-site Coulomb repulsion leads to the onset of the Mott insulator
phase in the system in a certain range of experimentally relevant parameters. Intrinsic strong spin-orbit coupling
characteristic for the 2DTI supports a rich class of the emerging low-energy spin Hamiltonians that can be
emulated in the considered system, which makes it an appealing solid-state platform for quantum simulations of
strongly correlated electron systems.
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I. INTRODUCTION

Spin-lattice models are ubiquitous in theoretical physics.
Besides their natural applications for the description of the be-
havior of magnetic systems, a variety of the condensed-matter
problems related to high-temperature superconductivity [1],
thin superfluid films [2], quantum Hall bilayers [3], and
nonlinear optical lattices [4] allow mapping into spin-lattice
Hamiltonians. An interesting subclass of such models is repre-
sented by Compass models (CM), for which the characteristic
feature is direction-dependent spin-spin interaction [5]. The
first model of this type was introduced back in the 1982 [6]
to describe the interplay between the Jahn-Teller effect and
magnetization dynamics. Since then, CMs have been applied
for modeling of emergent phenomena in a variety of strongly
correlated systems such as high-temperature superconductors
[7,8], vacancy centers networks [9], colossal magnetoresis-
tance manganites [10], and materials supporting spin-liquid
phases [11]. One of the most prominent examples is the Kitaev
model [12] employed extensively in the rapidly developing
field of topological quantum computation.

For any spin model, it is highly desirable to find a material
platform that allows flexible control over its effective param-
eters [13]. While it has been argued that certain quantum
CMs can be emulated with the use of cold atoms in optical
lattices [14,15], corresponding solid-state platforms are still
yet to appear. Here we demonstrate that a metasurface formed
by a square lattice of antidots in two-dimensional topological
insulators (2DTI) is an attractive alternative for this.

The 2DTIs are materials that have both a 2D bulk en-
ergy gap (like ordinary insulators) and 1D gapless conducting
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edges [16–18] protected by time-reversal symmetry and char-
acterized by the spin-momentum locking, which means that
at a specific boundary the direction of the propagation of an
edge state is uniquely defined by electron spin projection.
Naturally, for the closed boundaries, the energy of an edge
state is quantized, and for the case of rotational symmetry,
the corresponding eigenstates are characterized by specific
projections of the orbital and spin angular momentum. Such
topological resonators have been actively studied recently in
topological photonic systems [19–21], but can be realized as
well for electrons, an example being an antidot (ring shape
aperture) in 2DTI. The electronic spectrum of such a system
was obtained in Refs. [22,23] and associated quantum impu-
rity models have been considered in a number of follow-up
works [24,25].

In the current paper, we show that a square lattice of
antidots in 2DTI emulates a quantum spin CM with ad-
ditional spin-orbit interaction of the Dzyaloshinskii-Moriya
(DM) type. The parameters of the model can be flexibly tuned
by change of the geometry of the lattice (antidot size and
interdot distance), which can be routinely achieved within
state-of-the-art fabrication techniques. The proposed system
can thus serve as a solid-state quantum simulator of a wide
class of quantum CMs with possible applications ranging
from emulation of correlated electron materials to topological
quantum computation.

The geometry of the system we consider is shown schemat-
ically in Fig. 1. We take an example of the CdTe/HgTe/CdTe
quantum well [18], since this is currently the most common
of 2DTI where topologically protected edge states has been
observed experimentally [26], but other material platforms are
also possible.

The model Hamiltonian of a CdTe/HgTe/CdTe quantum
well is represented by a 4 × 4 block-diagonal matrix, which
consists of the blocks related to each other by time-reversal
symmetry operation [18], H = diag[h(k), h∗(−k)], where

h(k) = (C − Dk2) + (M − Bk2)σz + Aσ · k. (1)
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FIG. 1. A 2D array of antidots (holes) in 2DTI. Blue (dark) and
red (light) arrows show topologically protected counterpropagating
edge states with opposite spin directions.

The parameters entering this expression are determined
by the geometry of the QW. In what follows, we take
A = 375 mev nm, B = −1.12 ev nm2, D = 0, C = 0, M =
−10 mev [22]. The parameter M (Dirac mass), defined by a
thickness of a QW, is of special importance, as only the case
M < 0 corresponds to the topologically nontrivial regime.

The eigenvalues and eigenvectors of an individual axially
symmetric antidot can be found with use of the following
ansatz for a four-spinor:

ψ = eimθ

√
2π

(
χm

1 (r)eiθ/2

χm
2 (r)e−iθ/2

)
, (2)

where θ is an angular coordinate, χm
1,2(r) are radial

parts of a wave function, and quantum number m =
±1/2,±3/2,±5/2, ... gives z component of the total angu-
lar momentum jz commuting with the Hamiltonian. Using
this substitution we get the radial part of a wave function
in terms of the Macdonald functions Km±1/2. Applying the
Dirichlet boundary condition at the antidot edge χ1,2(r)|r=a =
0, we get a secular equation defining the eigenenergies and
eigenfunctions.

The spectrum of a single antidot as a function of an antidot
radius a is shown in Fig. 2. As one can see, the spectrum is
symmetric with respect to the gap center (zero energy). For

FIG. 2. Energies of in-gap edge states circulating around an an-
tidot as functions of the antidot radius a; m is the quantum number
defining z projection of the total angular momentum of the circulat-
ing edge states.

(a)

(b)

FIG. 3. (a) The dependence of the |ψ (r)|2 of the edge state of an
antidot with the radius a = 15 nm vs distance from the center of the
antidot, |m| = 1/2. (b) Spin density of the edge state near a single
antidot.

small radii there exist only two bound states corresponding
to m = ±1/2 with energies approaching the gap edges as one
decreases the radius. At larger radii the states corresponding
to larger |m| appear. In what follows, we consider the radius
a = 15 nm, which corresponds to the case of a single pair of
the bound states.

It should be stressed that each of the eigenenergies cor-
responds to the Kramer’s doublet, representing a mixture
of purely orbital degenerate states [27] and degenerate spin
states. We introduce the pseudospin index σ = (↑, ↓) to label
the partners of the doublet. Their wave functions ψ and ψ ′
are related to each other by the time-reversal operator T :
ψ ′ = T ψ = iσyψ

∗.
In Figs. 3(a) and 3(b) we plot the probability distribution

functions and corresponding spin-density profile for the m =
1/2 eigenstate for a = 15 nm. It can be seen that the wave
function is localized at the scale of several a. Moreover, the
spin distribution of the state is highly nonisotropic, which is a
consequence of the spin-orbit coupling.

In the situation, when apertures are placed reasonably close
to each other, the wave functions of the states localized at
each of them overlap, and electrons can thus tunnel between
antidots. If one neglects the doublet corresponding to higher
energy (upper line in Fig. 2), the system can be described
in terms of a tight-binding Hamiltonian of the Hubbard type,
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which for a square lattice of antidots reads:

H = −
∑
〈i, j〉

(c+
iσ tσσ ′

i j c jσ ′ + H.C.) + U
∑

i

(
ni↑ − 1

2

)

×
(

ni↓ − 1

2

)
, (3)

where ciσ is the annihilation operator for the state with specific
pseudospin projection localized at site i of the lattice. The first
term corresponds to the tunneling between the sites, while the
last term describes on-site Coulomb repulsion.

Since we account for nearest-neighbor hopping only, there
exist only two inequivalent tunneling matrices tσσ ′

i,i+x̂, tσσ ′
i,i+ŷ cor-

responding to hoppings along orthogonal lattice translation
vectors, which read:

tσσ ′
i,i+ê = ε

∫
d2rψH

σ (r)ψσ ′ (r + Rê), (4)

where R is the distance between the antidot centers, ε is
the bound state energy, and ê = [x, y]. Substituting the ex-
pression for ψ↑ from Eq. (2) and recalling that ψ↓ = T ψ↑,
we notice that t↑↑

i,i+ê = t↓↓
i,i+ê and t↑↓

i,i+ê = −(t↓↑
i,i+ê)∗. Moreover,

since χ1, χ2 are real functions, the diagonal elements tσσ are
real. Also, the absolute value of tunneling amplitudes should
depend only on the distance between antidots and not on the
orientation of the antidot pair. These general considerations
allow to parametrize the tunneling matrix as

t̂i,i+ê = t

(
cos α eiφê sin α

−eiφê sin α cos α,

)
, (5)

where t and α are real numbers, which depend on the antidot
radius and intersite distance, and phase φê depends on the
hopping direction. Numerical integration shows that φx = 0
and φy = π/2. The dependence of the tunneling amplitude
t and phase α versus intersite distance R for a = 15 nm is
shown in Fig. 4(a). As expected, the tunneling amplitude
decays exponentially with the inersite distance. Interestingly,
the angle α reaches the value of π/4, which corresponds to
the case of the equivalency of spin conservative and spin-flip
tunnelings, at some finite value of R.

The Coulomb interaction energy can be estimated as:

U =
∫

V (r1, r2)ρ↑(r1)ρ↓(r2)dr1dr2, (6)

where ρ↑↓(r) = ψ
†
↑↓(r)ψ↑↓(r) is an electron density for the

corresponding pseudospin projection, and V is the interaction
potential, which in principle should include both static and
dynamical screening. We will neglect the latter, since edge
states lie in the band gap of the bulk material where there is
vanishing density of the free electrons. As to the static screen-
ing, it was considered in Ref. [28] where it has been shown
that the the effect of the image potential can be neglected
for moderate dielectric contrasts and simple expression for
the potential V = e2/(ε|r1 − r2|), where ε ≈ 10 is the static
dielectric constant of HgTe and can be safely used.

In Fig. 4(b) we plot the dependence of U on the antidot
radius a. Its nonmonotonic behavior can be attributed to the
fact that for small antidots, the eigenfunctions are weakly
localized in the radial direction because of the approaching of

(a)

(b)

FIG. 4. (a) The dependence of the tunneling amplitude (black
curve) and α(β ) parameter (dashed blue curve) vs distance between
centers of antidots R (in units of the dot radius a, taken to be 15 nm).
The gray area of the plot denotes Mott insulating regime of the
system at half filling. (b) The dependence of the on-site interaction
energy vs radius of the antidot

the corresponding energies to the band-gap edge. At the same
time, for large antidots, wave function becomes delocalized
along its periphery of the radius ≈2a. The interplay between
these two effects defines the radius at which U becomes
maximal. For the considered parameters, U = Umax ≈ 4 mev
is achieved at a ≈ 13 nm.

Let us consider the situation when the Fermi energy in the
system is tuned in such a way that one has exactly one electron
per each dot (regime of half filling). It is well known that in
this situation, the tunneling between the neighboring sites can
be completely blocked by the interaction. This regime corre-
sponds to the so-called spin-orbit coupled Mott insulator and
is achieved when U > 4t [29], which in our case corresponds
to the distances between the antidots R > 10a.

Our geometry resembles some previously proposed ones,
where Mott insulators were realized with arrays of semicon-
ductor quantum dots [30–32]. However, there is one crucial
difference, namely, strong spin-orbit coupling inherent for the
TIs. It gives an additional twist to our model, which enables
to emulate a much wider class of the accessible low-energy
Hamiltonians.
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By employing the standard Schrieffer-Wolff transforma-
tion and excluding the states with two electrons sitting on the
same sites, we can map the low-energy sector of the original
Hamiltonian 3 into the following spin-lattice model:

Heff = J
∑

i

[
Sa

i Rx
ab(2α)Sb

i+x̂ + Sa
i Ry

ab(2β )Sb
i+ŷ

]
, (7)

where exchange constant J = 4t2/U > 0, a, b = 1, 2, 3 de-
notes components of the pseudospin operator; x̂, ŷ are basis
vectors along corresponding axes; and Rx(2α), Ry(2β ) are
SO(3) rotation matrices around x and y axes, respectively. The
states with pseudospins Sz = ±1/2 correspond to the occupa-
tions of the partners of the Kramers doublet, other states being
their linear combinations.

For the case of α = π/4, which is reached for the intersite
distance ≈10a, we can rewrite the Hamiltonian as

Heff = J
∑

i

∑
ê=x̂,ŷ

Se
i Se

i+ê + ê · [Si × Si+ê], (8)

where the first term corresponds to the so-called 90o spin
CM and the second term to the conventional Dzyaloshinskii-
Moriya interaction (DMI).

The Hamiltonian in Eq. (8) is essentially a quantum spin
CM with added DMI interaction. Pure spin CMs are usually
characterized by the highly degenerate ground states, which
sometimes allow for the dimensionality reduction and even
the exact solution such as in the case of the Kitaev model,
corresponding to the honeycomb lattice [5]. While for the
case of the square lattice, the DMI interaction is likely to lift
the ground-state degeneracy, it will be instructive to consider
the structures with geometrical frustration, such as Lieb or
Kagome lattices, and to explore the interplay between the
geometrical frustration and the strong spin-orbit coupling.
Moreover, inclusion of the edge states characterized by a
larger value of m opens the access to the multiband Hubbard

model and to the multiband Mott insulators with strong spin-
orbit interaction.

In the classical limit, the Hamiltonian (8) is characterized
by the spiral wave ground states [15]. At the same time,
quantum fluctuations can substantially modify the ground-
state properties of the system. Specifically, in Ref. [33], the
1D analog of Hamiltonian (8) was analyzed, where the spins
are aligned along the x axis. It has been shown using exact
diagonalization and renormalization group methods that the
spiral long-range order characterized by the order parameter,

Ch = 1

4N

N∑
i=1

〈
Sz

i Sy
i+1 − Sy

i Sz
i+1

〉
, (9)

is destroyed and only local order is preserved.
To probe the onset of different collective phases experi-

mentally, one can resort to the measurement of the zero-bias
conductance [32], which can be performed for different fill-
ing factors, controlled by the gate voltage. To spot quantum
phase transitions, one would need cryogenic temperatures
T satisfying the condition T ≈ 0.01t ≈ 100 mK in order to
preserve the correlations from being washed away by thermal
fluctuations [34,35]. This temperature range can be routinely
achieved in the modern dilution cryostats.

In conclusion, we have proposed an experimentally viable
quantum simulator of a spin-orbit coupled Mott insulator
based on an array of antidots in the 2DTI. If the antidot size is
sufficiently small, the low-energy behavior of the system can
be described by the quantum spin CM with DMI. The alterna-
tive lattice geometries supporting the geometrical frustration
would give access to an even richer class of the available spin
models, which could be of particular interest in the domains
of quantum simulation and quantum computation.
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